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Abstract

The Navier-Stokes systems for compressible fluids with density-dependent
viscosities are considered in the present paper. These equations, in particular,
include the ones which are rigorously derived recently as the Saint-Venant system
for the motion of shallow water, from the Navier-Stokes system for incompressible
flows with a moving free surface [11]. These compressible systems are degenerate
when vacuum state appears. We study initial-boundary-value problems for such
systems for both bounded spatial domains or periodic domains. The dynamics
of weak solutions and vacuum states are investigated rigorously.

First, it is proved that the entropy weak solutions for general large initial
data satisfying finite initial entropy exist globally in time. Next, for more regular
initial data, there is a global entropy weak solution which is unique and regular
with well-defined velocity field for short time, and the interface of initial vacuum
propagates along particle path during this time period. Then, it is shown that
for any global entropy weak solution, any (possibly existing) vacuum state must
vanish within finite time. The velocity (even if regular enough and well-defined)
blows up in finite time as the vacuum states vanish. Furthermore, after the
vanishing of vacuum states, the global entropy weak solution becomes a strong
solution and tends to the non-vacuum equilibrium state exponentially in time.
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1 Introduction

The compressible isentropic Navier-Stokes equations, which are the basic models
describing the evolution of a viscous compressible fluid, read as follows{

ρt + div(ρu) = 0,

(ρu)t + div(ρu⊗ u) − 2div(μD(u))−∇(ξdivu) + ∇p(ρ) = 0,
(1.1)

where x ∈ Ω ⊂ RN , t ∈ (0, T ), D(u) = (∇u + (∇u)T)/2, and p(ρ) = aργ , a > 0, γ ≥ 1,
the viscosity coefficients μ, ξ are assumed to satisfy μ ≥ 0 and ξ + 2μ/N ≥ 0.

If μ and ξ are both constants, there is huge literature on the studies of the global
existence and behavior of solutions to (1.1). For instance, the one-dimensional(1D)
problems were addressed by Kazhikhov et al [18] for sufficiently smooth data, and by
Serre [40,41] and Hoff [12] for discontinuous initial data, where the data are uniformly
away from the vacuum; the multidimensional problems (1.1) were investigated by Mat-
sumura et al [30–32], who proved global existence of smooth solutions for data close
to a non-vacuum equilibrium, and later by Hoff for discontinuous initial data [13], and
more recently, by Danchin [8], who obtained existence and uniqueness of global solu-
tions in a functional space invariant by the natural scaling of the associated equations;
and for the existence of solutions for arbitrary data(which may include vacuum states),
Lions [24–26] (see also Feireisl et al [10]) obtained global existence of weak solutions -
defined as solutions with finite energy - when the exponent γ is suitably large, where
the only restriction on initial data is that the initial energy is finite, so that the density
is allowed to vanish.

Despite the important progress, the regularity, uniqueness and behavior of these
weak solutions remain largely open. As emphasized in many papers related to com-
pressible fluid dynamics [6,7,12,14,15,18,22,39,40,42,44,46], the possible appearance
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of vacuum is one of the major difficulties when trying to prove global existence and
strong regularity results. Hoff and Smoller [15] proved that weak solutions of the com-
pressible Navier-Stokes equations (1.1) in one space dimension do not exhibit vacuum
states in a finite time provided that no vacuum is present initially under fairly gen-
eral conditions on the data. Such a result was extended to the spherically symmetric
case in [48] recently. On the other hand, the results of Xin [46] showed that there is
no global smooth solution to Cauchy problem for (1.1) with a nontrivial compactly
supported initial density, which gives results for finite time blow-up in the presence
of vacuum. It is also proved in [22] that for bounded domain even one point initial
vacuum shall cause the global strong solutions to 1D (1.1) to blow up as time goes to
infinity provided the initial data satisfies some compatibility conditions.

The independence of viscosities on density makes it possible to trace either the
particle path or the trajectory of vacuum state. This, however, leads to the failure of
continuous dependence of weak solutions containing vacuum state on initial data [14].
For the case that the density changes continuously across the interfaces separating the
gas and vacuum, the global existence and uniqueness of weak solutions was obtained
in [28], where the authors obtained that velocity is smooth enough up to the interfaces
which are particle paths separating the gas from the vacuum and that the support of
gas density expands outside as well as interface connecting gas and vacuum moves at
an algebraic rate.

Thus, viscous compressible fluids near vacuum should be better modelled by the
compressible Navier-Stokes equations with density-dependent viscosities, as was de-
rived in the fluid-dynamical approximation of Boltzmann equation for dilute gases.
Further, as was first pointed out and investigated by Liu-Xin-Yang in [27], in the
derivation of the compressible Navier-Stokes equations from the Boltzmann equation
by the Chapman-Enskog expansions, the viscosity depends on the temperature,which is
translated into the dependence of the viscosity on the density for isentropic flows. More-
over, it should be emphasized that a one-dimensional compressible flow model, called
the viscous Saint-Venant system for laminar shallow water, derived rigorously from
incompressible Navier-Stokes system with a moving free surface by Gerbeau-Perthame
recently in [11], has the form:{

ρt + (ρu)x = 0,

(ρu)t + (ρu2)x − a(ρux)x + (ρ2)x = 0,
(1.2)

with the viscosity coefficients given by μ(ρ) = ξ(ρ) = aρ/3 for a given positive constant
a. Indeed, such models appear naturally and often in geophysical flows [2, 4, 5].

In the case of one-dimensional problem with μ = ξ = aρα for some positive constants
a and α, the well-posedness of the Cauchy problem has been studied by many authors
for initially compact-supported density. Indeed, the local (in time) well-posedness of
weak solutions to this problem was first established by Liu-Xin-Yang in [27], where
the initial density was assumed to be connected to vacuum with discontinuities. This
property, as shown in [27], can be maintained for some finite time. And the global
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existence of weak solutions, together with α ∈ (0, 1) and the density function connecting
to vacuum with discontinuities, was considered by many authors, see [17, 37, 49] and
the references therein. It is noticed that the above analysis is based on the uniform
positive lower bound of the density with respect to the construction of the approximate
solutions.

On the other hand, if the density function connects to vacuum continuously, there
is no positive lower bound for the density and the viscosity coefficient vanishes at
vacuum. This degeneracy in the viscosity coefficient gives rise to new difficulties in
analysis because of the less regularizing effect on the solutions. Yang et al [50] first
obtained a local existence result for this case under the free boundary condition with
α > 1/2. The authors in [9,45,51] obtained the global existence of weak solutions with
α ∈ (0, 1/2).

However, almost all above results concern mainly with free boundary problems,
and for the global existence results, the choices of viscosity do not fit the important
physical model, the shallow water equation (4.3) with μ(ρ) = ρ (namely α = 1). For the
constant viscosity case, one has known not only that the vacuum state will not develop
later on time if there is no vacuum state initially [15], but also that the separate two
initial vacuum states shall not meet together in a finite time [48], and that one point
initial vacuum causes strong solutions to blow up [22] at infinity as well. However, little
is known on the dynamics of the vacuum states of weak solutions to the compressible
Navier-Stokes equations (1.1) with density-dependent viscosity on bounded domain.
And in particular, it is not clear yet how the vacuum states evolve with respect to
time and whether the initial vacuum states shall exist all the time or not for weak
solutions. The study of these important dynamical problems about vacuum states
is rather difficult because the nonlinear diffusion is degenerate as vacuum appears,
which is quite different from the case of constant viscosity. This causes the loss of
information about the velocity and makes it difficult to trace the evolution of vacuum
states in general. Across the interface (or vacuum boundary), it is usually difficult to
obtain enough information about velocity even if considering specific cases such as point
vacuum or continuous vacuum of one piece. It is important to get enough information
about the velocity since the flow particles transport usually along particle path, and
all interfaces of vacuum, such as free boundaries [17, 28] which can be observed and
dealt with, also move along the trajectories determined by velocity field.

For the multidimensional case, Vaigant et al [43] first proved that for the 2D case
and for the case μ is a constant and ξ(ρ) = aρβ, with a > 0, β > 3, (1.1) with periodic
boundary condition has a unique strong and classical solution with density away from
vacuum. More recently, Bresch et al [2–5] (see also [33]) have made important progress.
Under the condition that ξ(ρ) = 2(μ′(ρ)ρ − μ(ρ)), they succeeded in obtaining a new
entropy inequality which can not only be applied to the vacuum case but also be used
to get the compactness results for (1.1) which extended the compactness results due
to Lions [24–26] to the case γ ≥ 1. They consider the periodic boundary conditions
and the Cauchy problem. However, the constructions of the approximation solutions
remain to be carried out, which does not seem routine in the case of appearance of
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vacuum.

We study mainly the initial-boundary-value problem (IBVP) for (1.1), where μ =
ρα, and p = ργ with α > 1/2, γ ≥ 1, on bounded spatial domains or periodic domains.
This contains the physical important model for shallow water equations (4.3). The
choice of α > 1/2 is necessary in order to consider the dynamics of vacuum states since
it allows the existence of initial vacuum in Eulerian coordinates as one can see later.

We first establish the global existence of entropy weak solutions for the compressible
Navier-Stokes equations (1.1) for general initial data with finite entropy and vacuum.
The key in our analysis is the construction non-vacuum approximate solutions so

that we can modify the stabiolity analysis in [33], where a new entropy inequality
developed by Bresch et al [2–5] was used to obtain the compactness results. Our
construction of the approximate solutions are strongly motivated by the work [17]. In
general, it seems rather difficult to investigate the dynamics of vacuum states due to
the degeneracy of nonlinear diffusion and the density function connecting to vacuum
continuously. Therefore, we further consider the cases of more regular initial data
containing point vacuum or continuous vacuum of one piece, and we show that there is
a global entropy weak solution which is unique and regular with well-defined velocity
field at least for short time, and the vacuum states remain for the short time. Then,
we use some ideas due to [16, 22, 23] to prove that any possible vacuum state in such
global weak solutions must vanish within finite time. This shows that such short time
structure and vacuum states of weak solutions can not be maintained all the time. And
as the vacuum states vanish, the spatial derivative of velocity (if it exists) has to blow
up even if the velocity is regular enough and well-defined before. After the vanishing
of vacuum states, we can redefine the velocity field and recover the nonlinear diffusion
term in terms of density and velocity. In addition, the global entropy weak solution
is shown to become a strong solution and tends to the non-vacuum equilibrium state
exponentially in time. This phenomena, applied to the compressible shallow water
equations (4.3), seems never observed for the compressible Navier-Stokes equations
before.

The rest of the paper is as follows. In section 2, the main results about the vanishing
of vacuum states and blow-up phenomena of global entropy weak solutions for the
compressible Navier-Stokes equations are stated. The global existence of entropy weak
solutions for general large initial data with vacuum states allowed is proven in section 3.
The short time structure of global entropy weak solution with initial one point vacuum
state or initial continuous vacuum states of one piece are investigated in section 4.
In section 5, we show the vanishing of vacuum states and blow-up phenomena of any
global entropy weak solution within finite time and analyze the regularity and large time
asymptotic behavior of global entropy weak solutions after the vanishing of vacuum
states.
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2 Main results

We consider the initial-boundary-value-problem (IBVP)for the 1D compressible
Navier-Stokes equations with density-dependent viscosity

ρt + (ρu)x = 0, (2.1)

(ρu)t + (ρu2 + p(ρ))x − (μ(ρ)ux)x = 0, (2.2)

with ρ ≥ 0 the density, ρu the momentum. The pressure and viscosity are assumed to
have the form:

p(ρ) = a1ρ
γ , μ(ρ) = a2ρ

α

where γ ≥ 1, a1 > 0, a2 > 0, and α > 1/2 are constants, and for simplicity we set
a1 = a2 = 1.

The initial data is given for the density ρ and the momentum ρu

ρ(x, 0) = ρ0(x) ≥ 0, ρu(x, 0) = m0(x), x ∈ Ω, (2.3)

where the domain Ω is chosen as unit interval denoting the spatial domain (0, 1) or
periodic domain with period length one, and throughout the present paper the initial
data is assumed to satisfy⎧⎨

⎩
ρ0 ≥ 0 a.e. in Ω, ρ0 ∈ L1(Ω), (ρ

α−1/2
0 )x ∈ L2(Ω),

m0 = 0, a.e. on {x ∈ Ω | ρ0(x) = 0}, |m0|2
ρ0

∈ L1(Ω).
(2.4)

Remark 2.1 Note here that the condition (2.4) implies

ρ0 ∈ L∞(Ω), ρ0 log+ ρ0 ∈ L1(Ω). (2.5)

It should be clear that a large class of initial data satisfy the conditions in (2.4). In
particular, the assumptions (2.4) are satisfied for following initial data

ρ0(x) = (|x− x0|2)1/(2α−1), m0(x) = 0, x ∈ Ω.

Without the loss of generality, the total initial mass is renormalized to be one throughout
the present paper, i.e., ∫

Ω

ρ0(x)dx = 1.

The boundary conditions are one of the boundary conditions of Dirichlet type and
periodic type for Eqs. (2.1)-(2.2) imposed as

(1). Dirichlet case:
ρu(0, t) = ρu(1, t) = 0, t ≥ 0, (2.6)
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(2). periodic case:
ρ, u are periodic in x of period 1, (2.7)

where we consider Eqs. (2.1)-(2.2) on R × (0,∞).

Remark 2.2 For the case of Dirichlet boundary (2.6), the boundary is given by the
physical observable momentum instead of velocity. It is natural to employ such boundary
condition as considering the dynamics of (global in time) weak solutions to the IBVP
for the compressible Navier-Stokes equations with possible vacuum states included since
it is usually the case that, at vacuum states, the momentum is zero and is observed and
controllable, but almost nothing is known yet for the velocity for weak solutions. Note
here that for any (weak) solution away from vacuum at the boundary, the boundary
condition (2.6) reduces to u(0, t) = u(1, t) = 0, t ≥ 0.

In order to define the weak solutions to the IBVP for the compressible Navier-Stokes
equations (2.1)-(2.2) with initial data (2.3) and boundary condition (2.6) or (2.7), we
define the set of test functions as follows,

Ψ �
{
C∞

0 (Ω × [0, T )) for the Dirichlet case (2.6),

C∞
per(R × [0, T )) for the periodic case (2.7),

and

Φ �
{
C∞

0 (Ω × [0, T )) for the Dirichlet case (2.6),

C∞
per(R × [0, T )) for the periodic case (2.7),

with C∞
per(R × [0, T )) defined by

C∞
per(R × [0, T )) = {ϕ ∈ C∞(R × [0, T ))| ϕ is periodic in x of period 1} .

We define the weak solutions to the IBVP for the compressible Navier-Stokes Equa-
tions (2.1)-(2.2) as follows.

Definition 2.3 (global weak solutions) For any T > 0, (ρ, u) is said to be a weak
solution to Eqs. (2.1)-(2.2) with initial data (2.3) and boundary value (2.6) or (2.7) in
Ω × (0, T ), if⎧⎨

⎩
0 ≤ ρ ∈ L∞(0, T ;L1(Ω) ∩ Lγ(Ω)), (ρα−1/2)x ∈ L∞(0, T ;L2(Ω)),

√
ρu ∈ L∞(0, T ;L2(Ω)), ραux ∈ L2(0, T ;W−1,1

loc (Ω)),
(2.8)

and (ρ, u) satisfies

∫
Ω

ρ0ψ(x, 0)dx+

∫ T

0

∫
Ω

ρψtdxdt+

∫ T

0

∫
Ω

√
ρ
√
ρuψxdxdt = 0 (2.9)
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for any ψ ∈ Ψ, and∫
Ω

m0ϕ(x, 0)dx+

∫ T

0

∫
Ω

√
ρ(
√
ρu)ϕtdxdt

+

∫ T

0

∫
Ω

(
(
√
ρu)2 + ργ

)
ϕxdxdt− 〈ραux, ϕx〉 = 0 (2.10)

for all ϕ ∈ Φ. The nonlinear diffusion term ραux is defined as

〈ραux, ϕ〉 = −
∫ T

0

∫
ρα−1/2√ρuϕxdxdt

− 2α

2α− 1

∫ T

0

∫
(ρα−1/2)x

√
ρuϕdxdt (2.11)

for any ϕ ∈ Φ, where ρ ∈ L∞(Ω × (0, T )) due to (2.8). Moreover, for the spatial
periodic case (2.7), (ρ,

√
ρu) is also periodic.

Remark 2.4 For the Dirichlet case, (2.9), together with the fact ρ ∈ L∞(Ω × (0, T ))
due to (2.8), implies that (ρ, u) satisfies the Eq. (2.1) in the sense of distribution and
justifies the boundary condition (2.6) in the sense that

∫
I

√
ρ
√
ρu(x, s)ds → 0 for any

time interval I ⊂ [0, T ] as x → ∂Ω. If further
√
ρ
√
ρu ∈ Lp(0, T ;W 1,q(Ω)) for some

p ≥ 1, q ≥ 1, then (2.9) yields that
√
ρ
√
ρu ∈ Lp(0, T ;W 1,q

0 (Ω)), that is, the Dirichlet
boundary condition (2.6) is satisfied in the sense of trace.

Definition 2.5 (global entropy weak solutions) Let (ρ, u) be a global weak solu-
tion (in the sense of Definition 2.3) to (2.1)-(2.2) with initial data (2.3) and boundary
value (2.6) or (2.7) in Ω × (0, T ). Then, (ρ, u) is said to be a global entropy weak
solution if there exists some function Λ ∈ L2(Ω × (0, T )) satisfying (2.11), i.e.,∫ T

0

∫
Λϕdxdt = −

∫ T

0

∫
ρα−1/2√ρuϕxdxdt

− 2α

2α− 1

∫ T

0

∫
(ρα−1/2)x

√
ρuϕdxdt (2.12)

for any ϕ ∈ Φ, and the following uniform entropy inequality holds

sup
0≤t≤T

∫
Ω

(|√ρu|2 + |(ρα−1/2)x|2 + π(ρ)
)
(x, t) dx

+

∫ T

0

∫
Ω

(|(ρ(γ+α−1)/2)x|2 + Λ2)(x, t) dxdt

≤C0

∫
Ω

( |m0|2
ρ0

+ |(ρα−1/2
0 )x|2 + π+(ρ0))(x) dx (2.13)

with C0 > 0 independent of T, and

π(ρ) �
{
ρ log ρ, if γ = 1,

1
γ−1

ργ, if γ > 1,
π+(ρ) �

{
ρ log+ ρ, if γ = 1,

1
γ−1

ργ , if γ > 1.
(2.14)
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We have the following result on the existence of global entropy weak solutions.

Theorem 2.1 (Global existence) Assume that

α >
1

2
, γ >

α

2
. (2.15)

and that the initial data (ρ0, m0) satisfies (2.4) and |m0|2+ν

ρ1+ν
0

∈ L1(Ω) for some positive

constant ν. Then for any T > 0, there exists a global entropy weak solution (ρ, u) to the
IBVP for the compressible Navier-Stokes equations (2.1)-(2.3) with boundary condition
(2.6) or (2.7) in Ω × (0, T ) in the sense of Definition 2.5.

Moreover, for the case of Dirichlet boundary condition (2.6), if α ∈ (1/2, 3/2) and
ν satisfies (3.2) (see Remark 2.6 below), then in addition to (2.8), the solution (ρ,

√
ρu)

satisfies √
ρ(
√
ρu) ∈ L2(0, T ;W

1,(4+2ν)/(4+ν)
0 (Ω)), (2.16)

i.e.,
√
ρ(
√
ρu) satisfies the Dirichlet boundary (2.6) in the sense of trace.

Remark 2.6 (1). Theorem 2.1 above holds for the compressible shallow water equation
(4.3).

(2). For the Dirichlet case (2.6), one of the available ways (available for the case
α ∈ (1/2, 3/2) and γ ≥ 1) to obtain that

√
ρ
√
ρu ∈ Lp(0, T ;W 1,q(Ω)), for some p ≥

1, q ≥ 1, is to choose the positive constant ν in Theorem ?? such that⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ν ∈ (0, 2γ − α), for α ∈ (1

2
, 1], γ ≥ 1,

ν ∈
[

2(α+γ−2)
3−α−γ

, 2(2γ−α)
1+α−2γ

]
, for α ∈ (1, 3

2
), γ ∈ [1, 1+α

2

)
,

ν ∈
[

4(α−1)
3−2α

,∞
)
, for α ∈ (1, 3

2
), γ ≥ 1+α

2
.

(2.17)

Next, we show that there is a global entropy weak solution (ρ, u) in the sense of
Definition 2.5 for which the vacuum states and the structure of interface, if existing
initially, can be preserved for a short time, so long as the initial data has additional reg-
ularity besides (2.4) and the fluids and the vacuum states in initial data are connected
“smoothly”. In addition, the weak solution (ρ, u) is actually a unique regular solution
for the short time. For simplicity, we consider the case of one point vacuum state
contained at x = x0 ∈ (0, 1) in the initial data (ρ0, m0) = (ρ0, ρ0u0) with additional
regularity

A0|x− x0|σ ≤ ρ0(x) ≤ A1|x− x0|σ, for any x ∈ Ω, (2.18)

u0 ∈ C1(Ω̄), (ρ
γ−1+1/2j
0 )x ∈ L2j(Ω), ρ

−1+1/2j
0 (ρα

0u0x)x ∈ L2j(Ω), j = 1, n, (2.19)

with n ≥ 2 an integer; and in the case of continuous vacuum state of one piece initially
on Ω0 = [x0, x1] ⊂ (0, 1) in the initial data, we require⎧⎪⎨

⎪⎩
A0(x0 − x)σ ≤ ρ0(x) ≤ A1(x0 − x)σ, x ∈ [0, x0),

ρ0(x) = 0, m0(x) = ρ0u0(x) = 0, x ∈ [x0, x1],

B0(x− x1)
σ ≤ ρ0(x) ≤ B1(x− x1)

σ, x ∈ (x1, 1]

(2.20)
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and ⎧⎨
⎩

(ρ
γ−1+1/2j
0 )x ∈ L2j(Ω), j = 1, n, u0 ∈ C1(Ω̄ \ Ω0),

ρ
−1+1/2j
0 (ρα

0u0x)x ∈ L2j(Ω \ Ω0), j = 1, n,
(2.21)

with n ≥ 2 an integer. Here, σ, A0, A1, and B0, B1 are positive constants, and the
power σ ∈ (σ−, σ+) with positive constants σ± given in (2.33) later. We also require
that the initial data (ρ0, m0) = (ρ0, ρ0u0) given by (2.3) is consistent with boundary
value for the Dirichlet boundary condition.

We have the following results on short time structure of global entropy weak solu-
tions.

Theorem 2.2 (Short time structure of vacuum states) In addition to the as-
sumptions of Theorem 2.1, assume further that

α > 1
2
, γ > max{1, α} (2.22)

and that there is either one point vacuum state in initial data (ρ0, u0) with (2.18)–(2.19)
satisfied or a piece of continuous vacuum states in initial data (ρ0, u0) with (2.20)–(2.21)
satisfied. Then, there exists a global entropy weak solution (ρ, u) to the IBVP for the
compressible Navier-Stokes equations (2.1)-(2.2) with initial data (2.3) and boundary
value (2.6) or (2.7) in the sense of Definition 2.5.

Moreover, there is a short time T∗ > 0, so that the global entropy weak solution
(ρ, u) is unique1 and regular on the domain Ω × [0, T∗], and the initial structure of
vacuum states is maintained for t ∈ [0, T∗] in the following sense:

For the case of one point vacuum state initially, (??), the solution (ρ, u) is regular
and unique on the domain Ω̄ × [0, T∗],

(ρ, u) ∈ C0(Ω̄ × [0, T∗]), ux ∈ L∞(0, T∗;C0(Ω̄)), (2.23)

‖u‖L∞(Ω̄×[0,T∗]) + ‖ux‖L∞([0,T∗];C0(Ω̄)) ≤ C(T∗). (2.24)

The one point vacuum state propagates along particle path, namely, there is one particle
path x = X0(t) : [0, T∗] → Ω with X0(t) ∈ C([0, T∗]) defined by

Ẋ0(t) = u(X0(t), t), X0(0) = x0 ∈ (0, 1), (2.25)

so that
a−|x−X0(t)|σ ≤ ρ(x, t) ≤ a+|x−X0(t)|σ (2.26)

for (x, t) ∈ Ω× [0, T∗], where the two positive constants a± are independent of time T∗.
In the case of a piece of continuous vacuum states initially, (2.20), there are two

particle pathes x = Xi(t) : [0, T∗] → Ω with Xi(t) ∈ C([0, T∗]), i = 0, 1 defined by

Ẋi(t) = u(Xi(t), t), Xi(0) = xi ∈ (0, 1), i = 0, 1, (2.27)

1Here the uniqueness is specified for density ρ and momentum ρu =
√

ρ
√

ρu for continuous vacuum
states of one piece.
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so that it holds for some positive constants a±, b± independent of the time T∗,

a−(X0(t) − x)σ ≤ ρ(x, t) ≤ a+(X0(t) − x)σ, (2.28)

for (x, t) ∈ [0, X0(t)) × [0, T∗], and

b−(x−X1(t))
σ ≤ ρ(x, t) ≤ b+(x−X1(t))

σ (2.29)

for (x, t) ∈ (X1(t), 1] × [0, T∗] respectively, and the interfaces separating the fluid and
vacuum coincide with the particle pathes

ρ(x, t) = 0, ρu(x, t) = 0, (x, t) ∈ [X0(t), X1(t)] × [0, T∗]. (2.30)

The solution (ρ, u) is regular and unique up to the vacuum boundary

ρ ∈ C0(Ω̄ × [0, T∗]), u ∈ C0(Ω̄ × [0, T∗] \ Ω0
T∗), (2.31)

‖u‖L∞(Ω̄×[0,T∗]\Ω0
T∗) + ‖ux‖L∞(Ω̄×[0,T∗]\Ω0

T∗) ≤ C(T∗). (2.32)

where Ω0
T∗ = (X0(t), X1(t)) × [0, T∗].

Remark 2.7 (1). The constant exponents σ± are defined as σ± = β±/(1 − β±) > 0
with β± determined by

β− = max{ 1
2α
, 1

γ
(1 − 1

2n
)}, β+ = min{1, 1

α
(1 − 1

2n
), 1

1+3α
(4 − 1

n
, )} (2.33)

while the positive constants a± are independent of the time T∗.
(2). The regularity assumptions (2.18)–(2.19) are satisfied for the following initial

data
ρ0(x) = 1

2
(A0 + A1)(|x− x0|2)(σ−+σ+)/4, u0(x) = 0, x ∈ Ω,

and the regularity assumptions (2.20)–(2.21) are satisfied for the initial data

ρ0(x) =

⎧⎪⎨
⎪⎩

1
2
(A0 + A1)(x0 − x)(σ−+σ+)/2, x ∈ [0, x0),

0, x ∈ (x0, x1),
1
2
(B0 +B1)(x− x1)

(σ−+σ+)/2, x ∈ (x1, 1],

u0(x) = 0, x ∈ Ω.

Next, we prove that for any global entropy weak solution (ρ, u) to the IBVP (2.1)-
(2.3) together with boundary condition (2.6) or (2.7) in the sense of Definition 2.5,
even though in some cases that the vacuum states may exist for some finite time, for
instance, in the cases as shown by Theorem 2.2, any possible vacuum state has to vanish
within finite time after which the density is always away from vacuum. Simultaneously,
not only can the velocity field be defined in terms of the density and momentum, and
the nonlinear diffusion is represented in terms of the density and velocity, but also the
global entropy weak solution (ρ, u) is shown to be a unique and strong solution after
the vanishing of vacuum states. We have the following result.
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Theorem 2.3 (Vanishing of vacuum states) Assume that

α >
1

2
, γ ≥ 1. (2.34)

Let (ρ, u) be any global entropy weak solution to the IBVP (2.1)-(2.2) with initial data
(2.3) and boundary value (2.6) or (2.7) in the sense of Definition 2.5. Then, there exist
some time T0 > 0 (depending on initial data) and a constant ρ− so that

inf
x∈Ω̄

ρ(x, t) ≥ ρ− > 0, t ≥ T0, (2.35)

and the global entropy weak solution (ρ, u) becomes a unique strong solution (ρ, u) for
t ≥ T0 and satisfies{

ρ ∈ L∞(T0, t;H
1(Ω)), ρt ∈ L∞(T0, t;L

2(Ω)),

u ∈ H1(T0, t;L
2(Ω)) ∩ L2(T0, t;H

2(Ω)),
(2.36)

with velocity u and nonlinear diffusion term given by

u �
√
ρu√
ρ
, (ραux)x = Λx, (2.37)

respectively. In addition, for

us �

⎧⎨
⎩

0 for the Dirichlet case,
1

ρ̄0

∫
Ω

m0dx for the periodic case,

there exist two positive constants μ0, c0 both depending on initial data (ρ0, m0) and ρ−,
such that

‖(ρ− ρ̄0, u− us)(·, t)‖L2(Ω) ≤ c0e
−μ0(t−T0), t > T0, (2.38)

where and what follows f denotes the average of f over the bounded domain Ω, i.e.,

f =
1

|Ω|
∫

Ω

f(x)dx =

∫
Ω

f(x)dx.

Remark 2.8 (1). The Theorem 2.3 shows that any possible vacuum states must vanish
in finite time. This theory applies to the compressible shallow water equation (4.3).

(2). It is easy to verify (see the proof of Proposition 5.1) that the phenomena of
vacuum vanishing (2.35) in finite time actually happens for any global weak solution
(ρ, u) to the IBVP (2.1)-(2.3) with boundary condition (2.6) or (2.7) in the sense of
Definition 2.3 satisfying the following entropy inequality

sup
0≤t≤T

∫
Ω

(|√ρu|2 + |(ρα−1/2)x|2 + π(ρ)
)
(x, t) dx+

∫ T

0

‖(ρ(γ+α−1)/2)x‖2
L2dt

≤C0

∫
Ω

( |m0|2
ρ0

+ |(ρα−1/2
0 )x|2 + π+(ρ0))(x)dx (2.39)

with C0 independent of T.
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Finally, for any global entropy weak solution (ρ, u) to the IBVP (2.1)-(2.3) together
with boundary condition (2.6) or (2.7) in the sense of Definition 2.5, the density is
continuous, i.e., ρ ∈ C(Ω × [0, T ]) for any T > 0, due to (2.8) and (2.9). Thus, the
continuity of ρ and Theorem 2.3 imply that if the density contains vacuum states at
least at one point, then there exists some critical time T1 ∈ [0, T0) with T0 > 0 given
by (2.35) and a nonempty subset Ω0 ⊂ Ω̄ such that⎧⎪⎨

⎪⎩
ρ(x, T1) = 0, ∀ x ∈ Ω0

ρ(x, T1) > 0, ∀ x ∈ Ω̄ \ Ω0,

ρ(x, t) > 0, ∀ (x, t) ∈ Ω̄ × (T1, T0].

(2.40)

It follows from (2.36) easily that for any δ > 0, it holds∫ T0

T1+δ

‖ux‖L∞ds <∞. (2.41)

Under the condition that vacuum states appear, we shall prove that the spatial deriva-
tive of velocity (if regular enough and definable) blows up in finite time as the vacuum
states vanish, even if the solution is regular enough for short time so that the velocity
field and its derivatives are bounded as shown by Theorem 2.2.

Theorem 2.4 (Finite time blow-up) Let (ρ, u) be any global entropy weak solution,
which contains vacuum states at least at one point for some finite time, to the IBVP
for the compressible Navier-Stokes equations (2.1)-(2.3) with boundary condition (2.6)
or (2.7) in the sense of Definition 2.5. Let T0 > 0 and T1 ∈ [0, T0) be the time such
that (2.35) and (2.40) holds respectively.

Then, the solution (ρ, u) blows up as vacuum states vanish. Namely, for T1 satis-
fying (2.40) and for given any fixed η > 0, it holds

lim
t→T+

1

∫ T1+η

t

‖ux‖L∞ds = ∞. (2.42)

On the other hand, if there exists some T2 ∈ (0, T0) such that the weak solution (ρ, u)
satisfies

‖u‖L1(0,T2;W 1,∞(Ω)) <∞,

then, there is a time T3 ∈ [T2, T0) so that the blowup phenomena happens for (ρ, u),
i.e.,

lim
t→T−

3

∫ t

0

‖ux‖L∞ds = ∞. (2.43)

Remark 2.9 Theorem 2.4 implies that for any global entropy weak solution (ρ, u) to
the IBVP for the compressible Navier-Stokes equations (2.1)-(2.2) with initial data (2.3)
and boundary value (2.6) or (2.7) in the sense of Definition 2.5, which contains vacuum
states at least at one point initially, the finite time blowup phenomena (2.42) happens
for such solution (ρ, u).
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Remark 2.10 Theorems 2.1–2.4 provide a complete dynamical description on the van-
ishing of vacuum states and blow-up phenomena for the global entropy weak solutions
to the compressible Navier-Stokes equations with density-dependent viscosity. That is,
a global entropy weak solution exists for general large initial data with finite entropy.
For short time, such weak solution is unique and regular with well-defined velocity field
subject to additional initial regularity, and any existing vacuum state is maintained with
the same interface structure as initial. Then, within finite time the vacuum states van-
ish definitely and the velocity blows up (even if it is regular enough and definable along
the interfaces). After the vanishing of vacuum states, the global entropy weak solution
becomes a strong one and tends to the non-vacuum equilibrium state exponentially in
time. This dynamical phenomena is quite similar to those well-known for the 3-D in-
compressible Navier-Stokes equations. However, before the time of vacuum-vanishing,
the uniqueness of the global entropy weak solution to the compressible Navier-Stokes
equations with density-dependent viscosity subject to the initial data is not known yet.

Remark 2.11 All theories established in Theorems 2.1-2.4 fit the shallow water equa-
tion (4.3). We believe that such phenomena described by Theorems 2.1-2.4 are also
observed for other compressible fluids with density-dependent viscosity, such as Navier-
Stokes equations with capillarity and/or drag friction, Navier-Stokes–Poisson system,
etc.

Remark 2.12 It is interesting to investigate the (global) dynamics of (one-dimensional)
interface connecting vacuum from initial time until the vanishing of vacuum in order to
investigate the dynamics of interface and the vanishing of vacuum state and to verify
the formation of singularity for general case.

Remark 2.13 (1). Another interesting problem is whether the phenomena of the
vanishing of vacuum states and blow-up happens for multi-dimensional compressible
isentropic Navier-Stokes system with density-dependent viscosity, especially on spatial
bounded domain with the Dirichlet boundary condition (2.6). It seems non-trivial to
investigate such a problem, however, since little is known so far concerning the con-
struction and proof of the existence of global weak solutions of the IBVP problem for
multi-dimensional isentropic compressible Navier-stokes equations especially under the
Dirichlet boundary (2.6). Thus, it is natural to start with the global existence theory
of entropy weak solutions for multi-dimensional compressible isentropic Navier-Stokes
system with Dirichlet boundary condition [20].

(2). It is also interesting to study whether any vacuum states shall vanish within fi-
nite time and blow-up phenomena happens for the multi-dimensional full Navier-Stokes
system with density-dependent viscosity. It is not obvious yet (although we expect) since
it is not clearly understood yet how the dynamics of temperature and heat-conduction
shall affect the global existence of weak solutions and the evolution of vacuum states,
especially in the case of spherical symmetry under the Dirichlet boundary condition
(2.6). This is under further investigation [21].
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3 Global existence of entropy weak solutions

In this section, we will establish the existence of global entropy weak solutions to
the IBVP for the compressible Navier-Stokes equations (??)-(??) together with (2.6)
or (2.7). First, we construct a sequence of approximate solutions by using some ideas
developed in [17]. One of the key issues is the non-vanishing of the densities in the
approximate solutions. Then we establish the compactness of the approximate solutions
sequence by an entropy estimate with the help of some ideas due to [33]. The main
results are given in the following proposition.

Proposition 3.1 (Global existence) Under the assumptions of Theorem 2.1, there
exists a global entropy weak solution (ρ, u) in the sense of Definition 2.5 to the IBVP for
compressible Navier-Stokes equations (2.1)-(2.2) with initial data (2.3) and boundary
value (2.6) or (2.7) satisfying the finite entropy (2.13).

3.1 Construction of approximate solutions

Let us consider the following approximate compressible Navier-Stokes equations

ρεt + (ρεuε)x = 0, (3.1)

(ρεuε)t + (ρεu
2
ε + p(ρε))x − (με(ρε)uεx)x = 0, (3.2)

(ρε, ρεuε)(x, 0) = (ρ0ε, m0ε)(x), (3.3)

with one of the following boundary conditions

uε(0, t) = uε(1, t) = 0, (3.4)

or
ρε, uε are periodic in x of period 1. (3.5)

Here, the viscosity is given by

με(ρ) = μ(ρ) + ερθ, ε > 0, θ ∈ (0, 1/2), (3.6)

and the initial data ρ0ε, m0ε ∈ C∞(Ω) satisfies{
ρ0ε → ρ0 in L1(Ω), ρ

α−1/2
0ε → ρ

α−1/2
0 in H1(Ω),

(m0ε)
2(ρ0ε)

−1 → m2
0ρ

−1
0 , |m0ε|2+ν(ρ0ε)

−1−ν → |m0|2+νρ−1−ν
0 in L1(Ω)

(3.7)

as ε→ 0+, and
ρ0ε ≥ c0ε

1/(2α−2θ) (3.8)

for some c0 independent of ε.. By (3.7) we can assume without the loss of generality
that ∫

Ω

ρ0εdx = 1. (3.9)
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By the standard arguments (see [17] for reference), after applying the classical theory
of parabolic and hyperbolic equations, one can obtain that there exists some T∗ > 0
such that the approximate problem (3.1)-(3.3) together with the boundary condition
(3.4) or (3.5) has a unique smooth solution (ρε, uε) on [0, T∗] with the density away
from vacuum, i.e.,

ρε(x, t) > 0, for all (x, t) ∈ Ω × [0, T∗]. (3.10)

To extend the local solution globally in time, one needs to control the lower and
upper bounds of the density and get some a-priori estimates. We fist derive the uniform
entropy inequality for the approximate solution (ρε, uε) . As the approximate solution
(ρε, uε) is away from vacuum (3.10), we can consider (3.1)-(3.3) in terms of Lagrangian
coordinates (y, t) with

y =

∫ x

0

ρε(z, t)dz, t = t.

Then we have the following equivalent system

ρεt + ρ2
εuεy = 0, (3.11)

uεt + (p(ρε))y − (ρεμε(ρε)uεy)y = 0, (3.12)

(ρε, uε)(y, 0) = (ρ0ε, m0ερ
−1
0ε )(y), (3.13)

with the boundary conditions similar to (3.4) or (3.5), where (y, t) ∈ ΩL × (0, T∗] and

ΩL � (0, Lε), with Lε =

∫
Ω

ρ0ε(x)dx = 1

due to (3.2). With the help of (3.4) or (3.5) and a direct computation, one can obtain
from (3.11)–(3.12) the following energy equality(

1

2

∫
ΩL

u2
εdy +

∫
ΩL

π(ρε)ρ
−1
ε dy

)
t

+

∫
ΩL

ρεμε(ρε)(uεy)
2dy = 0 (3.14)

with π(ρ) defined by (2.14). It follows easily from equations (3.11) and (3.12) that

uεt + (p(ρε))y + (νε(ρε))ty = 0, (3.15)

with ρν ′ε(ρ) = με(ρ), i.e., νε(ρ) = 1
α
ρα + ε

θ
ρθ.

It is easily to verify by (3.11) and the boundary condition (3.4) or (3.5) that∫
ΩL

uεt(νε(ρε))ydy =

(∫
ΩL

uε(νε(ρε))ydy

)
t

+

∫
ΩL

uεyν
′
ε(ρε)ρεtdy

=

(∫
ΩL

uε(νε(ρε))ydy

)
t

−
∫

ΩL

ν ′ε(ρε)ρ
2
ε(uεy)

2dy

=

(∫
ΩL

uε(νε(ρε))ydy

)
t

−
∫

ΩL

ρεμε(ρε)(uεy)
2dy.
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Multiplying by (νε(ρε))y and integrating the resulted equation over Ω, we get after
integration by parts,(∫

ΩL

((νε(ρε))y)
2dy + 2

∫
ΩL

uε(νε(ρε))ydy

)
t

+2

∫
ΩL

p′(ρε)ν
′
ε(ρε)(ρεy)

2dy = 2

∫
ΩL

ρεμε(ρε)(uεy)
2dy. (3.16)

A linear combination of and leads to:(∫
ΩL

(2uε + (νε(ρε))y)
2dy +

∫
ΩL

(
u2

ε + ((νε(ρε))y)
2
)
dy + 10

∫
ΩL

ρ−1
ε π(ρε)dy

)
t

+4

∫
ΩL

p′(ρε)ν
′
ε(ρε)(ρεy)

2dy + 6

∫
ΩL

ρεμε(ρε)(uεy)
2dy = 0. (3.17)

Thus, through the inverse transformation from the Lagrangian coordinates to the
Eulerian coordinates x =

∫ y

0
ρ−1

ε (z, t)dz, we finally get(∫
Ω

(
ρεu

2
ε + ρ−1

ε ((νε(ρε))x)
2
)
dx+ 10

∫
ΩL

ρ−1
ε π(ρε)dy

)
t

+

(∫
Ω

ρε

(
2uε + ρ−1

ε (νε(ρε))x

)2
dx

)
t

+4

∫
Ω

ρ−1
ε p′(ρε)ν

′
ε(ρε)(ρεx)

2dx+ 6

∫
Ω

με(ρε)(uεx)
2dx = 0. (3.18)

Remark 3.2 The equality (3.18) is exactly the entropy equality first established by
Bresch et al in [2–5]. Here, using Lagrangian coordinates, we give a simple proof of
the Bresch-Desjardins-Lin’s entropy equality in 1D case.

Noticing that

(νε(ρε)y)
2 = (ρα−1

ε + ερθ−1
ε )2(ρεy)

2

= (ρ2α−2
ε + 2ερα+θ−2

ε + ε2ρ2θ−2
ε )(ρεy)

2,

we have

(ρ2α−2
ε + ε2ρ2θ−2

ε )(ρεy)
2 ≤ (νε(ρε)y)

2 ≤ 2(ρ2α−2
ε + ε2ρ2θ−2

ε )(ρεy)
2. (3.19)

Defining

Eε(t) �
∫

ΩL

(
u2

ε + ((ρα
ε )y)

2 + ε2((ρθ
ε)y)

2 + ρ−1
ε π(ρε)

)
dy,

one gets from (3.17) and (3.19) that

sup
0≤t≤T∗

Eε(t) +

∫ T∗

0

∫
ΩL

ρεμε(ρε)(uεy)
2dydt

+

∫ T∗

0

∫
ΩL

(
ργ+α−2

ε + εργ+θ−2
ε

)
(ρεy)

2dydt ≤ C0Eε(0) (3.20)
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with C0 independent of T∗ and ε > 0. Due to (3.2) and (3.7), it holds that

ε2

∫
ΩL

((ρθ
0ε)y)

2dy

= εθ2α−2

∫
ΩL

ερ
2(θ−α)
0ε ((ρα

0ε)y)
2dy

≤ εc0θ
2α−2

∫
ΩL

((ρα
0ε)y)

2dy

= εc0θ
24(2α− 1)−2

∫
Ω

((ρ
α−1/2
0ε )x)

2dx→ 0 as ε→ 0+.

Thus, one deduces we from (3.7) again that

Eε(0) → E(0) ≤ Ẽ(0), as ε → 0+, (3.21)

with

Ẽ(0) �
∫

Ω

(
ρ0u

2
0 + 4α2(2α− 1)−2((ρ

α−1/2
0 )x)

2 + π+(ρ0)
)
dx. (3.22)

Since ∫
ΩL

ρ−1
ε dy =

∫
Ω

dx = |Ω| = 1, (3.23)

it follows from the continuity of ρε that there exists some y0(t) ∈ ΩL such that

ρε(y0(t), t) = |ΩL|/|Ω| = 1.

Hence, (3.20) implies that

ρα
ε (y, t) = ρα

ε (y0(t), t) +

∫ y

y0(t)

(ρα
ε )ydy

≤ (|ΩL||Ω|−1)α + C0Eε(0) + |ΩL|. (3.24)

This yields the uniform upper bound (w.r.t. time t ∈ [0, T∗]) for the density. To obtain
the lower bound for the density ρε, we employ the idea in [17]. That is, we consider
the upper bound for vε = ρ−1

ε , which can be estimated by (3.20) and (3.23) as follow:

vε(y, t) ≤
∫

ΩL

vε(y, t)dy +

∫
ΩL

(vε)
2|ρεy|dy

≤|Ω| + C

∫
ΩL

(vε)
1+θ|(ρθ

ε)y|dy

≤1 + Cmax
y∈ΩL

(vε)
θ+1/2‖(ρθ

ε)y‖L2(Ω)(

∫
ΩL

vε(y, t)dy)
1/2

≤1 +
1

2
max
y∈ΩL

vε + C‖(ρθ
ε)y‖

2
1−2θ

L2(Ω)

≤1 +
1

2
max
y∈ΩL

vε + C(ε−2Eε(0))1/(1−2θ).
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This shows that for all (y, t) ∈ ΩL × [0, T∗],

ρε(y, t) ≥ ε2/(1−2θ)

2ε2/(1−2θ) + C(Eε(0))1/(1−2θ)
. (3.25)

Thus, we have obtained the uniform upper and lower bounds( w.r.t. time t ∈ [0, T∗]) for
the density ρε. Using these uniform bounds, one can extend the local smooth solution
globally in time by standard arguments(see [17] for details). Moreover, the total mass
of the approximate solutions is conserved due to the boundary conditions (3.4)∫

Ω

ρε(x, t)dx ≡
∫

Ω

ρ0ε(x)dx, ∀ t > 0. (3.26)

The construction of approximate solutions is complete.

Remark 3.3 For later use, one may consider (3.20) in the Eulerian coordinates to
conclude that for all t > 0,∫

Ω

(|√ρεuε|2 + |μ(ρε)x√
ρε

|2 + | ε((ρε)θ)x√
ρε

|2 + π(ρε))(x, t)dx

+

∫ t

0

∫
Ω

(με(ρε)|uεx|2 + p′(ρε)μ′
ε(ρε)

ρε
|ρεx|2)(x, s)dxds ≤ CEε(0), (3.27)

with C independent of t and ε.

3.2 Compactness of approximate solutions

We now prove the compactness of the approximate solution sequence constructed
in the previous subsection and complete the proof of Propositions 3.1.

Proof of Proposition 3.1. In the following and throughout this section, C denotes
some generic positive constant depending on both T and Eε(0) and converging to some
constant C(T,E(0)) as ε→ 0; and C denotes some generic positive constant depending
on Eε(0) but independent of T and converging to some constant C(E(0)) as ε → 0.

It follows from (3.27) that

sup
t≥0

‖(ρα−1/2
ε )x‖L2(Ω) ≤ C. (3.28)

This, together with (3.26) and the mean value theorem, leads to

sup
t≥0

‖ρε‖α−1/2
L∞ ≤ ρ0ε

α−1/2 + ‖(ρα−1/2
ε )x‖L2(Ω) ≤ C. (3.29)

Step 1. Convergence of ρε. (3.27) and (3.29) yield that

sup
t≥0

‖(ρα
ε )x‖L2 =

2α

2α− 1
sup
t≥0

‖ρ1/2
ε (ρα−1/2

ε )x‖L2 ≤ C. (3.30)
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It follows from (3.1), and that

‖(ρα
ε )t‖L2(0,T ;H−1(Ω))

= ‖(α− 1)ρα
εuεx + (ρα

ε uε)x‖L2(0,T ;H−1(Ω))

≤ C‖ρα/2
ε uεx‖L2(0,T ;L2(Ω)) + C‖ρα−1/2

ε ρ1/2
ε uε‖L∞(0,T ;L2(Ω))

≤ C. (3.31)

We deduce from the a-priori estimates (3.30), (3.31) and the Aubin-Lions lemma that,
without loss of generality-extracting subsequences if necessary,

ρε → ρ in C([0, T ] × Ω), as ε→ 0, (3.32)

which together with (3.26) implies the conservation of mass for the limiting density ρ∫
ρ(x, t)dx =

∫
ρ0(x)dx = 1. (3.33)

In addition, one can verify easily that

sup
0≤t≤T

∥∥(ρα−1/2
)

x

∥∥2

L2 +

∫ T

0

∫
Ω

∣∣(ρ(α+γ−1)/2
)

x

∣∣2 dxdt ≤ C0Ẽ(0) (3.34)

with C0 independent of T.
Step 2. Convergence of

√
ρεuε. We use some ideas due to [33] to prove the com-

pactness of
√
ρεuε. First, we make use of an idea due to [33] to derive some additional

estimates of ρεu
2+ν
ε . More precisely, we show that in addition to (3.27), ρη

εuε is actually
bounded in L∞(0, T ;L2+ν(Ω)) for some η ≥ 1/(2 + ν) with ν > 0 given by{

ν > 0 arbitrary if 2γ − α ≥ 1,

ν ∈ (0, 2(2γ − α)/(1 + α− 2γ)] if 2γ − α ∈ (0, 1).
(3.35)

Note here that for α ∈ (1/2, 3/2) the constant ν defined by (3.2) actually satisfies
(3.35). Multiplying (3.2) by |uε|νuε and integrating the result over Ω by parts yield

d

dt

∫
Ω

ρε|uε|2+νdx+ (2 + ν)(1 + ν)

∫
Ω

με(ρε)|uε|ν(uεx)
2dx

= −(2 + ν)

∫
Ω

|uε|νuε(ρ
γ
ε )xdx

≤ C

∫
Ω

ργ
ε |uε|ν |uεx|dx

≤ C

∫
Ω

(
ργ−α/2

ε |uε|ν/2
) (
ρα/2

ε |uε|ν/2|uεx|
)
dx

≤
∫

Ω

με(ρε)|uε|ν(uεx)
2dx+ C

∫
Ω

ρ2γ−α
ε |uε|νdx

≤
∫

Ω

με(ρε)|uε|ν(uεx)
2dx+ C

∫
Ω

ρε|uε|2+νdx+ C, (3.36)
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where one has used (3.35) in the last inequality. Thus

sup
0≤t≤T

∫
Ω

ρε|uε|2+νdx ≤ C. (3.37)

It follows from (3.29) and (3.37) that we for η(2 + ν) ≥ 1 ,∫
Ω

(ρη
ε |uε|)2+ν dx =

∫
Ω

ρη(2+ν)
ε |uε|2+νdx ≤ C sup

0≤t≤T

∫
Ω

ρε|uε|2+νdx ≤ C, (3.38)

and, in particular, for η = 1/2 ,

sup
0≤t≤T

∫
Ω

(
√
ρε |uε|)2+ν dx ≤ C. (3.39)

Next, set
vε =: ρλ

εuε

with λ given by

λ =

{
1 for α ∈ (1/2, 1],

α for α > 1.
(3.40)

We claim that there is a v ∈ L2(0, T ;C(Ω)) so that it holds up to a subsequence

vε → v in L2(0, T ;C(Ω)), as ε → 0. (3.41)

In fact, it follows from (3.27) and (3.39) that

‖vε‖L∞(0,T ;L(4+2ν)/(4+ν)(Ω)) ≤ C, (3.42)

while (3.27) and (3.38) imply that for α > 1,

‖vεx‖L2(0,T ;L(4+2ν)/(4+ν)(Ω)) = ‖(ρα
εuε)x‖L2(0,T ;L(4+2ν)/(4+ν)(Ω))

≤ C
∥∥ρα/2

ε uεx

∥∥
L2(0,T ;L2(Ω))

+ C
∥∥(ρα−1/2

ε

)
x
ρ1/2

ε uε

∥∥
L2(0,T ;L(4+2ν)/(4+ν)(Ω))

≤ C + C
∥∥(ρα−1/2

ε

)
x

∥∥
L∞(0,T ;L2(Ω))

· ∥∥ρ1/2
ε uε

∥∥
L∞(0,T ;L2+ν(Ω))

≤ C. (3.43)

For α ∈ (1/2, 1], we can obtain the similar estimate

‖vεx‖L2(0,T ;L(4+2ν)/(4+ν)(Ω)) = ‖(ρεuε)x‖L2(0,T ;L(4+2ν)/(4+ν)(Ω)) ≤ C. (3.44)

In order to apply the Lions-Aubin lemma to get the strong convergence (3.41), we also
need to estimate the time derivative (vε)t. Since for the case α ∈ (1/2, 1], one can
easily check by (3.2) that

‖(ρεuε)t‖L2(0,T ;W−1,min{1+ν/2,2}(Ω)) ≤ C, (3.45)
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it suffices to deal with the case α > 1. For any test function ϕ ∈ D(Ω), it holds that∫
Ω

(ρα
ε uε)t ϕ(x)dx

=

∫
Ω

ρα−1
ε (ρεuε)t ϕ(x)dx+ (α− 1)

∫
Ω

ρα−1
ε uε(ρε)tϕ(x)dx

=

∫
Ω

ρα
ε u

2
εϕxdx− (α− 1)

∫
Ω

ρα
ε uεuεxϕdx

−
∫

Ω

με(ρε)ρ
α−1
ε uεxϕxdx− (α− 1)

∫
Ω

με(ρε)ρ
α−2
ε uεxρεxϕdx

+
γ

α + γ − 1

∫
Ω

ρα+γ−1
ε ϕxdx. (3.46)

The right hand side terms on (3.46) can be estimated as follows. First, the inequalities
(3.38) and (3.29) give rise to∣∣∣∣

∫
Ω

ρα
ε u

2
εϕxdx

∣∣∣∣ ≤ C‖ρε‖α−1
L∞ ‖ρ1/2

ε uε‖2
L2+ν‖ϕx‖L(2+ν)/ν ≤ C‖ϕx‖L(2+ν)/ν ; (3.47)

second, ∣∣∣∣
∫

Ω

ρα
ε uεuεxϕdx

∣∣∣∣ ≤ C‖ρε‖(α−1)/2
L∞ ‖ρ1/2

ε uε‖L2‖ρα/2
ε uεx‖L2‖ϕ‖L∞

≤ C‖
√
με(ρε)uεx‖L2‖ϕ‖W 1,(2+ν)/ν ; (3.48)

next,∣∣∣∣
∫

Ω

με(ρε)ρ
α−2
ε uεx(ρε)xϕdx

∣∣∣∣
≤
∣∣∣∣
∫

Ω

ρ2α−2
ε uεx(ρε)xϕdx

∣∣∣∣ + ε

∣∣∣∣
∫

Ω

ρα+θ−2
ε uεx(ρε)xϕdx

∣∣∣∣
≤ C

∫
Ω

ρ(α−1)/2
ε

∣∣ρα/2
ε uεx

∥∥ (ρα−1/2
ε )x‖ϕ|dx+ C

∫
Ω

ερα−1/2
ε |uεx||(ρθ−1/2

ε )x||ϕ|dx

≤ C‖ρε‖(α−1)/2
L∞ ‖

√
με(ρε)uεx‖L2

(‖(ρα−1/2
ε )x‖L2 + ‖ε(ρθ−1/2

ε )x‖L2

) ‖ϕ‖L∞

≤ C‖
√
με(ρε)uεx‖L2‖ϕ‖W 1,(2+ν)/ν , (3.49)

where α > 1 and (3.29) have been used; next, it follows from (3.29) and the fact α > 1
that ∣∣∣∣

∫
Ω

με(ρε)ρ
α−1
ε uεxϕxdx

∣∣∣∣ ≤ C‖
√
με(ρε) uεx‖L2‖ϕx‖L2; (3.50)

and finally, ∣∣∣∣
∫

Ω

ρα+γ−1
ε ϕxdx

∣∣∣∣ ≤ C‖ϕx‖L(2+ν)/ν . (3.51)
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Substituting (3.47)-(3.51) into (3.46) yields

‖(ρα
ε uε)t‖L2(0,T ;W−1,min{1+ν/2,2}(Ω)) ≤ C. (3.52)

The uniform estimates (3.43), (3.44), (3.45) and (3.52) w.r.t. ε > 0, together with the
Lions-Aubin lemma, yield the desired estimate (3.41).

Finally, we show the convergence of ρ
1/(2+κ)
ε uε with κ = ν/4. Since the case α ∈

(1/2, 1] is similar to the case α > 1, so we consider only the latter. It follows from
(3.27), (3.29) and (3.38) that

‖ρ−α+1/(2+κ)
ε vε‖L∞(0,T ;L2+ν(Ω)) = ‖ρ1/(2+κ)

ε uε‖L∞(0,T ;L2+ν(Ω)) ≤ C,

which together with Fatou’s lemma leads to∫
lim inf(ρ−(2+κ)α+1

ε |vε|2+κ) dxdt ≤ C. (3.53)

In particular, we have v = 0 a.e. in the vacuum set Ω0
T � {(x, t)|ρ(x, t) = 0}. Define

w(x, t) �
{
ρ−λ+1/(2+κ)v, for (x, t) ∈ {(x, t)|v(x, t) �= 0},
0, for (x, t) ∈ {(x, t)|v(x, t) = 0}. (3.54)

Then (3.53) implies that ∫
|w|2+κdxdt ≤ C.

Define Dε
n � {ρ1/(2+ν)

ε |uε| ≥ n} for n > 1. Set∫ ∣∣ρ1/(2+κ)
ε uε − w

∣∣ dxdt
=

(∫
(Dε

n)C∩(Ω0
T )C

+

∫
(Dε

n)C∩Ω0
T

+

∫
Dε

n

)∣∣ρ1/(2+κ)
ε uε − w

∣∣ dxdt. (3.55)

The three integrals on the right hand side above will be estimated respectively. First,
it follows from (3.41) and (3.32) that

ρ1/(2+κ)
ε uε1(Ω0

T )C → w1(Ω0
T )C a.e.,

and that ∫
1(Dε

n)C∩(Ω0
T )C

∣∣ρ1/(2+κ)
ε uε − w

∣∣ dxdt→ 0 (3.56)

due to the fact that both ρ
1/(2+κ)
ε uε and w are bounded in L2+κ(Ω × (0, T )) and the

Lebesgues dominated convergence theorem.
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Since w = 0 a.e. on Ω0
T , so for any ε > 0,

1(Dε
n)C∩Ω0

T
w = 0 a.e.

Hence, it follows from the definition of Ω0
T that∫

1(Dε
n)C∩Ω0

T

∣∣ρ1/(2+κ)
ε uε − w

∣∣ dxdt
=

∫
1(Dε

n)C∩Ω0
T

∣∣ρ1/(2+κ)
ε uε

∣∣ dxdt
≤ Cn

∫
1Ω0

T
ρ1/(2+κ)−1/(2+ν)

ε dxdt→ 0, as ε→ 0 (3.57)

where one has used the fact 1/(2 + κ) − 1/(2 + ν) > 0, (3.29), 1Ω0
T
ρ

1/(2+κ)−1/(2+ν)
ε → 0

a.e. as ε → 0, and the Lebesgue’s dominated convergence theorem.
The third term on the righthand side of (3.55) can be estimated as∫

Dε
n

∣∣ρ1/(2+κ)
ε uε − w

∣∣ dxdt
≤ |Dε

n|(1+κ)/(2+κ)

(∫ (
ρε|uε|2+κ + |w|2+κ

)
dxdt

)1/(2+κ)

≤ Cn−1−κ, (3.58)

due to the following simple fact

|Dε
n| ≤ Cn−2−ν

which follows directly from (3.37) and Tchebychev’s inequality

n2+ν |Dε
n| ≤

∫
Dε

n

(ρ1/(2+ν)
ε |uε|)2+νdxdt ≤ C.

Thus, we conclude from (3.55)-(3.58) that

lim sup
ε→0

∫ ∣∣ρ1/(2+κ)
ε uε − w

∣∣ dxdt ≤ Cn−1−κ

for any n > 1, and so

ρ1/(2+κ)
ε uε → w in L1(Ω × (0, T )).

This, together with (3.32), (3.29) and (3.38), leads to

ρσ+1/(2+κ)
ε uε → ρσw in L2+ν/2(Ω × (0, T )) (3.59)

for any σ ≥ 0. In particular,

√
ρεuε → ρκ/(2(2+κ))w, ρα

εuε → ρα−1/(2+κ)w in L2+ν/2(Ω × (0, T )).
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This, together with (3.32) and the boundary condition (3.4) or (3.5) for uε gives rise
to (2.9).

Step 3. Convergence of the diffusion term. One infers from (3.27) that there exists
some function Λ(x, t) ∈ L2(Ω × (0, T )) such that

ρα
ε uεx ⇀ Λ weakly in L2(Ω × (0, T )), as ε → 0. (3.60)

It will be shown that for any test function ϕ ∈ Φ∫
με(ρε)uεxϕdxdt → −

∫
ρα−1/(2+κ)wϕxdxdt

− 2α

2α− 1

∫
ρκ/(2(2+κ))w(ρα−1/2)xϕdxdt. (3.61)

It is easy to derive that∫
με(ρε)uεxϕdxdt

=

∫
ρα

ε uεxϕdxdt+ ε

∫
ρθ

εuεxϕdxdt

= −
∫
ρα

ε uεϕxdxdt−
∫
uε(ρ

α
ε )xϕdxdt+ ε

∫
ρθ

εuεxϕdxdt

= −
∫
ρα

ε uεϕxdxdt− 2α

2α− 1

∫
ρ1/2

ε uε(ρ
α−1/2
ε )xϕdxdt

+ε

∫
ρθ

εuεxϕdxdt. (3.62)

The estimates (3.32) and (3.27) yield that

(ρα−1/2
ε )x ⇀ (ρα−1/2)x weakly in L2(Ω × (0, T )). (3.63)

It follows from (3.27) that∥∥ερθ
εuεx

∥∥
L1(Ω×(0,T ))

≤ Cε
∥∥ρθ/2

ε uεx

∥∥
L2(Ω×(0,T ))

= Cε1/2
∥∥ε1/2ρθ/2

ε uεx

∥∥
L2(Ω×(0,T ))

≤ Cε1/2 → 0. (3.64)

As a consequence of (3.59), (3.63) and (3.64), one can pass the limit in the righthand
side of (3.62) to obtain . Hence, (2.12) follows easily from (3.60), (3.2) and (3.64).

Step 4. Proof of (2.16) for α ∈ (1/2, 3/2) and the Dirichlet case. The inequality
(3.41), (3.43), (3.44) and (3.4) yield directly that in the Dirichlet case, for α ∈ (1/2, 1],

‖v‖
L2(0,T ;W

1,(4+2ν)/(4+ν)
0 (Ω))

≤ C(T,E(0)). (3.65)
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Thus, if suffices to prove (2.16) for α ∈ (1, 3/2). Some additional estimates are needed
here. First, for α ∈ (1, 3/2) and γ ≥ (1 + α)/2, it is easy to check that for ν defined
by (3.2),

(−α + 3/2)(2 + ν) ≥ 1. (3.66)

Hence, for β = (4 + 2ν)/(4 + ν) one deduces from (3.38) and (3.29) that

‖(ρεuε)x‖L2(0,T ;Lβ(Ω))

≤ C
∥∥ρα/2

ε uεx

∥∥
L2(0,T ;L2(Ω))

+ C
∥∥(ρα−1/2

ε

)
x
ρ−α+3/2

ε uε

∥∥
L2(0,T ;Lβ(Ω))

≤ C + C
∥∥(ρα−1/2

ε

)
x

∥∥
L∞(0,T ;L2(Ω))

∥∥ρ−α+3/2
ε uε

∥∥
L∞(0,T ;L2+ν(Ω))

≤ C. (3.67)

In the case tha α ∈ (1, 3/2) and 1 ≤ γ < (1 + α)/2, it holds that that

(3 − α− γ)(2 + ν) ≥ 2,

due to . Hence, one derives from (3.38) and (3.27) that

‖(ρεuε)x‖L2(0,T ;Lβ(Ω))

≤ C
∥∥ρα/2

ε uεx

∥∥
L2(0,T ;L2(Ω))

+ C
∥∥(ρ(γ+α−1)/2

ε

)
x
ρ(3−α−γ)/2

ε uε

∥∥
L2(0,T ;Lβ(Ω))

≤ C + C
∥∥(ρ(γ+α−1)/2

ε

)
x

∥∥
L2(0,T ;L2(Ω))

∥∥ρ(3−α−γ)/2
ε uε

∥∥
L∞(0,T ;L2+ν(Ω))

≤ C. (3.68)

Thus, the estimates (3.4), (3.59), (3.67) and (3.68) imply that (2.16) still holds for
α ∈ (1, 3/2). The proof of Proposition 3.1 is completed.

4 Dynamics of vacuum states for short time

4.1 Short time structure of vacuum states

We prove the Theorem 2.2 in this subsection in order to study the short time
structure of vacuum states for global entropy weak solutions. To this end, it is sufficient
to show that there is a unique entropy weak solution in short time for the compressible
Navier-Stokes equations (2.1)-(2.2) with initial data (2.3) and boundary value (2.6) or
(2.7) under the assumptions of Theorem 2.2 as follows.

Proposition 4.1 (Vacuum states for short time) Under the assumptions of The-
orem 2.2, there is a short time T ′

∗ > 0 so that the unique entropy weak solution (ρ̃, ũ)
in the sense of Definition 2.5 of the IBVP problem for the compressible Navier-Stokes
equations (2.1)–(2.2) with initial data (2.3) and boundary condition (2.6) or (2.7) exists



H.-L. Li, J. Li, & Z. Xin 27

on the domain Ω× [0, T ′
∗]. The initial vacuum state (2.19) or (2.21) is also propagated

for the short time t ∈ [0, T ′
∗], more precisely, the properties (2.23)–(2.26) or (2.27)–

(2.32) hold respectively for (ρ̃, ũ). In addition, it holds that

‖(ρ̃α−1/2)x‖L∞(0,T ′∗;L2(Ω)) + ‖((ρ̃ũ)2/ρ̃, (ρ̃ũ)2+ν/ρ̃1+ν)‖L∞(0,T ′∗;L1(Ω)) ≤ C(T ′
∗). (4.1)

Proof: The proof of Proposition 4.1 will be completed in subsections 4.2–4.3 later.

Proof of Theorem 2.2. This is a consequence of the Proposition 4.1 and Theo-
rem 2.1. In fact, the Proposition 4.1 shows not only that there exists a unique en-
tropy weak solution (ρ̃, ũ) on the domain Ω × (0, T ′

∗) in the sense of Definition 2.5 to
the IBVP problem for the compressible Navier-Stokes equations (2.1)–(2.2) with initial
data (2.3) and boundary condition (2.6) or (2.7), but also that this short time entropy
weak solution satisfies all the properties (2.23)–(2.32). Now, choose time T∗ = T ′

∗ − δ
with δ > 0 a constant small enough. One can verify that at time t = T∗ the density
and momentum also satisfies the assumptions (2.4), and particularly

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ρ̃(x, T∗) ≥ 0 on Ω, ρ̃ũ(., T∗) = 0, on {x ∈ Ω | ρ0(x) = 0},
ρ̃(., T∗) ∈ L1(Ω), (ρ̃α−1/2(., T∗))x ∈ L2(Ω),

|m̃(.,T∗)|2
ρ̃(x,T∗)

+ |m̃(.,T∗)|2+ν

ρ̃1+ν(x,T∗) ∈ L1(Ω).

(4.2)

Thus, it follows from the Theorem 2.1 that there is a global entropy weak solution (ρ̂, û)
for time t ≥ T∗ in the sense of Definition 2.5 to the IBVP problem for the compressible
Navier-Stokes equations (2.1)–(2.2) with initial data

(ρ, ρu)(x, T∗) = (ρ̃, ρ̃ũ)(x, T∗), x ∈ Ω (4.3)

and boundary condition (2.6) or (2.7). Define (ρ, u) as

(ρ, u) =

{
(ρ̃, ũ), for (x, t) ∈ Ω × [0, T∗],

(ρ̂, û), for (x, t) ∈ Ω × [0, T∗].
(4.4)

It is easy to verify that (ρ, u) is a global entropy weak solution in the sense of Defini-
tion 2.5 to the compressible Navier-Stokes equations (2.1)–(2.2) with initial data (2.3)
and boundary condition (2.6) or (2.7) under the assumptions of Theorem 2.2. This
global entropy weak solution is actually unique and regular for short time t ∈ [0, T∗]
and satisfies all the properties (2.23)–(2.32). The proof of Theorem 2.2 is completed.
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4.2 Compressible Navier-Stokes in Lagrangian coordinates

In order to to prove the Proposition 4.1, we present an equivalent proposition for
the compressible Navier-Stokes equations in the Lagrangian coordinates (y, t), instead
of the Eulerian coordinates (x, t), through the coordinate transformation

y =

∫ x

0

ρ(z, t)dz, x ∈ (0, 1), t ≥ 0 (4.5)

for the Dirichlet boundary condition, or

y =

∫ X0(t)+x

X0(t)

ρ(z, t)dz, x ∈ (0, 1), t ≥ 0 (4.6)

for the periodic boundary condition where x = X0(t) is a particle path. In addi-
tion, both the case of initial one point vacuum state and the case of a piece of initial
continuous vacuum states will be studied with some additional initial regularities.

We first describe the equivalent proposition for the IBVP problem for the compress-
ible Navier-Stokes equations in the Lagrangian coordinates in the case of initial one
point vacuum state. Thus, consider the compressible Navier-Stokes equations

ρt + ρ2uy = 0, (4.7)

ut + p(ρ)y − (ρμ(ρ)uy)y = 0, y ∈ Ω, t > 0 (4.8)

with initial data

(ρ, u)(y, 0) = (ρ0(y), u0(y)), y ∈ Ω, (4.9)

and the Dirichlet boundary condition

u(0, t) = u(1, t) = 0, t ≥ 0 (4.10)

or the periodic boundary condition

(ρ, u) is periodic w.r.t. x of period one. (4.11)

For the case of Dirichlet boundary, the initial data (ρ0, u0) is assumed to be consistent
with the boundary values. Moreover, we assume that there is one point vacuum state
at y = y0 for some fixed point y0 ∈ (0, 1) and that the initial data is of additional
regularity ⎧⎨

⎩
A0|y − y0|β ≤ ρ0(y) ≤ A1|y − y0|β, y ∈ Ω,

u0 ∈ C1(Ω̄), (ργ
0)y, (ρ1+α

0 u0y)y ∈ L2(Ω) ∩ L2n(Ω)
(4.12)

with an integer n ≥ 2, where A0, A1 are positive constant, and the constant β ∈
(β−, β+) with β± determined by Remark 4.3. Then the following result holds in the
case of initial point vacuum state.
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Proposition 4.2 (Point vacuum state for short time) Assume that (2.22) and
(4.12) hold. Then, there is a time T ′

∗ > 0 so that the unique regular weak solution (ρ, u)
with point vacuum of the IBVP (4.7)–(4.9) with boundary condition (4.10) or (4.11)
exists on the domain Ω × [0, T ′

∗] and satisfies

ρ ∈ C0(Ω̄ × [0, T ′
∗]) ∩ C1([0, T ′

∗];L
2(Ω)), (4.13)

u ∈ C0(Ω̄ × [0, T ′
∗]) ∩ C1([0, T ′

∗];L
2(Ω)), (4.14)

ρ1+αuy ∈ L∞(Ω × [0, T ′
∗]) ∩ C1/2([0, T ′

∗];L
2(Ω)), (4.15)

‖(ρα)y‖L∞([0,T ′∗];L2(Ω)) + ‖ρuy‖L∞(Ω×[0,T ′∗]) ≤ C(T∗). (4.16)

In addition, the initial point vacuum state is maintained for the short time

ρ(y0, t) = 0, t ∈ [0, T ′
∗], (4.17)

a−|y − y0|β ≤ ρ(y, t) ≤ a+|y − y0|β, (y, t) ∈ [0, 1] × [0, T∗]. (4.18)

Here, a± are positive constants independent of T ′
∗.

Proof: The proof of the Proposition 4.1 willbe given in subsection 4.3.

Remark 4.3 The choice of β± > 0 is such that

β− = max{ 1
2α
, 1

γ
(1 − 1

2n
)}, β+ = min{1, 1

α
(1 − 1

2n
), 1

1+3α
(4 − 1

n
)} (4.19)

for integer n ≥ 2. It should be emphasized here that all the assumptions required here
are satisfied for the shallow water equations , i.e., γ = 2, α = 1.

Nest, we describe the equivalent proposition for the IBVP problem for the com-
pressible Navier-Stokes equations in the Lagrangian coordinates for the case of initial
continuous vacuum of one piece. In this case, we consider the IBVP problem for the
compressible Navier-Stokes equation (4.7)–(4.9) with one of following boundary condi-
tions:

(1). mixed boundary condition{
u(0, t) = ρ(1, t) = 0, t ≥ 0,

A0(1 − y)β ≤ ρ0(y) ≤ A1(1 − y)β, y ∈ Ω,
(4.20)

or

(2). mixed free boundary condition{
ρ(0, t) = u(1, t) = 0, t ≥ 0,

B0y
β ≤ ρ0(y) ≤ B1y

β, y ∈ Ω,
(4.21)

or
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(3). free boundary condition{
ρ(0, t) = ρ(1, t) = 0, t ≥ 0,

A′
0(y(1 − y))β ≤ ρ0(y) ≤ A′

1(y(1− y))β, y ∈ Ω,
(4.22)

where, β ∈ (β−, β+), and A0, A1, B0, B1, and A′
0, A

′
1 are some given positive constants.

The initial data is also assumed to be regular

u0 ∈ C1(Ω̄), (ργ
0)y, (ρ1+α

0 u0y)y ∈ L2(Ω) ∩ L2n(Ω) (4.23)

with an integer n ≥ 2. Then the following results for free boundary value problems for
the compressible Navier-Stokes equations hold.

Proposition 4.4 (Continuous vacuum state for short time) Assume that (2.22)
and (4.23) hold. Then, there is a time T ′

∗ > 0 so that the unique regular weak solution
(ρ, u) of the IBVP problem for the compressible Navier-Stokes equations (4.7)–(4.8)
with initial data (4.9) and free boundary condition (4.20), or (4.21), or (4.22) exists on
the domain Ω × [0, T ′

∗] and satisfies

ρ ∈ C0(Ω̄ × [0, T ′
∗]) ∩ C1([0, T ′

∗];L
2(Ω)),

u ∈ C0(Ω̄ × [0, T ′
∗]) ∩ C1([0, T ′

∗];L
2(Ω)),

ρ1+αuy ∈ L∞(Ω × [0, T ′
∗]) ∩ C1/2([0, T ′

∗];L
2(Ω)),

and
‖(ρα)y‖L∞([0,T ′∗];L2(Ω)) + ‖ρuy‖L∞(Ω×[0,T ′∗]) ≤ C(T ′

∗).

In addition, the initial vacuum state is also maintained for short time, namely, it holds
that

a−(1 − y)β ≤ ρ(y, t) ≤ a+(1 − y)β, (y, t) ∈ (0, 1) × [0, T ′
∗]

corresponding to the mixed free boundary conditions (4.20), or

b−yβ ≤ ρ(y, t) ≤ b+y
β, (y, t) ∈ (0, 1) × [0, T ′

∗]

corresponding to the mixed free boundary conditions (4.21), or

c−(y(1 − y))β ≤ ρ(y, t) ≤ c+(y(1 − y))β, (y, t) ∈ (0, 1) × [0, T ′
∗]

corresponding to the free boundary (4.22). Here, a±, b± and c± are positive constants
independent of T ′

∗.

Proof: The short time existence, uniqueness and regularity of weak solutions
of the free boundary problems for the compressible Navier-Stokes equations are well-
investigated by many authors (see [17,27,28,50,51]). Proposition 4.4 can be proved in
a similar way as [17, 27, 28, 50], so we omit the details.
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Remark 4.5 Based on Proposition 4.4 for the compressible Navier-Stokes equations
(4.7)–(4.9) with either mixed free boundary condition (4.20) and (4.21) or free bound-
ary (4.22) and the coordinates transformation from the Lagrangian coordinates to the
Eulerian coordinates, one can study easily the IBVP problem for compressible Navier-
Stokes equations (2.1)–(2.2) in the Eulerian coordinates with either the Dirichlet bound-
ary condition (2.6) or the periodic boundary condition (2.7) in the case of initial con-
tinuous vacuum state of one piece (2.20).

In fact, for the compressible Navier-Stokes equations (2.1)–(2.2) with Dirichlet
boundary condition (2.6) in the Eulerian coordinates, the short time existence of unique
solution subject to the case of a piece of initial continuous vacuum state (2.20)–(2.21) in
initial data can be constructed, in the Lagrangian coordinates, by combining two mixed
free boundary value problems (4.20) and (4.21) together with one continuous vacuum
state in-between as follows. Denote two particle pathes x = Xi(t) (assumed to be de-
finable for short time) starting from the initial vacuum boundary x = x0 and x = x1

respectively as
Ẋi(t) = u(Xi(t), t), Xi(0) = xi, i = 0, 1,

along which the vacuum boundary moves in the Eulerian coordinates so that⎧⎨
⎩

(ρ, ρu)(x, t) = 0, x ∈ [X0(t), X1(t)], t ≥ 0,

ρu(x, t) > 0, x ∈ [0, X0(t)) ∪ (X1(t), 1], t ≥ 0.
(4.24)

We first choose the coordinate transformation from the Eulerian coordinates to the
Lagrangian coordinates as⎧⎨

⎩
y =

∫ x

0
ρ(z, t)dz, x ∈ [0, X0(t)],

y0 =
∫ X0(t)

0
ρ(z, t)dz =

∫ x0

0
ρ0(z)dz < 1, conservation of mass,

(4.25)

which gives y ∈ [0, y0] and the mixed free boundary conditions (4.20). The application
of the Proposition 4.4 with Ω replaced by (0, y0) implies, via the inverse coordinate
transformation x =

∫ y

0
ρ−1(z, t)dz, y ∈ [0, y0], the existence of unique solution (ρl, ul)

of the compressible Navier-Stokes equations (2.1)–(2.2) on [0, X0(t)] × [0, T∗] in the
Eulerian coordinates with the initial data

(ρl, ul)(x, 0) = (ρ0, u0)(x), x ∈ (0, x0), ρ0(x0) = 0,

and mixed free boundary conditions

u(0, t) = 0, ρ(X0(t), t) = 0, t ∈ [0, T∗].

Next, we choose the coordinate transformation from the Eulerian coordinates to the
Lagrangian coordinates as⎧⎨

⎩
y = 1 − ∫ 1

x
ρ(z, t)dz, x ∈ [X1(t), 1],

y1 =
∫ 1

X1(t)
ρ(z, t)dz =

∫ 1

x1
ρ0(z)dz < 1 conservation of mass,

(4.26)
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which gives y ∈ [1− y1, 1] and the mixed free boundary conditions (4.21). Then Propo-

sition 4.4 implies, via the inverse coordinate transformation x = 1 − ∫ 1

y
ρ−1(z, t)dz,

y ∈ [1 − y1, 1], the existence of unique (ρr, ur) of the compressible Navier-Stokes equa-
tions (2.1)–(2.2) on [X1(t), 1] × [0, T∗] in the Eulerian coordinates with initial data

(ρr, ur)(x, 0) = (ρ0, u0)(x), x ∈ (x1, 1), ρ0(x1) = 0,

and mixed free boundary conditions

u(1, t) = 0, ρ(X1(t), t) = 0, t ∈ [0, T∗].

Consequently , we can construct the short time unique solution (ρ, u) to the IBVP prob-
lem for the compressible Navier-Stokes equations (2.1)–(2.3) with the Dirichlet boundary
condition (2.6) and a piece of continuous vacuum state (2.20) in the initial data as

(ρ, ρu) =

⎧⎪⎨
⎪⎩

(ρl, ρlul), on [0, X0(t)] × [0, T∗],

(0, 0), on (X0(t), X1(t)) × [0, T∗],

(ρr, ρrur), on [X1(t), 1] × [0, T∗].

Similarly, we can obtain the short time existence of unique solution to the IBVP
problem for the compressible Navier-Stokes equations (2.1)–(2.2) with periodic boundary
condition (2.7) which can be viewed as a free boundary problem after the choice of the
spatial reference point. The details will be omitted.

4.3 Proof of Propositions 4.1–4.2

We first prove the Proposition 4.2 in this subsection with the help of the a-priori
estimates for (regularized) solutions and the construction of approximate solutions by
a finite difference scheme, due to the modification of the ideas used in [17, 28, 37, 50].
Without the loss of generality, we only prove Proposition 4.2 in the case of the Dirichlet
boundary conditions with one point vacuum state in the initial data.

First, we can easily derive some identities for (regularized) solutions as in [17, 50].

Lemma 4.6 Let T > 0 and assume that the solution (ρ, u) of the IBVP problem (4.7)–
(4.10) exists for t ∈ [0, T ] with ρ(y0, t) = 0. Then, under the assumptions of Proposi-
tion 4.2, it holds that

ρ1+αuy(y, t) =

∫ y

y0

ut(z, t)dz + ργ(y, t) = −
∫ y0

y

ut(z, t)dz + ργ(y, t), (4.27)

ρα(y, t) + α

∫ t

0

ργ(y, s)ds =ρα
0 (y) + α

∫ t

0

∫ y0

y

ut(z, s)dzds

=ρα
0 (y) − α

∫ t

0

∫ y

y0

ut(z, s)dzds.

(4.28)

for all y ∈ Ω with y �= y0.
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We also have the following useful a-priori estimates, whose proofs are similar to
those for (3.1)–(3.18) and thus will be omitted.

Lemma 4.7 Let T > 0 and assume that the solution (ρ, u) of the IBVP problem (4.7)–
(4.10) exists for t ∈ [0, T ]. Then, under the assumptions of Proposition 4.2, it holds
that

‖u(t)‖2
L2(Ω) + ‖ρ(t)‖γ−1

Lγ−1(Ω) +

∫ t

0

∫
|(ρ(γ+α)/2)y|2dxds ≤ C0, t ∈ [0, T ]

‖ρ(t)‖L∞(Ω) + ‖(ρα(t))y‖L2(Ω) ≤ C0, t ∈ [0, T ] (4.29)

with C0 > 0 a constant.

Lemma 4.8 Let T > 0 and assume that the solution (ρ, u) of the IBVP problem (4.7)–
(4.10) exists for t ∈ [0, T ] with ρ(y0, t) = 0. Then, under the assumptions of Proposi-
tion 4.2, there is a time T ′

∗ ∈ (0, T ] (depending on initial data) so that it holds that

∫
u2j

t (y, t)dy +

∫ t

0

∫
u2j−2

t ρ1+αu2
ytdxds ≤ C1 (4.30)

uniformly for t ∈ [0, T ′
∗] with j = 1, n and C1 > 0 a positive constant, and that

ρuy(t) ∈ C0(Ω̄) is uniformly bounded for any t ∈ [0, T ′
∗]

‖ρuy‖L∞(Ω×[0,T ′∗]) ≤ C2 (4.31)

with C2 > 0 a constant. Moreover, the solution (ρ, u) is continuous

(ρ, u) ∈ C0(Ω̄ × [0, T ′
∗]), (4.32)

and the initial one point vacuum state is maintained

a−|y − y0|β ≤ ρ(y, t) ≤ a+|y − y0|β, (y, t) ∈ Ω × [0, T ′
∗] (4.33)

with a+ > a− > 0 two constants independent of time T∗.

Proof: Let us first assume that the weak solution is regular enough so that we
can differentiate it through the equations and the interface as in [50], and the density
is of the form

a∗|y − y0|β ≤ ρ(y, t) ≤ a∗|y − y0|β, (y, t) ∈ Ω × [0, T ] (4.34)

with a∗, a∗ two positive constants to be determined later. It will be assumed further
that the following a-priori estimate holds

‖ρuy‖L∞(Ω×[0,T ]) ≤M0 (4.35)
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for some positive M0 to be determined later. We will prove (4.30) only for j = n below
since the other case can be treated similarly. Taking inner product between (4.8)t and
2n(ut)

2n−1 over Ω leads to

d

dt

∫
|ut|2ndy + 2n

∫
(ργ)yt(ut)

2n−1dy − 2n

∫
(ρ1+αuy)yt(ut)

2n−1dy = 0

from which, one deduces after integration by parts and using Eq. (4.7) that

d

dt

∫
|ut|2ndy + 2n(2n− 1)

∫
ρ1+αu2

yt(ut)
2n−2dy

=2n(2n− 1)γ

∫
ργ−1ρtuyt(ut)

2n−1dy

+ 2n(2n− 1)(1 + α)

∫
ραρtuyuyt(ut)

2n−2dy

= − 2n(2n− 1)γ

∫
ργ+1uyuyt(ut)

2n−2dy

− 2n(2n− 1)(1 + α)

∫
ρ2+αu2

yuyt(ut)
2n−2dy

≤n(2n− 1)

∫
ρ1+αu2

yt(ut)
2n−2dy

+ C

∫
ρ2γ+1−αu2

y(ut)
2n−2dy + C

∫
ρ3+αu4

y(ut)
2n−2dy

≤n(2n− 1)

∫
ρ1+αu2

yt(ut)
2n−2dy + C‖ρ‖2γ−1−α

L∞ ‖ρuy‖2
L∞‖ut(t)‖2n−2

L2n−2

+ C

∫
ρ3+αu4

y(ut)
2n−2dy

≤n(2n− 1)

∫
ρ1+αu2

yt(ut)
2n−2dy + CC2γ−1−α

0 M2
0 (1 + ‖ut(t)‖2n+2

L2n−2)

+ C

∫
ρ3+αu4

y(ut)
2n−2dy (4.36)

where one has used (2.22), (4.29), the a-priori assumption (4.35), and Hölder’s inequal-
ity. The last term on the right hand side of (4.36) can be estimated as follows. For the
case α ≥ 1, it follows from (4.29) and (4.35) that∫

ρ3+αu4
y(ut)

2n−2dy ≤‖ρ3+αu4
y‖L∞‖ut(t)‖2n−2

L2n−2 ≤ Cα−1
0 M4

0‖ut(t)‖2n−2
L2n−2

≤CM4
0 (1 + ‖ut(t)‖2n+2

L2n ). (4.37)

For the case α ∈ (1
2
, 1), since it holds by (4.27) that

|ρ1+αuy| ≤ |
∫ y

y0

ut(z, t)dz| + ργ ≤ ‖ut‖L2n · |y − y0|(2n−1)/2n + ργ , (4.38)
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which together (4.34) implies

|ρ(3+α)nu4n
y | =|ρ−(1+3α)n(ρ1+αuy)

4n| = ρ−(1+3α)n

[∫ y

y0

ut(z, t)dz + ργ

]4n

≤Cρ−(1+3α)n(‖ut‖4n
L2n · |y − y0|2(2n−1) + ρ4nγ)

≤C‖ut‖4n
L2n · |y − y0|−(1+3α)nβ+2(2n−1) + ρ3n(γ−α)+n(γ−1), (4.39)

the last term in (4.36) is estimated by

|
∫
ρ3+αu4

y(ut)
2n−2dy| ≤ ‖ut‖2n−2

L2n ·
(∫

ρ(3+α)nu4n
y dy

)1/n

≤C‖ut‖2n−2
L2n ·

(
‖ut‖4n

L2n

∫
|y − y0|−(1+3α)nβ+2(2n−1)dy +

∫
ρ3n(γ−α)+n(γ−1)dy

)1/n

≤C(‖ut‖2n+2
L2n + 1). (4.40)

where one has used the fact β < 4n−1
n(1+3α)

due to (4.19). Substituting (4.37) and (4.40)

into (4.36) shows

d

dt

∫
|ut|2ndy + n(2n− 1)

∫
ρ1+αu2

yt(ut)
2n−2dy

≤CM2
0 (1 +M2

0 )(1 + ‖ut(t)‖2n+2
L2n−2) ≤ C(1 +M4

0 )(‖ut(t)‖2n+2
L2n + 1). (4.41)

Set

Ta = min{ 2n−1
n2nC(1+M4

0 )C1
,

‖ut(0)‖2n
L2n

C(1+M4
0 )
, T}. (4.42)

One can apply the Grönwall’s Lemma to obtain (4.30) for t ∈ [0, Ta] with C1 given by

C1 =: 2‖ut(0)‖2n
L2n ≥ ‖ut(0)‖2n

L2n + CTa(1 +M4
0 ). (4.43)

To prove (4.31) and ensure the a-priori assumption (4.35), we use the equality (4.27)
to get that near y = y0, it holds that

ρuy(y, t) = ρ−α(y, t)

∫ y

y0

ut(z, t)dz + ργ−α(y, t), y �= y0, (4.44)

which, together with (2.22), (4.29), and the fact β ≤ 1
α

(
1 − 1

2n

)
due to (4.19), implies

‖ρuy‖L∞
Ω×[0,t]

≤Cγ−α
0 + |ρ−α(y, t)

∫ y

y0

ut(z, t)dz|L∞
Ω×[0,t]

≤Cγ−α
0 + a−α

∗ |y − y0|1−1/2n−αβ‖ut(t)‖L2n

≤Cγ−α
0 + a−α

∗ C
1/2n
1 ≤ Cγ−α

0 + 2a−α
∗ ‖ut(0)‖L2n

= : C2 ≤M0
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so long as the constant M0 is chosen as

M0 = 1 + Cγ−α
0 + 2a−α

∗ ‖ut(0)‖L2n. (4.45)

Next, we verify the a-priori assumption (4.34). Set

Tb = min{ Aα
0

3αC
1/2n
1

, Ta}. (4.46)

It follows from the equation (4.28) for y �= y0 and t ∈ [0, Tb] that

ρα(y, t) + α

∫ t

0

ργ(y, s)ds = ρα
0 (y) + α

∫ t

0

∫ y

y0

ut(z, s)dzds

≥Aα
0 |y − y0|αβ − αTb|y − y0|1−1/2n sup

0≤t≤Tb

‖ut(t)‖L2n

≥Aα
0 |y − y0|αβ − C

1/2n
1 αTb|y − y0|1−1/2n

=
2

3
Aα

0 |y − y0|αβ + |y − y0|αβ(
1

3
Aα

0 − C
1/2n
1 αTb|y − y0|1−1/2n−αβ)

≥2

3
Aα

0 |y − y0|αβ

(4.47)

where we have used the facts |y − y0| ≤ 1 and β ≤ 1
α

(
1 − 1

2n

)
due to (4.19). On the

other hand, it follows from (4.28) that

ρα(y, t) + α

∫ t

0

ργ(y, s)ds = ρα
0 (y) + α

∫ t

0

∫ y

y0

ut(z, s)dzds

≤Aα
1 |y − y0|αβ + αt|y − y0|1−1/2n‖ut(t)‖L2n

≤(Aα
1 + C

1/2n
1 αt)|y − y0|αβ.

(4.48)

Define Tc ∈ (0, Tb] by

Tc = min{ Aα
0

3αC(Aα
1 + C

1/2n
1 αTb)γ/α

, Ta, Tb}. (4.49)

Set

Z(t) =

∫ t

0

ργ(y, s)ds.

It follows from (4.48) that

(Z ′(t))α/γ ≤ (Aα
1 + C

1/2n
1 αt)|y − y0|αβ

which implies for t ∈ [0, Tc] that∫ t

0

ργ(y, s)ds ≤Tc(A
α
1 + C

1/2n
1 αTc)

γ/α|y − y0|(γ−α)β |y − y0|αβ

≤CTc(A
α
1 + C

1/2n
1 αTb)

γ/α|y − y0|αβ.

(4.50)
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As a consequence of (4.47), (4.50), and (4.49), one gets

ρα(y, t) ≥ 2

3
Aα

0 |y − y0|αβ − α

∫ t

0

ργ(y, s)ds ≥ 1

3
Aα

0 |y − y0|αβ. (4.51)

From (4.48) and (4.51), we can verify the a-priori assumption (4.34) and justify the
property (4.33) by simply choosing

a∗ = a− = (Aα
0/3)1/α, a∗ = a+ = (Aα

1 + C
1/2n
1 αTc)

1/α (4.52)

for any t ∈ [0, T ′
∗] with time T ′

∗ = Tc determined by (4.49). One then derives from
Eq. (4.7), (4.29), and (4.31) that

ρα ∈ L∞(0, T ′
∗, H

1(Ω)), (ρα)t ∈ L∞(0, T ′
∗, L

2(Ω)). (4.53)

while (4.31), (4.33), boundary condition (4.10), and (4.30) for j = 1 imply that

u ∈ L∞(0, T ′
∗,W

1,p
0 (Ω)), ut ∈ L∞(0, T ′

∗, L
2(Ω)) (4.54)

for any p ∈ (1, β−1), where one has used the fact β−1 > β−1
+ ≥ 1 so that

sup
t∈[0,T∗]

‖uy‖Lp(Ω) = sup
t∈[0,T∗]

‖ρ−p‖L1(Ω) · ‖ρuy‖p
L∞(Ω×[0,T ′∗]) ≤ C. (4.55)

(4.53)–(4.55) imply the continuity (4.32) of the solution (ρ, u), and the continuity of
ρuy follows from the equation (4.27) and that of (ρ, u). The proof of the lemma is
completed.

Using Lemmas 4.6–4.8 and a direct computation, we can obtain the following result:

Lemma 4.9 Let T ′
∗ > 0 be given in Lemma 4.8 and (ρ, u) be the solution of the IBVP

problem (4.7)–(4.10). Then, under the assumptions of Proposition 4.2, ρ1+αuy(t) ∈
C0(Ω̄) is uniformly bounded for any t ∈ [0, T ′

∗]

lim
y→y0

ρ1+αuy(y, t) = 0, ‖ρ1+αuy‖L∞(0,T ′∗;C0(Ω̄)) ≤ C(T ′
∗),

and (ρ, u) satisfies for 0 ≤ s < t ≤ T ′
∗ that

‖ρ(t) − ρ(s)‖L2(Ω) + ‖u(t) − u(s)‖L2(Ω) ≤ C(T ′
∗)|t− s|,

‖ρ1+αuy(t) − ρ1+αuy(s)‖L2(Ω) ≤ C(T ′
∗)|t− s|1/2.

Proof: The conclusions that for any t ∈ [0, T∗], ρ1+αuy(t) ∈ C0(Ω̄) and limy→y0 ρ
1+αuy(y, t) =

0 are due to the continuity of right hand side terms of (4.44) and (4.34). By (4.31) and
(4.33), one can check easily that

‖ρ1+αuy‖L∞(Ω×[0,T ′∗]) ≤ ‖ρ‖α
L∞(Ω×[0,T ′∗]) · ‖ρuy‖L∞(Ω×[0,T ′∗]) ≤ C(T ′

∗).
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Making use of Eq. (4.7), (4.30) and (4.31), one can obtain

‖ρ(t) − ρ(s)‖L2(Ω) ≤
∫ t

s

‖ρt(τ)‖L2(Ω)dτ = ‖
∫ t

s

ρ2uy(τ)‖L2(Ω)dτ

≤C(t− s)‖ρ‖L∞(Ω×[0,T ′∗]) · ‖ρuy‖L∞(Ω×[0,T ′∗]) ≤ C(T ′
∗)|t− s|,

‖u(t) − u(s)‖L2(Ω) ≤ ‖
∫ t

s

ut(τ)dτ‖L2(Ω) ≤ C

∫ t

s

‖ut‖L2(Ω) ≤ C(T ′
∗)|t− s|,

and

‖ρ1+αuy(t) − ρ1+αuy(s)‖L2(Ω) ≤ ‖
∫ t

s

(ρ1+αuy(t))tdτ‖L2(Ω)

≤C(‖
∫ t

s

ρtρ
αuy(τ)‖L2(Ω) + ‖

∫ t

s

ρ1+αuyt(τ)dτ‖L2(Ω))

≤C(‖
∫ t

s

ρ2+αu2
y(τ)‖L2(Ω) + ‖

∫ t

s

ρ1+αuyt(τ)dτ‖L2(Ω))

≤C(T ′
∗)(|t− s|‖ρ2+αu2

y‖L∞(Ω×[0,T ′∗]) + |t− s|1/2‖ρ(1+α)/2uyt(τ)‖L2(Ω×[0,T ′∗]))

≤C(T ′
∗)|t− s|1/2.

The proof is completed.

Proof of the Proposition 4.2. With the help of Lemmas 4.6–4.8, we are ready to
prove the Proposition 4.2.

(1) Existence of weak solution for short time. We only deal with the case for the
Dirichlet boundary condition and one point vacuum state in the initial data, the case
of periodic boundary and one point vacuum state in initial data can be done in a
similar way. Once the a-priori estimates are established as in Lemmas 4.6–4.9, we are
able to prove the Proposition 4.2. First of all, we construct a sequence of approximate
solutions by modifying the finite difference scheme used in [28, 34, 37]. Without the
loss of generality, we assume

y0 =
1

2
, namely, ρ0(

1
2
) = 0. (4.56)

For any given positive integer N = 2k+1 with k ≥ 0 an integer, let h = 1/N . Consider
the system of 2N ordinary differential equations⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

d

dt
ρh

2n+1 + (ρh
2n+1)

2u
h
2n+2 − uh

2n

h
= 0,

d

dt
uh

2n +
(ρh

2n+1)
γ − (ρh

2n−1)
γ

h

=
1

h
{(ρh

2n+1)
1+α(uh

2n+2 − uh
2n)/h− (ρh

2n−1)
1+α(uh

2n − uh
2n−2)/h},

(4.57)
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with the boundary condition and point vacuum

uh
0(t) = uh

2N(t) = 0, ρ2k+1(t) = 0, (4.58)

and initial data

ρh
2n+1(0) = ρ0((2n+ 1)h

2
) uh

2n(0) = u0((2n)h
2
) (4.59)

where n = 1, 2, 3, ..., N . Here, we also assume

ρh
2N+1(t) = ρh

2N−1(t), ρh
1(t) = ρh

−1(t), uh
2N+2(t) = uh

−2(t) = 0

which is consistent with the boundary condition and the fact that density is continuous
and non-zero at the left boundary.

By applying the idea as in [27, 37] and the similar arguments mentioned above,
we can obtain the following uniform (w.r.t. h) a-priori estimates about the solutions
(ρ2n+1, u2n) (here and below we omit the symbol h for simplicity) of (4.57)–(4.59)
similar to Lemmas 4.6–4.9. Details will be omitted (the reader can refer to [27,37] for
similar arguments in details).

Lemma 4.10 Let (ρ2n+1, u2n) be the solution of (4.57)–(4.59). Then, it holds

N∑
n=0

(1
2
u2

2n(t) + π(ρ2n+1(t)))h +

∫ t

0

N∑
n=1

ρ1+α
2n+1(

u2n+2(s)−u2n(s)
h

)2hds

=
N∑

n=0

(1
2
u2

2n(0) + π(ρ2n+1(0)))h,

N−1∑
n=0

ρ−1
2n+1(t)h =

N−1∑
n=0

ρ−1
2n+1(0)h.

It follows from Lemma 4.10 and the standard theory of ordinary differential equa-
tions that there exists a global solution (ρ2n+1, u2n) to (4.57)–(4.59) for any fixed pos-
itive N and h. Furthermore, the following properties hold:

Lemma 4.11 Let (ρ2n+1, u2n) with n = 0, 2, 3, ..., N−1 with N = 2k+1 be the solution
of (4.57)–(4.59). Then, it holds for n ≥ k + 1 that

ρα
2n+1(t) = ρα

2n+1(0) − α

∫ t

0

n∑
j=k+1

d

dt
u2j(s)hds− α

∫ t

0

ργ
2n+1(s)ds,

ρ1+α
2n+1(t)

u2n+2(t) − u2n(t)

h
=

n∑
j=k+1

d

dt
u2j(t)h + ργ

2n+1,
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and for n ≤ k that

ρα
2n−1(t) = ρα

2n−1(0) − α

∫ t

0

k∑
j=n

d

dt
u2j(s)hds− α

∫ t

0

ργ
2n−1(s)ds,

ρ1+α
2n−1(t)

u2n(t) − u2n−2(t)

h
= −

k∑
j=n

d

dt
u2j(t)h + ργ

2n−1.

Lemma 4.12 Under the assumptions of Proposition 4.2, there is a short time T ′
∗ > 0

so that it holds for n = 0, 1, 2, ..., N that

ρ2n+1(t) +
N∑

n=1

(
ρα
2n+1(t)−ρα

2n−1(t)

h
)2h + |ρ2n+1(t)

u2n+2(t)−u2n(t)
h

| ≤ C(T ′
∗),

a−|12(2n+ 1)h− 1
2
|β ≤ ρ2n(t) ≤ a+|12(2n+ 1)h− 1

2
|β,

and for m = 1 or n that

N∑
j=0

( d
dt
u2j(t))

2mh+

∫ t

0

N∑
j=0

ρ1+α
2j+1(s)(

d
dt
u2j(s))

2m−2(
d
dt

u2n(s)− d
dt

u2n−2(s)

h
)2)h ≤ C(T ′

∗).

Here C(T ′
∗) > 0 and a± > 0 are constants.

Lemma 4.13 Under the assumptions of Proposition 4.2 and Lemma 4.12, it holds for
t ∈ [0, T ′

∗] that

|ρ1+α
2n+1(t)

u2n+2(t)−u2n(t)
h

| ≤ C(T ′
∗),

|u2n(t)| +
N∑

n=1

|u2n(t) − u2n−2(t)| ≤ C(T ′
∗),

N∑
n=1

|(ρ2n+1)
1+α(u2n+2 − u2n)/h− (ρ2n−1)

1+α(u2n − u2n−2)/h| ≤ C(T ′
∗),

N∑
n=1

|ρ2n(t) − ρ2n(s)|2h +
N∑

n=1

|u2n−1(t) − u2n−3|2h ≤ C(T ′
∗)|t− s|2,

N∑
n=1

|(ρ2n)1+α(t)u2n+1(t)−u2n−1(t)
h

− (ρ2n−2)
1+α(s)u2n−1(s)−u2n−3(s)

h
|2h ≤ C(T ′

∗)|t− s|.

With the help of Lemmas 4.10–4.13, we can define the sequence of approximate
solutions (ρh, uh) on the domain Ω × [0, T ′

∗] as⎧⎨
⎩
ρh(y, t) = ρ2n+1(t),

uh(y, t) = 1
h

[(y − (n− 1
2
)h)u2n+1(t) + ((n + 1

2
)h− y)u2n−1(t)]
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for y ∈ ((2n)1
2
h, (2n + 2)1

2
h). It can be verified that the following properties hold for

the approximate solutions

∂yuh(y, t) =
u2n+1(t) − u2n−1(t)

h

and ⎧⎨
⎩
a−|y − y0|β ≤ ρh(y, t) ≤ a+|y − y0|β,
|uh(y, t)| ≤ C(T ′

∗), |ρh(y, t)∂xuh(y, t)| ≤ C(T ′
∗),

for (y, t) ∈ Ω × [0, T ′
∗]. Then, the existence of weak solution for short time t ∈ [0, t′∗]

follows from Helly’s theorem, the diagonal process together with Lebesgue’s theorem,
and the a-priori estimates (see, for instance, [28]). The details are omitted.

(2) Uniqueness of weak solution for short time. We prove the uniqueness of weak
solutions for α ∈ (1

2
, γ). Without loss of generality, only the case for the Dirichlet

boundary condition (4.10) will be studied. Let (ρ1, u1) and (ρ2, u2) be two weak solu-
tions of Eq. (4.7)–(4.10) satisfying Lemma 4.6–4.9. Denote

n = ρ1 − ρ2, ψ = u1 − u2, (x, t) ∈ (0, 1) × [0, T ].

Obviously, the new unknown (n, ψ) with ψ(0, t) = ψ(1, t) = n(y0, t) = 0 satisfies(
n

ρ1ρ2

)
t

+ ψy = 0, y �= y0, (4.60)

ψt + (ργ
1 − ργ

2)y − (ρ1+α
1 ψy)y − ((ρ1+α

1 − ρ1+α
2 )u2y)y = 0, (4.61)

for (y, t) ∈ (0, 1) × (0, T∗] with zero initial data

(n(y, 0), ψ(y, 0)) = (0, 0), y ∈ (0, 1). (4.62)

Take inner product between ρα
1ρ

−1
2 n and (4.60) over [0, y0) ∪ (y0, 1] to obtain

d

dt

∮
ρ−1+α

1 ρ−2
2 n2dy = −(1 + α)

∮
u1yρ

α
1ρ

−2
2 n2dy − 2

∮
ρα

1ρ
−1
2 nψydy

≤(C‖ρ1u1y‖L∞ + 4)

∮
ρ−1+α

1 ρ−2
2 n2dy +

1

4

∮
ρ1+α

1 ψ2
ydy

≤C(T∗)
∮
ρ−1+α

1 ρ−2
2 n2dy +

1

4

∮
ρ1+α

1 ψ2
ydy, (4.63)

where
∮
fdx =:

∫ y0

0
fdx+

∫ 1

y0
fdx. Taking inner product between ψ and (4.61) over Ω,

and noting that ψ(0, t) = ψ(1, t) = n(y0, t) = 0 and ρ1+α
i ui(y0, t) = 0, i = 1, 2, we have

1

2

d

dt
‖ψ(t)‖2 +

∮
ρ1+α

1 ψ2
ydy =

∮
(ργ

1 − ργ
2)ψydy −

∮
(ρ1+α

1 − ρ1+α
2 )u2yψydy

=

∮
ργ

1 − ργ
2

ρ1 − ρ2
nψydy −

∮
ρ1+α

1 − ρ1+α
2

ρ1 − ρ2
nu2yψydy
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≤C

∮ (
ργ

1 − ργ
2

ρ1 − ρ2

)2

ρ−1−α
1 n2dy +

1

8

∮
ρ1+α

1 ψ2
ydy

+ 4

∮ (
ρ1+α

1 − ρ1+α
2

ρ1 − ρ2

)2

ρ−1−α
1 n2u2

2ydy +
1

8

∮
ρ1+α

1 ψ2
ydy

≤ 1

4

∮
ρ1+α

1 ψ2
ydy + C sup

y �=y0

(ρ
2(γ−1)
1 + ρ

2(γ−1)
2 )ρ−2α

1 ρ2
2

∮
ρ−1+α

1 ρ−2
2 n2dy

+ C sup
y �=y0

(ρ2α
1 + ρ2α

2 )ρ−2α
1 ‖ρ2u2y‖2

L∞

∮
ρ−1+α

1 ρ−2
2 n2dy

≤ 1

4

∮
ρ1+α

1 ψ2
ydy + C sup

y �=y0

|y − y0|[2(γ−1)+2−2α]β

∮
ρ−1+α

1 ρ−2
2 n2dy

+ C sup
y �=y0

|y − y0|[2α−2α]β

∮
ρ−1+α

1 ρ−2
2 n2dy

≤ 1

4

∫
ρ1+α

1 ψ2
ydy + C

∮
ρ−1+α

1 ρ−2
2 n2dy. (4.64)

Summing up the two differential inequalities (4.63) and (4.64) leads to

d

dt
‖ψ(t)‖2 +

d

dt

∮
ρ−1+α

1 ρ−2
2 n(t)dx+

∮
ρ1+α

1 ψ2
ydy

≤C(T∗)
∮
ρ−1+α

1 ρ−2
2 n2dy

(4.65)

which, together with the initial data (4.62) and the Grönwall’s lemma, gives rise to

‖ψy(t)‖2 +

∮
ρ−1+α

1 ρ−2
2 n2(x, t)dx ≡ 0, t ∈ [0, T ]. (4.66)

This together with ρ1(y0, t) = ρ2(y0, t) = 0 implies the uniqueness of weak solution

(ρ1, u1) ≡ (ρ2, u2). (4.67)

The proof of Proposition 4.2 is completed.

Proof of Proposition 4.1. With the help of Propositions 4.2–4.4 and the inverse
transformation from the Lagrangian coordinates to the Eulerian coordinates, we are
able to prove the Proposition 4.1. Since the case of periodic boundary conditions with
one point vacuum state in the initial data can be dealt with in a similar framework, we
only deal with the IBVP problem for the compressible Navier-Stokes equations (2.1)–
(2.3) for the case of the Dirichlet boundary condition (2.6) with one point vacuum in
the regular initial data (2.18)–(2.19).

First, one can check easily that the IBVP problem (2.1)–(2.3), (2.6), and (2.18)–
(2.19) in the Eulerian coordinates is equivalent to the corresponding IBVP problem in
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the Lagrangian coordinates for the equations (4.7)–(4.9) with the Dirichlet boundary
conditions (4.10) and (4.12) through the coordinate transformation

y =

∫ x

0

ρ(z, t)dz, x ∈ (0, 1), t ≥ 0. (4.68)

Note that y ∈ [0, 1] due to the conservation of mass. More importantly, the case
of one point vacuum state in the initial data (2.18)–(2.19) is reformulated into the
corresponding case (4.12) with y0 =

∫ x0

0
ρ0(z)dz and β = σ

1+σ
. It is easy to verify

that all the assumptions of Proposition 4.2 are satisfied. Then Proposition 4.2 gives
the existence and uniqueness of weak solution (ρ̃, ũ) satisfying (4.13)–(4.18) in the
Lagrangian coordinate to the compressible Navier-Stokes equations (4.7)–(4.9) with
the Dirichlet boundary conditions (4.10) and one point vacuum state in the initial
data. In particular,

ρ̃, ũ ∈ C0([0, T ′
∗];C

0(Ω̄)), ρ̃ũy(t) ∈ L∞(0, T ′
∗;C

0(Ω̄)), (4.69)

ρ̃(y0, t) = 0, ρ(y, t) > 0, y �= y0. (4.70)

These in turn imply, in terms of the inverse coordinate transformation of (4.68), i.e.,

x =

∫ y

0

ρ̃−1(z, t)dz, y ∈ [0, 1],

the existence and uniqueness of weak solution (ρ̃, ũ) on the domain (x, t) ∈ [0, 1]×[0, T ′
∗]

to the compressible Navier-Stokes equations (2.1)–(2.3) with the Dirichlet boundary
conditions (2.6) and initial one point vacuum state (2.18)–(2.19). Moreover, one can
check that there exists one particle path x = X0(t) defined by

Ẋ0(t) = ũ(X0(t), t), t > 0, X0(0) = x0

satisfying

y0 ≡
∫ X0(t)

0

ρ̃(z, t)dz =

∫ x0

0

ρ0(z)dz

due to the fact

d

dt
y(X0(t), t) =

d

dt

∫ X0(t)

0

ρ̃(z, t)dz = 0, t ≥ 0.

This, together with (4.70), gives rise to

ρ̃(X0(t), t) = 0, and ρ̃(x, t) > 0, x �= X0(t), t ≥ 0.

Moreover, it is easy to verify that the solution (ρ̃, ũ) satisfies all the properties (2.23)–
(2.26), and particularly⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ρ̃(x, T∗) ≥ 0 on Ω, m̃(., T∗) = ρ̃ũ(., T∗) = 0, on {x ∈ Ω | ρ0(x) = 0},
ρ̃(., T∗) ∈ L1(Ω) ∩ Lγ(Ω), (ρ̃α−1/2(., T∗))x ∈ L2(Ω),

|m̃(.,T∗)|2
ρ̃(x,T∗)

+ |m̃(.,T∗)|2+ν

ρ̃1+ν(x,T∗) ∈ L1(Ω).
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The case of periodic boundary can be treated in a similar way, we omit the details.
The proof of Proposition 4.1 is completed.

5 Vanishing of vacuum states and blow-up phenom-

ena

We shall prove that for any global entropy weak solution (ρ, u) to the IBVP for
compressible Navier-Stokes equations (2.1)-(2.3) together with (2.6) or (2.7), any pos-
sible vacuum state vanishes in finite time and the velocity (if definable and regular
enough) blows up in finite time if vacuum state appears, for example, the density con-
tains vacuum initially as in Theorem 2.2. The weak solution becomes a strong one
after the vanishing of vacuum states and tends time-asymptotically to the non-vacuum
equilibrium state exponentially.

5.1 Vanishing of vacuum states in finite time

Proposition 5.1 Let (2.34) hold. For any global entropy weak solution (ρ, u) to the
IBVP for compressible Navier-Stokes equations (2.1)-(2.2) with initial data -(2.3) and
boundary condition (2.6) or (2.7) in the sense of Definition 2.5, there exists a time
T0 > 0 such that

inf
x∈Ω

ρ(x, t) > 0, for all t ≥ T0. (5.1)

Proof: To prove (5.1), we will employ an idea which has been used in [?] (see
also [?, 16]) to show the blow up behavior of both the global strong solutions to the
IBVP for (2.1)-(2.2) with the constant viscosity and the global strong solutions to the
Stokes approximation equations, with initial data containing vacuum states.

Let T ∈ (0,∞) be fixed. In this subsection, C denotes some generic positive
constant independent of T . First, it is noted that the total mass is conserved the total
for any t ∈ (0, T ] ∫

Ω

ρ(x, t)dx =

∫
Ω

ρ0(x)dx. (5.2)

Based on the entropy inequality (2.13), it can be deduced from (5.2) and (2.39) that
for a constant b ≥ max{α+ γ − 1, 2α+ 1, 1},

sup
0≤t≤T

(
‖ρ‖L∞ +

∥∥(ρb
)

x

∥∥
L2

)
+

∫ T

0

∥∥(ρb
)

x

∥∥2

L2 dt ≤ C. (5.3)

I t will be shown below that

g(t) �
∥∥∥(ρb − ρb

)
(·, t)

∥∥∥4

L4(Ω)
→ 0 as t→ ∞, (5.4)
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where

ρb(t) =
1

|Ω|
∫

Ω

ρb(x, t)dx.

Now, we assume that (5.4) holds, and continue the proof of Proposition 5.1. In fact,
the inequality (5.3) and the Poincáre-Sobolev inequality imply that

∥∥∥(ρb − ρb
)

(·, t)
∥∥∥

C(Ω)

≤ C
∥∥∥(ρb − ρb

)
(·, t)

∥∥∥2/3

L4(Ω)
‖(ρb)x(·, t)‖1/3

L2

≤ C
∥∥∥(ρb − ρb

)
(·, t)

∥∥∥2/3

L4(Ω)
→ 0, as t→ ∞. (5.5)

This suffices to finish the proof of Proposition 5.1 due to the following simple fact

ρb(t) ≥ ρ b(t) ≡ ρ0
b = 1, for any t ≥ 0.

It remains to prove (5.4). First, it follows directly from (5.3) and the Poincáre-
Sobolev inequality that

∫ T

0

g(t)dt ≤ C sup
0≤t≤T

∥∥∥ρb − ρb

∥∥∥2

L∞

∫ T

0

‖(ρb)x‖2
L2dt

≤ C. (5.6)

Next, we prove that

∫ T

0

|g′(t)|dt ≤ C. (5.7)

Note that (2.9) as well as the boundary condition (2.6) or (2.7) imply that

g′(t) = 4b

〈(
ρb − ρb

)3

ρb−1, ρt

〉
H1×H−1

− 4
(
ρb
)

t

∫
Ω

(
ρb − ρb

)3

dx

= −4b

∫
Ω

((
ρb − ρb

)3

ρb−1

)
x

√
ρ
√
ρudx− 4

(
ρb
)

t

∫
Ω

(
ρb − ρb

)3

dx

� I1 + I2. (5.8)



46 Vanishing of vacuum states and blow-up phenomena

It follows from (5.3) and (2.13) that∫ T

0

|I1|dt ≤ C

∫ T

0

∣∣∣∣
∫

Ω

(
ρb − ρb

)2

(ρb)xρ
b−1/2√ρudx

∣∣∣∣ dt
+C

∫ T

0

∣∣∣∣
∫

Ω

(
ρb − ρb

)3

(ρb−1)x
√
ρ
√
ρudx

∣∣∣∣ dt
≤ C

∫ T

0

∣∣∣∣
∫

Ω

(
ρb − ρb

)2

(ρα−1/2)xρ
b−α√ρudx

∣∣∣∣ dt
≤ C

∫ T

0

∥∥(ρα−1/2)x

∥∥
L2 ‖

√
ρu‖L2

∥∥∥ρb − ρb

∥∥∥2

L∞
dt

≤ C

∫ T

0

‖(ρb)x‖2
L2dt

≤ C. (5.9)

The uniform entropy estimate (2.13), together with (2.9), gives that

sup
0≤t≤T

∣∣∣∣ ddtρb(t)

∣∣∣∣ = b sup
0≤t≤T

∣∣〈ρb−1, ρt

〉∣∣
= b sup

0≤t≤T

∣∣∣∣
∫

Ω

(
ρb−1

)
x

√
ρ
√
ρudx

∣∣∣∣
≤ C sup

0≤t≤T

∣∣∣∣
∫

Ω

(
ρα−1/2

)
x
ρb−α√ρudx

∣∣∣∣
≤ C sup

0≤t≤T

(∥∥(ρα−1/2
)

x

∥∥
L2

‖√ρu‖L2‖ρ‖b−α
L∞

)
≤ C. (5.10)

This together with Poincaré inequality and (5.3) yields

∫ T

0

|I2|dt ≤ C

∫ T

0

∥∥∥ρb − ρb

∥∥∥3

L∞
dt ≤ C

∫ T

0

‖(ρb)x‖2
L2dt ≤ C. (5.11)

The estimate (5.7) thus follows directly from (5.8)-(5.11). Hence the desired estimate
(5.4) follows from (5.6) and (5.7). The proof of Proposition 5.1 is completed.

5.2 Regularity and asymptotics of weak solutions for large
time

It is usually difficult to get information about the velocity field for the global entropy
weak solution (ρ,

√
ρu), in the sense of Definition 2.5 to the IBVP for the Compressible

Navier-Stokes equations (2.1)-(2.2) with initial data (2.3) and boundary values (2.6)
or (2.7) in the appearnce of vacuum states. After vacuum states vanish, however, it
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will be shown that the velocity field u can be defined with enough regularity and the
nonlinear diffusion term is represented in terms of the velocity u and the density ρ.
The momentum equation becomes a uniform parabolic equation, and the weak solution
(ρ,

√
ρu) = (ρ,

√
ρ · u) becomes a strong solution.

Proposition 5.1 implies that there is a time T0 > 0 after which the density of the
global entropy weak solution (ρ, u) to the IBVP problem for (2.1)-(2.3) together with
(2.6) or (2.7) is strictly positive and (ρ, u) satisfies the finite entropy estimate (2.13).
Consider the IBVP problem (2.1)–(2.2) again for time t ≥ T0 with data given at time
t = T0 by

ρ(x, T0) = lim
t→T0

ρ(x, t), u(x, T0) = lim
t→T0

√
ρu(x,t)√
ρ(x,t)

, (5.1)

and note here that away from vacuum the Dirichlet boundary condition (2.6) reduces
to

u(0, t) = u(1, t) = 0, t ≥ T0. (5.2)

We then have the regularity property of the solution for the compressible Navier-
Stkoes equations (2.1)–(2.3) with the Dirichlet boundary condition (2.6) or the periodic
boundary condition (2.7) for large time.

Proposition 5.2 Under the assumptions of Theorem 2.3, let (ρ,
√
ρu) be the global

entropy weak solution to the IBVP for the compressible Navier-Stokes equations (2.1)-
(2.2) with initial data (2.3) and boundary value (2.6) or (2.7) in the sense of Defini-
tion 2.5. Let T0 > 0 so that the global weak solution (ρ, u) satisfies for two positive
constants ρ± that

0 < ρ− ≤ ρ(x, t) ≤ ρ+, ∀ (x, t) ∈ Ω̄ × [T0,∞). (5.3)

Then, (ρ,
√
ρu) = (ρ,

√
ρ·u) is the unique strong solution to the IBVP for the compress-

ible Navier–Stokes equations (2.1)–(2.2) and (5.1) with the boundary condition (2.6)2

or (2.7) for t ≥ T0. Moreover, the regularity (2.36) and the long time behavior (2.38)
hold.

Proof: We only prove Proposition 5.2 for the Dirichlet case below, the periodic
case can be treated similarly.

Step 1. Regularity. It follows easily from proposition 5.1 that there exist some T0

and a constant ρ− > 0 such that for all t ≥ T0,

inf
x∈Ω

ρ(x, t) ≥ ρ− > 0 (5.4)

which, together with (2.13), implies

ρ ∈ L∞(T0, T ;H1(Ω)) (5.5)

2Note here that away from vacuum the Dirichlet boundary condition (2.6) reduces to the usual
one u(0, t) = u(1, t) = 0, t ≥ T0.
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for any T > T0. By the continuity of ρ ∈ C(Ω̄ × [0,∞)) there exists some σ > 0 small
enough such that for any t ≥ T0 − σ,

inf
x∈Ω

ρ(x, t) ≥ ρ−
2
> 0.

This implies that one can define the velocity u for any global entropy weak solution in
the sense of Definition 2.5 after the vanishing of vacuum states by

u =:

√
ρu√
ρ
, for t ≥ T0 − σ.

It then follows from the definition and (2.8) that

u ∈ L∞(T0 − σ, T ;L2(Ω)) (5.6)

for any T > T0. Noting that (2.12) implies that for any ϕ(x) ∈ C∞
0 (Ω), ψ(t) ∈ C∞

0 (T0−
σ, T ), ∫ T

T0−σ

ψ(t)

∫
Ω

Λρ−αϕdxdt

= −
∫ T

T0−σ

ψ(t)

∫
Ω

ρα−1/2√ρu(ρ−αϕ)xdxdt

− 2α

2α− 1

∫ T

T0−σ

ψ(t)

∫
Ω

(ρα−1/2)x
√
ρuρ−αϕdxdt

= −
∫ T

T0−σ

ψ(t)

∫
Ω

√
ρuρ−1/2ϕxdxdt

= −
∫ T

T0−σ

ψ(t)

∫
Ω

uϕxdxdt,

we can define the spatial derivative of velocity and, together with (2.13), its regularity
as

ux =
Λ

ρα
∈ L2(Ω × (T0 − σ, T )). (5.7)

In terms of (5.6), (5.7) and (2.9) we are also able to justify the Dirichlet boundary
condition (2.6) for the velocity u

u(0, t) = u(1, t) = 0, for any t ≥ T0 − σ. (5.8)

Thus, (5.6), (5.7) and (5.8) show

u ∈ L2(T0 − σ, T ;H1
0 (Ω)) ∩ L∞(T0 − σ, T ;L2(Ω)) (5.9)

for the case of the Dirichlet boundary conditions. Note here that u ∈ L2(T0 −
σ, T ;H1

per(Ω)) ∩ L∞(T0 − σ, T ;L2(Ω)) in the case of periodic boundary conditions. We
thus obtain from (2.9) and (2.10) that the solution (ρ, u) satisfies

ρt + (ρu)x = 0 a.e. in Ω × (T0 − σ, T ), (5.10)
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and ∫ T

T0−σ

∫
Ω

ρuϕtdxdt+

∫ T

T0−σ

∫
Ω

(
ρu2 − ραux + ργ

)
ϕxdxdt = 0 (5.11)

for any ϕ(x, t) ∈ C∞
0 (Ω × (T0 − σ, T )) for the Dirichlet case. The Eq. (5.11) can be

re-written in terms of (5.9), (5.10) and (2.13) as follows

∫ T

T0−σ

∫
Ω

(uϕt − ρα−1uxϕx +
(
ρα−2ρx − u

)
uxϕ)dxdt =

∫ T

T0−σ

∫
Ω

γργ−2ρxϕdxdt (5.12)

for any ϕ(x, t) ∈ C∞
0 (Ω × (T0 − σ, T )) for the Dirichlet case.

Noticing that ρα−2ρx − u ∈ L∞(T0 − σ, T ;L2(Ω)) due to (2.8), (5.4) and (5.6), and
using standard regularity results for linear parabolic equations (see [19]), we get that

u ∈ L2(T0, T ;H2(Ω))) ∩H1(T0, T ;L2(Ω)) (5.13)

for the Dirichlet case. It is noted here that u ∈ L2(T0, T ;H2
per(Ω)) ∩H1(T0, T ;L2(Ω))

for the periodic case.
Step 2. Uniqueness. We shall show that if there exists another solution (η, v) to the

compressible Navier-Stokes equations (2.1)-(2.2) with the following initial data and
Dirichlet boundary conditions{

(η, v)(x, T0) = (ρ, u)(x, T0),

v(0, t) = v(1, t) = 0,
(5.14)

such that{
ρ− ≤ η ∈ L∞(T0, T ;H1(Ω)),

v ∈ L∞(T0, T ;H1(Ω)) ∩ L2(T0, T ;H2(Ω)) ∩H1(T0, T ;L2(Ω)),
(5.15)

then

ρ = η, u = v a.e. in Ω × (T0, T ). (5.16)

In fact, it follows from (5.10), (5.11) and (5.13) that

1

2

∫
Ω

ρu2dx+

∫ t

T0

∫
Ω

ραu2
xdxds−

∫ t

T0

∫
Ω

ργuxdxds =
1

2

∫
Ω

ρu2(x, T0)dx (5.17)

for all t ∈ (T0, T ), while (5.11) and (5.15) imply that

∫
Ω

ρuvdx+

∫ t

T0

∫
Ω

ραuxvxdxds−
∫ t

T0

∫
Ω

ργvxdxds

=

∫
Ω

ρuv(x, T0)dx+

∫ t

T0

∫
Ω

ρu(vt + uvx)dxds (5.18)
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for all t ∈ (T0, T ). To estimate the second term on the right hand side of (5.18), we
use the decomposition

ρvt + ρuvx = (ρ− η)(vt + vvx) + ρ(u− v)vx + (ηαvx)x − (ηγ)x. (5.19)

Multiplying (5.19) by u and we integrating by parts give∫ t

T0

∫
Ω

ρu(vt + uvx)dxds

=

∫ t

T0

∫
Ω

(ρ− η)u(vt + vvx)dxds+

∫ t

T0

∫
Ω

ρu(u− v)vxdxds

−
∫ t

T0

∫
Ω

ηαvxuxdxds+

∫ t

T0

∫
Ω

ηγuxdxds. (5.20)

Substituting (5.20) into (5.18) gives, for a.e. t ∈ (T0, T ), that∫
Ω

ρuvdx+

∫ t

T0

∫
Ω

ραuxvxdxds−
∫ t

T0

∫
Ω

(ργvx + ηγux)dxds

=

∫
Ω

ρuv(x, T0)dx+

∫ t

T0

∫
Ω

(ρ− η)u(vt + vvx)dxds

+

∫ t

T0

∫
Ω

ρu(u− v)vxdxds−
∫ t

T0

∫
Ω

ηαvxuxdxds. (5.21)

Multiplying (5.19) by v and integrating the result over Ω × (T0, t) lead to

1

2

∫
Ω

ρv2dx =
1

2

∫
Ω

ρv2(x, T0)dx+

∫ t

T0

∫
Ω

(ρ− η)v(vt + vvx)dxds

+

∫ t

T0

∫
Ω

ρv(u− v)vxdxds−
∫ t

T0

∫
Ω

ηαv2
xdxds

+

∫ t

T0

∫
Ω

ηγvxdxds. (5.22)

We obtain after adding up (5.17) and (5.22) and subtracting (5.21) that for all
t ∈ (T0, T ),

1

2

∫
Ω

ρ(u− v)2dx+

∫ t

T0

∫
Ω

ρα(u− v)2
xdxds

=

∫ t

T0

∫
Ω

(ρα − ηα)(v − u)xvxdxds+

∫ t

T0

∫
Ω

(ρ− η)(vt + vvx)(v − u)dxds

−
∫ t

T0

∫
Ω

ρ(u− v)2vxdxds−
∫ t

T0

∫
Ω

(ργ − ηγ) (v − u)xdxds

≤ Cε

∫ t

T0

(‖ρα − ηα‖2
L2‖vx‖2

L∞ + ‖ρ− η‖2
L2‖vt + vvx‖2

L2 + ‖ργ − ηγ‖2
L2

)
ds

+C

∫ t

T0

‖vx‖L∞

∫
Ω

ρ(u− v)2dxds+ Cε

∫ t

T0

‖u− v‖2
H1ds. (5.23)
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Next, we estimate the term

g(t) � ‖ρ− η‖2
L2 + ‖ρα − ηα‖2

L2 + ‖ργ − ηγ‖2
L2 .

For any β > 0, (5.15), (5.13) and (2.1) imply that

(ρβ − ηβ)t + v(ρβ − ηβ)x + (u− v)(ρβ)x + βρβ(u− v)x + β(ρβ − ηβ)vx = 0. (5.24)

One can derive from this that(‖ρβ − ηβ‖2
L2

)
t

≤ ‖ρβ − ηβ‖2
L2

(
C‖vx‖L∞ + Cε‖ρx‖2

L2 + Cε

)
+ε‖u− v‖2

L∞ + ε‖(u− v)x‖2
L2 . (5.25)

Thus, since g(T0) = 0, we obtain from (5.25) with β = 1, α, γ respectively that

g(t) ≤
∫ t

T0

g(s)
(
C‖vx‖L∞ + Cε‖ρx‖2

L2 + Cε

)
ds+ Cε

∫ t

T0

‖u− v‖2
H1ds. (5.26)

Now (5.16) is a consequence offrom (5.23), (5.26), (5.15), (5.5) and (5.4). The proof
of large time convergence (2.38) follows directly from the standard arguments (see [38]
for instance) with the help of entropy inequality (2.13). The proof of Proposition 5.2
is completed.

5.3 Finite time blow-up

In this subsection, we shall prove the Theorem 2.4 about the finite time blow-
up phenomena as an immediate consequence of Theorem 2.3, Propositions 5.1 and
Proposition 5.2.

Proof of Theorem 2.4. We will prove (2.42) only. The proof of (2.43) is similar. If
(2.42) fails, then there exists a fixed constant η > 0, such that

∫ T1+η

T1

‖ux‖L∞ds <∞. (5.27)

For any (x, t) ∈ Ω × (T1, T1 + η], the particle path x(s) = X(s; t, x) through (x, t) is
given by {

∂
∂s
X(s; t, x) = u(X(s; t, x), s), T1 ≤ s < t ≤ T1 + η,

X(t; t, x) = x, T1 ≤ t ≤ T1 + η, x ∈ Ω,
(5.28)

which is well-defined due to (5.27) and (2.36). Consequently, one obtains via a standard
argument from the transport equation (2.1)

ρ(x, t) = ρ(X(T1; t, x), T1) exp

{
−
∫ t

T1

uy(y, s)|y=X(s;t,x)ds

}
(5.29)
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for any (x, t) ∈ Ω × (T1, T1 + η]. On the other hand, it follows from (5.27) and (5.28)
that for any x ∈ Ω there exists a trajectory x = x(t) ∈ Ω for t ∈ [T1, T1 + η] so
that X(T1; t, x(t)) = x. In particular, there exists a trajectory x = x1(t) ∈ Ω for
t ∈ [T1, T1 + η] so that X(T1; t, x(t)) = x1 with (x1, T1) determined by (2.40), namely,
ρ(x1, T1) = 0. Thus, due to (5.29), we deduce from (5.27) that

ρ(x1(t), t) ≡ 0 for all t ∈ (T1, T1 + η],

which contradicts (2.40). Thus, the blowup phenomena (2.42) happens. The proof of
the Theorem 2.4 is completed.
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