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Abstract

In this paper we perform an asymptotic analysis for two different vanishing viscosity coefficients
occurring in a phase field system of Cahn–Hilliard type that was recently introduced in order to
approximate a tumor growth model. In particular, we extend some recent results obtained in [5],
letting the two positive viscosity parameters tend to zero independently from each other and
weakening the conditions on the initial data in such a way as to maintain the nonlinearities of the
PDE system as general as possible. Finally, under proper growth conditions on the interaction
potential, we prove an error estimate leading also to the uniqueness result for the limit system.

1 Introduction

In this paper we study the system of partial differential equations

α∂tµ+ ∂tϕ−∆µ = p(ϕ)(σ − γµ) (1.1)

µ = β∂tϕ−∆ϕ+ F ′(ϕ) (1.2)

∂tσ −∆σ = −p(ϕ)(σ − γµ), (1.3)

together with the boundary and initial conditions

∂νµ = ∂νϕ = ∂νσ = 0 (1.4)

µ(0) = µ0, ϕ(0) = ϕ0 and σ(0) = σ0 . (1.5)

Each of the partial differential equations (1.1)–(1.3) is meant to hold in a three-dimensional bounded
domain Ω, endowed with a smooth boundary Γ, and for every positive time, and ∂ν in (1.4) stands for
the outward normal derivative on Γ. Moreover, α and β are nonnegative parameters, strictly positive
in principle, while γ is a strictly positive constant. Furthermore, p is a nonnegative function, and F is
a nonnegative potential. Finally, µ0, ϕ0 and σ0 are given initial data defined in Ω.

The physical context of this paper is that of tumor growth dynamics. This topic has in recent years
become of big interest in applied mathematics, especially after continuum models were developed
(cf., e.g., [7, 18]). The fact that multiple constituents interact with each other made it necessary to
consider diffuse interface models based on continuum mixture theory (cf., e.g., [4, 6, 12, 15, 20, 26]).
These models consist of a Cahn–Hilliard type equation (in general with transport) containing reaction
terms that depend on the nutrient concentration (e.g. oxygen) and in turn obey an advection-reaction-
diffusion equation. Even though numerical simulations of these models have already been carried out
in several papers (cf., e.g., [7, Chapter 8] and references therein), the rigorous mathematical analysis
of the resulting PDEs systems is still very poor. To our knowledge, the first results are related to the so-
called Cahn–Hilliard–Hele–Shaw system (cf., e.g., [19,25]) in which the nutrient is neglected, while two
very recent contributions [5] and [13] (cf. also [16], where formal studies on the corresponding sharp
interface limits are performed) deal with a model recently proposed in [14] (or approximations thereof,
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see also [27]), where the velocities are set to zero and the state variables are the tumor fraction ϕ
and the nutrient-rich concentration σ. We can set ϕ ' 1 in the tumorous phase and ϕ ' −1 in
the healthy cell phase, while σ typically satisfies σ ' 1 in a nutrient-rich extracellular water phase
and σ ' 0 in a nutrient-poor extracellular water phase. Moreover, the third unknown µ is the related
chemical potential, specified by (1.2) as in the case of the viscous Cahn–Hilliard or Cahn–Hilliard
equation, depending on whether β > 0 or β = 0 (see [3, 10, 11]). In addition, in [5] the PDE system
(1.1)–(1.5) was studied for the very particular case that α = β, and the asymptotic analysis as the
coefficient α = β tends to zero was performed, yielding the convergence of subsequences to weak
solutions of the limit problem; moreover, in [13] the existence of weak solutions, as well as uniqueness
and existence of attractors, was proved directly for the limit system where α = β = 0 (cf. also the
following comments in this Introduction).

In the case α = 0, the sub-system (1.1)–(1.2) becomes of viscous or pure Cahn–Hilliard type, de-
pending on whether β > 0 or β = 0. On the other hand, in the case α > 0 the presence of the term
α∂tµ in (1.1) gives a parabolic structure to equation (1.1) with respect to µ.

We remark that the original model deals with functions F and p that are precisely related to each
other. Namely, we have

p(u) = 2p0

√
F (u) if |u| ≤ 1 and p(u) = 0 otherwise, (1.6)

where p0 is a positive constant andF (u) is the classical Cahn–Hilliard double-well free energy density.
However, this relation is useless in many aspects of the mathematical study. Moreover, one can allow
F to be even a singular potential.

As mentioned above, [5] just deals with the case α = β for the mathematical study, although the
constants α and β have a different meaning. In that paper, the existence of a unique solution to the
system (1.1)–(1.5) was proved under very general conditions on p and F , and, in the same framework,
the long-time behavior of the solution was discussed. In addition, in a more restricted setting for the
double-well potential F , [5] investigated the asymptotic behavior of the problem as the coefficient
α = β tends to zero, finding the convergence of subsequences to weak solutions of the limit problem.
Moreover, under a smoothness condition on the initial values, uniqueness for the limit problem was
proved and, consequently, also the convergence of the entire family. It must be pointed out that a
uniqueness result was proved in [13] under weaker assumptions.

In the present paper, we first extend some of the results of [5]. Namely, we let the positive parameters
α and β be independent from each other, and we weaken the assumptions on the initial data while
keeping the potential as general as possible. At the same time, we establish a general a priori estimate
that is uniform with respect to the parameters α and β. This is the starting point of possible asympotic
analyses with respect to these parameters. Then, we confine ourselves to a class of regular potentials.
In this framework, we state a convergence result as both α and β tend to zero independently, and we
prove an error estimate in terms of α and β for the difference of the solution to (1.1)–(1.5) and the one
of the limit problem. The case of just one of the parameters tending to zero is the subject of a work in
progress.

Let us express our belief that the results of the present paper are general and interesting enough
so that methods and estimates could be extended to other situations. In particular, in case of the
trivial choice p ≡ 0 (admitted by our assumption (2.3)) our system (1.1)–(1.3) decouples and (1.1)–
(1.2) reduces to a well-known phase field system of Caginalp tye which can be seen as a (doubly)
viscous approximation of the Cahn–Hilliard system obtained at the limit as α and β go to zero. To this
concern, let us quote the papers [8, 9, 22, 23], where different investigations on this kind of viscous
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approximations of Cahn–Hilliard system are performed, and point out that the results contained in [22]
are here generalized and somehow improved.

Our paper is organized as follows. In the next section, we will state the assumptions and our results
on the mathematical problem. In Section 3, we will prove the extensions mentioned above. The last
section is devoted to the asymptotic analysis and the error estimate. In the remainder of the paper, we
take γ = 1, without loss of generality.

2 Statement of the problem and results

In this section, we make precise assumptions and state our results. As in the Introduction, Ω ⊂ R3

denotes the domain where the evolution takes place and Γ is its boundary. We assume Ω to be open,
bounded, and connected, and Γ to be smooth. Moreover, the symbol ∂ν denotes the outward normal
derivative on Γ. Given a final time T , we set

Q := Ω× (0, T ) and Σ := Γ× (0, T ). (2.1)

Moreover, we set for brevity

V := H1(Ω), H := L2(Ω), and W := {v ∈ H2(Ω) : ∂νv = 0 on Γ}, (2.2)

and endow these spaces with their standard norms. For the norm in a generic Banach space X (or a
power of it), we use the symbol ‖ · ‖X with the following exceptions: we simply write ‖ · ‖p and ‖ · ‖∗
if X = Lp(Ω) or X = Lp(Q) for p ∈ [1,+∞] and X = V ∗, the dual space of V , respectively.
Finally, it is understood that H is embedded in V ∗ in the usual way, i.e., such that 〈u, v〉 =

∫
Ω
u v for

every u ∈ H and v ∈ V , where 〈 · , · 〉 stands for the duality pairing between V ∗ and V .

As far as the structure of the system is concerned, we are given two constants α and β and three
functions p, B̂ and π̂ satisfying the conditions listed below

α, β ∈ (0, 1) (2.3)

p : R→ [0,+∞) is bounded and Lipschitz continuous (2.4)

B̂ : R→ [0,+∞] is convex, proper, lower semicontinuous (2.5)

π̂ ∈ C1(R) is nonnegative, and π := π̂ ′ is Lipschitz continuous. (2.6)

We also define the potential F : R→ [0,+∞] and the graph B in R× R by

F := B̂ + π̂ and B := ∂B̂. (2.7)

We notice that if F is a C2 function then our assumptions imply that F ′′ is bounded from below.
We also remark that B is maximal monotone. In the following, we write D(B̂) and D(B) for the
effective domains of B̂ andB, respectively, and we use the same symbolB for the maximal monotone
operators induced on L2 spaces.

Remark 2.1. We notice that, among many others, the most important and typical examples of po-
tentials fit our assumptions. Namely, we can take as F the classical double-well potential and as the
logarithmic potential, which are defined by

Fcl(r) := 1
4
(r2 − 1)2 = 1

4
((r2 − 1)+)2 + 1

4
((1− r2)+)2 for r ∈ R (2.8)

Flog(r) := (1− r) ln(1− r) + (1 + r) ln(1 + r) + κ(1− r2)+ for |r| < 1, (2.9)
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where the decomposition F = B̂ + π̂ as in (2.7) is written explicitly. In (2.9), κ is a positive constant
which, depending on its value, does or does not provide a double well, and the definition of the
logarithmic part of Flog is extended by continuity to ±1 and by +∞ outside [−1, 1]. Moreover,
another possible choice is

F (r) := I(r) + ((1− r2)+)2 for r ∈ R, (2.10)

where I is the indicator function of [−1, 1], which takes the value 0 in [−1, 1] and +∞ elsewhere. For
such an irregular potential, the associated subdifferential is multi-valued, and the precise statement
of problem (1.1)–(1.5) has to introduce a selection ξ of B(u).

As far as the initial data of our problem are concerned, we assume that
√
αµ0 , σ0 ∈ H, ϕ0 ∈ V, and F (ϕ0) ∈ L1(Ω), (2.11)

while the regularity properties postulated for the solution are the following:

µ, σ ∈ H1(0, T ;V ∗) ∩ L2(0, T ;V ) (2.12)

ϕ ∈ H1(0, T ;H) ∩ L2(0, T ;W ) (2.13)

ξ ∈ L2(0, T ;H), and ξ ∈ B(u) a.e. in Q. (2.14)

We notice that (2.12)–(2.13) imply that µ, σ ∈ C0([0, T ];H) and ϕ ∈ C0([0, T ];V ). At this point,
we consider the problem of finding a quadruplet (µ, ϕ, σ, ξ) with the above regularity in order that
(µ, ϕ, σ, ξ) and the related function

R = p(ϕ)(σ − µ) (2.15)

satisfy the system

α〈∂tµ, v〉+

∫
Ω

∂tϕv +

∫
Ω

∇µ · ∇v =

∫
Ω

Rv

for every v ∈ V , a.e. in (0, T ) (2.16)

µ = β∂tϕ−∆ϕ+ ξ + π(ϕ) and ξ ∈ B(ϕ) a.e. in Q (2.17)

〈∂tσ, v〉+

∫
Ω

∇σ · ∇v = −
∫

Ω

Rv

for every v ∈ V , a.e. in (0, T ) (2.18)

µ(0) = µ0, ϕ(0) = ϕ0 and σ(0) = σ0 . (2.19)

This is a weak formulation of the boundary value problem (1.1)–(1.5) described in the Introduction. The
homogeneous Neumann boundary condition for ϕ is contained in (2.13) (see (2.2) for the definition
ofW ), while the analogous ones for µ and σ are meant in a generalized sense through the variational
equations (2.16) and (2.18). We notice once and for all that the addition of (2.16) and (2.18) yields

〈∂t
(
αµ+ ϕ+ σ

)
, v〉+

∫
Ω

∇(µ+ σ) · ∇v = 0 (2.20)

for every v ∈ V , a.e. in (0, T ). We also set for convenience

S =
√
p(ϕ) (σ − µ) . (2.21)

Our first results deal with the well-posedness of the above problem and general a priori estimates.
Namely, we have:
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Theorem 2.2. Assume (2.3)–(2.7) and (2.11). Then, for every α, β ∈ (0, 1), there exists a unique
quadruplet (µ, ϕ, σ, ξ) satisfying (2.12)–(2.14) and solving problem (2.15)–(2.19).

Theorem 2.3. Assume (2.3)–(2.7) and (2.11). Then, for some constant Ĉ that depends only on Ω, T
and the shapes of π and p, the following is true: for every α, β ∈ (0, 1), the solution (µ, ϕ, σ, ξ) to
problem (2.15)–(2.19) with the regularity specified by (2.12)–(2.14) satisfies

α1/2‖µ‖L∞(0,T ;H) + ‖∇µ‖L2(0,T ;H)

+ β1/2‖∂tϕ‖L2(0,T ;H) + ‖ϕ‖L∞(0,T ;V ) + ‖F (ϕ)‖1/2

L∞(0,T ;L1(Ω))

+ ‖σ‖H1(0,T ;V ∗)∩L∞(0,T ;H)∩L2(0,T ;V ) + ‖S‖L2(0,T ;H) + ‖R‖L2(0,T ;H)

+ ‖∂t(αµ+ ϕ)‖L2(0,T ;V ∗)

≤ Ĉ
(
α1/2‖µ0‖H + ‖ϕ0‖V + ‖F (ϕ0)‖1/2

L1(Ω) + ‖σ0‖H
)

(2.22)

as well as

‖µ‖L2(0,T ;V ) + ‖ϕ‖L2(0,T ;W ) + ‖ξ‖L2(0,T ;H)

≤ Ĉ
(
α1/2‖µ0‖H + ‖ϕ0‖V + ‖F (ϕ0)‖1/2

L1(Ω) + ‖σ0‖H + ‖µ‖L2(0,T ;H) + 1
)
. (2.23)

Thus, a uniform estimate for the left-hand side of (2.22) holds in terms of the norms of the initial
data related to (2.11), while an estimate for the left-hand side of (2.23) follows whenever a bound for
‖µ‖L2(0,T ;H) has been proved.

Remark 2.4. We note that Theorems 2.2 and 2.3 improve the results of [5], since the stronger as-
sumption made there,

µ0, ϕ0, σ0 ∈ V and F (ϕ0) ∈ L1(Ω), (2.24)

is now replaced by (2.11) (and also since just the case α = β is dealt with in [5]).

Our next results regard the asymptotic analysis as the coefficients α and β tend to zero, independently.
To this end, we restrict ourselves to a particular class of potentials. Namely, we also assume that

D(B̂) = R and |B◦(r)| ≤ C
(
B̂(r) + 1

)
for every r ∈ R, (2.25)

where B◦ is the element of B with minimal norm and C is a given positive constant. Let us note
that, for example, all polynomially growing potentials, as well as exponential functions, comply with our
assumption (2.25). Let us point out that (2.25) implies (actually, it is equivalent to) the condition

D(B̂) = R, |s| ≤ C
(
B̂(r) + 1

)
for all r ∈ R, s ∈ B(r) (2.26)

for the same constant C , as checked precisely in the next remark.

Remark 2.5. In fact, a similar equivalence holds for a more general growth condition and in the
general setting of Hilbert spaces, as we show at once. If X is a Hilbert space, B̂ : X → [0,+∞) is
convex and l.s.c. (thus continuous since it is everywhere defined), B := ∂B̂ and, for every u ∈ X ,
B◦(u) is the element of B(u) having minimal norm, the assumption

‖B◦(u)‖X ≤ Ψ(B̂(u)) for every u ∈ X ,
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where Ψ : [0,+∞)→ [0,+∞) is continuous, implies

‖ζ‖X ≤ Ψ(B̂(u)) for every u ∈ X and every ζ ∈ B(u).

Indeed, for arbitrary u ∈ X , ζ ∈ B(u) and ε > 0, we have(
B◦(u+ εζ)− ζ, (u+ εζ)− u

)
≥ 0, whence ‖ζ‖X ≤ ‖B

◦(u+ εζ)‖X . (2.27)

By applying our assumption to u+ εζ , we deduce that

‖ζ‖X ≤ Ψ(B̂(u+ εζ)).

By taking ε→ 0 and owing to the continuity of Ψ ◦ B̂ , we conclude.

Now we are ready to state our result on asymptotics.

Theorem 2.6. Assume (2.3)–(2.7) and (2.25) on the structure and (2.11) on the initial data. Moreover,
let (µα,β, ϕα,β, σα,β, ξα,β) be the unique solution to problem (2.15)–(2.19) given by Theorem 2.2.
Then, we have that there exists a quadruplet (µ, ϕ, σ, ξ) such that

µα,β → µ weakly in L2(0, T ;V ) (2.28)

ϕα,β → ϕ weakly star in L∞(0, T ;V ) ∩ L2(0, T ;W ) (2.29)

σα,β → σ weakly in H1(0, T ;V ∗) ∩ L2(0, T ;V ) (2.30)

∂t(αµα,β + ϕα,β)→ ∂tϕ weakly in L2(0, T ;V ∗) (2.31)

ξα,β → ξ weakly in L2(0, T ;H) (2.32)

at least for a subsequence. Moreover, every limiting quadruplet (µ, ϕ, σ, ξ) satisfies

〈∂tϕ, v〉+
∫

Ω
∇µ · ∇v =

∫
Ω
Rv ∀ v ∈ V , a.e. in (0, T ) (2.33)

µ = −∆ϕ+ ξ + π(ϕ), ξ ∈ B(ϕ) a.e. in Q (2.34)

〈∂tσ, v〉+
∫

Ω
∇σ · ∇v = −

∫
Ω
Rv ∀ v ∈ V , a.e. in (0, T ) (2.35)

ϕ(0) = ϕ0 and σ(0) = σ0 in Ω (2.36)

where R is defined by (2.15), accordingly.

The above result generalizes the analogous [5, Thm. 2.6] as far as the assumptions on the initial data
are concerned (and also since just the case α = β was considered there). Moreover, in [5, Thm. 2.6],
even uniqueness for the solution to the limit problem was proved. However, also for this point, stronger
conditions on the initial data are assumed in order that the solution to the limit problem is rather
smooth. Here, we can consider the natural regularity requirements, i.e.,

µ ∈ L2(0, T ;V ) (2.37)

ϕ ∈ H1(0, T ;V ∗) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ) (2.38)

σ ∈ H1(0, T ;V ∗) ∩ L2(0, T ;V ) ⊂ C0([0, T ];H) . (2.39)

For uniqueness in this framework, we can quote the even more general result [13, Thm. 2]. However,
uniqueness also follows from the error estimate we present at once (see the forthcoming Remark 4.1
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for details). In order to state our last result we need to reinforce the assumptions we made on the
potential F ; namely, we assume

D(B̂) = R and F = B̂ + π̂ is a C2 function on R (2.40)

|F (r)| ≤ C0(|r|6 + 1), |F ′(r)| ≤ C1(|r|5 + 1), and |F ′′(r)| ≤ C2(|r|4 + 1). (2.41)

Although the third condition in (2.41) implies the other two, we have written all of them for convenience.
We also remark that the classical potential (2.8) fulfils such assumptions. Furthermore, we notice that
(2.41) is slightly more general than the analogous assumption made in [5, Thm. 2.6]. Finally, we
can observe that the exponents in (2.41) are related to the dimension of Ω and the related Sobolev
embeddings. Here is our last result.

Theorem 2.7. Assume (2.3)–(2.7) and (2.40)–(2.41) on the structure and (2.11) on the initial data.
Then, with the notation of Theorem 2.6, the estimate

‖ϕα,β − ϕ‖L∞(0,T ;V ∗)∩L2(0,T ;V ) + ‖µα,β − µ‖L2(0,T ;V ∗)

+‖σα,β − σ‖L∞(0,T ;V ∗)∩L2(0,T ;H) ≤ C
(
α1/2 + β1/2

)
(2.42)

holds true with a constant C that depends only on Ω, T , the structure of the system, and the norms
of the initial data related to assumptions (2.11), but not on α nor on β.

The rest of the section is devoted to list some facts. We make repeated use of the notation

Qt := Ω× (0, t) for t ∈ [0, T ] (2.43)

and of well-known inequalities, namely, of the elementary Young inequality

ab ≤ δa2 +
1

4δ
b2 for every a, b ≥ 0 and δ > 0 (2.44)

as well as of Hölder’s inequality and its consequences. Moreover, as Ω is bounded and smooth, we
can owe to the Poincaré and Sobolev type inequalities, namely,

‖v‖V ≤ C
(
‖∇v‖H +

∣∣∫
Ω
v
∣∣) for every v ∈ V (2.45)

V ⊂ Lq(Ω) and ‖v‖q ≤ C‖v‖V for every v ∈ V and 1 ≤ q ≤ 6 (2.46)

Lq(Ω) ⊂ V ∗ and ‖v‖∗ ≤ C‖v‖q for every v ∈ Lq(Ω) and q ≥ 6/5 . (2.47)

In (2.45)–(2.47), C only depends on Ω. Finally, we recall the interpolation inequality

‖v‖2
H ≤ ‖v‖V ‖v‖∗ for every v ∈ V , (2.48)

which trivially follows from the identity ‖v‖2
H = 〈v, v〉 for every v ∈ V .

3 Proofs of Theorems 2.2 and 2.3

We start proving Theorem 2.3 in the following form: (2.22)–(2.23) hold for every α and β and every
solution to problem (2.15)–(2.19) satisfying the regularity specified by (2.12)–(2.14). We do not know
anything about well-posedness yet, indeed.
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First a priori estimate. We test (2.16) and (2.18) by µ and σ, respectively, and integrate over (0, t),
where t ∈ (0, T ) is arbitrary. At the same time, we multiply (2.17) by −∂tϕ and integrate over Qt.
Then, we add the resulting equalities to each other, obtaining

α

2

∫
Ω

|µ(t)|2 +

∫
Qt

∂tϕµ+

∫
Qt

|∇µ|2

−
∫
Qt

µ ∂tϕ+ β

∫
Qt

|∂tϕ|2 +
1

2

∫
Ω

|∇ϕ(t)|2 +

∫
Ω

F (ϕ(t))

+
1

2

∫
Ω

|σ(t)|2 +

∫
Qt

|∇σ|2 +

∫
Qt

R(σ − µ)

=
α

2

∫
Ω

|µ0|2 +
1

2

∫
Ω

|∇ϕ0|2 +

∫
Ω

F (ϕ0) +
1

2

∫
Ω

|σ0|2 .

Clearly, two terms cancel out. Moreover, F is nonnegative by assumptions (2.5)–(2.6). Finally, we have
R(σ − µ) = |S|2 and |R| ≤ |S| sup

√
p a.e. in Q with the notation (2.21). Therefore, with the help

of (2.4) we immediately deduce

α1/2‖µ‖L∞(0,T ;H) + ‖∇µ‖L2(0,T ;H)

+ β1/2‖∂tϕ‖L2(0,T ;H) + ‖∇ϕ‖L∞(0,T ;H) + ‖F (ϕ)‖1/2

L∞(0,T ;L1(Ω))

+ ‖σ‖L∞(0,T ;H)∩L2(0,T ;V ) + ‖S‖L2(0,T ;H) + ‖R‖L2(0,T ;H)

≤ C
(
α1/2‖µ0‖H + ‖∇ϕ0‖H + ‖F (ϕ0)‖1/2

L1(Ω) + ‖σ0‖H
)

(3.1)

for some constant C that depends only on p. Thus, in order to prove (2.22), we have to complete the
full norm of ϕ and estimate the terms that are missing in (3.1).

Second a priori estimate. We estimate the mean value of ϕ by testing (2.20) by v = 1. We obtain,
for every t ∈ [0, T ],∫

Ω

(
αµ(t) + ϕ(t) + σ(t)

)
=

∫
Ω

(
αµ0 + ϕ0 + σ0

)
≤ |Ω|1/2‖αµ0 + ϕ0 + σ0‖H

and deduce that (since α < 1)∣∣∣∫
Ω

ϕ(t)
∣∣∣ ≤ CΩ

(
α1/2‖µ0‖H + ‖ϕ0‖H + ‖σ0‖H + α1/2‖µ(t)‖H + ‖σ(t)‖H

)
, (3.2)

where CΩ depends only on Ω.

Third a priori estimate. We test (2.18), written at the time t, with v(t), where v is arbitrary in
L2(0, T ;V ). Then we integrate over (0, T ) with respect to t and obtain∣∣∣∫ T

0

〈∂tσ(t), v(t)〉 dt
∣∣∣ ≤ (‖∇σ‖L2(0,T ;H) + ‖R‖L2(0,T ;H)

)
‖v‖L2(0,T ;V ) .

This means that
‖∂tσ‖L2(0,T ;V ∗) ≤ ‖∇σ‖L2(0,T ;H) + ‖R‖L2(0,T ;H) . (3.3)

Fourth a priori estimate. Similarly, we test (2.20), written at the time t, by v(t), where v is arbitrary
in L2(0, T ;V ). We obtain∣∣∣∫ T

0

〈∂t(αµ+ ϕ)(t), v(t)〉 dt
∣∣∣ ≤ ∣∣∣∫ T

0

〈∂tσ(t), v(t)〉 dt
∣∣∣+ ‖∇(µ+ σ)‖L2(0,T ;H)‖v‖L2(0,T ;V ) ,
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whence immediately

‖∂t(αµ+ ϕ)‖L2(0,T ;V ∗) ≤ ‖∂tσ‖L2(0,T ;V ∗) + ‖∇µ‖L2(0,T ;H) + ‖∇σ‖L2(0,T ;H). (3.4)

First conclusion. We combine (3.1)–(3.4) with the Poincaré inequality (2.45) applied to ϕ and im-
mediately deduce (2.22) with a constant Ĉ that depends only on p, Ω and T .

Fifth a priori estimate and conclusion. By estimate (2.22) and the Lipschitz continuity of π, we
deduce that

‖π(ϕ)‖L2(0,T ;H) ≤ Ĉ
(
α1/2‖µ0‖H + ‖ϕ0‖V + ‖F (ϕ0)‖1/2

L1(Ω) + ‖σ0‖H + 1
)
, (3.5)

with the same Ĉ , without loss of generality, provided that we allow Ĉ to depend on π as well. Now, we
write (2.17) in the form

−∆ϕ+ ξ = f := −β∂tϕ− π(ϕ) + µ

and observe that (2.22), (3.5) and β < 1 imply

‖f‖L2(0,T ;H) ≤ Ĉ
(
α1/2‖µ0‖H + ‖ϕ0‖V + ‖F (ϕ0)‖1/2

L1(Ω) + ‖σ0‖H + 1 + ‖µ‖L2(0,T ;H)

)
,

with the same Ĉ once more, without loss of generality. If M denotes the right-hand side of this in-
equality, a standard argument (formally multiply by −∆ϕ) shows that both ∆ϕ and ξ are bounded in
L2(Q) by a multiple of M . Therefore, the same holds for ‖ϕ‖L2(0,T ;W ) by elliptic regularity. Finally,
the full norm ‖µ‖L2(0,T ;V ) is is equivalent to the sum of ‖∇µ‖L2(0,T ;H) and ‖µ‖L2(0,T ;H). Thus, (2.23)
follows and the proof of Theorem 2.3 is complete.

Proof of Theorem 2.2. As far as uniqueness is concerned, we can refer to the proof of the unique-
ness part of [5, Thm. 2.2] since it holds under the present assumptions. In order to prove the existence
of a solution, we approximate the data µ0 and σ0 by functions µ0,ε and σ0,ε satisfying

µ0,ε, σ0,ε ∈ V for ε > 0, µ0,ε → µ0 and σ0,ε → σ0 in H as ε ↘ 0.

Then, for every ε > 0, the condition (2.24) holds for the approximating data so that the assumptions
of [5, Thm. 2.2] are fulfilled. Thus, the problem (2.15)–(2.19) has a unique solution (µε, ϕε, σε, ξε)
with Rε defined by (2.15) accordingly. Moreover, such a solution must satisfy (2.22)–(2.23) due to the
above proof. As α and β are fixed, such estimates provide uniform boundedness with respect to ε
even for µε in L∞(0, T ;H) and ∂tϕε in L2(0, T ;H). Therefore, (2.23) implies that µε, ϕε and ξε
are bounded in L2(0, T ;V ), H1(0, T ;H)∩L2(0, T ;W ) and L2(0, T ;H), respectively. Finally, the
estimate for the time derivative of αµε + ϕε derived from (2.22) and the estimate for ∂tϕε mentioned
before imply that ∂tµε is bounded in L2(0, T ;V ∗). Hence, we have

µε → µ weakly star in H1(0, T ;V ∗) ∩ L2(0, T ;V )

ϕε → ϕ weakly in H1(0, T ;H) ∩ L2(0, T ;W )

σε → σ weakly star in H1(0, T ;V ∗) ∩ L2(0, T ;V )

ξε → ξ and Rε → R weakly in L2(0, T ;H)

as ε↘ 0, at least for a subsequence. This implies, in particular, that the initial conditions for (µ, ϕ, σ)
are satisfied. Moreover, the above convergence for ϕε and the Aubin-Lions lemma (see, e.g., [17,
Thm. 5.1, p. 58]) imply that

µε → µ, ϕε → ϕ, σε → σ strongly in L2(0, T ;H).
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Then, π(ϕε) and p(ϕε) converge to π(ϕ) and p(ϕ), respectively, strongly in L2(0, T ;H). Therefore,
we can identify the limits of the nonlinear terms ξε and Rε. For the former, we can apply, e.g., [1,
Cor. 2.4, p. 41] and conclude that ξ ∈ B(ϕ) a.e. in Q. For the latter we note that Rε converges to
p(ϕ)(σ − µ) strongly in L1(Q), whence (2.15) follows. At this point, we can write the integrated–in–
time version of problem (2.16)–(2.18) for the approximating solution with time dependent test functions
and take the limit as ε tends to zero. We obtain the analogous systems for (µ, ϕ, σ, ξ), and this implies
(2.16)–(2.18) for such a quadruplet. This completes the proof of Theorem 2.2.

4 Asymptotics

This section is devoted to the proof of Theorems 2.6 and 2.7. In order to simplify the notation, we follow
a general rule in performing our a priori estimates. The small-case italic c without any subscript stands
for different constants, that may only depend on Ω, T , the shape of the nonlinearities and the norms of
the initial data related to assumption (2.11). A notation like cδ signals a constant that depends also on
the parameter δ. We point out that c and cδ do not depend on α and β and that their meaning might
change from line to line and even in the same chain of inequalities. On the contrary, those constants
we need to refer to are always denoted by different symbols, e.g., by a capital letter.

Proof of Theorem 2.6. We follow the argument done for [5, Thm. 2.6] rather closely, but we have to
modify the types of convergence since our assumptions are different and more general. We start from
(2.22)–(2.23), written for the solution (µα,β, ϕα,β, σα,β, ξα,β), and improve the latter by estimating the
norm of µα,β on its right-hand side. However, we omit the subscripts α and β for a while. Thanks to
(2.17) and (2.26), we have that |ξ| ≤ C

(
B̂(ϕ) + 1

)
a.e. in Q. Then, by integrating over Ω we obtain∫

Ω

|ξ(t)| ≤ C

∫
Ω

(
B̂(ϕ(t)) + 1

)
for a.a. t ∈ (0, T ). (4.1)

At this point, we can estimate the mean value of µ on account of (2.6) and (2.7). Indeed, by just
integrating (2.17) over Ω, we deduce that∣∣∣∫

Ω

µ(t)
∣∣∣ =

∣∣∣∫
Ω

(
β∂tϕ+ ξ + π(ϕ)

)
(t)
∣∣∣

≤ β‖∂tϕ(t)‖1 + c
(
‖B̂(ϕ(t))‖1 + ‖ϕ(t)‖1 + 1

)
≤ c β1/2‖∂tϕ(t)‖H + c

(
‖F (ϕ(t))‖1 + ‖ϕ(t)‖H + 1

)
(4.2)

for a.a. t ∈ (0, T ), beacause of the Lipschitz continuity of π and the nonnegativity of π̂. Then, (2.22)
implies that the function t 7→

∣∣∫
Ω
µ(t) dt

∣∣ is bounded in L2(0, T ). By combining this with (2.22) and
the Poincaré inequality (2.45), we derive that µ is bounded in L2(0, T ;V ). Hence, recalling estimates
(2.22)–(2.23) it turns out that the convergences (2.28)–(2.32) and a convergence for Rα,β hold, at
least for a subsequence. For the reader’s convenience, we write this conclusion explicitly, as well as
the consequences we are interested in. These are obtained by means of strong compactness results
(see, e.g., [24, Sect. 8, Cor. 4]), the Sobolev inequality (2.46) and the Lipschitz continuity of π and p.
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We have

µα,β → µ weakly in L2(0, T ;V ) ∩ L2(0, T ;L6(Ω))

ϕα,β → ϕ weakly star in L∞(0, T ;V ) ∩ L2(0, T ;W )

σα,β → σ weakly in H1(0, T ;V ∗) ∩ L2(0, T ;V ) ∩ L2(0, T ;L6(Ω))

ξα,β → ξ and Rε → R weakly in L2(0, T ;H)

αµα,β → 0 strongly in L∞(0, T ;H) ∩ L2(0, T ;V ) ∩ L2(0, T ;L6(Ω))

β∂tϕα,β → 0 strongly in L2(0, T ;H)

∂t(αµα,β + ϕα,β)→ ∂tϕ weakly in L2(0, T ;V ∗)

αµα,β + ϕα,β → ϕ strongly in C0([0, T ];V ∗) ∩ L2(0, T ;H)

π(ϕα,β)→ π(ϕ) and p(ϕα,β)→ p(ϕ) strongly in L2(0, T ;H).

Hence, we infer that ϕ and σ satisfy the initial conditions (2.36). Moreover, we deduce that ξ ∈ B(ϕ)
(apply, e.g., [2, Prop. 2.5, p. 27]) and thatRα,β also converges to p(ϕ)(σ−µ) weakly inL1(0, T ;Lp(Ω))
for some p ∈ (1, 2): consequently, we have R = p(ϕ)(σ − µ).

Finally, we take the limit in the integrated–in–time version of problem (2.16)–(2.18) for (µα,β, ϕα,β, σα,β, ξα,β)
with time-dependent test functions. We obtain the analogue for the system (2.33)–(2.35). Finally, as
the solution of the limit problem is unique by Theorem 4.1, the convergences we have obtained for a
subsequence hold for the whole family. This completes the proof of Theorem 2.6. �

Proof of Theorem 2.7. As we use some ideas of [13], it is convenient to rewrite the equations
(2.16) and (2.18) as abstract equations in the framework of the Hilbert triplet (V,H, V ∗) related to an
invertible operator. To this end, we introduce the Riesz isomorphism A : V → V ∗ associated to the
standard scalar product of V , that is

〈Au, v〉 := (u, v)V =

∫
Ω

(
∇u · ∇v + uv

)
for u, v ∈ V . (4.3)

We notice that Au = −∆u+ u if u ∈ W and that the restriction of A to W is an isomorphism from
W onto H . We also remark that

〈Au,A−1v∗〉 = 〈v∗, u〉 for every u ∈ V and v∗ ∈ V ∗ (4.4)

〈u∗,A−1v∗〉 = (u∗, v∗)∗ for every u∗, v∗ ∈ V ∗, (4.5)

where ( · , · )∗ is the dual scalar product in V ∗ associated with the standard one in V , and recall that
〈v∗, u〉 =

∫
Ω
v∗u if v∗ ∈ H . As a consequence of (4.5), we have

d

dt
‖v∗‖2

∗ = 2〈∂tv∗,A−1v∗〉 for every v∗ ∈ H1(0, T ;V ∗). (4.6)

In view of the regularity conditions (2.12)–(2.14) and (2.37)–(2.39), we rewrite (2.16)–(2.18) and
(2.33)–(2.35) for the solution (µα,β, ϕα,β, σα,β) to (2.15)–(2.19) and the one of the limit problem,
respectively. If we term the latter (µ, ϕ, σ), we have

α∂tµα,β + ∂tϕα,β + Aµα,β = Rα,β + µα,β (4.7)

µα,β = β∂tϕα,β + Aϕα,β + F ′(ϕα,β)− ϕα,β (4.8)

∂tσα,β + Aσα,β = −Rα,β + σα,β (4.9)

∂tϕ+ Aµ = R + µ (4.10)

µ = Aϕ+ F ′(ϕ)− ϕ (4.11)

∂tσ + Aσ = −R + σ, (4.12)
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where Rα,β and R are defined by (2.15) according to the equations we are considering. All these
equations are meant in V ∗ a.e. in (0, T ). However, (4.8) and (4.11) also hold a.e. in Q. Moreover,
the solutions have to satisfy the initial conditions (2.19) and (2.36), respectively. Now, we take the
differences between (4.7)–(4.9) and (4.10)–(4.12) at time s ∈ (0, T ) and test them by

A−1(αµα,β + ϕ)(s), −(αµα,β + ϕ)(s), and A−1σ(s),

respectively, where we have set for convenience

µ := µα,β − µ, ϕ := ϕα,β − ϕ, σ := σα,β − σ, and R := Rα,β −R.

Next, we sum up and integrate over (0, t) with respect to s, for an arbitrary t ∈ (0, T ). We obtain
(by omitting the evaluation at s inside integrals, for brevity)∫ t

0

〈∂t(αµα,β + ϕ),A−1(αµα,β + ϕ)〉 ds+

∫ t

0

〈Aµ,A−1(αµα,β + ϕ)〉 ds

−
∫ t

0

〈µ, αµα,β + ϕ〉 ds+

∫ t

0

〈β∂tϕα,β, αµα,β + ϕ〉 ds+

∫ t

0

〈Aϕ, αµα,β + ϕ〉 ds

+

∫ t

0

〈F ′(ϕα,β)− F ′(ϕ), αµα,β + ϕ〉 ds

+

∫ t

0

〈∂tσ,A−1σ〉 ds+

∫ t

0

〈Aσ,A−1σ〉 ds

=

∫ t

0

〈R,A−1(αµα,β + ϕ)〉 ds+

∫ t

0

〈µ,A−1(αµα,β + ϕ)〉 ds+

∫ t

0

〈ϕ, αµα,β + ϕ〉 ds

−
∫ t

0

〈R,A−1σ〉 ds+

∫ t

0

〈σ,A−1σ〉 ds .

For the reader’s convenience, we just rearrange and use the decomposition F ′ = B + π. We have∫ t

0

〈∂t
(
αµα,β + ϕ

)
,A−1(αµα,β + ϕ)〉 ds

+

∫ t

0

〈Aµ,A−1(αµα,β + ϕ)〉 ds−
∫ t

0

〈µ, αµα,β + ϕ〉 ds

+

∫ t

0

〈Aϕ, ϕ〉 ds+

∫ t

0

〈B(ϕα,β)−B(ϕ), ϕ〉 ds

+

∫ t

0

〈∂tσ,A−1σ〉 ds+

∫ t

0

〈Aσ,A−1σ〉 ds

=

∫ t

0

〈R,A−1(αµα,β + ϕ− σ)〉 ds−
∫ t

0

〈β∂tϕα,β, αµα,β + ϕ〉 ds−
∫ t

0

〈Aϕ, αµα,β〉 ds

+

∫ t

0

〈µ,A−1(αµα,β + ϕ)〉 ds−
∫ t

0

〈π(ϕα,β)− π(ϕ), ϕ〉 ds

−
∫ t

0

〈F ′(ϕα,β)− F ′(ϕ), αµα,β〉 ds+

∫ t

0

〈ϕ, αµα,β + ϕ〉 ds+

∫ t

0

〈σ,A−1σ〉 ds.

At this point, we account for (4.3)–(4.6) and observe that the second and third terms on the left-hand
side cancel out. Finally, owing to the initial conditions (αµα,β + ϕ)(0) = αµ0 and σ(0) = 0, we
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deduce

1

2
‖(αµα,β + ϕ)(t)‖2

∗ +

∫ t

0

‖ϕ‖2
V ds+

∫
Qt

(
B(ϕα,β)−B(ϕ)

)
ϕ

+
1

2
‖σ(t)‖2

∗ +

∫
Qt

|σ|2

=
1

2
‖αµ0‖2

∗ +

∫ t

0

(
R,αµα,β + ϕ− σ

)
∗ ds−

∫ t

0

〈β∂tϕα,β, αµα,β + ϕ〉 ds

−
∫ t

0

(
ϕ, αµα,β

)
V
ds+

∫ t

0

(
µ, αµα,β + ϕ

)
∗ ds−

∫
Qt

(
π(ϕα,β)− π(ϕ)

)
ϕ

−
∫
Qt

(
F ′(ϕα,β)− F ′(ϕ)

)
αµα,β +

∫
Qt

ϕ(αµα,β + ϕ) +

∫ t

0

‖σ‖2
∗ ds . (4.13)

All of the terms on the left-hand side are nonnegative, the third one by monotonicity. Now, we treat
each integral on the right-hand side, separately. In the sequel, δ is a positive parameter whose
value will be chosen at the end of the procedure. We first observe that (2.22) holds for the solution
(µα,β, ϕα,β, σα,β) and that Theorem 2.6 improves (2.23) for such a solution. Indeed, the restricted
setting of regular potentials satisfying (2.41) led to (4.2). So, as we have seen in the previous proof,
(2.22) and (2.23) imply

‖µα,β‖L2(0,T ;V ) + ‖ϕα,β‖L2(0,T ;W ) ≤ c. (4.14)

Now, we prepare estimates for ‖µ‖∗ and ‖R‖∗ a.e. in (0, T ). Again for simplicity, in performing them,
we omit writing the evaluation point. From the mean value theorem and the third assumption in (2.41)
we easily derive that

|F ′(ϕα,β)− F ′(ϕ)| ≤ c|ϕ|(|ϕα,β|4 + |ϕ|4 + 1) a.e. in Q.

Therefore, by the Hölder and Sobolev inequalities, we infer that

‖F ′(ϕα,β)− F ′(ϕ)‖6/5 ≤ c ‖ϕ‖6

(
‖ϕ4

α,β‖3/2 + ‖ϕ 4‖3/2 + 1
)

= c ‖ϕ‖6

(
‖ϕα,β‖4

6 + ‖ϕ‖4
6 + 1

)
≤ c‖ϕ‖V

(
‖ϕα,β‖4

V + ‖ϕ‖4
V + 1

)
≤ c‖ϕ‖V , (4.15)

the last inequality following from estimate (2.22) for ϕα,β and the regularity (2.38) of ϕ. Taking the
difference between (4.8) and (4.11) and using the dual Sobolev inequality (2.47), we deduce that

‖µ‖∗ = ‖β∂tϕα,β + Aϕ+ F ′(ϕα,β)− F ′(ϕ)− ϕ‖∗
≤ β‖∂tϕα,β‖∗ + ‖ϕ‖V + c‖F ′(ϕα,β)− F ′(ϕ)‖6/5 + ‖ϕ‖∗
≤ c
(
β‖∂tϕα,β‖∗ + ‖ϕ‖V

)
≤ c β1/2 + c ‖ϕ‖V , (4.16)

where the last inequality follows from (2.22). In order to estimate ‖R‖∗, we first observe that the
boundedness and the Lipschitz continuity of p and the Sobolev inequality (applied to∇ϕ and the test
function v ∈ V ) imply that, for every v ∈ V ,

‖p(ϕ)v‖V ≤ ‖p(ϕ)v‖H + ‖∇p(ϕ) v‖H + ‖p(ϕ)∇v‖H
≤ c‖v‖H + c‖∇ϕ‖4 ‖v‖4 + c‖∇v‖H ≤ c(‖ϕ‖W + 1)‖v‖V .
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Hence, we have for every v ∈ V the estimate∫
Ω

Rv =

∫
Ω

(
p(ϕα,β)(σα,β − µα,β)− p(ϕ)(σ − µ)

)
v

≤
∫

Ω

|p(ϕα,β)− p(ϕ)| |σα,β − µα,β| |v|+
∣∣∣∫

Ω

p(ϕ)(σ − µ) v
∣∣∣

≤ c‖ϕ‖3 ‖σα,β − µα,β‖3‖v‖3 + ‖σ − µ‖∗ ‖p(ϕ) v‖V
≤ c‖ϕ‖V ‖σα,β − µα,β‖V ‖v‖V + c‖σ − µ‖∗ (‖ϕ‖W + 1)‖v‖V .

Therefore, we can estimate ‖R‖∗ a.e. in (0, T ), also owing to (4.16), in this way:

‖R‖∗ ≤ c‖ϕ‖V ‖σα,β − µα,β‖V + c‖σ − µ‖∗ (‖ϕ‖W + 1)

≤ c‖ϕ‖V ‖σα,β − µα,β‖V + c
(
‖σ‖∗ + β1/2 + ‖ϕ‖V

)
(‖ϕ‖W + 1)

≤ c ψα,β(‖ϕ‖V + ‖σ‖∗) + c β1/2 ψ ,

where ψα,β, ψ : (0, T )→ R are defined by

ψα,β := ‖σα,β − µα,β‖V + ‖ϕ‖W + 1 and ψ := ‖ϕ‖W + 1, a.e. in (0, T ) .

Coming back to the right-hand side of (4.13), we can treat the first term as follows:∫ t

0

(
R,αµα,β + ϕ− σ

)
∗ ds ≤

∫ t

0

‖R‖∗ ‖αµα,β + ϕ− σ‖∗ ds

≤
∫ t

0

(
cψα,β(‖ϕ‖V + ‖σ‖∗) + cβ1/2 ψ

)(
‖αµα,β + ϕ‖∗ + ‖σ‖∗

)
ds

≤ δ

∫ t

0

‖ϕ‖2
V ds+ β

∫ T

0

|ψ|2 ds+ cδ

∫ t

0

ψ2
α,β

(
‖αµα,β + ϕ‖2

∗ + ‖σ‖2
∗
)
ds . (4.17)

We observe at once that the regularity (2.38) for ϕ and estimates (2.22) for σα,β and (4.14) for µα,β
imply that ψ ∈ L2(0, T ) and that ψα,β is bounded in L2(0, T ), so that ψ2

α,β is bounded in L1(0, T ).
This will allow us to apply the Gronwall lemma. Now, we estimate the next term on the right-hand side
of (4.13). Using (2.22), we see that

−
∫ t

0

〈β∂tϕα,β, αµα,β + ϕ〉 ds

≤ α2 ‖µα,β‖2
L2(0,T ;H) + δ

∫ t

0

‖ϕ‖2
H ds+ cδ β

2 ‖∂tϕα,β‖2
L2(0,T ;H)

≤ cα + δ

∫ t

0

‖ϕ‖2
V ds+ cδ β . (4.18)

Next, we have

−
∫ t

0

(
ϕ, αµα,β

)
V
ds ≤ δ

∫ t

0

‖ϕ‖2
V ds+ cδ α

2 (4.19)

thanks to (4.14) for µα,β , as well as, by (4.16),∫ t

0

(
µ, αµα,β + ϕ

)
∗ ds ≤ c

∫ t

0

(
β1/2 + ‖ϕ‖V

)
‖αµα,β + ϕ‖∗ ds

≤ δ

∫ t

0

‖ϕ‖2
V + β + cδ

∫ t

0

‖αµα,β + ϕ‖2
∗ ds . (4.20)
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Moreover, by using the Lipschitz continuity of π, the interpolation inequality (2.48) and (4.14) for µα,β
once more, we can write

−
∫
Qt

(
π(ϕα,β)− π(ϕ)

)
ϕ ≤ c

∫
Qt

|ϕ|2 ≤ c

∫ t

0

‖ϕ‖V ‖ϕ‖∗ ds

≤ δ

∫ t

0

‖ϕ‖2
V ds+ cδ

∫ t

0

‖ϕ‖2
∗ ds

≤ δ

∫ t

0

‖ϕ‖2
V ds+ cδ

∫ t

0

‖αµα,β + ϕ‖2
∗ ds+ cδα

2 . (4.21)

The next term to deal with is the one involving F ′. We use (4.15), the Hölder, Sobolev and Young
inequalities, and the estimate (4.14) for µα,β . Thus, we have

−
∫
Qt

(
F ′(ϕα,β)− F ′(ϕ)

)
αµα,β ≤

∫ t

0

‖F ′(ϕα,β)− F ′(ϕ)‖6/5 ‖αµα,β‖6 ds

≤ c

∫ t

0

‖ϕ‖V α‖µα,β‖V ds ≤ δ

∫ t

0

‖ϕ‖2
V ds+ cδ α

2 . (4.22)

Finally, the last integral on the right-hand side of (4.13) does not need any treatment and the preceding
term can be estimated in this way:∫ t

0

〈ϕ, αµα,β + ϕ〉 ds ≤ δ

∫ t

0

‖ϕ‖2
V ds+ cδ

∫ t

0

‖αµα,β + ϕ‖2
∗ ds. (4.23)

At this point, we combine (4.13) and the list (4.17)–(4.23) of estimates we have obtained. Then, we
choose δ small enough, recall that ψ ∈ L2(0, T ) and that ψ2

α,β is bounded in L1(0, T ), and apply
the Gronwall lemma in the form [2, Lemma A.4, p. 156]. We obtain

1

2
‖(αµα,β + ϕ)(t)‖2

∗ +

∫ t

0

‖ϕ‖2
V ds+

1

2
‖σ(t)‖2

∗ +

∫
Qt

|σ|2 ≤ c(α + β)

for every t ∈ [0, T ]. As ‖αµα,β(t)‖2
∗ ≤ cα for every t ∈ [0, T ] by (2.22), the above inequality implies

‖ϕ‖L∞(0,T ;V ∗)∩L2(0,T ;V ) + ‖σ‖L∞(0,T ;V ∗)∩L2(0,T ;H) ≤ C
(
α1/2 + β1/2

)
. (4.24)

Now, we take the differences of equations (4.8) and (4.11) and estimate the L2(0, T ;V ∗) norm of it.
With the help of (2.22) and (4.15) it is straightforward to infer that

‖µ‖L2(0,T ;V ∗) ≤ c β ‖∂tϕα,β‖L2(0,T ;H) + c ‖ϕ‖L2(0,T ;V )

+ c ‖F ′(ϕα,β)− F ′(ϕ)‖L2(0,T ;L6/5(Ω)) + ‖ϕ‖L2(0,T ;V ∗)

≤ c β1/2 + c ‖ϕ‖L2(0,T ;V ). (4.25)

Hence, in view of (4.24) and (4.25) we finally obtain the estimate (2.42), where one has to read ϕ, µ
and σ in place of ϕ, µ and σ, respectively, due to the change of notations within this proof. �

Remark 4.1. By going through the above proof, one sees that uniqueness for the limit problem (2.33)–
(2.36) has been never used, that is, the following formulation of Theorem 2.7 has been proved: the
error estimate (2.42) holds for every solution (µ, ϕ, σ) of the limit problem satisfying the regularity
requirements (2.37)–(2.39). This implies the uniqueness for such a solution. Indeed, if (µi, ϕi, σi),
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i = 1, 2, are two solutions of the limit problem, by writing (2.42) for both of them and using unique-
ness for the solution (ϕα,β, µα,β, σα,β), one immediately derives

‖ϕ1 − ϕ2‖L∞(0,T ;V ∗)∩L2(0,T ;V ) + ‖µ1 − µ2‖L2(0,T ;V ∗)

+ ‖σ1 − σ2‖L∞(0,T ;V ∗)∩L2(0,T ;H) ≤ C
(
α1/2 + β1/2

)
for every α, β ∈ (0, 1), whence ϕ1 = ϕ2, µ1 = µ2 and σ1 = σ2. Then, by comparison in (2.34), it
follows that ξ1 = ξ2, as well.
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