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Abstract

Commencing with a review of methods for vanishing point (VP) detec-
tion, a new approach is suggested. The proposed approach estimates
the location of candidate vanishing points and provides probability
measures which reflect the likelihood of those points being the VPs.
This new approach allows VPs to be identified in less structured envi-
ronments compared with its conventional counterparts.

1 Introduction

Geometrical cues and constraints provide valuable information as to how certain
image features should be interpreted. For instance, in many man made scenes
there exist a number of straight lines which are mutually parallel in 3D. Under
perspective projection these lines will meet at a common point known as the
vanishing point (VP). Once this point is identified, one can infer 3D structures
from 2D features and this constrains the search for other structures. Also,
under known camera geometry the orientation of the lines that are grouped
together can be determined from the corresponding VP. Furthermore, two or
more vanishing points arising from lines which lie on a certain 3D plane give
a vanishing line. This property provides an additional constraint which is
particularly relevant when analysing, for instance, aerial imagery where one
can often assume that structures of interest lie in a common plane - the ground
plane.

The relationships amongst camera parameters, structures in 3D scenes and
VPs had been established by Haralick [1]. The applications of VP analysis
ranges from extracting 3D structures to the calibration of camera parameters.

An obvious approach to locating VPs is to exploit directly the property that
all lines with the same orientation in 3D converge to a VP under perspective
transformation. Thus the task of VP detection can be treated as locating peaks
in a two dimensional array where the intersections of all line pairs in an image
plane accumulate. However, the line pairs can intersect anywhere from points
within an image to infinity and this poses problem on implementation.

In order to avoid analysing an open space Barnard proposed the projection
of image lines onto a Gaussian sphere [2] [3] [4] which neatly represents any 3D
orientations. The plane which contains the lens centre and the line segment in
the image intersects with the Gaussian sphere centred at the origin to form a
great circle. That is a line segment on the image plane is mapped to a great
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circle. Hence, VPs can be detected as elements on the surface of the Gaussian
sphere which have relatively high votings. Obviously, the Gaussian surface has
to be partitioned in order to accumulate votes. One popular parameterisation
is in terms of the azimuth and elevation angles of the unit vector in the sphere.
Note that a uniform partitioning in the Hough space maps to non-uniform area
in the image plane. For example, the elementary areas at the poles are small
compared with those at the equator. This implies that some lines may intersect
within a larger area and still be grouped together to hypothesise a VP whereas
others may not. A crude way of ensuring accuracy is to partition the Hough
plane into finer bins. This improvement in accuracy is paid for by an increase
in memory requirement and computational load.

Magee et al [3] compute the vectors pointing towards the intersection of line
segments in the image plane using a series of cross-product operations. Instead
of incrementing a discrete parameterisation, the actual values of the azimuth
and elevation angles are maintained for comparison using an arc distance as
a metric. This circumvents the problem of the non-uniform elemental surface
area of the Gaussian sphere. Although this allows one to locate VPs to a higher
accuracy, the computation of the vectors pointing at the intersection points has
transformed the O(n) order problem to an O(n?) one.

Quan and Mohr [4] propose an efficient way both in terms of the amount of
operations and memory requirement for computing VPs. They employ a pyra-
midal data structure instead of a straight forward two dimensional array. This
algorithm is similar to a Fast Hough Transform method. It consists of subdi-
viding recursively a patch on the sphere into 4 sub-patches from a coarse to fine
resolution. By doing so, a coarse to fine algorithm can be used to improve the
efficiency of the Hough Transform (HT). However, detailed experimental stud-
ies of hierarchical approaches to the vote accumulation in the HT suggest that
the steps that need to be taken to ensure the detection of all level features may
render the technique computationally inferior to standard HT implementation.

The methods outlined above do not handle the issue of noise directly, instead
the locations of the vanishing points are assumed to be the mid-point of the
bin. Thus, the error of the estimated locations of VPs is a function of bin
dimensions. Collins and Weiss [5] treat the task of VP detection as a statistical
estimation problem. They note that a vector pointing towards the VP lies in
the projection plane of the line, and is thus perpendicular to the projection
plane normal. In other words, the projection plane normals of 3D parallel lines
lie in a plane through the origin, perpendicular to the orientation of the 3D
lines in a noiseless environment. In reality, these normals cluster around a great
circle forming an equatorial distribution and this distribution is then modelled
using Bingham’s distribution [6]. It turns out that this approach gives the same
result as fitting the least squares perpendicular error planes corresponding to
the line pairs.

VPs are also widely used for camera calibrations and recovery of rotational
component of motion. Camera calibration involves the determination of camera
rotation and translation matrix, focal length etc. These rely on the relationships
between the VP coordinates and the camera parameters both intrinsic and
extrinsic. The usefulness of VPs in motion analysis stems from the fact that
they represent 3D orientations and are therefore invariant to 3D translations
between the camera and the scene.

Liou and Jain [7] devised a scheme for road tracking in image sequences.
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Assuming that the locations of VP remains unchanged in contiguous frames,
they then fit a template around this VP. The dimensions of this template
are determined by a constant and a tilt angle. Since the true VP must fall
inside this area, one can locate the road boundaries by considering a pair of
convergent lines which maximises an ad hoc measure based upon the lengths of
lines, directions of edge points supporting the lines etc.

Shigag et al [8] compute camera rotation by first classifying lines on the
image into horizontal and non-horizontal groups and then estimating the cam-
era rotation as the difference of the angle between the optical axis and the 3D
orientation of a certain horizontal line. This method takes advantage of the
property of vanishing line (vanishing line is the locus of VPs for all lines lie
on the same plane). To identify whether a line is horizontal or not, two con-
straints are applied: (1) horizontal lines should not intersect the vanishing line,
(2) locus of VPs of horizontal lines are different from that of non-horizontal
ones.

Wang and Tsai [9] proposed an approach to camera calibration based upon
the use of vanishing lines. This technique requires only a single view of a cube.
The three principle vanishing points (i.e. VPs that correspond to the orthogonal
directions of the world coordinates) are detected and the orthocentre of the
triangle thus formed gives the image plane centre. This provides a neat way
for calibration. The camera orientation parameters are determined from the
slopes of the lines forming the triangle. In addition to these they also establish
the relationship between the area of the vanishing triangle for calibration of
focal length.

In summary, all existing methods for extraction of VPs perform some form
of accumulation of line pair junctions. With the Gaussian sphere parameter-
isation being most popular, while this is a valued approach, there are several
shortcomings associated with it.

As bins in the Hough plane map to non-uniform area on the image plane,
some intersection points are grouped together under a more stringent condition
than others depending on the locations of the VPs. Problem also arises when
votes fall into neighbouring bins which might cause a significant peak to dimin-
ish in strength. However, most important of all is that accuracies of detected
lines are ignored. As far as VPs are concerned the positional and orientational
errors cause incorrect intersection points to be formed which reduce the strength
of the ‘true’ peaks and give rise to spurious intersection points which might in
turn group with other points to produce ‘false’ vanishing points. Additionally,
this would also disperse intersection points (as the bin size has an impact on
Hough Transform) which inherently belong to the same VP. The above points
show the sensitivity of this approach to noise. Furthermore, due to the na-
ture of the algorithm any convergent group which consists of a relatively small
number of 3D parallel lines would be left undetected.

Most papers on the topic, analyse images of scenes such as offices and cor-
ridors which are highly structured and have strong perspective. Consequently,
there are less potential VPs and the strength of true VPs are significantly higher
than the background and are therefore distinguishable from random intersec-
tions.

More recently, Brillault-O’Mahony [10] took into consideration the uncer-
tainty in the detection of line segments and designed an isotropic accumulator
space where the probability of erroneous VP detection is uniformly distributed
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Figure 1: (a) Original image (b) Hough Transform output (c)
Hough Plane accumulation of the azimuth and elevation angles.

throughout all the cells. In any case, the approach is still based on the accu-
mulator array idea and thus is inappropriate for images with sparse parallel
lines.

However, there are many domains of applications where the scene contains
only a few lines which are parallel in 3D and on such imagery the existing
techniques gave results as illustrated in fig.1. Fig.1(c) shows that there is no
dominant peak for the set of lines shown in fig.1(b).

This paper proposes a method which takes a different perspective to detect-
ing vanishing points. Instead of accumulating intersection points, we compute
the probability of a group of lines passing the same point. This approach pro-
vides a probability measure for discriminating between competing hypotheses
irrespective of the size of the vanishing group. In addition, its performance also
degrades gracefully in noisy environments. The paper is organised as follows,
Section 2 of this paper introduces a novel vanishing point detection method.
In Section 3, a probabilistic line representation which is a prerequisite of the
method developed. In section 4 we present the experimental results and finally,
section b offers some conclusions and discussion.

2 Vanishing Point Detection

Let us consider an image with line segments represented by p — @ parameter-
isation. Due to the geometrical constraints dictated by the image formation
process, all perspectively projected line segments having the same orientation
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in three space converge to a single point — the vanishing point — in the image
under a noise free condition. However, both the imaging and low level edge and
straight line extraction processes are inherently noisy resulting in uncertainties
in the p and @ parameters of the detected lines. Errors in p and 6 will result in
a considerable scatter of the intersection points of the pairs of lines segments
which makes it difficult to identify true vanishing points. As pointed out ear-
lier, this problem is particularly pertinent when the scene structure contains
only a small number of parallel lines.

In this paper the search for vanishing points makes an explicit use of distri-
bution models of the parameters of the detected lines. With such a probabilistic
description for each line we can pose the question of how likely a given point
is the common intersection point of a group of lines. In this manner for any
selected group of lines we can determine the probability distribution p(z, y) for
their mutual intersection point (z,y). A vanishing point is then identified as
the point of maximum of this probability distribution function which exceeds
some pre-specified threshold.

Let us start by considering a single line with parameters (p;, ;) and let the
distribution of errors ép, 88 in p; and 0; be p;(6p, 60) respectively. Now the
probability of the line passing through a point (z,y) in the image will be given
by compounding all the combinations of errors ép and 6 such that the true
line with parameters

p = pit+dp (1)
0 0; + 60 (2)

satisfies the constraint equation

p = xcost+ysind (3)
the compound probability P;(z,y) is thus given by

P(e,y) = + / pi(8p, 60)ds ()

where the integration is performed in the parameter space along the sinusoidal
line defined by (3) and z; is the normalising constant to ensure that p;(z,y)
is a probability density function. In terms of parameter errors the compound
probability can be expressed as

s
Pley) = — [ pil6p80)/1+(2L)2ds (5)
Zi Jox dd
The compounding process is illustrated in fig.2.

Now let X = {e;|i = 1,2,...k} be a group of lines selected from the best of
lines output by an image description process, with the measured parameters for
each line denoted by vector w; = [p,f, Eg]T and the associated error distribution
by pi(dp,668). By analogy the probability that the lines jointly pass’through
a point (x,y) in the image plane (which extends beyond the physical imaging
area of the senscr) is given by

Pz,y) = [[= [ pitsp.60)\/1+(50)%d8 (6)
Ez,: /_,P g do
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Figure 2: Rectangular probability density function.
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From the knowledge of p;(6p, 60) the probability of P(z,y) can easily be eval-
uated. Its mode (z,,y,) then defines a vanishing point provided P(z,,y,) is
above the threshold.

In order to develop a practical procedure based on the above idea we first
need to select a suitable groups of lines. Regarding these lines, the method is
intended for finding vanishing points of small sets of 3D parallel lines, hence the
cardinality of the group should be quite small. Moreover, the computational
complexity of the problem could potentially grow combinatorially with the
number of lines in the group. In the present approach the initial analysis is
performed for line triplets. Any larger group of lines is formed after this first
analysis stage by considering the proximity of detected vanishing points and
the overlap of the two participating line sets.

To prune the set of all possible triplets each candidate group of lines must
satisfy a number of criteria. These include

1. angular constraints (similarity of 8; values)

2. distance constraint (the perpendicular distance of line pair intersection
point from the third line)

3. junction quality constraint [11](the lines should intersect at a point which
is remote from all participating line endpoints as illustrated in fig.3.)

4. imaging geometry constraints (if known)
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3 Probabilistic Line Representation

In the light of the discussion in the previous section we require an appropriate
line representation which can associate uncertainties with its parameters. It is
important that this representation is easy to convert to and from the standard
Hough Transform(HT) p — @ space representation, since we use this method for
the extraction of straight lines.

The parametric representations that we adopted for a perfect line are either
v = [p,I,B,L]T or vy = [Zm, Ym, b, L]T, where p is the distance between the
foot of the normal and the origin,  is the distance from the foot of the normal
to the line midpoint; # and L are the line orientation and length respectively.
Tm, Ym are the coordinates of the line midpoint.

Deriche and Faugeras [12] also address the issue of finding an appropriate
line representation. Their conclusion is that vector vy is a more favourable
choice than vector v; simply because representation v; leads to a covariance
matrix that strongly depends upon the position of the associated line segment in
the image through the effect of p and I. Hence, from this standpoint v, does not
allow different Kalman filters to be applied on each parameter. However, as far
as our application is concerned it does not matter what the interactions between
various parameters are. We only need the necessary statistical parameters to
build the error models which we can utilise for the development of a formal
approach to VP detection.

~ A simple analysis involving Taylor series expansion leads to the following
approximate relationship between the errors in line orientation, line midpoint
and the distance from the origin to the foot of the normal:

—pb6*
2

Note that in deriving the above equation, we assume that any terms involving
the cross product of positional and orientational errors can be neglected. For
lines four pixels long or more the quadratic terms become negligible. Equation
(7) then gives a linear relationship between the errors in orientation 6 and
line segment midpoint position and the errors in p. Thus if 66,6z and éy are
normally distributed, so will the errors p.

A Monte Carlo experiment was performed to check the validity of the ap-
proximate model and its dependence on line length. From table 1 it is apparent
that provided the line length L >= 4 the linear model yields a distribution of
errors 6p with negligible skew and curtosis which can be taken to imply that it
closely approximates a Gaussian. Thus if 66, 6z and 6y are Gaussian, the joint
distribution of ép, 60 and 6l will be Gaussian with covariance matrix

op

— (2 sinf — y,, cos0)80 + bz cos + bysinf (7)

Fog® + o* —log?  (5in20)0? — lpog?
Jig? ot poe? @)
(sin20)0” — lpoy?  pog? pog’ + o?

Note that ¢, = 0> = ¢>. From (8) the distribution of interest p(6p, 66) is
normal with zero mean and covariance matrix

1 (12092+0'2 —log? )

Y= —
—log? oy’

N 9)



116

Line mean (p) | stdev (¢p) | skew (3) | curtosis (&%)
Im = —36.6,ym = 136.6,8 = 150°
First L =1.0 0.06199 8.77310 -0.01172 0.10832
order L =40 0.01441 2.40076 0.00618 -0.07306
approx. L = 10.0 0.00489 1.33047 0.02300 -0.03726

Table 1: Statistical results of error in p (ép) obtained from Monte
Carlo experiment.

where N is the number of points providing evidential support for the line. Note
that N may differ form L, the line length as some pixels inside the line seg-
ment may be undetected. The covariance matrix in (9) applies if the Hough
Transform (HT) line detection scheme has an optimisation facility to estimate
the most likely values of p and 6. When the standard HT is used with p and 8
parameter quantisation, the probability distribution p(ép, 66) is no longer Gaus-
sian. Instead its shape may vary from the rect to roof function depending on
the coarseness of the quantisation process. A study of the relative merits of the
various detection schemes and the associated probabilistic line representations
1s beyond the scope of this paper.

4 Experimental Results

The method was applied to aerial imagery of resolution 256 X256. The rectan-
gular line parameter probability distribution was used in the experiment.
The implementation involved the following steps:

1. Compute the intersection points of all possible pairs and discard those
that fall outside the virtual image (this is an imaginary image of size
512X512 centred at the origin).

2. Combine a line with a pair to create a triplet to see if it satisfies the
pursuing constraints of section 2.

3. Set up a window around the line pair intersection point and compute
the probability P(z,y) for all (z,y) in the window. Find the mode of

P(x‘ y) = (xvsyu)'

4. Repeat steps (2) and 3 for all other triplets.

The result shown in fig.4 demonstrates that the vanishing points which
grouped together the lines of interest (i.e. the runways and taxiways) are
ranked highly and their corresponding VPs are in close proximity to each other
(these VPs can be grouped to extract larger vanishing groups). Fig.5 shows
the probability envelope of a VP in image space.

When the conventional VPs finder was applied on the image shown in fig 4,
the runways and taxiways were again detected but there is no way of discrimi-
nating between the various hypotheses. If the size of the peak were used as a
discriminating criterion, false vanishing groups would be extracted.



117

Figure 4: New vanishing points finder result on areial imagery.
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Figure 5: Probability profile of a certain VP.

5 Discussion and Conclusions

The parameter space in which the algorithm proposed here operates is an open
one, since the intersection point of a line pair can lie somewhere between the
image and infinity. This, however, should not present much difficulty as lines
whose 3D orientations are the same only cease to converge to a point under
a very restricted viewpoint. This also demonstrates the relationship between
convergent and parallel groups. 3D parallel features when projected onto the
image plane can only transform into convergent or parallel groups.

The algorithm proposed in this report provides an estimate of the VP loca-
tion as well as producing a performance measure. Thus VP hypotheses can be
compared and discarded on the basis of their quality measure values rather than
the number of lines which converge to a certain point. This offers a common
ground for comparison between convergent groups (i.e small convergent groups
can also be detected). However, there is a tradeoff between small convergent
groups and the probability of accidental coincidence. As the size of the con-
vergent groups reduces, the chance of accidental coincidence increases, which
renders the location of true vanishing points more difficult. Therefore some
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kind of geometrical cue is needed to recover true vanishing points. Vanishing
lines are powerful cues to be exploited for the purpose. They are defined as the
locus of VPs formed by 3D parallel groups which lie on the same plane. This
property means that the hypothesised points must lie on the vanishing line and
thereby provide a constraint for discarding false VPs.
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