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Abstract. We use Cox’s description for sheaves on toric varieties and results about
local cohomology with respect to monomial ideals to give a characteristic-free approach to
vanishing results on toric varieties. As an application, we give a proof of a strong version of
Fujita’s Conjecture in the case of toric varieties. We also prove that every sheaf on a toric
variety corresponds to a module over the homogeneous coordinate ring, generalizing Cox’s
result for the simplicial case.

Introduction. Our main goal in this article is to give a characteristic free approach
to vanishing results on arbitrary toric varieties. We prove that the vanishing of a certain
cohomology group depending on a Weil divisor is implied by the vanishing of the analogous
cohomology group involving a higher multiple of that divisor. When the variety is complete
and the divisor isQ-Cartier, one recovers in this setting a theorem due to Kawamata and
Viehweg. We apply these results to prove a strong form of Fujita’s conjecture on a smooth
complete toric variety.

LetX be a toric variety andD1, . . . ,Dd the invariant Weil divisors onX, so thatωX �
OX(−D1 − · · · − Dd). In the first part of the paper we deduce the following generalization
of the theorem of Kawamata and Viehweg, for toric varieties.

THEOREM 0.1. Let D be an invariant Weil divisor on X as above. Suppose that we
have E = ∑d

j=1 ajDj , with aj ∈ Q and 0 ≤ aj ≤ 1 such that for some integer m ≥ 1,

m(D +E) is integral and Cartier. If for some i ≥ 0 we have Hi(OX(D +m(D + E))) = 0,
then Hi(OX(D)) = 0. In particular, if X is complete and there is E aforementioned such
that D + E is Q-ample, then Hi(OX(D)) = 0 for every i ≥ 1.

As a particular case of this theorem, we see that if for somem ≥ 1 andL ∈ Pic(X)
we haveHi(Lm(−Dj1 − · · · − Djr )) = 0, thenHi(L(−Dj1 − · · · − Djr )) = 0. The cases
r = 0 andr = d of this assertion were known to hold by reduction to a field of positive
characteristic. Over such a fieldX is Frobenius split and one concludes using arguments in
Mehta and Ramanathan [MR]. The fact thatX is Frobenius split will follow also from our
results.

Our method yields other vanishing results as well. For example, we prove that ifX is
a smooth toric variety andL ∈ Pic(X) is such that for somem ≥ 1 andi ≥ 0 we have
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Hi(Ω
j

X ⊗ Lm) = 0, thenHi(Ω
j

X ⊗ L) = 0. By takingX complete andL ample, we thus
recover a theorem of Bott, Steenbrink and Danilov.

In the second part of the paper we give some applications of vanishing theorems on toric
varieties. Our main result is a proof in the toric case of a strong version of the following
conjecture due to Fujita (see [La] for discussion and related results).

CONJECTURE 0.2. LetX be a smooth projective variety of dimensionn andL ∈
Pic(X) an ample line bundle. ThenωX ⊗ Ln+1 is globally generated andωX ⊗ Ln+2 is very
ample.

When the ample line bundleL is generated by global sections, an argument of Ein and
Lazarsfeld [EL] based on vanishing results proves the conjecture over a field of characteris-
tic zero. Under the same hypothesis onL, the first assertion of the conjecture is proved in
arbitrary characteristic by Smith [Sm]. On a smooth projective toric variety every ample line
bundle is very ample (see [De]), so these results prove the conjecture in this setting.

We give a direct proof of a strengthened form of the conjecture in the case of a toric
variety, where instead of making a conclusion about a powerLm, we make a statement about
any line bundleL satisfying conditions on the intersection numbers with the invariant curves.
We are able to replaceωX by the negative of the sum of any set ofDi , and also improve the
bound by one in the case whenX is not the projective space. More precisely, we prove:

THEOREM 0.3. LetX be an n-dimensional complete smooth toric variety, L ∈ Pic(X)
a line bundle andD1, . . . ,Dm distinct prime invariant divisors.

(1) If (L ·C) ≥ n for every invariant integral curve C ⊂ X, then L(−D1 − · · · −Dm)

is globally generated, unless X � Pn, L � O(n) and m = n+ 1.
(2) If (L ·C)≥n+1 for every invariant integral curveC⊂X, then L(−D1−· · ·−Dm)

is very ample, unless X � Pn, L � O(n+ 1) and m = n+ 1.

To obtain these results we use Cox’s notion of homogeneous coordinate ring ofX. When
the fan definingX is nondegenerate (i.e., it is not contained in a hyperplane), this is a polyno-
mial ringS = k[Y1, . . . , Yd ] together with a reduced monomial idealB and with a grading in
the class group ofX which is compatible with theZd -grading by monomials. In general we
need to slightly adjust this definition, but we leave this generalization for the core of the paper.
As in the case of projective space, each gradedS-moduleP gives a quasi coherent sheafP̃ on
X and for eachi ≥ 1, the Zariski cohomologyHi(X, P̃ ) is the degree zero part of the local
cohomology moduleHi+1

B (P ). This idea has been used in [EMS] to give an algorithm for the
computation of cohomology of coherent sheaves on a toric variety.

Our basic result says that ifP is in factZd -graded and if the multiplication byYj is an
isomorphism in certainZd -degrees, then the same is true forHi

B(P ). The main example is
P = S in which we get that the multiplication

νYj : Hi
B(S)α → Hi

B(S)α+ej
is an isomorphism for everyα = (αj ) ∈ Zd such thatαj �= −1. In particular,Hi

B(S)α

depends only on the signs of the components ofα. This case was used in [EMS] in order to
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describe the support ofHi
B(S). Similar results for the Ext modules appear also in [Mu] and

[Ya]. Our second example is that of the modules giving the sheavesΩi
X on a smooth toric

variety. Using this result and the relation between the local cohomology of a module and the
Zariski cohomology of the corresponding sheaf, we deduce the various vanishing theorems.

In the first section of the paper we summarize the construction in [Cox] for the homoge-
neous coordinate ring suitably generalized to be applicable also to toric varieties defined by
a degenerate fan. All the results can be easily extended to this context. We prove that every
quasicoherent sheaf on a toric variety comes from a graded module over the homogeneous
coordinate ring, generalizing the result in [Cox] for the simplicial case. We describe the rela-
tion between the local cohomology of modules and the cohomology of the associated sheaves.
This is used in the second section to prove the vanishing results described above.

In order to apply these results, we need numerical characterizations for ampleness and
numerical effectiveness for the toric case and inthe third section we provide these results. In
the simplicial case, a toric Nakai criterion is given in [Oda]. We show that the result holds for
an arbitrary complete toric variety. We also prove thatL ∈ Pic(X) is globally generated if and
only if (L · C) ≥ 0, for every integral invariant curveC ⊂ X. In particular, we see thatL is
globally generated if and only if it is numerically effective. These results have been recently
obtained also by Mavlyutov in [Ma]. We mention a generalization in a different direction due
to Di Rocco [DR] who proved that on a smooth toric variety,L ∈ Pic(X) is k-ample if and
only if (L · C) ≥ k for every invariant curveC ⊂ X.

As a consequence of the above results, we deduce thatL is big and nef if and only if
there is a mapφ : X → X′ induced by a fan refinement (thereforeφ is proper and birational)
andL′ ∈ Pic(X′) ample such thatL � φ∗(L′). This easily implies the version of Kawamata-
Viehweg vanishing theorem for nef and big line bundles.

The fourth section is devoted to the above generalization (in this context) of Fujita’s
Conjecture and some related results. The proof goes by induction on the dimension ofX, by
taking the restriction to the invariant prime divisors. The result which allows the induction
says that for everyl ≥ 1, if L is a line bundle such that(L ·C) ≥ l for every invariant integral
curveC ⊂ X, then for every invariant prime divisorD and everyC ⊂ X aforementioned,
(L(−D) · C) ≥ l − 1. From the casel = 1 we see that ifL is ample, thenL(−D) is
globally generated. We conclude this section by proving a related result, which characterizes
the situation in whichL is ample andD is a prime invariant divisor, butL(−D) is not ample.

A well-known ampleness criterion (see, for example, [Fu]) can be interpreted as saying
that on a complete toric varietyX, L ∈ Pic(X) is ample if and only if it is globally generated
and the map induced by restrictions

H 0(L) →
⊕
x∈X0

H 0(L|{x})

is an epimorphism, whereX0 is the set of fixed points ofX.
In the last section we generalize this property of ample line bundles under the assumption

thatX is smooth. We prove that the analogous map is still an epimorphism if we replaceX0



454 M. MUSTAŢǍ

with any set of pairwise disjoint invariant subvarieties. In this case, the blowing-upX̃ of
X along the union of these subvarieties is still a toric variety and we obtain the required
surjectivity by applying toX̃ the results in the second section.

This work started from a joint project with David Eisenbud and Mike Stillman to un-
derstand the cohomology of sheaves on toric varieties. It is a pleasure to thank them for
encouragement and generous support. We are also very grateful to William Fulton, Robert
Lazarsfeld and Sorin Popescu for useful discussions and to Markus Perling for his comments
on an earlier version of this paper. Last but not least, we acknowledge the referee’s numerous
comments and suggestions which greatly improved the quality of our presentation.

1. The homogeneous coordinate ring of a toric variety. Let k be a fixed alge-
braically closed field of arbitrary characteristic. We will use freely the definitions and results
on toric varieties from [Fu]. We first review the notation we are going to use.

Let N � Zn be a lattice andM = Hom(N,Z) the dual lattice. For a rational fan∆ in
V = N ⊗ R, we have the associated toric varietyX = X(∆). For everyi ≤ n, the set of
cones in∆ of dimensioni is denoted by∆i . The torusN⊗Z k

∗ acts onX, and by an invariant
subvariety ofX we mean a subvariety which is invariant under this action.

The closed invariant subvarieties ofX of dimensioni are in bijection with the set∆n−i .
For each coneτ ∈ ∆ we denote byV (τ) the corresponding subvariety. Recall thatV (τ)

is again a toric variety andτ1 ⊂ τ2 if and only if V (τ2) ⊂ V (τ1). In particular, the prime
invariant Weil divisorsD1, . . . ,Dd onX correspond to the one dimensional cones in∆. If X
is smooth, then so is eachV (τ).

Let V ′ be the vector space spanned by∆, N ′ = N ∩ V ′ andM ′ = Hom(N ′,Z) its dual
lattice. We have an exact sequence:

0 → M ′ → DivT (X) → Cl(X) → 0 ,

where DivT (X) = ⊕d
i=1 ZDi � Zd is the group of invariant Weil divisors and Cl(X) is the

class group ofX.
We fix a decompositionM � M ′ × Ze, wheree is the codimension ofV ′ in V . We

correspondingly have a decompositionX � X′ × (k∗)e, whereX′ is the toric variety defined
by∆ in N ′.

The homogeneous coordinate ring ofX was introduced by Cox in [Cox] in the case when
the fan∆ is not degenerate, i.e., is not contained in a hyperplane. We slightly generalize this
notion in order to allow an arbitrary toric variety, following the suggestion in [Cox]. We
first review some of the definitions and the results in that paper, all of which can be easily
generalized to this context.

For eachi with 1 ≤ i ≤ d we introduce an indeterminateYi , corresponding to the
divisor Di . We introduce also the indeterminatesYj with d + 1 ≤ j ≤ d + e, and the
homogeneous coordinate ring ofX is the ringS = k[Y1, . . . , Yd , Y

±1
d+1 . . . , Y

±1
d+e]. Note

that the decompositionM � M × Ze corresponds to a decompositionk[M] � k[M ′] ⊗
k[Y±1

d+1, . . . , Y
±1
d+e].
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For every effective divisorD = ∑d
i=1 aiDi , we writeYD for the corresponding mono-

mial
∏d
i=1 Y

ai
i ∈ S. On the ringS we have a fine grading, the usualZd+e-grading by mono-

mials. However, in this section we will consider exclusively a coarse Cl(X)-grading defined
by

deg

( d+e∏
i=1

Y
ai
i

)
=

[ d∑
i=1

aiDi

]
∈ Cl(X) .

In the ringS there is a distinguished ideal which is a reduced monomial ideal. For each
coneσ ∈ ∆ we putDσ̂ = ∑

i;τi �⊂σ Di , the sum being taken over the divisors corresponding

to one dimensional cones outsideσ andY σ̂ = YDσ̂ . If ∆max is the set of maximal cones in
∆, thenB = (Y σ̂ | σ ∈ ∆max).

As in the case of projective space, a gradedS-moduleP gives a quasicoherent sheaf on
X by the following procedure.X is covered by the affine toric varietiesUσ = Speck[σ∨ ∩
M], for σ ∈ ∆. Using the above decomposition ofk[M] and the argument in [Cox], we
obtain canonical isomorphismsk[σ∨ ∩ M] � (SY σ̂ )0 for everyσ ∈ ∆, which are pairwise
compatible. Therefore ifP is a gradedS-module, on the affine pieceUσ we can consider the
quasicoherent sheaf defined by(PY σ̂ )0. These sheaves glue together to give a quasicoherent
sheafP̃ on X. In this way we get an exact functorP → P̃ from gradedS-modules to
quasicoherent sheaves. IfP is finitely generated, theñP is coherent.

In particular, ifα ∈ Cl(X), O(α) is defined to beS̃(α). As in [Cox], if α = [D], then
there is a natural isomorphismO(α) � O(D). Moreover, we have an isomorphism of graded
rings

S �
⊕

α∈Cl(X)

H 0(X,O(α)) .

For a quasicoherent sheafF , we putF(α) := F ⊗ O(α).
REMARK. In general, ifP is a gradedS-module, the natural morphism̃P ⊗ O(α) →

P̃ (α) is not an isomorphism. However, it is an isomorphism ifα ∈ Pic(X). Indeed, by taking
a graded free presentation ofP , we can reduce ourselves to the case whenP = S(β) for some
β = [E]. Sinceα = [D] with D locally invertible,O(α) is invertible and the fact that the
morphismO(D) ⊗ O(E) → O(D + E) is an isomorphism follows now directly from the
definition.

We prove now that every quasicoherent sheaf is isomorphic toP̃ for some gradedS-
moduleP . This was proved in [Cox] under the assumption thatX is simplicial. With a
slightly different definition for the homogeneous coordinate ring it was proved more generally
for toric varieties with enough effective invariant divisors by Kajiwara in [Ka].

THEOREM 1.1. For every toric varietyX and every quasicoherent sheaf F onX, there
is a graded S-module P such that F � P̃ .

PROOF. We takeP = ⊕
α∈Cl(X) H

0(X,F(α)), which is clearly a gradedS-module.
For simplicity, we will use the notationPσ = PY σ̂ .
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For eachσ ∈ ∆, there are canonical maps

φσ : (Pσ )0 → H 0(Uσ ,F) ,
defined as follows. Ifs/YD ∈ (Pσ )0 such thats ∈ H 0(X,F(α)) andD is an effective divisor
with [D] = α and SuppD ∩ Uσ = ∅, then 1/YD defines a section inH 0(Uσ ,O(−α)) and
φσ (s/Y

D) = (1/YD)s is the image of(1/YD, s) by the canonical pairing

H 0(Uσ ,O(−α)) ×H 0(X,F(α)) → H 0(Uσ ,F) .
These morphisms glue together to giveφ : P̃ → F (note thatF is assumed to be

quasicoherent). We will prove thatφ is an isomorphism by proving thatφσ is an isomorphism
for eachσ ∈ ∆.

We first show thatφσ is a monomorphism. Suppose thatφσ (s/YD) = 0 for some
s ∈ H 0(X,F(α)) andD effective,[D] = α.

We may assume that SuppD = ⋃
τi �⊂σ V (τi), and in this case we will prove that there is

an integerN ≥ 1 such thatYNDs = 0 inH 0(X,F(α + Nα)). In fact, we will find for each
τ ∈ ∆ an integerNτ such thatYNτDs|Uτ = 0. Then it is clear thatN = ∑

τ Nτ satisfies the
requirement.

From now on, we fix alsoτ ∈ ∆. Sinceσ ∩τ is a face ofτ , we can writeσ ∩τ = τ ∩u⊥
for someu ∈ τ∨ ∩M. If for eachv ∈ M, the corresponding element ofk[M] is denoted by
χv, we consider the principal divisorD0 = div(χu). It is effective onUτ , where its support
corresponds to the one-dimensional conesτi ⊂ τ ∩ σ .

We consider the restrictions of all the sections from above toUτ : s|Uτ ∈ H 0(Uτ ,F(α)),
YD|Uτ ∈ H 0(Uτ ,O(α)) and(1/YD)|Uσ∩Uτ ∈ H 0(Uσ∩τ ,O(−α)).

Sinceφσ (s/YD) = 0 in H 0(Uσ ,F), we have thats|Uσ = 0 ∈ H 0(Uσ ,F(α)), as the
image of(YD, φσ (s/YD)) by the canonical pairing

H 0(Uσ ,O(α)) ⊗H 0(Uσ ,F) → H 0(Uσ ,F(α)) .
In particular, we haves|Uσ∩τ = 0. ButUσ ∩Uτ = Uσ∩τ ⊂ Uτ is a principal affine subset

defined byYD0 ∈ H 0(Uτ ,OX). Therefore, we get an integert ≥ 1 such thatY tD0s = 0 in
H 0(Uτ ,F(α)).

If aτ ′ anda0
τ ′ are the coefficients ofV (τ ′) in D andD0, respectively, andNτ is such

thatNτaτ ′ ≥ ta0
τ ′ for every one-dimensional faceτ ′ ⊂ τ (by the form ofD andD0, we can

choose such anNτ ), thenYNτDs = 0 in H 0(Uτ ,F(α + Nτα)). This follows from the fact
that if τ ′′ is a one-dimensional cone withτ ′′ �⊂ τ , thenO(V (τ ′′))|Uτ is invertible andYV (τ

′′)

is an invertible section in it. This completes the proof of the fact thatφσ is a monomorphism.
We prove now thatφσ is an epimorphism. Lett ∈ H 0(Uσ ,F), and letD = ∑

τi �⊂σ Di
andα = [D].

Using an analogous argument, we see that for eachτ ∈ ∆, there is an integerNτ such
that YNτDt|Uσ∩τ ∈ H 0(Uσ∩τ ,F(Nτα)) can be extended to a section inH 0(Uτ ,F(Nτ α)).
Indeed, with the notation and arguments we used before, we first findN ′

τ such thatYN
′
τD0t

can be extended toUτ and then findNτ , as claimed.
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If we apply this to two conesτ1, τ2 ∈ ∆ and takeN ≥ Nτ1,Nτ2, we see thatYNDt can be
extended to bothUτ1 andUτ2, giving sectionst1 andt2, respectively. Since(t1− t2)|Uσ∩τ1∩τ2 =
0, by applying toτ1 ∩ τ2 the argument we used to show thatφσ is a monomorphism, we find
Nτ12 such thatYNτ12Dt1 = YNτ12Dt2 onUτ1 ∩ Uτ2.

This shows that for large enoughN , we can extendYNDt|Uσ∩τ to tτ ∈ H 0(Uτ ,F(Nα))
for everyτ ∈ ∆ such thattτ1|Uτ∩τ2 = tτ2|Uτ1∩τ2 for everyτ1, τ2 ∈ ∆. Thereforet is in the
image ofφσ , which completes the proof. �

Using the same argument as in [Cox], we deduce the following corollary.

COROLLARY 1.2. For every toric variety X and every coherent sheaf F on X, there
is a finitely generated S-module P ′ such that F � P̃ ′.

PROOF. With the notation in the proof of Theorem 1.1, we have seen that

φσ : (Pσ )0 → H 0(Uσ ,F)
is an isomorphism for everyσ ∈ ∆.

SinceF is coherent, this implies that we can find a finitely generated graded submodule
P ′ ⊂ P such that(P ′

σ )0 = (Pσ )0 for everyσ ∈ ∆. It is clear that thisP ′ satisfies the assertion
of the corollary. �

As in the case of projective space, the cohomology of the sheafP̃ can be expressed as
the local cohomology of the moduleP at the irrelevant idealB.

PROPOSITION 1.3. Let P be a graded S-module. Then there exist an isomorphism of
graded modules

Hi+1
B (P ) �

⊕
α∈Cl(X)

H i(X, P̃ (α))

for every i ≥ 1 and an exact sequence

0 → H 0
B(P ) → P →

⊕
α∈Cl(X)

H 0(X, P̃ (α)) → H 1
B(P ) → 0 .

PROOF. X is covered by the affine open subsetsUσ , σ ∈ ∆max, and we compute the
cohomology ofP̃ as Cech cohomology with respect to this cover.

On the other hand, we can compute the local cohomology ofP at B, using the direct
limit of Koszul complexes on the powers of the generators ofB = (Yσ̂ | σ ∈ ∆max) (see [Ei],
Appendix 4.1).

Since forσ1, . . . , σt ∈ ∆max,
⋂t
i=1Uσi = Uσ , whereσ = ⋂t

i=1 σi and

H 0(Uσ , P̃ (α)) = (P (α)Y σ̂ )0 = (PYσ̂1
,... ,Yσ̂t

)α ,

we conclude as in the case of the projective space (see [Ei], Appendix 4.1). �

NOTE. In the situation in Proposition 1.3, suppose thatP is in fact aZd+e-gradedS-
module, so that the corresponding sheafP̃ is equivariant with respect to the torus action. In
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this case the local cohomology moduleHi+1
B (P ) is Zd+e-graded, too, and under the isomor-

phism in Proposition 1.3 thisfiner decomposition ofHi+1
B (P ) corresponds to the eigenspace

decomposition of the Zariski cohomology of the different twists̃P(α).

2. Vanishing theorems. We keep the notation from the previous section. However,
from now on we consider onS the fineZd+e grading by monomials and allS-modules are
assumed to beZd+e-graded. Note that this implies that the associated sheaf is equivariant with
respect to the torus action. The canonical basis ofZd+e will be denoted byf1, . . . , fd+e.

For every subsetI ⊂ Z and every gradedS-moduleP , we will say thatP is I -homo-
geneous if for everyα = (αj ) ∈ Zd+e with αj �∈ I , the multiplication byYj :

νYj : Pα → Pα+fj

is an isomorphism. Our main example isS, which is obviously{−1}-homogeneous.

PROPOSITION 2.1. If P is an I -homogeneous S-module, then Hi
B(P ) is I -homo-

geneous.

PROOF. We compute the local cohomology module as the cohomology of a Cech-type
complex (see, for example, [Ei], Appendix 4.1). Let us temporarily denote the generators
of B by m1, . . . ,mt . For a subsetL ⊂ {1, . . . , t}, letmL be the least common multiple of
{ml | l ∈ L}. Since it is enough to prove the assertion at the level of complexes, we have to
check that for everyα ∈ Zd+e with αj �∈ I , the multiplication byYj :

µYj : (PmL)α → (PmL)α+fj

is an isomorphism.
This is obvious ifYj |mL. Suppose now thatYj � mL. Then the assertion is clear once we

notice that in this case, ifm/msL ∈ PmL , then deg(m/msL)j = deg(m)j , so that we can apply
the fact thatP is I -homogeneous. �

We consider now an example of{−1,0}-homogeneousS-modules. These are the mod-
ules which define the exterior powersΩi

X of the cotangent sheaf. For simplicity, in this case
we will assume thatX is smooth.

It is shown by Batyrev and Cox in [BC] that if the fan definingX is nondegenerate, then
the cotangent bundle onX appears in an Euler sequence:

0 → Ω1
X →

d⊕
j=1

OX(−Dj) → Od−n
X → 0 .

In general, we haveX � X′ × (k∗)e with X′ as above andΩ1
X � p∗

1(Ω
1
X′)⊕ Oe

X. Therefore
we can includeΩ1

X in an exact sequence:

0 → Ω1
X →

( d⊕
j=1

OX(−Dj)
)

⊕ Oe
X → Od−n+e

X → 0 .
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We consider the graded morphism inducing the epimorphism in the second exact se-
quence:

E =
( d⊕
j=1

S(−fj )
)

⊕ Se → F = Sd−n+e .

For eachi ≥ 1, letMi be the kernel of the induced map
∧i

E → ∧i−1
E ⊗ F .

LEMMA 2.2. With the above notation, we have
(i) M̃i � Ωi

X.
(ii) Mi is {−1,0}-homogeneous.

PROOF. (i) The assertion follows easily from the above mentioned result of Batyrev
and Cox and the fact that in the Euler sequence all the sheaves are locally free.

(ii) SinceMi is a submodule of
∧i

E, which is free, the multiplication byYj onMi is
injective.

Let α = (αj ) ∈ Zd+e, αj �∈ {−1,0}. Since
∧i−1

E ⊗ F is free, the surjectivity of the
mapνYj : (Mi)α → (Mi)α+fj follows from the surjectivity of the analogous map for

∧i
E.

The latter is surjective since
∧i

E is a direct sum of modules of the formS(−fj1 − · · · − fjr )
with r ≤ i andj1 < · · · < jr . �

PROPOSITION 2.3. Let X be an arbitrary toric variety.
(i) If P is a {−1,0}-homogeneous S-module and L ∈ Pic(X) is such that Hi(P̃ ⊗

Lm) = 0 for some i ≥ 0 and m ≥ 1, then Hi(P̃ ⊗ L) = 0. In particular, if X is projective
and L ∈ Pic(X) is ample, then Hi(P̃ ⊗ L) = 0 for all i ≥ 1.

(ii) Let P be a {−1}-homogeneous S-module such that for every α ∈ Cl(X), P̃ (α) �
P̃ ⊗ O(α). Suppose that D ∈ DivT (X) and that there is E = ∑d

j=1 ajDj with aj ∈ Q
and 0 ≤ aj ≤ 1 such that m(D + E) is integral and Cartier for some integer m ≥ 1.
If Hi(P̃ ⊗ OX(D + m(D + E))) = 0 for some i ≥ 0, then Hi(P̃ ⊗ OX(D)) = 0. In
particular, if X is projective and we have E aforementioned such that D + E is Q-ample,
then Hi(P̃ ⊗ OX(D)) = 0 for all i ≥ 1.

PROOF. (i) If L = O(α), Hi(P̃ ⊗ L) = Hi(P̃ (α)) (see the remark in the first sec-
tion). We will restrict ourselves to the casei ≥ 1 in order to apply the isomorphism in
Proposition 1.3. Wheni = 0, one can give a similar argument using the exact sequence in
that proposition.

As already mentioned, we have

Hi(P̃ ⊗ L) �
⊕
b

H i+1
B (P )b ,

where the direct sum is taken over thoseb = (b1, . . . , bd+e) ∈ Zd+e such that[∑d
i=1 biDi ] =

α. Since by hypothesisHi(P̃ ⊗ Lm) = 0, for everyb with [∑d
i=1 biDi ] = α we have

Hi
B(P )mb = 0. Proposition 2.1 implies that

Hi
B(P )b � Hi

B(P )mb ,
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which proves the first assertion.
In the case of an ample line bundleL on a projective toric variety, we haveHi(P̃⊗Lm) =

0 for i ≥ 1 andm � 0, so that we are in the previous situation.
(ii) We proceed similarly. Using our hypothesis onP and Proposition 1.3, for every

i ≥ 1 we have

Hi(P̃ ⊗ O(α)) � Hi(P̃ (D)) �
⊕
b

H i+1
B (P )b ,

where the direct sum is taken over thoseb = (b1, . . . , bd+e) ∈ Zd+e such that[∑d
i=1 biDi ] =

[D].
Using again the hypothesis onP and the fact thatm(D + E) is Cartier (see the remark

in the first section), we get

Hi((P (D +m(D + E)))˜) = 0 .

We fix someb ∈ Zd+e with [∑d
i=1 biDi ] = [D]. We have to prove thatHi+1

B (P )b = 0.

If b′ = b+m(b+a), wherea = (a1, . . . , ad ,0 . . . ,0), then[∑d
i=1 b

′
iDi ] = [D+m(D+E)],

and thereforeHi+1
B (P )b′ = 0.

Proposition 2.1 implies that in order to complete the proof, it is enough to show that
bj ≥ 0 if and only if (m+1)bj +maj ≥ 0. This follows easily from the fact that 0≤ aj ≤ 1.

�

We apply Proposition 2.3 in conjunction with Lemma 2.2 forP = Mi and forP = S.

THEOREM 2.4. (i) (Bott-Steenbrink-Danilov) If X is a smooth toric variety and
L ∈ Pic(X) is such thatHi(Ω

j
X⊗Lm) = 0 for somem ≥ 1 and i ≥ 0, thenHi(Ω

j
X⊗L) = 0.

In particular, ifX is projective andL ∈ Pic(X) ample, thenHi(Ω
j

X⊗L) = 0 for every i ≥ 1.

(ii) Let X be an arbitrary toric variety, D ∈ DivT (X) and E = ∑d
j=1 ajDj , with

aj ∈ Q and 0 ≤ aj ≤ 1 such that for some integer m ≥ 1 we have m(D + E) integral and
Cartier. If Hi(OX(D + m(D + E))) = 0, then Hi(OX(D)) = 0. In particular, if X is
projective and there is E aforementioned such thatD+E is Q-ample, then Hi(OX(D)) = 0
for all i ≥ 1.

REMARK. As pointed out by the referee, in the caseP = S the assertion in Proposi-
tion 2.1 can be proved also via the combinatorial description of the cohomology of a sheaf of
fractional ideals (see for example [KKMS], p.42). More precisely, the graded components
Hi+1
B (S)α andHi+1

B (S)α+fj (or, equivalently, the corresponding eigenspaces ofHi(X,O(α))
andHi(X,O(α + fj ))) can be described as simplicial cohomology groups of certain subsets
of Rn. The assertion can be proved by showing that these spaces are homotopically equivalent.
Note that the caseP = S is enough to give the statement of Proposition 2.4 (ii).

If D = ∑d
j=1 bjDj is aQ-divisor, we define

�D� :=
d∑
j=1

�bi�Dj ,
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where for any real numberx, �x� is the integer defined byx ≤ �x� < x + 1. Similarily, we
define

�D� :=
d∑
j=1

�bj�Dj ,

where for everyx, �x� is the integer defined byx − 1 < �x� ≤ x. KX denotes the canonical
divisor− ∑d

j=1Dj so thatωX = O(KX).
COROLLARY 2.5. Let X be a projective toric variety.
(i) (Kawamata-Viehweg) If D = ∑d

j=1 bjDj is a Q-Cartier ample Q-divisor, then

Hi(OX(KX + �D�)) = 0 for every i ≥ 1.
(ii) If D is as above, then Hi(OX(�D�)) = 0 for every i ≥ 1.
(iii) Let L ∈ Pic(X) be an ample bundle. If Dj1, . . . ,Djr are distinct prime invariant

divisors, then Hi(L(−Dj1 − · · · −Djr )) = 0 for every i ≥ 1.

PROOF. All these are particular cases of Theorem 2.4 (ii). �

REMARK. In the proof of Fujita’s Conjecture we will use the assertion in Corollary 2.5
for smooth varieties. As the referee pointed out, whenX is smooth it is possible to prove this
assertion directly, by induction on dimension and descending induction onr, as forr = d this
is just Kodaira’s vanishing theorem.

As we mentioned in the Introduction, some particular cases of the above results can be
proved by reducing the problem to a toric varietyX over a field of positive characteristicp and
prove that such a variety is Frobenius split. This means that ifF is the Frobenius morphism,
then the canonical morphismOX → F∗OX has a left inverse. With the description for the
cohomology we used above this can be seen as follows.

First of all, by embeddingX as an open subvariety of a complete toric variety, we may
suppose thatX is complete. Next, by taking a toric resolution of singularities, we may suppose
thatX is also smooth (see [MR]). Moreover, an argument in that paper shows that in this case,
if dim(X) = n, thenX is Frobenius split if and only if the morphism

f : Hn(ωX) → Hn(ω
p
X)

induced by the Frobenius morphism is not trivial. ButHn(ωX) � Hn+1
B (S)(−1,... ,−1) � k, all

the other components being zero. On the other hand,

Hn(ω
p
X) �

⊕
[∑(aj+p)Dj ]=0

Hn+1
B (S)a

has by Proposition 2.1 the componentHn+1
B (S)(−p,... ,−p) canonically isomorphic with

Hn+1
B (S)(−1,... ,−1) and therefore withk. It is easy to see that via these identifications, the cor-

responding component off is just the Frobenius morphism ofk, and thereforef is nonzero.
For a different approach to Frobenius splitting in the toric context and other applications

we refer to Buch, Thomsen, Lauritzen and Mehta [BTLM].
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3. Ample and numerically effective line bundles. Our main goal in this section is
to give the condition for a line bundle to be ample or nef (i.e., numerically effective) in terms
of the intersection with the invariant curves. For ampleness, this is the toric Nakai criterion
which is proved in [Oda] in the smooth case and is stated also in the simplicial case. We
obtain also a similar condition for the nef property, both the results holding for arbitrary
complete toric varieties. In particular, we will see that on such a variety, a line bundle is nef
if and only if it is globally generated. With a different proof, these results have been obtained
also by Mavlyutov in [Ma]. We use the ideas in [Oda] together with the description for the
intersection with divisors in the non-smooth case from [Fu].

We will apply these results to show that a line bundleL onX which is big and nef is
a pull-back of an ample line bundle onX′, for a proper birational equivariant map of toric
varietiesφ : X → X′. Recall that a line bundleL onX is called nef if for every curveC ⊂ X,
(L · C) ≥ 0.

THEOREM 3.1. If X is a complete toric variety and L ∈ Pic(X), the following are
equivalent:

(i) L is globally generated.
(ii) L is nef.
(iii) For every invariant integral curve C ⊂ X, (L · C) ≥ 0.

PROOF. (i) ⇒ (ii) is true in general and (ii)⇒ (iii) follows from the definition.
We now prove the implication (iii)⇒ (i). LetD be an invariant Cartier divisor such that

L � O(D). Recall that there is a functionψ = ψD : N ⊗ R → R associated withD which is
linear on each coneσ ∈ ∆. It is defined in the following way: ifD|Uσ = div(χ−uσ )|Uσ , then
ψ|σ = uσ |σ (the notation is that used in the first section).

A well-known result (see [Fu], Section 3.3) says thatL is globally generated if and only if
ψ is convex. Recall that dim(X) = n. To prove thatψ is convex, it is enough to prove that for
everyσ1, σ2 ∈ ∆n with dim(σ1∩σ2) = n−1,ψ|σ1∪σ2 is convex, i.e., for everyx ∈ σ1, y ∈ σ2

andt ∈ [0,1] such thattx+(1−t)y ∈ σ1∪σ2, we haveψ(tx+(1−t)y) ≥ tψ(x)+(1−t)ψ(y).
It is clear, therefore, from the definition ofψ that it is enough to prove that for eachσ1,

σ2 as above and eachDi = V (τi), with τi ⊂ σ2 \ σ1 a one-dimensional cone,

uσ2(vi) ≤ uσ1(vi) ,

wherevi is the primitive vector ofτi .
LetD = ∑d

j=1 ajDj . Note that by definition, ifDj = V (τj ), τj ⊂ σ , thenuσ (vj ) =
−aj . For σ1 andσ2 as above, letτ = σ1 ∩ σ2. Our hypothesis gives(D · V (τ)) ≥ 0. By
definition,(D + div(χuσ1 ))|Uσ1

= 0. Therefore

D + div(χuσ1 ) =
∑

τi⊂σ2\σ1

biDi + · · · ,

where we wrote down only the divisors corresponding to cones inσ1 ∪ σ2. Sinceai =
−uσ2(vi) for τi ⊂ σ2, we get

bi = uσ1(vi)− uσ2(vi) ,
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if τi ⊂ σ2 \ σ1.
On the other hand, let us denote bye the generator of the one-dimensional latticeN/Nτ

such that the classes of the primitive vectors ofτi for τi ⊂ σ2 \ σ1 are positive multiples ofe.
HereNτ denotes the subgroup ofN generated byN ∩ τ . If for every τi aforementioned we
write vi = cie, then the intersection formula in [Fu], Section 5.1 shows that

(D + div(χuσ1 ) · V (τ)) = bi/ci ,

for everyτi ⊂ σ1 \ σ2. Since 0≤ (D · V (τ)) = bi/ci andci > 0, we deduce thatbi ≥ 0 for
everyτi aforementioned. From the formula forbi we see that the proof is complete. �

REMARK. The equivalence between (i) and (ii) above can be deduced also from the
result of Reid from [Re], which says that every effective one dimensional cycle onX is ratio-
nally equivalent to an effective sum of invariant curves.

THEOREM 3.2 (Toric Nakai criterion). IfX is a complete toric variety, with dim(X) =
n and L ∈ Pic(X), then the following are equivalent:

(i) L is ample.
(ii) For every invariant integral curve C ⊂ X, (L · C) > 0.

PROOF. The proof of the relevant implication (ii)⇒ (i) is the same as the above proof
for the implication (iii)⇒ (i). We have just to use the fact thatL = O(D) is ample if and only
if ψD is strictly convex and to replace all the inequalities by strict inequalities. �

Recall that a line bundleL ∈ Pic(X) is called big if for a certain multipleLm, the rational
map it defines:φLm : X → PN has the image of maximal dimensionn = dim(X).

PROPOSITION 3.3. (i) If X is a complete toric variety of dimension n and L ∈
Pic(X) is a line bundle which is globally generated and big, then dim φL(X) = n.

(ii) L ∈ Pic(X) is globally generated and big if and only if there is a fan ∆′ such that
∆ is a refinement of ∆′ and L′ ∈ Pic(X′) ample, where X′ = X(∆′), and that if f : X → X′
is the map induced by the refinement, f ∗(L′) � L.

PROOF. Let us fix an invariant Cartier divisorD such thatL � O(D). If ψD is the
function which appeared in the proof of Theorem 3.1, it defines an associated convex polytope

PD = {u ∈ M ⊗ R | u ≥ ψD onN ⊗ R} .
If L is globally generated, then dimφL(X) = dim PD (see [Fu], Section 3.4). ButPmD =
mPD, so that dimφL(X) = dim φLm(X), which completes the proof of (i).

Since a map as in (ii) is birational, the “if” part in (ii) is trivial. Let us suppose now
thatL is globally generated and big. By the above argument,P = PD is ann-dimensional
convex polytope. Such a polytope defines a complete fan∆′ and an ample Cartier divisorD′
onX′ = X(∆′). The cones in∆′ are in a one-to-one correspondence, reversing inclusions,
with the faces ofP : for a faceQ of P we have the cone

CQ = {v ∈ N ⊗ R | 〈u, v〉 ≤ 〈u′, v〉 for allu ∈ Q,u′ ∈ P } .
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For everyσ ∈ ∆n, uσ is a vertex ofP . Indeed, it is the intersection ofP with

{u ∈ M ⊗ R | 〈u, vi 〉 ≥ ψD(vi) for vi ∈ σ } .
In fact, every vertex ofP is of this form. Indeed, ifu0 is a vertex ofP , then there isv ∈ N⊗R
such that〈u0, v〉 < 〈u, v〉, for all u ∈ P \ {u0}. In particular, we haveψD(v) = 〈u0, v〉. If
σ ∈ ∆n is such thatv ∈ σ , then〈u0, v〉 = 〈uσ , v〉, so thatu0 = uσ .

Now it is easy to check that

Cuσ =
⋃

τ∈∆n,uτ=uσ
τ .

Therefore∆ is a refinement of∆′. Moreover, the ample divisorD′ onX′ is defined by

ψD′(v) = minσ∈∆n〈uσ , v〉 = ψD(v) .

It follows that if f : X → X′ is the map induced by the refinement,f ∗(D′) = D, which
completes the proof. �

It is easy to see that using the results of this section, we can extend the form of the
Kawamata-Viehweg theorem we obtained in the previous section to the case of a divisor
which is big and nef. For the proof, however, we have to assume that the divisor is Cartier.

THEOREM 3.4 (Kawamata-Viehweg). If X is a projective toric variety and L ∈
Pic(X) is a line bundle which is nef and big, then Hi(ωX ⊗ L) = 0 for every i ≥ 1.

PROOF. SinceL is a line bundle, the duality theorem gives

Hi(X,ωX ⊗ L) � Hn−i (X,L−1) ,

wheren = dim(X) (see [Fu], Section 4.4).
Using Theorem 3.1 and Proposition 3.3, we get a morphismf : X → X′, induced by a

fan refinement, andL′ ∈ Pic(X′) ample such thatf ∗(L′) � L. But then

Hn−i (X,L−1) � Hn−i (X′, L′−1
) � Hi(X′, ωX′ ⊗ L′) = 0 ,

by Corollary 2.5. �

COROLLARY 3.5. Let X be a complete toric variety and L a line bundle on X. If the
base locus of L is nonempty, then it contains an integral invariant curve C ⊂ X.

PROOF. This is an immediate consequence of Theorem 3.1, since for an integral curve
C ⊂ X, if C is not contained in the base locus ofL, then(L · C) ≥ 0. �

4. Fujita’s conjecture on toric varieties. The main result of this section is the fol-
lowing strong form of Fujita’s Conjecture in the toric case.

THEOREM 4.1. Let X be an n-dimensional projective smooth toric variety, L ∈
Pic(X) a line bundle andD1, . . . ,Dm distinct prime invariant divisors.

(i) If (L ·C) ≥ n for every invariant intergral curve C ⊂ X, then L(−D1−· · ·−Dm)
is globally generated, unless X � Pn, L � O(n) and m = n+ 1.
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(ii) If (L · C) ≥ n + 1 for every invariant integral curve C ⊂ X, then L(−D1 − · · ·
−Dm) is very ample, unless X � Pn, L � O(n+ 1) and m = n+ 1.

In particular, we have the following corollary.

COROLLARY 4.2. LetX be an n-dimensional projective smooth toric variety and L ∈
Pic(X).

(i) If (L · C) ≥ n for every invariant integral curve C ⊂ X, then ωX ⊗ L is globally
generated, unless (X,L) � (Pn,O(n)).

(ii) If (L · C) ≥ n+ 1 for every invariant integral curve C ⊂ X, then ωX ⊗ L is very
ample, unless (X,L) � (Pn,O(n + 1)).

We prove Theorem 4.1, using the numerical conditions forL to be globally generated or
ample, as well as the vanishing result in Corollary 2.5 (iii). The proof goes by induction on
the dimension ofX, based on the following proposition.

PROPOSITION 4.3. Let X be a projective smooth toric variety with dim(X) = n,

L ∈ Pic(X) and l ≥ 1 an integer. If (L · C) ≥ l for every invariant integral curve C ⊂ X,

then for every prime invariant divisorD and every C aforementioned, (L(−D) · C) ≥ l − 1.

We first deal with the casel = 1 of this proposition in the lemma below.

LEMMA 4.4. Let X be a projective smooth toric variety, dim(X) = n. If L ∈ Pic(X)
is ample andD is an invariant prime divisor, then L(−D) is globally generated.

PROOF OFLEMMA 4.4. We prove the lemma by induction onn. Forn = 1,X = P1

and the assertion is clear. Ifn ≥ 2 andL(−D) is not globally generated, since the base locus
of L(−D) is invariant, we can choose a fixed pointx in this locus.

LetD′ be a prime divisor distinct fromD and containingx. By Corollary 2.5 (iii), the
restriction map

H 0(L(−D)) → H 0(L(−D)|D′)

is surjective. On the other hand,D′ is a smooth toric variety of dimensionn− 1 andD ∩D′
is either empty or a prime invariant divisor onD′. Therefore the restriction map

H 0(L(−D)|D′) → H 0(L(−D)|x)
is also surjective.

Since the composition of the above maps is surjective, we get a contradiction to the
assumption thatx is in the base locus ofL(−D). �

We now give the proof of the proposition for an arbitraryl ≥ 1.

PROOF OFPROPOSITION 4.3. We make induction onn, the casen = 1 being trivial.
Note that sincel ≥ 1,L is ample.

Let us assume now thatn = 2. Clearly, it is enough to prove that(L(−D) ·D) ≥ l − 1.
Since(L(−D) ·D) = (L ·D)− (D2), we may restrict ourselves to the case(D2) ≥ 2. From
the description of the selfintersection numbers in terms of the fan∆, it follows easily that
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if D′ andD′′ are the divisors whose rays are adjacent to the ray corresponding toD, then
(D′2) ≤ 0 or (D′′2) ≤ 0.

But if, for example,(D′2) ≤ 0, thenL(−(l− 1)D′) is ample, so that Lemma 4.4 implies
thatL(−(l − 1)D′ −D) is globally generated and therefore

0 ≤ (L(−(l − 1)D′ −D) ·D) = (L(−D) ·D)− (l − 1) ,

which completes the casen = 2.
Suppose now thatn ≥ 3 and letτ ∈ ∆n−1 be such thatC = V (τ). We can choose

a prime invariant divisorD′ such thatD′ �= D andC ⊂ D′. Therefore(L(−D) · C) =
(L(−D)|D′ · C), and we may clearly restrict to the case whenD ∩ D′ �= ∅, so that it is a
prime invariant divisor onD′. We apply the induction hypothesis forL|D′ ; note that for every
integral invariant curveC′ ⊂ D′,

(L|D′ · C′) = (L · C′) ≥ l .

This concludes the proof. �

We can now prove the strong form of Fujita’s conjecture for the toric case.

PROOF OFTHEOREM 4.1. (i) It is clear that we may assumen ≥ 2 andX �� Pn.
We make induction onn. If L(−D1 − · · · −Dm) is not globally generated, then

(L(−D1 − · · · −Dm) · V (τ)) < 0

for someτ ∈ ∆n−1. We will show that this asumption impliesX � Pn, a contradiction.
We can immediately restrict ourselves to the following situation: 2≤ m ≤ n + 1,D1

andD2 are the divisors corresponding to the rays spanning together withτ maximal cones
andD3, . . . ,Dn+1 are the divisors containingV (τ).

Claim. We havem = n+ 1,Di � Pn−1 for everyi, 1 ≤ i ≤ n+ 1, andDi ∩Dj �= ∅
for everyi �= j .

Fix i such thati ≤ m. Sincen ≥ 2, our hypothesis and Proposition 4.3 imply that
L(−Di) is ample. Hence Corollary 2.5 (iii) shows that the restriction map

H 0(L(−D1 − · · · −Dm)) → H 0(L(−D1 − · · · −Dm)|Di )
is surjective. SinceV (τ) ⊂ BsL(−D1 − · · · −Dm), it follows thatL(−D1 − · · · −Dm)|Di
is not globally generated.

Another application of Proposition 4.3 gives(L(−Di) · C) ≥ n − 1 for every integral
invariant curveC ⊂ X. In particular,(L(−Di)|Di · C′) ≥ n − 1 for every integral invariant
curveC′ ⊂ Di . From the induction hypothesis we getDi � Pn−1,m = n+1 andDi∩Dj �= ∅
for j �= i.

It is now easy to see thatX � Pn. The claim implies that ifDi = V (τi),1 ≤ i ≤ n+ 1,
and if τ0 is any other one-dimensional cone in∆, thenτ0 andτi do not span a cone in∆ for
anyi. From this it follows that the only one-dimensional cones in∆ areτ1, . . . , τn+1. Since
X is smooth, it follows thatX � Pn.
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(ii) Since an ample line bundle on a complete smooth toric variety is very ample (see
[De]), it is enough to prove that ifL(−D1 − · · · −Dm) is not ample, thenX � Pn. Again we
may assumen ≥ 2.

If L(−D1 − · · · −Dm) is not ample, then there exists an invariant integral curveC ⊂ X

such that
(L(−D1 − · · · −Dm) · C) ≤ 0 .

As above, we may assume thatD1 andC correspond to cones in∆ spanning together a
maximal cone.

By Proposition 4.3, we may apply (i) toL(−D1) and conclude that ifX �� Pn, then
L(−2D1 −D2 − · · · −Dm) is globally generated. In particular,

(L(−2D1 −D2 − · · · −Dm) · C) ≥ 0 ,

so that
(L(−D1 − · · · −Dm) · C) ≥ 1 ,

a contradiction. �

We conclude this section by giving two results with the same flavour as those proved
above. By Lemma 4.4, ifL is ample, thenL(−D) is globally generated for every integral
invariant divisor. The caseX = Pn, L = O(1) shows that this is optimal. The next propo-
sition gives the condition under which forL ample we getL(−D1 −D2) globally generated
for distinct divisorsD1 andD2 as above.

PROPOSITION 4.5. Let X be a projective smooth toric variety with dim(X) = n,

L ∈ Pic(X) ample and D1, D2 distinct prime invariant divisors. Then L(−D1 − D2) is not
globally generated if and only if there is an (n − 1)-dimensional cone τ ∈ ∆ such that if τ1,
τ2 are the one dimensional cones correponding to D1 and D2, then (τ, τ1) and (τ, τ2) span
cones in ∆n and (L · C) = 1, where C = V (τ).

PROOF. The “if ” part is clear, since in this case we have(L(−D1 −D2) ·V (τ)) = −1.
Suppose now thatL(−D1 −D2) is not globally generated. We prove the proposition by

induction onn. The casen = 1 is trivial, and therefore we may assumen ≥ 2. Letx ∈ X be
a fixed point in the base locus ofL(−D1 −D2).

Suppose first that there is an invariant prime divisorD �= D1, D2 such thatx ∈ D. We
apply the induction hypothesis for the smooth toric varietyD, the line bundleL|D and the
prime invariant divisorsD ∩D1 andD ∩D2. By Corollary 2.5 (iii), the restriction map

H 0(L(−D1 −D2)) → H 0(L(−D1 −D2)|D)
is surjective, so that our hypothesis onx andD implies thatx is in the base locus ofL(−D1−
D2)|D. Lemma 4.4 implies thatD ∩ D1 andD ∩ D2 are nonempty. IfD = V (τ0), then by
induction we find a coneτ ′ in the fan Star(τ0) of D. This corresponds to a coneτ ∈ ∆ which
satisfies the requirements of the proposition.

Therefore it remains to consider the case when, for every fixed pointx in the base locus
of L(−D1 − D2) and every divisorD containingx, we haveD = D1 orD = D2. Clearly
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this impliesn = 2 and the fact that the base locus consists of a point, the corresponding cone
being generated by the rays definingD1 andD2. But this contradicts Corollary 3.5 and the
proof is complete. �

As a consequence of Proposition 4.3 we get that if(L ·C) ≥ 2 for every integral invariant
curve onX, thenL(−D) is ample for every prime invariant divisorD. The next result makes
this more precise by giving the condition for an ample line bundleL and a prime invariant
divisorD to haveL(−D) not ample.

PROPOSITION 4.6. Let X be a complete smooth toric variety with dim(X) = n, L ∈
Pic(X) an ample line bundle and D = V (τ0) a prime invariant divisor. Then L(−D) is not
ample if and only if there is τ ∈ ∆n−1 such that 〈τ, τ0〉 ∈ ∆n and (L · V (τ)) = 1.

PROOF. It is clear that if there existsτ as above, then(L(−D) · V (τ)) = 0, so that
L(−D) is not ample.

Suppose now thatL(−D) is not ample and therefore there existsτ ′ ∈ ∆n−1 such that
(L(−D) · V (τ ′)) ≤ 0. SinceL(−D) is globally generated by Lemma 4.4, we must have
(L(−D) · V (τ ′)) = 0.

We must have(D · V (τ ′)) �= 0, and therefore we deduce that either〈τ0, τ ′〉 ∈ ∆n or
V (τ ′) ⊂ D. In the first case, we have(L · V (τ ′)) = 1 and may takeτ = τ ′.

If V (τ ′) ⊂ D, we choose a divisorD1 = V (τ1) such that〈τ1, τ ′〉 ∈ ∆n. Then(L(−D−
D1) · V (τ ′)) < 0, and Proposition 4.5 implies that there isτ ∈ ∆n−1 such that〈τ0, τ 〉 ∈ ∆n
and(L · V (τ)) = 1. �

5. Sections of ample line bundles. In this section we fix a globally generated line
bundleL on a complete toric varietyX and an invariant divisorD such thatL � O(D).
SinceL is globally generated, for each maximal coneσ there is a uniqueuσ ∈ M such that
div(χuσ ) +D is effective and zero onUσ . Equivalently, for each maximal coneσ , there is a
nonzero sectionsσ ∈ H 0(X,L), unique up to scalars, which is an eigenvector with respect to
the torus action and whose restriction toUσ is everywhere nonzero.

A well-known ampleness criterion (see [Fu], Section 3.4) says thatL is ample if and
only if uσ �= uτ (or, equivalently,k sσ �= k sτ ) for σ �= τ . From the unicity of the sectionssσ ,
this is equivalent to the fact that ifσ �= τ , thensσ |Uτ vanishes at some point. But in that case,
it must vanish at the unique fixed pointxτ of Uτ .

We consider the following map whose components are given by the restriction maps:

φ : H 0(L) →
⊕

σ∈∆max

H 0(L|{xσ }) .

Sinceφ is an equivariant map under the torus action, the discussion above shows thatL is
ample if and only ifφ is surjective.

Our goal in this section is to extend this property of ample line bundles in the case when
X is smooth to a set of higher dimensional subvarieties which are pairwise disjoint. More
precisely, we have the following
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THEOREM 5.1. Let X be a projective smooth toric variety and L ∈ Pic(X) an ample
line bundle. If Y1, . . . , Yr ⊂ X are integral invariant subvarieties such that Yi ∩ Yj = ∅ for
i �= j and

ψ : H 0(L) −→
r⊕
i=1

H 0(L|Yi )

is induced by restrictions, then ψ is surjective.

PROOF. LetY = ⋃r
i=1 Yi . In order to prove that

ψ : H 0(L) → H 0(L|Y )
is surjective, it is enough to prove thatH 1(L⊗ IY/X) = 0.

Let π : X̃ → X be the blowing-up ofX alongY andE the exceptional divisor. Then

H 1(X,L⊗ IY/X) � H 1(X̃, π∗L⊗ O(−E)) .
SinceX is smooth, the blowing-up ofX along an integral invariant subvariety is still a smooth
toric variety ([Ew]). SinceYi ∩Yj = ∅ for i �= j , π is a composition of such transformations,
and thereforeX̃ is a toric variety. Moreover, from the description in [Ew] it follows that if
Ei = π−1(Yi), thenEi is an invariant prime divisor oñX andE = ∑r

i=1Ei .
SinceL is ample, Proposition 7.10 in [Ha] implies that there is an integers ≥ 1 such that

π∗(Ls) ⊗ O(−E) is ample onX̃. We choose an invariant divisorD on X̃ such thatπ∗L �
O(D). ThenD − (1/s)E = D − (1/s)

∑r
i=1Ei is Q-ample and�D − (1/s)E� = D − E.

Now Corollary 2.5 givesH 1(X̃, π∗L⊗ O(−E)) = 0. �
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[La] R. LAZARSFELD, Lectures on linear series, with the assistance of Fernández del Busto, IAS/Park City
Math. Ser. 3, Complex algebraic geometry (Park City, UT, 1993), 161–219, Amer. Math. Soc. Provi-
dence, RI, 1997.

[Ma] A. M AVLYUTOV , Semi-ample hypersurfaces in toric varieties, Duke Math. J. 101 (2000), 85–116.
[MR] V. B. M EHTA AND A. RAMANATHAN , Frobenius splitting and cohomology vanishing for Schubert vari-

eties, Ann. of Math. (2) 122 (1985), 27–40.
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