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Abstract

Given a single image of an arbitrary road, that may not

be well-paved, or have clearly delineated edges, or some

a priori known color or texture distribution, is it possible

for a computer to find this road? This paper addresses

this question by decomposing the road detection process

into two steps: the estimation of the vanishing point asso-

ciated with the main (straight) part of the road, followed

by the segmentation of the corresponding road area based

on the detected vanishing point. The main technical contri-

butions of the proposed approach are a novel adaptive soft

voting scheme based on variable-sized voting region using

confidence-weighted Gabor filters, which compute the dom-

inant texture orientation at each pixel, and a new vanishing-

point-constrained edge detection technique for detecting

road boundaries. The proposed method has been imple-

mented, and experiments with 1003 general road images

demonstrate that it is both computationally efficient and ef-

fective at detecting road regions in challenging conditions.

1. Introduction

Numerous image-based road (border) detection algo-

rithms have emerged as one of the components of fully au-

tomatic vehicle navigation systems [10]. Most of the early

systems have focused on following the well-paved struc-

tured road that is readily separated from its surroundings.

More recently, triggered by the DARPA Grand Challenge

[1], a competition between autonomous off-road vehicles in

the Mojave desert, many algorithms have attempted to han-

dle off-road conditions. Although significant advances have

been made on specialized systems for detecting individual

road types, little progress has been made in proposing a gen-

eral algorithm to detect a variety of types of roads.

Given a road image as shown in Fig.1, can the computer
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Figure 1. Different types of roads with varying colors, textures and

lighting conditions.

roughly determine where the road is? This paper answers

this question by proposing a novel framework for segment-

ing the road area based on the estimation of the vanishing

point associated with the main (straight) part of the road.

The novelties of this paper lie in the following aspects: (1)

In the estimation of texture orientation, we not only com-

pute the texture orientation at each pixel, but also give a

confidence to each estimation. The introduced confidence

is then incorporated into the vanishing point estimation.

(2) Observing that the higher image pixels tend to receive

more votes than lower image pixels, which usually results

in wrong vanishing point estimation for the road images

where the true vanishing point of the road is not in the up-

per part of the image, a locally adaptive soft-voting (LASV)

scheme is proposed to overcome this problem. This van-

ishing point estimation method is much more efficient than

previous texture-based methods. The scheme uses adaptive-

sized local voting region, in which pixels having low con-

fidence texture orientation estimation are discarded. (3) To

segment the road area, a vanishing-point constrained group

of dominant edges are detected based on an Orientation

Consistency Ratio (OCR), and from which two most domi-



nant edges are selected as the road borders. Since the color

cue is not used, this road detection method handles well

changes of illumination and applies to general road images.

2. Related work

For structured roads, the localization of road borders or

road markings is one of the most commonly used approach.

Laser [15], radar [8], stereovision [3], color cue [16], Hough

transform [14, 18], steerable filters [5], Spline model [17]

etc. have been utilized to find the road boundaries or mark-

ings. The drawbacks of these methods is that they only con-

sistently work for structured roads with noticeable markings

or borders. Methods based on segmenting the road using the

color cue have also been proposed but they do not work well

for general road image, specially when the roads have little

difference in colors between their surface and the environ-

ment.

For unstructured roads or structured roads without re-

markable boundaries and markings, Alon et al. [2] have

combined the Adaboost-based region segmentation and the

boundary detection constrained by geometric projection to

find the “drivable” road area. However, it needs many dif-

ferent types of road images to train a region classifier, which

might be onerous. Reverse optical flow technique [7] pro-

vides an adaptive segmentation of the road area, but the

method does not work well on chaotic roads when the cam-

era is unstable and the estimation of the optical flow is not

enough robust. Stereo camera [4, 9] are also used to deter-

mine terrain traversability. When there is little difference

in color between the road surface and off-road area, it is

hard to find strong intensity change to delimit them. The

one characteristic that seems to define the road in such sit-

uations is texture. The associated approaches [11, 12, 13]

have attempted to define the forward “drivable” image re-

gion by utilizing the texture cue. They rely on computing

the texture orientation for each pixel, then seek the vanish-

ing point of the road by a voting scheme, and finally local-

ize the road boundary using the color cue. Our approach

belongs to this line of research. Our main contributions are:

a texture orientation estimation at each pixel of the image

for which a confidence level is provided (Section 3), a vot-

ing scheme taking into account this confidence level and the

distance from the voting pixel to the vanishing point can-

didate (Section 4), and a new vanishing-point constrained

edge detection technique for finding the boundaries of the

road (Section 5).

3. Confidence-weighted texture orientation es-

timation

Our texture orientation estimation relies on Gabor filters

since they are known to be accurate (see for instance [12,

Section 2.1]). The kernels of the Gabor filters are similar

to the 2D receptive field profiles of the mammalian corti-

cal simple cells and exhibit desirable characteristics of spa-

tial locality and orientation selectivity. For an orientation
�

and a scale (radial frequency) ✁ , the Gabor wavelets (ker-

nels,filters) are defined by [6]

✂☎✄✝✆ ✞✠✟☛✡✌☞✎✍✑✏✓✒ ✁✔ ✕✗✖✙✘✑✚✜✛ ✄✣✢✥✤✧✦✩★✥✢✫✪✌✬✭✢✫✮☛✯✰✤✲✱✴✳✵✢✫✮✗✶ ✚✸✷ ★✩✄✺✹ ✚✜✛ ✳✵✢✴✯✫✻✽✼

where ✾ ✒✿✡❁❀✰❂✜❃✠�☎❄❅✍❆❃✫❇✲❈❉�
, ❊ ✒ ✹ ✡❁❃✫❇✲❈❉�❋❄❅✍❆❀✥❂✜❃✝�

and
✘ ✒✕✣●❍✕

(octave 1.7 in [6]). We consider 5 scales on a geometric

grid and ■❑❏ orientations. These parameters are similar to the

ones in [12]. Figure 2 shows the real and imaginary parts of

the Gabor kernels.

Figure 2. Gabor kernels with 5 scales and 36 orientations: real part

kernels (rows 1 to 5) and imaginary part kernels (rows 6 to 10).

Let ▲ ✟▼✡◆☞✎✍✑✏ be the gray level value of an image at
✟▼✡◆☞✎✍✑✏

.

The convolution of image ▲ and a Gabor kernel of scale ✁
and orientation

�
is defined as follows

❖ ✄✠✆ ✞ ✒ ▲◗P ✂ ✄✠✆ ✞
(1)

The convolution result
❖ ✄✝✆ ✞✠✟❙❘❚✏

at pixel
❘✺✒❯✟☛✡✌☞✫✍✣✏

has two

components, a real part and an imaginary part. To best char-

acterize the local texture properties, we compute the square

norm of this “complex response” of the Gabor filter for each

36 evenly spaced Gabor filter orientations:

▲ ✄✠✆ ✞✠✟☛❘❱✏❲✒
Re

✶ ❖ ✄✠✆ ✞✠✟☛❘❱✏ ✼ ✻ ❄
Im

✶ ❖ ✄✝✆ ✞✠✟❙❘❚✏ ✼ ✻ ●

The response image for an orientation is then defined

as the average of the responses at the different scales (see

Fig.3): ❳ ✞ ✟☛❘❱✏❲✒
Average

✄ ▲ ✄✠✆ ✞ ✟☛❘❱✏ ●
The texture orientation ❨ ✟❙❘❚✏ is chosen as the filter orien-

tation which gives the maximum average complex response

at that location (the average is taken over the 5 scales):

❨ ✟☛❘❱✏❲✒
Argmax

✞ ❳ ✞✠✟☛❘❱✏
The second row of Figure 4 shows the images overlaid with

a subsample of the texture orientations estimated using Ga-

bor filters.

From the convolution theorem applied to Eq. (1), we

have ❩❁❬ ❖ ✄✠✆ ✞✑❭❪✒ ❩❁❬ ▲ ❭ ❩❁❬ ✂☎✄✠✆ ✞❱❭❚☞
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Figure 3. Left: Four points on which the Gabor complex responses

are evaluated. Right: The Gabor complex responses for the four

points.

Figure 4. First row: four road sample images. Second row: images

overlaid with texture orientations estimated using Gabor fi lters.

Third row: examples of the confi dence map for the texture ori-

entation estimation. The brighter the pixel, the higher confi dence

the orientation estimation. Fourth row: pixels with confi dence

larger than �✂✁ ✄✆☎✞✝✠✟☛✡✂☞✍✌✏✎✒✑✔✓✆✕✞✟✆✖✗✑✔✌✏✎✘✑✙✓✛✚ , where ✟✆✡✂☞✍✌✏✎✘✑✙✓
and ✟✆✖✗✑✔✌✏✎✒✑✔✓ is the largest and smallest confi dence value respec-

tively.

hence ❖ ✄✠✆ ✞ ✒ ❩ ✛✢✜ ❬ ❩❁❬ ▲ ❭ ❩❁❬ ✂ ✄✠✆ ✞ ❭❑❭✜☞
where

❩
and

❩ ✛✣✜ denote the Fourier and inverse Fourier

transform, respectively. The use of the fast Fourier trans-

form and of the equatily

❩❁❬ ✂ ✄✠✆ ✞✑❭❚✟✥✤✣☞✧✦✑✏
✒ ✔ ★ ✖ ✘

✁
✩ ✚❑✛ ✳✵✢ ✤▼✤✫✪ ✛ ✄❱✮☛✢✎✪✭✬✜✢✫✮☛✯✰✤✲✻✫✄❱✢✴✮✩✹ ✚✜✛ ✳✵✢✩✤✫✪❑✢✫✪✙✄✣✢✫✪✭✬❚✢✎✮☛✯✰✤✲✻✫✄✣✢✎✮✯✮ ☞

with ✰ ✒✱✤❋❀✥❂✜❃✝� ❄✲✦❆❃✫❇ ❈❁�
and ✳ ✒ ✹ ✤ ❃✫❇ ❈❁� ❄✴✦❆❀✰❂✜❃ �◆☞

allows fast computation of the response image.

Although the above solution for texture orientation es-

timation has been used by some previous researchers, this

estimated texture orientation is not guaranteed to be correct.

To provide a confidence level to the texture orientation ❨ ✟❙❘❚✏
at pixel

❘
, we use how peaky the function

�✶✵✷ ❳ ✞✠✟❙❘❚✏
is

near the optimum angle ❨ ✟❙❘❚✏ . Let ✸ ✜ ✟☛❘❱✏✺✹✼✻✒✻✘✻✽✹ ✸✒✾✧✿ ✟❙❘❚✏
be the ordered values of the Gabor response for the ■❑❏ con-

sidered orientations (in particular, ✸ ✜ ✟❙❘❚✏❁✒ ❳❁❀ ✤❃❂✩✮ ✟❙❘❚✏
). The

confidence in the orientation ❨ ✟❙❘❚✏ is given by

Conf
✟❙❘❚✏❋✒❅❄ ✹

Average
✟ ✸❇❆ ✟☛❘❱✏ ☞ ● ●✰● ☞ ✸ ✜ ❆ ✟❙❘❚✏✫✏✸ ✜ ✟☛❘❱✏

In our experiments, we discard the pixels having a

confidence score smaller than ❈ ● ■ ✶❊❉●❋✂❍ ❂
Conf

✟☛❘❱✏ ✹❉ ❇✲❈■❂
Conf

✟☛❘❱✏ ✼
, and consider the remaining pixels as the

“voting” pixels. The constant ❈ ● ■ can be seen as an arbi-

trary threshold put on the normalized confidence score.

We did not use directly the magnitude of the response

of the Gabor filter, since it leads to worse results than the

proposed method. These negative results are mostly due

to high magnitudes of the response in parts of the image

that are not related to the road and low magnitudes of the

Gabor response in the road area, which often happens with

unstructured roads and bright sky.

4. Locally adaptive soft-voting

After having computed the texture orientation at each

pixel of the image, one can make these pixels vote to ob-

tain the vanishing point. Precisely, a pixel ❏ for which the

texture orientation is the vector ❑▲◆▼
can vote for all pixels❖

above ❏ (we consider images in which the road is below

the sky) such that the angle P ✟✎✟ ❏ ❖ ✏✥☞ ❑▲◆▼ ✏
between the di-

rection
✟ ❏ ❖ ✏

and the vector ❑▲◆▼
is below some fixed thresh-

old ◗ . This “hard-voting” strategy has been used in [12]. In

our experiments, we notice that this scheme tends to favor

points that are high in the image, leading sometimes to large

errors in the estimation of the vanishing point. A typical im-

age for which this defect appears is given in Fig.5.

To deal with this problem, we propose a soft-voting

scheme where the voting score received by a vanishing

point candidate from a voter is a value taking into account

the distance between the vanishing point candidate and the

voter. The vanishing point is searched in the top ❘❙❈❯❚ por-

tion of the whole image, which, to our knowledge, is a real-

istic assumption for general road images. For each point
❖

of the image, we define a voting region

❳❲❱
as the intersec-

tion of the Gabor response image with a half-disk below
❖

centered at
❖

(see Fig.6). The radius of this half-disk is set

to be ❈ ● ■❯❳☛❨✺❩❭❬❫❪ , where ❩❭❬❫❪ is the height of the image.

Each pixel ❏ inside

❳❴❱
, for which the texture orientation❑▲◆▼

has been confidently estimated (see end of Section 3),

will vote for the candidate vanishing point
❖

all the more

as ❏ is close to
❖

and the orientation of its texture coincide

with the direction
✟ ❏ ❖ ✏

. Specifically, we introduce the ratio❵✝✟ ❏ ☞ ❖ ✏
equal to the distance between ❏ and

❖
divided by

the diagonal length of the image, and let ❛ ✒ P ✟✫✟ ❏ ❖ ✏✥☞ ❑▲ ▼✓✏
be the angle in degrees between the direction

✟ ❏ ❖ ✏
and the

texture orientation at ❏ .



Figure 5. Illustration of the problem in vanishing point estimation

by conventional voting strategy. P1, P2, P3 and P4 are four pos-

sible voters. V1 and V2 are two vanishing point candidates (as-

suming that V2 is the true vanishing point). �✁✄✂ , �✁✆☎ , �✁✞✝ and �✁✠✟
are respectively the texture orientation vectors of the four voters.

The two vanishing point candidates divide the whole image region

into three zones, denoted as Z1, Z2 and Z3. Z1 does not vote for

both candidates. Both Z2 and Z3 potentially vote for V1 while V2

receives votes only from Z3. Therefore, the higher vanishing point

candidates tend to receive more votes than the lower candidates.

Figure 6. Left: Global ✡✆☛ . Right: local ✡✆☛ . The blue belt in

the images is the border pixels excluded from voting owing to the

Gabor convolution kernel size.

Vote
✟ ❏ ☞ ❖ ✏✓✒✌☞ ✜✜ ✪✎✍ ✏✒✑ ✤ ▼ ✆ ❱ ✮✔✓ ✢ if ❛✖✕ ❆✜ ✪ ✻✗✑ ✤ ▼ ✆ ❱ ✮❈ otherwise

(2)

Note that the threshold on ❛ also depends on the distance

between ❏ and
❖

so that point that are far away (but still

within

❳ ❱
) are taken into account only if the angle ❛ is

very small (typically less than 3 ✘ ), while points closer to❖
will be taken into account up to ❛✙✕❅❳ ✘ . This allows to

limit the influence of points at the bottom of the image and

improves the computational efficiency and the accuracy of

the results. At the end, the vanishing point is detected as the

the candidate that receives the largest voting score.

The advantages of the proposed LASV method over the

conventional global hard-voting method lie in three-fold

when the true vanishing point does not lie at the very top

end of the image. First, the soft-voting strategy suppresses

the support to the false vanishing point (i.e., those vanishing

point candidates above the true vanishing point) by making

the voting score far less than one (unless ❛ is very small).

For example, it reduces the support received by V1 from

those voters in ✚ ✕ and ✚❉■ in Fig.5. Second, it increases the

ratio of the support received by the true vanishing point to

that received by the higher false vanishing point, e.g., the

support to V2 is larger than that to V1 if P1 votes for both

V1 and V2, while the support to V1 and V2 is equal when

using hard-voting method even if P1 votes for both V1 and

V2. To discard pixels far away from the vanishing point

candidate, or with low confidence in the texture orientation,

or with ❛ not small enough results in a significant compu-

tational speed-up. Our empirical results show that LASV

is more than five times faster than the global hard-voting

method [12].

5. Road segmentation

The correctly estimated vanishing point provides a

strong clue to the localization of the road region. Therefore,

we propose a vanishing-point constrained dominant edge

detection method to find the two most dominant edges of

the road. Based on the two dominant edges, we can roughly

segment the road area and update the vanishing point esti-

mated by LASV with the joint point of the two most domi-

nant edges.

The proposed road segmentation strategy is to find the

two most dominant edges by initially finding the first one

and the other based on the first one. We prefer not to use

the color cue in finding these edges because of the follow-

ing three reasons: Color usually changes with illumination

variation. For some road images, there is very subtle or no

change in colors between the road and its surrounding ar-

eas, e.g., the road covered by snow or desert road. Or for

some roads, color changes dramatically in the road area.

For the purposes of easy illustration, the definition of

“Orientation Consistency Ratio” (OCR) is given in the top

left image of Fig.7: ✛ is a line consisting of a set of discrete

oriented points (the orientation of these points denoted by

a black arrow in the figure). For each point, if the angle

between the point’s orientation and the line’s direction is

smaller than a threshold, this point is viewed to be orienta-

tionally consistent with the line. OCR is defined as the ratio

between the number of orientationally consistent points and

the number of total points on the line. In an image, each

point corresponds to a pixel.

We find that the estimated vanishing point coincides with

the joint point of a few dominant edges of the road if this

vanishing point is a correct estimation, while it usually falls

on the extension of one of the most dominant edges if it is

a wrong estimation, therefore, we propose to use the initial



Figure 7. Illustration of detection of the two most dominant edges.

Top left: line segments consisting of discrete oriented points. Top

right: initially detected vanishing point. Bottom left: detection

of the two most dominant edges based on initial vanishing point.

Bottom right: the two most dominant edges and updated vanishing

point.

vanishing point as a constraint to find the first most dom-

inant edge of the road. The top right image of Fig.7 il-

lustrates this search process, where the first most dominant

edge is detected as the one which has the largest OCR from

the set of lines going through the initial vanishing point (the

angle between two neighboring lines is set to be 5 ✘ ). The

red line, E, in the bottom left image of Fig.7, is detected

as the first most dominant edge and its length is denoted

as � ✚✂✁ ✜ . To avoid possible false detection caused by short

edges, the smallest � ✚✂✁ ✜ is set to be the half image height.

Once the first border of the road E is found, we will up-

date the initial vanishing point by looking at the points on

E having several dominant edges converging to it accord-

ing to the OCR. For this, through each (regularly) sampled

pixel ✄ on E, we construct a set of line segments ( �✆☎ ) such

that the angle between any two neighboring of � ☎ is fixed

( ✳ ✒ ❳ ✘ in our experiments). We also set the angle between

E and any one of � ☎ is larger than 20 ✘ (motivated by the

assumption that the vanishing angle between the two road

borders is larger than 20 ✘ ). We compute the OCR for each

line of � ☎ , and for each new vanishing point candidate ✄ ,

we consider the sum ✝✟✞ of the top ✁ OCR ( ✁ ✒ ★
in our

experiments). The green line segments in Fig.7 are the ✁
lines starting from ✄ receiving the top ✁ OCR. The vanish-

ing point is then estimate as the point ✄ maximizing ✝ ✞ . We

try other points along E besides the initial vanishing point

since the initial vanishing point estimation may not be accu-

rate (i.e., it is not the joint point of the most dominant edges

of the roads). The updated initial vanishing point estimate

can be observed in the last three columns of the last five

Table 1. Selection criterion for the second dominant edge

1. Counting the number of dominant edges which devi-

ate to left and right respectively

2. If all deviate to left or right, the two most dominant

edges correspond to the two candidates with the largest

and smallest deviation angle respectively.

3. Otherwise, find those dominant edges which have dif-

ferent deviation orientation from the first dominant edge

4. Divide these dominant edges into several clusters ac-

cording to the angle between two neighboring dominant

edges, e.g., if the angle is no smaller than
✕ ❨ ✳ , the two

neighboring dominant edges belong to different clusters.

5. Find the center of the largest cluster as the deviation

angle of the second most dominant edge. If more than

one clusters have equal number of dominant edges, the

center of these clusters is used.

rows of Fig.10.

From the updated vanishing point and more precisely

from the ✁ dominant edges which have voted for it, we de-

duce the position of the second border of the road as ex-

plained in Table 1. The length of the obtained second most

dominant edge is denoted � ✚✂✁ ✾ and the length of the first

dominant edge is updated to � ✚✂✁ ✻
(see Fig.7). The smallest

� ✚✂✁ ✻
and the smallest � ✚✂✁ ✾ are set to be one third of the

image height to avoid possible false detections.

6. Experimental results

6.1. Vanishing point estimation

Vanishing point estimation is tested on 1003 general road

images. These road images exhibit large variations in color,

texture, illumination and ambient environment. Among

them, about 430 images are from the photographs taken on a

scouting trip along a possible Grand Challenge route in the

Southern California desert and the other part is downloaded

from internet by Google Image. Some image samples are

shown in Fig.1. All images are normalized to the same size

with height of 180 and width of 240. To assess the algo-

rithm’s performance vs. human perception of the vanishing

point location, we request 5 persons to manually mark the

vanishing point location after they are trained to know the

vanishing point concept. A median filter is applied to these

human recorded results and the average of the median filter

results is regarded as the ground truth position.

For brevity, the soft voting strategy defined in Eq.2 is

denoted by “Soft” and the hard voting strategy (by replac-

ing ✜✜ ✪✎✍ ✏✒✑ ✤ ▼ ✆ ❱ ✮✔✓ ✢ with 1 in Eq.2)is denoted as “Hard”. The

voting strategy based on global voting region (left image of

Fig.6) is denoted by “Global” and the one based on local

voting region (right image of Fig.6) is denoted by “Local”.



We compare the “Hard” v.s. “Soft” and “Global” v.s. “Lo-

cal” schemes. We also compare different combination of

them with/without introducing the confidence factor. Figure

8 visually gives us the comparison of vanishing point esti-

mation on some sample images. The estimation using the

“Hard” and “Soft” voting based on global

❳ ❱
are shown

in (a) and (b) respectively, while some results using “Hard”

and “Soft” voting based on local

❳❴❱
are shown in (d) and

(e) respectively. Figure 8 (c) and (f) shows some samples

voted from those image pixels whose confidence score is

larger than ❈ ● ■✺❨ ✟ ❬ ✾ ✡✁�✄✂ ✁✆☎
✹ ❬ ❩ ✁ �✄✂ ✁✆☎ ✏

. By compar-

ing (a) with (b) and comparing (d) with (e), it can be ob-

served that “Soft” voting scheme is better than “Hard” vot-

ing scheme. By comparing (a) with (d) and comparing (b)

with (e), we find that local voting region scheme is more ac-

curate than global voting region one. The examples based

on the “Soft” voting from those highly confident texture ori-

entations in the global

❳ ❱
are shown in row (c), and the

estimations based on LASV are shown in row (f). Compar-

ing (c) with (a) and (b), and comparing (f) with (d) and (e),

we find that it does improve the vanishing point estimation

accuracy by introducing the confidence measure.

Figure 9 lists some statistics of the above different com-

binations. Based on the ground truth positions, we com-

pute the L2 norm distance of the results produced by the

above different combinations to the ground truth positions,

and put these distances into a 15-bin histogram. If the dis-

tance is larger than or equal to 15, it is put into the 15th

bin of the histogram. The seven histograms are shown in

(a) of Fig.9. From Fig.9 (a), we may find that the vanish-

ing point estimation from the pixels with high confidence

is much better than the estimation without considering the

confidence factor. The threshold, ”T”, of the confidence is

set to be ❈ ● ■ ❨ ✟ ❬ ✾ ✡✁�✄✂ ✁✆☎
✹ ❬ ❩ ✁ �✄✂ ✁✆☎ ✏

. Local voting-

region based method produces more accurate estimation

than the corresponding global voting-region based method.

Based on these histograms, we also compute the percentage

of the images whose error distance is smaller than a num-

ber. The best results come from the “Soft” voting based

on the high-confidence image pixels of the local

❳❲❱
(confi-

dence value is larger than ❈ ● ■❁❨ ✟ ❬ ✾ ✡✁�✄✂ ✁✆☎
✹ ❬✺❩ ✁ �✄✂ ✁✆☎ ✏

)

plus updating by the joint point of the two most dominant

edges. About 96% of all images have an error distance no

bigger than 10 pixels. The method described in [12] be-

longs to the “Global”+“Hard” scheme. Based on our exper-

iment, our algorithms perform much better: applying the

“Global”+“Hard” scheme to our data, there are 87 images

where the true vanishing point is near the bottom of the

frame and the error is larger than 50 pixels. In contrast,

such a large error occurs in only 33 images for the weakest

variant (Global + Soft) of our method. When the error is

smaller than 15 pixels, the two methods give similar accu-

racies. On average, on our test data, our method gives a 9-

(a)

(b)

(c)

(d)

(e)

(f)

Figure 8. Comparison of vanishing point estimation based on dif-

ferent combinations.

pixel instead of 14-pixel error for the method in [12]. Note

that, for curved road, the vanishing point by our method is

located at the joint point of the most immediate straight road

borders.

6.2. Dominant edge detection and road segmenta
tion

Among the 1003 images, about 300 images are from well

paved roads with painted markers. Excluding the 430 desert

images, the rest images corresponding to the rural roads

have no painted lines although part of them are also well

paved. In about 35% of the well-paved road images with

painted lines, the painted line is detected as one of the most

dominant edges. For over 90% of the rural roads, the two

road borders are detected as the two most dominant edges.

For the desert images, the road can be correctly detected as

long as the vanishing point estimation is close to the true po-

sition. For curved roads, the detected road region is the most

immediately drivable area although part of the road surface

cannot be fully encompassed by the two dominant edges.
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Figure 9. Comparison of vanishing point estimation accuracy.

Figure 10 (a) corresponds to the desert road images and the

bottom five rows comes from the downloaded images. The

last three columns of Figure 10 (b) shows us some exam-

ples which are wrongly estimated by LASV but corrected

by the two dominant edges. The initial vanishing points

by LASV are shown in the second row respectively. The

detected dominant edge candidates are shown in the third

row of them respectively. The two most dominant edges are

detected and shown in the fourth row of them respectively.

The updated vanishing points by dominant edges are shown

in the last row.

7. Conclusion

A novel framework for segmenting the general road re-

gion from one single image is proposed based on the road

vanishing point estimation using a novel scheme, called Lo-

cally Adaptive Soft-Voting (LASV) algorithm. Then the es-

timated vanishing point is used as a constraint to detect two

dominant edges for segmenting the road area. To remove

the effect caused by noisy pixels, each Gabor texture orien-

tation is estimated with a confidence score. In voting, only

the pixels of a local voting region whose confidence is high

are used, which reduces the computational complexity and

improves the accuracy significantly.
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