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Abstract

We consider the Cauchy problem for a strictly hyperbolic, n × n system

in one-space dimension: ut + A(u)ux = 0, assuming that the initial data have

small total variation.

We show that the solutions of the viscous approximations ut + A(u)ux =

εuxx are defined globally in time and satisfy uniform BV estimates, indepen-

dent of ε. Moreover, they depend continuously on the initial data in the L1

distance, with a Lipschitz constant independent of t, ε. Letting ε → 0, these

viscous solutions converge to a unique limit, depending Lipschitz continuously

on the initial data. In the conservative case where A = Df is the Jacobian

of some flux function f : R
n �→ R

n, the vanishing viscosity limits are pre-

cisely the unique entropy weak solutions to the system of conservation laws

ut + f(u)x = 0.

1. Introduction

The Cauchy problem for a system of conservation laws in one space di-

mension takes the form

ut + f(u)x = 0,(1.1)

u(0, x) = ū(x).(1.2)

Here u = (u1, . . . , un) is the vector of conserved quantities, while the compo-

nents of f = (f1, . . . , fn) are the fluxes. We assume that the flux function

f : R
n �→ R

n is smooth and that the system is strictly hyperbolic; i.e., at each

point u the Jacobian matrix A(u) = Df(u) has n real, distinct eigenvalues

(1.3) λ1(u) < · · · < λn(u).
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One can then select bases of right and left eigenvectors ri(u), li(u), normalized

so that

(1.4) |ri| ≡ 1, li · rj =

{
1 if i = j,

0 if i �= j.

Several fundamental laws of physics take the form of a conservation equa-

tion. For the relevance of hyperbolic conservation laws in continuum physics

we refer to the recent book of Dafermos [D].

A distinguished feature of nonlinear hyperbolic systems is the possible loss

of regularity. Even with smooth initial data, it is well known that the solution

can develop shocks within finite time. Therefore, global solutions can only

be constructed within a space of discontinuous functions. The equation (1.1)

must then be interpreted in a distributional sense. A vector-valued function

u = u(t, x) is a weak solution of (1.1) if

(1.5)

∫∫ [
uφt + f(u) φx

]
dxdt = 0

for every test function φ ∈ C1
c , continuously differentiable with compact sup-

port. When discontinuities are present, weak solutions may not be unique. To

single out a unique “good” solution of the Cauchy problem, additional entropy

conditions must be imposed along shocks [Lx], [L1]. These are often motivated

by physical considerations [D].

Toward a rigorous mathematical analysis of solutions, the lack of regu-

larity has always been a considerable source of difficulties. For discontinuous

solutions, most of the standard tools of differential calculus do not apply. More-

over, for general n× n systems, the powerful techniques of functional analysis

cannot be used. In particular, solutions cannot be obtained as fixed points of a

nonlinear transformation, or in variational form as critical points of a suitable

functional. Dealing with vector valued functions, comparison arguments based

on upper and lower solutions do not apply either. Up to now, the theory of

conservation laws has thus progressed largely by developing ad hoc methods.

In particular, a basic building block is the so-called Riemann problem, where

initial data are piecewise constant with a single jump at the origin:

u(0, x) =

{
u− if x < 0 ,

u+ if x > 0 .

Weak solutions to the Cauchy problem (1.1) and (1.2) were constructed

in the celebrated paper of Glimm [G]. This global existence result is valid for

small BV initial data and under the additional assumption

(H) For each i ∈ {1, . . . , n}, the ith characteristic field is either linearly de-

generate, so that

(1.6) Dλi(u) · ri(u) = 0 for all u ,
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or else it is genuinely nonlinear ; i.e.,

(1.7) Dλi(u) · ri(u) > 0 for all u .

In [G], an approximate solution of the general Cauchy problem is obtained

by piecing together solutions of several Riemann problems, with a restarting

procedure based on random sampling. The key step in Glimm’s proof is an

a priori estimate on the total variation of the approximate solutions, obtained

by introducing a wave interaction potential. In turn, the control of the total

variation yields the compactness of the family of approximate solutions, and

hence the existence of a strongly convergent subsequence. Alternative con-

structions of approximate solutions, based on front-tracking approximations,

were subsequently developed in [DP1], [B2], [Ri], [BaJ].

The above existence results are all based on a compactness argument

which, by itself, does not guarantee the uniqueness of solutions. The continu-

ous dependence of solutions on the initial data was first proved in [BC1] and

[BCP], with a technique based on linearization + homotopy. As a first step,

one estimates the distance between a reference solution u and an infinitesimal

perturbation. This is achieved by constructing a Lyapunov functional Ψ(u; z)

which is nonincreasing along all solutions z to a linearized system, describing

the evolution of a first order perturbation (see [B1], [B4]). In a second step, to

compare two solutions u, v, one constructs a one-parameter family of solutions

uθ connecting u with v. For each time t, the distance
∥∥u(t)− v(t)‖L1 can then

be bounded in terms of the length of the curve θ �→ uθ(t). A drawback of

this approach comes from the possible loss of regularity of the solutions uθ. In

order to retain the minimal regularity (piecewise Lipschitz continuity) required

for the existence of tangent vectors, in [BC1] and [BCP] various approxima-

tion and restarting procedures had to be devised. These yield entirely rigorous

proofs, but at the price of heavy technicalities.

A quite different approach was introduced in [LY2] by Liu and Yang, defin-

ing a functional Φ(u, v) which is equivalent to the L1 distance and decreases

along couples of solutions of the hyperbolic system. In their construction, a

key role is played by a new entropy functional for genuinely nonlinear scalar

fields, introduced in [LY1]. This approach was developed into its final form in

[BLY]. For yet another proof of continuous dependence, see also [HLF].

Relying on the continuous dependence of limits of front-tracking approx-

imations, general uniqueness results for entropy weak solutions could then be

proved in [B3], [BLF1], [BG] and [BLe]. The main results can be summarized

as follows:

— The solutions obtained as limits of Glimm or front-tracking approxima-

tions are unique and depend Lipschitz continuously on the initial data,

in the L1 norm.
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— Every small BV solution of the Cauchy problem (1.1) and (1.2) which

satisfies the Lax entropy conditions coincides with the unique limit of

front tracking approximations.

For a comprehensive account of the recent uniqueness and stability theory we

refer to [B5].

A long standing conjecture is that the entropic solutions of the hyperbolic

system (1.1) actually coincide with the limits of solutions to the parabolic

system

(1.8)ε ut + f(u)x = ε uxx ,

when the viscosity coefficient ε → 0. In view of the recent uniqueness results, it

looks indeed very plausible that the vanishing viscosity limit should single out

the unique “good” solution of the Cauchy problem, satisfying the appropriate

entropy conditions. In earlier literature, results in this direction were based on

three main techniques:

1. Comparison principles for parabolic equations. For a scalar conserva-

tion law, the existence, uniqueness and global stability of vanishing viscosity

solutions were first established by Oleinik [O] in one space dimension. The

famous paper of Kruzhkov [K] covers the more general class of L∞ solutions,

in several space dimensions. For an alternative approach based on nonlinear

semigroup theory, see also [Cr].

2. Singular perturbations. Let u be a piecewise smooth solution of

the n × n system (1.1), with finitely many noninteracting, entropy admissible

shocks. In this special case, using a singular perturbation technique, Goodman

and Xin [GX] were able to construct a sequence of solutions uε to (1.8)ε, with

uε → u as ε → 0. See also [Yu] for further results in this direction.

3. Compensated compactness. If, instead of a BV bound, only a uniform

bound on the L∞ norm of solutions of (1.8)ε is available, one can still construct

a weakly convergent subsequence uε ⇀ u. In general, we cannot expect that

this weak limit satisfies the nonlinear equations (1.5). However, for a class of

2 × 2 systems, in [DP2] DiPerna showed that this limit u is indeed a weak

solution of (1.1). The proof relies on a compensated compactness argument,

based on the representation of the weak limit in terms of Young measures,

which must reduce to a Dirac mass due to the presence of a large family of

entropies. We remark that the solution is here found in the space L∞. Since

the known uniqueness results apply only to BV solutions, the uniqueness of

solutions obtained by the compensated compactness method remains a difficult

open problem.



VANISHING VISCOSITY SOLUTIONS 227

In our point of view, to develop a satisfactory theory of vanishing viscosity

limits, the heart of the matter is to establish a priori BV bounds on solutions

u(t, ·) of (1.8)ε, uniformly valid for all t ∈ [0, ∞[ and ε > 0. This is indeed what

we will accomplish in the present paper. Our results apply, more generally, to

strictly hyperbolic n×n systems with viscosity, not necessarily in conservation

form:

(1.9)ε ut + A(u)ux = ε uxx .

As a preliminary, we observe that the rescaling of coordinates s = t/ε, y = x/ε

transforms the Cauchy problem (1.9)ε, (1.2) into

us + A(u)uy = uyy, u(0, y) = ūε(y)
.
= ū(εy) .

Clearly, the total variation of the initial data ūε does not change with ε. To

obtain a priori BV bounds and stability estimates for solutions of (1.9)ε, it

thus suffices to consider the system

(1.10) ut + A(u)ux = uxx ,

and derive estimates uniformly valid for all times t ≥ 0 , depending only on

the total variation of the initial data ū.

The first step in our proof is a decomposition of the gradient ux =
∑

vir̃i

into scalar components. In the purely hyperbolic case without viscosity, it

is natural to decompose ux along a basis {r1, . . . , rn} of eigenvectors of the

matrix A(u). Remarkably, this choice does not work here. Instead, we will

decompose ux as a sum of gradients of viscous travelling waves, selected by a

center manifold technique.

As a second step, we study the evolution of each component vi, which is

governed by a scalar conservation law with a source term, accounting for non-

linear wave interactions. Uniform bounds on these source terms are achieved

by means of a transversal interaction functional, controlling the interaction

between waves of different families, and suitable swept area and curve length

functionals, controlling the interaction of waves of the same family. All these

can be regarded as “viscous” counterparts of the wave interaction potential,

introduced by Glimm [G] in the purely hyperbolic case. Indeed, our “area

functional” is closely related to the interaction potential used by Liu in [L4].

Finally, on regions where the diffusion is dominant, the strength of the source

term is bounded by an energy functional. All together, these estimates yield

the desired a priori bound on
∥∥ux(t, ·)

∥∥
L1

, independent of t ∈ [0,∞[ .

Similar techniques can also be applied to a solution z = z(t, x) of the

variational equation

(1.11) zt +
[
DA(u) · z

]
ux + A(u)zx = zxx ,

which describes the evolution of a first order perturbation to a solution u

of (1.10). Assuming that the total variation of u remains small, we shall
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establish an estimate of the form

(1.12)
∥∥z(t, ·)

∥∥
L1

≤ L
∥∥z(0, ·)

∥∥
L1

for all t ≥ 0 ,

valid for all solutions of (1.11). As soon as this estimate is proved, as in [B1],

a standard homotopy argument yields the Lipschitz continuity of the flow of

(1.10) with respect to the initial data, uniformly in time.

By the simple rescaling of coordinates t �→ εt, x �→ εx, all of the above

estimates remain valid for solutions uε of the system (1.9)ε. By a compactness

argument, these BV bounds imply the existence of a strong limit uεm → u in

L1
loc, at least for some subsequence εm → 0. In the conservative case where

A = Df , it is now easy to show that this limit u provides a weak solution to

the Cauchy problem (1.1) and (1.2).

At this intermediate stage of the analysis, since we are using a compactness

argument, it is not yet clear whether the vanishing viscosity limit is unique. In

principle, different subsequences εm → 0 may yield different limits. Toward a

uniqueness result, in [B3] the second author introduced a definition of viscosity

solution for the hyperbolic system of conservation laws (1.1), based on local

integral estimates. Roughly speaking, a function u is a viscosity solution if

• In a forward neighborhood of each point of jump, the function u is well

approximated by the self-similar solution of the corresponding Riemann

problem.

• On a region where its total variation is small, u can be accurately ap-

proximated by the solution of a linear system with constant coefficients.

For a strictly hyperbolic system of conservation laws satisfying the stan-

dard assumptions (H), the analysis in [B3] proved that the viscosity solution

of a Cauchy problem is unique, and coincides with the limit of Glimm and

front-tracking approximations. The definition given in [B3] was motivated by

a natural conjecture. Namely, the viscosity solutions (characterized in terms of

local integral estimates) should coincide precisely with the limits of vanishing

viscosity approximations.

In the present paper we adopt a similar definition of viscosity solutions

and prove that the above conjecture is indeed true. Our results apply to the

more general case of (possibly nonconservative) quasilinear strictly hyperbolic

systems. In particular, we obtain the uniqueness of the vanishing viscosity

limit.

As in [B3], [BLFP], the underlying idea is that a semigroup is entirely

determined by its local behavior on piecewise constant initial data. Namely, if

two semigroups yield the same solution to each Riemann problem, then they

coincide. In our proof of uniqueness, a basic step is thus the analysis of the

vanishing viscosity solution to a general Riemann problem. The construction
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given here extends the previous results by Lax and by Liu to general, non-

conservative hyperbolic systems. As in the cases considered in [Lx], [L1], for

a given left state u− there exists a Lipschitz continuous curve of right states

u+ which can be connected to u− by i-waves. These right states are here

obtained by looking at the fixed point of a suitable contractive transforma-

tion. Remarkably, our center manifold plays again a key role, in defining this

transformation.

Our main results are as follows.

Theorem 1. Consider the Cauchy problem for the hyperbolic system with

viscosity

(1.13)ε ut + A(u)ux = ε uxx , u(0, x) = ū(x) .

Assume that the matrices A(u) are strictly hyperbolic, smoothly depending on

u in a neighborhood of a compact set K ⊂ R
n. Then there exist constants

C, L, L′ and δ > 0 such that the following holds. If

(1.14) Tot.Var.{ū} < δ , lim
x→−∞

ū(x) ∈ K ,

then for each ε > 0 the Cauchy problem (1.13)ε has a unique solution uε,

defined for all t ≥ 0. With a semigroup notation, this will be written as t �→
uε(t, ·) .

= Sε
t ū. In addition,

BV bounds : Tot.Var.
{
Sε

t ū
}
≤C Tot.Var.{ū}(1.15)

L1 stability :
∥∥Sε

t ū − Sε
t v̄

∥∥
L1

≤L
∥∥ū − v̄

∥∥
L1

,(1.16)

∥∥Sε
t ū − Sε

s ū
∥∥
L1

≤L′
(
|t − s| +

∣∣√εt −√
εs

∣∣
)

.(1.17)

Convergence: As ε → 0+, the solutions uε converge to the trajectories of

a semigroup S such that

(1.18)
∥∥Stū − Ssv̄

∥∥
L1

≤ L ‖ū − v̄‖L1 + L′ |t − s| .
These vanishing viscosity limits can be regarded as the unique vanishing vis-

cosity solutions of the hyperbolic Cauchy problem

(1.19) ut + A(u)ux = 0, u(0, x) = ū(x) .

In the conservative case A(u) = Df(u), every vanishing viscosity solution

is a weak solution of

(1.20) ut + f(u)x = 0, u(0, x) = ū(x) ,

satisfying the Liu admissibility conditions.

Assuming, in addition, that each field is genuinely nonlinear or linearly

degenerate, the vanishing viscosity solutions coincide with the unique limits of

Glimm and front-tracking approximations.
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Notice that in the above theorem the only key assumptions are the strict

hyperbolicity of the system and the small total variation of the initial data. It

is interesting to compare this result with previous literature.

1. Concerning the global existence of weak solutions, Glimm’s proof re-

quires the additional assumption (H) of genuine nonlinearity or linear degen-

eracy of each characteristic field. This assumption has been greatly relaxed in

subsequent works by Liu [L4] and Liu and Yang [LY3], and eventually removed

in [ILF], but at the price of considerable technicalities. The underlying reason

is the following. In all papers based on the Glimm scheme (or front-tracking),

the construction of approximate solutions as well as the BV estimates rely on

a careful analysis of the Riemann problem and of interactions between elemen-

tary waves. In this connection, the hypothesis (H) is a simplifying assumption,

which guarantees that every Riemann problem can be solved in terms of n el-

ementary waves (shocks, centered rarefactions or contact discontinuities), one

for each characteristic field i = 1, . . . , n. When this assumption fails, construct-

ing a solution to each Riemann problem and deriving interaction estimates are

still possible, but far more complicated.

On the other hand, our present approach based on vanishing viscosity

marks the first time where uniform BV estimates are obtained without any

reference to Riemann problems. Global existence is obtained for the whole

class of strictly hyperbolic systems.

2. Concerning the uniform stability of entropy weak solutions, the results

previously available for n × n hyperbolic systems [BC1], [BCP], [BLY] always

required the assumption (H). For 2 × 2 systems, this condition was somewhat

relaxed in [AM]. Again, we remark that the present result makes no reference

to the assumption (H).

3. For the viscous system (1.10), previous results in [L5], [SX], [SZ], [Yu]

have established the stability of special types of solutions, such as travelling

viscous shocks or viscous rarefactions, with respect to suitably small perturba-

tions. Taking ε = 1, our present theorem yields at once the uniform Lipschitz

stability of all viscous solutions with sufficiently small total variation, with

respect to the L1 distance.

Remark 1.1. The vanishing viscosity approach is based on a different

building block, namely the viscous travelling waves. This appears to be more

basic, and yields more general results. However, the earlier point of view based

on piecewise constant approximations and the analysis of the Riemann problem

retains some advantages. In particular, it gives a better geometrical intuition

and provides additional results on the qualitative structure and asymptotic

properties of solutions as in [L2], [L3], [L4], [BLF2], [B5].
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Remark 1.2. It remains an important open problem to establish the

convergence of vanishing viscosity approximations of the form

(1.21)ε ut + A(u)ux = ε
(
B(u)ux

)
x

for more general viscosity matrices B. In the present paper we are exclusively

concerned with the case where B is the identity matrix. For systems which

are not in conservative form, we expect that the limit of solutions of (1.21)ε,

as ε → 0, will be heavily dependent on the choice of the matrix B.

Remark 1.3. In the present paper we only consider initial data with small

total variation. This is a convenient setting, adopted in much of the current

literature, which guarantees the global existence of BV solutions of (1.1) and

captures all basic features of the problem. A recent example of Jenssen [J]

shows that, for initial data with large total variation, the solution can blow

up in finite time. In this more general setting, one expects that the existence

and uniqueness of weak solutions, together with the convergence of vanishing

viscosity approximations, will hold locally in time as long as the total variation

remains bounded. For the hyperbolic system (1.1), results on the existence and

stability of solutions with large BV data can be found in [S] and [BC2].

Remark 1.4. For initial data in L∞, on the other hand, one cannot expect

to have any general theorem on uniqueness and stability of vanishing viscosity

solutions. A simple example of nonuniqueness was given in [BS].

The plan of the paper is as follows. Section 2 collects those estimates

which can be obtained by standard parabolic techniques. In particular, we

show that the solution of (1.10) with initial data ū ∈ BV is well defined on an

initial time interval [0, t̂] where the L∞ norms of all derivatives decay rapidly.

Moreover, for large times, as soon as an estimate on the total variation is

available, one immediately obtains a bound on the L1 norms of all higher order

derivatives. Our basic strategy for obtaining the BV estimate is outlined in

Section 3. The decomposition of ux as a sum of gradients of viscous travelling

profiles is performed in Section 5. This decomposition will depend pointwise

on the second order jet (ux, uxx), involving 2n scalar parameters. To fit these

data, we must first select n smooth families of viscous travelling waves, each

depending on two parameters. This preliminary construction is achieved in

Section 4, by reliance on the center manifold theorem. In Section 6 we derive

the evolution equation satisfied by the gradient components and analyze the

form of the various source terms. As in [G], our point of view is that these

source terms are the result of interactions between viscous waves, and can

thus be controlled by suitable interaction functionals. In Sections 7 to 9 we

introduce various Lyapounov functionals, which eventually allow us to estimate

the integral of all source terms. The proof of the uniform BV bounds is then

completed in Section 10.
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In Section 11 we study the linearized evolution equation (1.11) for an in-

finitesimal perturbation z, and derive the key estimate (1.12). In turn, this

yields the Lipschitz continuity of the flow, stated in (1.16). Some of the esti-

mates here require lengthy calculations, which are postponed to the appendices.

Section 12 contains an additional estimate for solutions of (1.11), showing that,

even in the parabolic case, the bulk of a perturbation propagates at a finite

speed. This estimate is crucial because, passing to the limit ε → 0, it im-

plies that the values of a vanishing viscosity solution u(t, ·) on an interval [a, b]

depend only on the values of the initial data u(0, ·) on a bounded interval

[a − βt, b + βt]. In Section 13 we study the existence and various properties

of a semigroup obtained as a vanishing viscosity limit: S = limSεm . At this

stage, we only know that the limit exists for a suitable subsequence εm → 0. In

the case of a system of conservation laws satisfying the standard assumptions

(H), we can show that every limit solution satisfies the Lax shock conditions

and the tame oscillation property. Hence, by the uniqueness theorem in [BG],

the limit is unique and does not depend on the subsequence {εm}. This already

achieves a proof of Theorem 1 valid for this special case.

Toward a proof of uniqueness in the general case, in Section 14 we con-

struct a self-similar solution ω(t, x) = ω̃(x/t) to the nonconservative Riemann

problem, and show that it provides the unique vanishing viscosity limit. A

definition of viscosity solution in terms of local integral estimates is introduced

in Section 15. By a minor modification of the arguments in [B3], [B5] we prove

that these viscosity solutions are unique and coincide with the trajectories of

any semigroup S = limSεm obtained as a limit of vanishing viscosity approxi-

mations. Since this result is independent of the subsequence {εm}, we obtain

the convergence to a unique limit of the whole family of viscous approximations

Sε
t ū → Stū, over all real values of ε. This completes the proof of Theorem 1.

Finally, in Section 16 we derive two easy estimates. One is concerned with

the dependence of the limit semigroup S on the coefficients of the matrix A in

(1.19). The other estimate describes the asymptotic limit of solutions of the

parabolic system (1.10) as t → ∞.

2. Parabolic estimates

In classical textbooks, the local existence and regularity of solutions to the

parabolic system (1.10) are derived by regarding the hyperbolic term A(u)ux

as a first order perturbation of the heat equation. This leads to the definition

of mild solutions, characterized by the representation

u(t) = G(t) ∗ u(0) −
∫ t

0
G(t − s) ∗ A(u(s)

)
ux(s) ds

in terms of convolutions with the standard heat kernel G.
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In this initial section we collect all the relevant estimates which can be

achieved by this approach. In particular, we prove various decay and regularity

results for solutions of (1.10) as well as (1.11). Given a BV solution u = u(t, x)

of (1.10), consider the state

(2.1) u∗ .
= lim

x→−∞
u(t, x) ,

which is clearly independent of time. We then define the matrix A∗ .
= A(u∗)

and let λ∗
i , r∗i , l∗i be the corresponding eigenvalues and right and left eigen-

vectors, normalized as in (1.4). It will be convenient to use “•” to denote a

directional derivative, so that z • A(u)
.
= DA(u) · z indicates the derivative of

the matrix-valued function u �→ A(u) in the direction of the vector z. We can

now rewrite the systems (1.10) and (1.11) respectively as

ut + A∗ux − uxx =
(
A∗ − A(u)

)
ux ,(2.2)

zt + A∗zx − zxx =
(
A∗ − A(u)

)
zx −

(
z • A(u)

)
ux .(2.3)

In both cases, we regard the right-hand side as a perturbation of the linear

parabolic system with constant coefficients

(2.4) wt + A∗wx − wxx = 0 .

We denote by G∗ the Green kernel for (2.4), so that

w(t, x) =

∫
G∗(t, x − y) w(0, y) dy .

The matrix-valued function G∗ is easily computed. Indeed, if w solves (2.4),

then its ith component wi
.
= l∗i · w satisfies the scalar equation

wi,t + λ∗
i wi,x − wi,xx = 0 .

Therefore wi(t) = G∗
i (t) ∗ wi(0), where

G∗
i (t, x) =

1

2
√

πt
exp

{
−(x − λ∗

i t)
2

4t

}
.

Looking at the explicit form of its components, we see clearly that the Green

kernel G∗ = G∗(t, x) satisfies the bounds

(2.5)
∥∥G∗(t)

∥∥
L1

≤ κ ,
∥∥G∗

x(t)
∥∥
L1

≤ κ√
t
,

∥∥G∗
xx(t)

∥∥
L1

≤ κ

t
,

for some constant κ and all t > 0. It is important to observe that, if u is a

solution of (2.2), then z = ux is a particular solution of the variational equation

(2.3). Hence all the estimates proved for zx, zxx are certainly valid also for the

corresponding derivatives uxx, uxxx. Assuming that the initial data u(0, ·) have

small total variations, we now derive some estimates on higher derivatives. In

particular, we will show that
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• The solution is well defined on some initial interval [0, t̂], where the L∞

norm of all derivatives decays rapidly.

• As long as the total variation remains small, the solution can be pro-

longed in time. In this case, all higher order derivatives remain small.

Indeed, waiting a long enough time, one has
∥∥uxxx(t)

∥∥
L1

≪
∥∥uxx(t)

∥∥
L1

≪
∥∥ux(t)

∥∥
L1

= Tot.Var.
{
u(t)

}
.

Proposition 2.1. Let u, z be solutions of the systems (2.2)–(2.3), satis-

fying the bounds

(2.6)
∥∥ux(t)

∥∥
L1

≤ δ0,
∥∥z(t)

∥∥
L1

≤ δ0,

for some constant δ0 < 1 and all t ∈ [0, t̂ ], where

(2.7) t̂
.
=

(
1

400κ κA δ0

)2

, κA
.
= sup

u

(
‖DA‖ + ‖D2A‖

)

and κ is the constant in (2.5). Then for t ∈ [0, t̂] the following estimates hold :

∥∥uxx(t)
∥∥
L1

,
∥∥zx(t)

∥∥
L1

≤ 2κδ0√
t

,(2.8)

∥∥uxxx(t)
∥∥
L1

,
∥∥zxx(t)

∥∥
L1

≤ 5κ2δ0

t
,(2.9)

∥∥uxxx(t)
∥∥
L∞

,
∥∥zxx(t)

∥∥
L∞

≤ 16κ3δ0

t
√

t
.(2.10)

Proof. The function zx can be represented as

(2.11)

zx(t) = G∗
x(t) ∗ z(0)+

∫ t

0
G∗

x(t− s) ∗
{(

A∗−A(u)
)
zx(s)−

(
z •A(u)

)
ux(s)

}
ds .

Using (2.5) and (2.6) we obtain
∥∥∥∥
∫ t

0
G∗

x(t − s) ∗
{(

A∗ − A(u)
)
zx(s) −

(
z • A(u)

)
ux(s)

}
ds

∥∥∥∥
L1

≤
∫ t

0

∥∥G∗
x(t − s)

∥∥
L1

·
{∥∥ux(s)

∥∥
L1

∥∥DA
∥∥
L∞

∥∥zx(s)
∥∥
L1

+
∥∥z(s)

∥∥
L∞

∥∥DA
∥∥
L∞

∥∥ux(s)
∥∥
L1

}
ds

≤ 2δ0κ
∥∥DA

∥∥
L∞

·
∫ t

0

1√
t − s

∥∥zx(s)
∥∥
L1

ds .

Consider first the case of smooth initial data. We shall argue by contradiction.

Assume that there exists a first time τ < t̂ such that the equality in (2.8) holds.

Then, observing that
∫ t

0

1√
s(t − s)

ds =

∫ 1

0

1√
σ(1 − σ)

dσ = π < 4
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we compute

∥∥zx(τ)
∥∥
L1

≤ κ√
τ
δ0 + 2κδ0

∥∥DA
∥∥
L∞

·
∫ τ

0

1√
τ − s

2δ0κ√
s

ds

<
κδ0√

τ
+ 16κ2κAδ2

0 ≤ 2κδ0√
τ

,

reaching a contradiction. Hence, (2.8) is satisfied as a strict inequality for all

t ∈ [0, t̂]. Observing that this estimate depends only on the L1 norms of ux

and z, by an approximation argument we obtain the same bound for general

initial data, not necessarily smooth. Since z
.
= ux is a particular solution of

(2.3), the bounds (2.8) certainly apply also to zx = uxx.

A similar technique is used to establish (2.9). Indeed, we can write

zxx(t) = G∗
x(t/2) ∗ zx(t/2)(2.12)

−
∫ t

t/2
G∗

x(t − s) ∗
{(

z • A(u)
)
ux(s) +

(
A(u) − A∗

)
zx(s)

}

x
ds .

We will prove (2.9) first in the case zxx = uxxx, then in the general case. If
(2.9) is satisfied as an equality at a first time τ < t̂, using (2.12) and recalling
the definitions (2.7) we compute

∥∥zxx(τ)
∥∥
L1

≤ κ√
τ/2

· 2κδ0√
τ/2

+

∫ τ

τ/2

κ√
τ − s

·
{∥∥zx • A(u)ux(s)

∥∥
L1

+
∥∥z •

(
ux • A(u)

)
ux(s)

∥∥
L1

+
∥∥z • A(u)uxx(s)

∥∥
L1

+
∥∥ux • A(u)zx(s)

∥∥
L1

+
∥∥∥
(
A(u) − A∗

)
zxx(s)

∥∥∥
L1

}
ds

≤ 2κ2δ0

τ/2
+

∫ τ

τ/2

κ√
τ − s

·
{

δ0‖DA‖L∞

∥∥zxx(s)
∥∥
L1

+ δ0‖D2A‖L∞

∥∥uxx(s)
∥∥2

L1

+δ0‖DA‖L∞

∥∥uxxx(s)
∥∥
L1

+δ0‖DA‖L∞

∥∥zxx(s)
∥∥
L1

+ δ0‖DA‖L∞

∥∥zxx(s)
∥∥
L1

}
ds

≤ 4κ2δ0

τ
+ κδ0

(
4κ2δ2

0‖D2A‖L∞ + 20κ2δ0‖DA‖L∞

) ∫ τ

τ/2

1

s
√

τ − s
ds ,

<
4κ2δ0

τ
+ 20κ3κAδ2

0 · 4√
τ/2

<
5κ2δ0

τ
,

reaching a contradiction.

Finally, by (2.12) and (2.8), (2.9), the bounds in (2.10) are proved by the

estimate
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∥∥zxx(τ)
∥∥
L∞

≤ κ√
τ/2

· 5κ2δ0

τ/2
+

∫ τ

τ/2

κ√
τ − s

·
{∥∥zx • A(u)ux(s)

∥∥
L∞

+
∥∥z • (ux • A(u))ux(s)

∥∥
L∞

+
∥∥z • A(u)uxx(s)

∥∥
L∞

+
∥∥ux • A(u)zx(s)

∥∥
L∞

+
∥∥(A(u) − A∗)zxx(s)

∥∥
L∞

}
ds

≤ 10
√

2κ3δ0

τ
√

τ
+

(
8κ4δ3

0‖D2A‖ + 46κ4δ2
0‖DA‖

) ∫ τ

τ/2

1

s3/2
√

τ − s
ds

≤ 15κ3δ0

τ
√

τ
+ 46κ4κAδ2

0 · 4

τ/2
<

16κ3δ0

τ
√

τ
.

Corollary 2.2. In the same setting as Proposition 2.1, assume that the

bounds (2.6) hold on a larger interval [0, T ]. Then for all t ∈ [t̂, T ],
∥∥uxx(t)

∥∥
L1

,
∥∥ux(t)

∥∥
L∞

,
∥∥zx(t)

∥∥
L1

=O(1) · δ2
0 ,(2.13)

∥∥uxxx(t)
∥∥
L1

,
∥∥uxx(t)

∥∥
L∞

,
∥∥zxx(t)

∥∥
L1

=O(1) · δ3
0 ,(2.14)

∥∥uxxx(t)
∥∥
L∞

,
∥∥zxx(t)

∥∥
L∞

=O(1) · δ4
0 .(2.15)

Proof. It suffices to apply Proposition 2.1 on the interval [t − t̂, t].

Proposition 2.3. Let u = u(t, x), z = z(t, x) be solutions of (2.2), (2.3)

respectively, such that

(2.16) Tot.Var.
{
u(0, ·)

}
≤ δ0

4κ
,

∥∥z(0)
∥∥
L1

≤ δ0

4κ
.

Then u, z are well defined on the whole interval [0, t̂] in (2.7), and satisfy

(2.17)
∥∥ux(t)

∥∥
L1

≤ δ0

2
,

∥∥z(t)
∥∥
L1

≤ δ0

2
, t ∈ [0, t̂] .

Proof. We have the identity

z(t) = G∗(t) ∗ z(0)(2.18)

+

∫ t

0
G∗(t − s) ∗

{(
A∗ − A(u)

)
zx(s) −

(
z • A(u)

)
ux(s)

}
ds .

As before, we first establish the result for z = ux, then for a general solution z

of (2.3). Assume that there exists a first time τ < t̂ where the bound in (2.17)

is satisfied as an equality. Estimating the right-hand side of (2.18) by means
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δ0

0 t̂ ∼ δ−2
0

‖ux‖L1

‖uxx‖L1

‖uxxx‖L1

t∼

Figure 1

of (2.5) and (2.8), we obtain

∥∥z(τ)
∥∥
L1

≤ κδ0

4κ
+

∫ τ

0

2κδ2
0√

s
‖DA‖L∞ ds

≤ δ0

4
+ 4κκAδ2

0

√
τ <

δ0

2
,

reaching a contradiction.

To simplify the proofs, in all previous results we used the same hypotheses

on the functions ux and z. However, observing that z solves a linear homo-

geneous equation, similar estimates can be immediately derived without any

restriction on the initial size
∥∥z(0)

∥∥
L1

. In particular, from Proposition 2.3 it

follows

Corollary 2.4. Let u = u(t, x), z = z(t, x) be solutions of (2.2), (2.3)

respectively, such that
∥∥ux(0)

∥∥
L1

≤ δ0/4κ. Then u, z are well defined on the

whole interval [0, t̂] in (2.7), and satisfy

(2.19)
∥∥ux(t)

∥∥
L1

≤ 2κ
∥∥ux(0)

∥∥
L1

,
∥∥z(t)

∥∥
L1

≤ 2κ
∥∥z(0)

∥∥
L1

, t ∈ [0, t̂] .

A summary of the main estimates is illustrated in Figure 1. On the initial

interval t ∈ [0, t̂], with t̂ ≈ 1/δ2
0 we have

(2.20)
∥∥ux(t)

∥∥
L1

≤ δ0,
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while the norms of the higher derivatives decay:
∥∥uxx

∥∥
L1

= O(1) · δ0/
√

t ,
∥∥uxxx

∥∥
L1

= O(1) · δ0/t .

On the other hand, for t ≥ t̂, as long as (2.20) remains valid we also have
∥∥uxx

∥∥
L1

= O(1) · δ2
0 ,

∥∥uxxx

∥∥
L1

= O(1) · δ3
0 .

These bounds (the solid lines in Fig. 1) were obtained in the present section by

standard parabolic-type estimates. The most difficult part of the proof is to

obtain the estimate (2.20) for large times t ∈ [t̂, ∞[ (the broken line in Fig. 1).

This will require hyperbolic-type estimates, based on the local decomposition

of the gradient ux as a sum of travelling waves, and on a careful analysis of all

interaction terms.

3. Outline of the BV estimates

It is our aim to derive global a priori bounds on the total variation of

solutions of

(3.1) ut + A(u)ux = uxx

for small initial data. We always assume that the system is strictly hyperbolic,

so that each matrix A(u) has real distinct eigenvalues λi(u) as in (1.3), and

dual bases of right and left eigenvectors ri(u), li(u) normalized as in (1.4). The

directional derivative of a function φ = φ(u) in the direction of the vector v is

written

(3.2) v • φ(u)
.
= Dφ · v = lim

ǫ→0

φ(u + ǫv) − φ(u)

ǫ
,

while

[rj , rk]
.
= rj • rk − rk • rj

denotes a Lie bracket. In order to obtain uniform bounds on Tot.Var.
{
u(t, ·)

}

for all t > 0, our basic strategy is as follows. We choose δ0 > 0 sufficiently

small and consider an initial data u(0, ·) = ū satisfying the first inequality in

(2.16). By Proposition 2.3, the corresponding solution is well defined on the

initial time interval [0, t̂] and its total variation remains bounded, according to

(2.17). The main task is to establish BV estimates on the remaining interval

[t̂, ∞[ . For this purpose, we decompose the gradient ux along a suitable basis

of unit vectors r̃1, . . . , r̃n, say

(3.3) ux =
n∑

i=1

vir̃i .

Differentiating (3.1), we obtain a system of n evolution equations for these

scalar components

(3.4) vi,t + (λ̃ivi)x − vi,xx = φi, i = 1, . . . , n .
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Since the left-hand side is in conservation form, (3.4) implies

(3.5)
∥∥vi(t, ·)

∥∥
L1

≤
∥∥vi(t̂, ·)

∥∥
L1

+

∫ ∞

t̂

∫ ∣∣φi(t, x)
∣∣ dxdt

for all t ≥ t̂. By (3.3),

(3.6) Tot.Var.
{
u(t, ·)

}
=

∥∥ux(t, ·)
∥∥
L1

≤
∑

i

∥∥vi(t, ·)
∥∥
L1

.

In order to obtain a uniform bound on the total variation, the key step is thus

to construct the basis of unit vectors {r̃1, . . . , r̃n} in (3.3) in a clever way, so

that the functions φi on the right-hand side of (3.4) become integrable on the

half plane {t > t̂, x ∈ R}.
As a preliminary, we observe that the choice r̃i

.
= ri(u), the ith eigenvector

of the matrix A(u), seems quite natural. This choice was indeed adopted in

[BiB1], where the authors proved Theorem 1 restricted to the special class of

systems where all Rankine-Hugoniot curves are straight lines. Unfortunately,

for general n×n hyperbolic systems it does not work. To understand why, let

us write

(3.7) ui
x

.
= li(u) · ux

for the ith component of ux in this basis of eigenvectors. As shown in [BiB1],

these components satisfy the system of evolution equations

(3.8)

(ui
x)t + (λiu

i
x)x − (ui

x)xx

= li ·
{ ∑

j �=k

λj [rj , rk]u
j
xuk

x + 2
∑

j,k

(rk • rj)(u
j
x)xuk

x +
∑

j,k,ℓ

[rℓ, rk • rj ]u
j
xuk

xuℓ
x

}

.
= φi .

Assume that the ith characteristic field is genuinely nonlinear, with shock

and rarefaction curves not coinciding, and consider a travelling wave solu-

tion u(t, x) = U(x − λt), representing a viscous i-shock. It is then easy to see

that the right-hand side of (3.8) is not identically zero. Since it corresponds

to a travelling wave, the integral
∫ ∣∣φi(t, x)

∣∣ dx �= 0

is constant in time. Hence φi is certainly not integrable over the half plane

{t > t̂, x ∈ R}.

The previous example clearly points out a basic requirement for our de-

composition (3.3). Namely, in connection with a viscous travelling wave, the

source terms φi in (3.4) should vanish identically. To achieve this goal, we

shall seek a decomposition of ux not along eigenvectors of the matrix A(u),
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but as a sum of gradients of viscous travelling waves. More precisely, consider

a smooth function u : R �→ R
n. At each point x, depending on the second or-

der jet (u, ux, uxx), we shall uniquely determine n travelling waves U1, . . . , Un

passing through u(x). We then write ux in the form (3.3), as the sum of the

gradients of these waves. As a guideline, we shall try to achieve the following

relations:

Ui(x) = u(x), i = 1, . . . , n,(3.9)
∑

i

U ′
i(x) = ux(x) ,

∑

i

U ′′
i (x) = uxx(x) .(3.10)

Details of this construction will be worked out in the next two sections.

4. A center manifold of viscous travelling waves

To carry out our program, we must first select certain families of travelling

waves, depending on the correct number of parameters to fit the data. Given

a state u ∈ R
n, a second order jet (ux, uxx) determines 2n scalar parameters.

In order to uniquely satisfy the equations (3.10), we thus need to construct

n families of travelling wave profiles through u, each depending on two scalar

parameters. This will be achieved by an application of the center manifold

theorem.

Travelling waves for the viscous hyperbolic system (3.1) correspond to

(possibly unbounded) solutions of

(4.1)
(
A(U) − σ

)
U ′ = U ′′.

We write (4.1) as a first order system on the space R
n × R

n × R:

(4.2)






u̇ = v ,

v̇ =
(
A(u) − σ

)
v ,

σ̇ = 0 .

Let a state u∗ be given and fix an index i ∈ {1, . . . , n}. Linearizing (4.2) at

the equilibrium point P ∗ .
=

(
u∗, 0, λi(u

∗)
)

we obtain the linear system

(4.3)






u̇ = v ,

v̇ =
(
A(u∗) − λi(u

∗)
)
v ,

σ̇ = 0 .

Let {r∗1, . . . , r∗n} and {l∗1, . . . , l∗n} be dual bases of right and left eigenvectors of

A(u∗) normalized as in (1.4). We call (V1, . . . , Vn) the coordinates of a vector

v ∈ R
n with respect to this basis, so that

|r∗i | = 1, v =
∑

j

Vjr
∗
j , Vj

.
= l∗j · v .
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The center subspace N for (4.3) consists of all vectors (u, v, σ) ∈ R
n ×R

n ×R

such that

(4.4) Vj = 0 for all j �= i,

and therefore has dimension n + 2. By the center manifold theorem [V], there

exists a smooth manifold M ⊂ R
n+n+1, tangent to N at the stationary point

P ∗, which is locally invariant under the flow of (4.2). This manifold has di-

mension n + 2 and can be locally defined by the n − 1 equations

(4.5) Vj = ϕj(u, Vi, σ) j �= i.

We can assume that the n − 1 smooth scalar functions ϕj are defined on the

domain

D .
=

{
|u − u∗| < ǫ, |Vi| < ǫ,

∣∣σ − λi(u
∗)| < ǫ

}
.

Moreover, the tangency condition implies

(4.6) ϕj(u, Vi, σ) = O(1) ·
(
|u − u∗|2 + |Vi|2 +

∣∣σ − λi(u
∗)

∣∣2
)
.

We now take a closer look at the flow on this center manifold. By con-

struction, every trajectory

t �→ P (t)
.
=

(
u(t), v(t), σ(t)

)

of (4.2), which remains within a small neighborhood of the point P ∗ .
=(

u∗, 0, λi(u
∗)

)
for all t ∈ R, must lie entirely on the manifold M. In particular,

M contains all viscous i-shock profiles joining a pair of states u−, u+ suffi-

ciently close to u∗. Moreover, all equilibrium points (u, 0, σ) with |u − u∗| < ǫ

and
∣∣σ − λi(u

∗)
∣∣ < ǫ must lie on M. Hence

(4.7) ϕj(u, 0, σ) = 0 for all j �= i.

By (4.7) and the smoothness of the functions ϕj , we can “factor out” the

component Vi and write

ϕj(u, Vi, σ) = ψj(u, Vi, σ) · Vi,

for suitable smooth functions ψj . From (4.6) it follows that

(4.8) ψj → 0 as (u, Vi, σ) →
(
u∗, 0, λi(u

∗)
)
.

On the manifold M we thus have

(4.9) v =
∑

k

Vkr
∗
k = Vi ·



r∗i +
∑

j �=i

ψj(u, Vi, σ) r∗j



 .
= Vi r

♯
i(u, Vi, σ).

By (4.8), the function r♯ defined by the last equality in (4.9) satisfies

(4.10) r♯
i(u, Vi, σ) → r∗i as (u, Vi, σ) → (u∗, 0, λi(u

∗)).
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Remark 4.1. Trajectories on the center manifold correspond to the pro-

files of viscous travelling i-waves. We thus expect that the derivative u̇ = v

should be a vector “almost parallel” to the eigenvector r∗i
.
= ri(u

∗). This is

indeed confirmed by (4.10).

We can now define the new variable

(4.11) vi = vi(u, Vi, σ)
.
= Vi ·

∣∣r♯
i(u, Vi, σ)

∣∣.

As (u, Vi, σ) range in a small neighborhood of (u∗, 0, λi(u
∗)), by (4.10) the

vector r♯
i remains close to the eigenvector r∗i . In particular, its norm remains

uniformly positive. Therefore, the transformation Vi ←→ vi is invertible and

smooth. We can thus reparametrize the center manifold M in terms of the

variables (u, vi, σ) ∈ R
n × R × R. Moreover, we define the unit vector

(4.12) r̃i(u, vi, σ)
.
=

r♯
i

|r♯
i |

.

Observe that r̃i is also a smooth function of its arguments. With the above

definitions, instead of (4.5) we can write the manifold M in terms of the

equation

(4.13) v = vir̃i.

The above construction of a center manifold can be repeated for every

i = 1, . . . , n. We thus obtain n center manifolds Mi ⊂ R
2n+1 and vector

functions r̃i = r̃i(u, vi, σi) such that

(4.14) |r̃i| ≡ 1,

(4.15) Mi =
{
(u, v, σi) ; v = vi r̃i(u, vi, σi)

}
,

as (u, vi, σi) ∈ R
n × R × R ranges in a neighborhood of

(
u∗, 0, λi(u

∗)
)
.

We derive here some useful identities, for later use. The partial derivatives

of r̃i = r̃i(u, vi, σi) with respect to its arguments will be written as

r̃i,u
.
=

∂

∂u
r̃i , r̃i,v

.
=

∂

∂vi
r̃i , r̃i,σ

.
=

∂

∂σi
r̃i .

Clearly, r̃i,u is an n × n matrix, while r̃i,v, r̃i,σ are n-vectors. Higher order

derivatives are denoted as r̃i,uσ, r̃i,σσ . . . We claim that

(4.16) r̃i(u, 0, σi) = ri(u) for all u, σi .

Indeed, consider again the equations for a viscous travelling i-wave:

(4.17) uxx =
(
A(u) − σi

)
ux.
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For a solution contained in the center manifold, taking the derivative with

respect to x of

(4.18) ux = v = vir̃i(u, vi, σi)

and using (4.17) we obtain

(4.19) vi,xr̃i + vir̃i,x =
(
A(u) − σi

)
vir̃i.

Since |r̃i| ≡ 1, the vector r̃i is perpendicular to its derivative r̃i,x. Taking the

inner product of (4.19) with r̃i we thus obtain

(4.20) vi,x = (λ̃i − σi)vi ,

where the speed is defined λ̃i = λ̃i(u, vi, σi) as the inner product

(4.21) λ̃i
.
=

〈
r̃i , A(u)r̃i

〉
.

Using (4.20) in (4.19) and dividing by vi we finally obtain

(4.22) (λ̃i − σi)vir̃i + vi

(
r̃i,ur̃ivi + r̃i,v(λ̃i − σi)vi

)
=

(
A(u) − σi

)
vir̃i ,

(4.23) vi

(
r̃i,ur̃i + r̃i,v(λ̃i − σi)

)
=

(
A(u) − λ̃i

)
r̃i .

By (4.23), as vi → 0, the unit vector r̃i(u, vi, σi) approaches an eigenvector

of the matrix A(u), while λ̃i approaches the corresponding eigenvalue. By

continuity, this establishes (4.16).

In turn, by the smoothness of the vector field r̃i we also have

r̃i(u, vi, σi) − ri(u) = O(1) · vi ,

r̃i,uσ = O(1) · vi ,

r̃i,σ = O(1) · vi ,

r̃i,σσ = O(1) · vi .

(4.24)

Using (4.24), from (4.21) one obtains

(4.25)
∣∣λ̃i(u, vi, σi) − λi(u)

∣∣ = O(1) · vi , λ̃i,σ = O(1) · vi .

A further identity will be of use. Differentiating (4.19) one finds

(4.26) vi,xxr̃i + 2vi,xr̃i,x + vir̃i,xx =
(
A(u)vir̃i

)
x
− σivi,xr̃i − σivir̃i,x .

From the identities
〈
r̃i, r̃i,x

〉
= 0 ,

〈
r̃i, r̃i,xx

〉
= −

〈
r̃i,x, r̃i,x

〉
,

taking the inner product of (4.19) with r̃i,x we obtain

(4.27)
〈
r̃i, r̃i,xx

〉
vi = −

〈
r̃i,x, A(u)r̃i

〉
vi .

Taking now the inner product of (4.26) with r̃i we find

vi,xx +
〈
r̃i, r̃i,xx

〉
vi =

〈
r̃i, (A(u)r̃ivi)x

〉
− σivi,x .
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Since vi,t + σivi,x = 0, using the identity (4.27) we conclude

(4.28) vi,t + (λ̃ivi)x − vi,xx = 0,

where λ̃i is the speed at (4.21).

Remark 4.2. It is important to appreciate the difference between the

identities

(4.29)
(
A(u) − λi

)
ri = 0 ,

(
A(u) − λ̃i

)
r̃i = vi

(
r̃i,ur̃i + r̃i,v(λ̃i − σi)

)
,

satisfied respectively by an eigenvector ri and by a unit vector r̃i parallel to the

gradient of a travelling wave. Decomposing ux along the eigenvectors ri one

obtains the evolution equations (3.8), with nonintegrable source terms on the

right-hand side. When a similar computation is performed in connection with

the vectors r̃i, thanks to the presence of the additional terms on the right-hand

side in (4.29) a crucial cancellation is achieved. In this case, we will show that

the source terms φi in (3.4) are integrable over the half plane x ∈ R, t > t̂.

5. Gradient decomposition

Let u : R �→ R
n be a smooth function with small total variation. At

each point x, we seek a decomposition of the gradient ux in the form (3.3),

where r̃i = r̃i(u, vi, σi) are the vectors defining the center manifold in (4.15).

To uniquely determine the r̃i, we should first define the wave strengths vi and

speeds σi in terms of u, ux, uxx.

Consider first the special case where u is precisely the profile of a viscous

travelling wave of the jth family (contained in the center manifold Mj). In

this case, our decomposition should clearly contain one single component:

(5.1) ux = vj r̃j(u, vj , σj) .

It is easy to guess what vj , σj in (5.1) should be. Indeed, since by construction

|r̃j | = 1, the quantity

vj = ±|ux|

is the signed strength of the wave. Notice also that for a travelling wave the

vectors ux and ut are always parallel, since ut = −σjux where σj is the speed

of the wave. We can thus write

(5.2) ut = uxx − A(u)ux = ωj r̃j(u, vj , σj)

for some scalar ωj . The speed of the wave is now obtained as σj = −ωj/vj .

Motivated by the previous analysis, as a first attempt we define

(5.3) ut = uxx − A(u)ux
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and try to find scalar quantities vi, ωi such that

(5.4)

{
ux =

∑
i vi r̃i(u, vi, σi),

ut =
∑

i ωi r̃i(u, vi, σi),
σi = −ωi

vi
.

The trouble with (5.4) is that the vectors r̃i are defined only for speeds σi close

to the ith characteristic speed λ∗
i

.
= λi(u

∗). However, when ux ≈ 0 one has

vi ≈ 0 and the ratio ωi/vi may become arbitrarily large.

To overcome this problem, we introduce a cutoff function (Fig. 2). Fix δ1 ∈
]0, 1/3] sufficiently small. Define a smooth odd function θ : R �→ [−2δ1, 2δ1]

such that

(5.5) θ(s) =

{
s if |s| ≤ δ1

0 if |s| ≥ 3δ1
|θ′| ≤ 1, |θ′′| ≤ 4/δ1 .

We now rewrite (5.4) in terms of the new variable wi, related to ωi by ωi
.
=

wi − λ∗
i vi. We require that σi coincide with −ωi/vi only when this ratio is

sufficiently close to λ∗
i

.
= λi(u

∗). Our basic equations thus take the form

(5.6)

{
ux =

∑
i vi r̃i(u, vi, σi),

ut =
∑

i(wi − λ∗
i vi) r̃i(u, vi, σi),

where

(5.7) ut = uxx − A(u)ux , σi = λ∗
i − θ

(
wi

vi

)
.

Notice that σi is not well defined when vi = wi = 0. However, recalling (4.16),

in this case we have r̃i = ri(u), regardless of σi. Hence the two equations in

(5.6) are still meaningful.
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Remark 5.1. The decomposition (5.6) corresponds to viscous travelling

waves Ui such that

Ui(x) = u(x), U ′
i(x) = vir̃i , U ′′

i =
(
A(u) − σi

)
U ′

i .

From the first equation in (5.6) it follows that

ux(x) =
∑

i

U ′
i(x) .

If σi = λ∗
i − wi/vi for all i = 1, . . . , n, i.e. if none of the cutoff functions is

active, then

uxx(x) = ut + A(u)ux

=
∑

i

(wi − λ∗
i vi)r̃i + A(u)

∑

i

vir̃i

=
∑

i

(
A(u) − σi

)
vir̃i

=
∑

i

U ′′
i (x) .

In this case, both of the equalities in (3.10) hold. Notice however that the

second equality in (3.10) may fail if |wi/vi| > δ1 for some i.

Lemma 5.2. For |u − u∗|, |ux| and |uxx| sufficiently small, the system

of 2n equations (5.6) has a unique solution (v, w) = (v1, . . . , vn, w1, . . . , wn).

The map (u, ux, uxx) �→ (v, w) is smooth outside the n manifolds Ni
.
=

{vi = wi = 0}; moreover it is C1,1, i.e. continuously differentiable with

Lipschitz continuous derivatives on a whole neighborhood of the point (u∗, 0, 0).

Proof. Given (v, w) in a neighborhood of (0, 0) ∈ R
2n, the vectors ux, ut

are uniquely determined. Hence the solution of (5.6), (5.7) is certainly unique.

To prove its existence, consider the mapping Λ : R
n × R

n × R
n �→ R

2n defined

by

Λ(u, v, w)
.
=

n∑

i=1

Λi(u, vi, wi),(5.8)

Λi(u, vi, wi)
.
=

(
vi r̃i

(
u, vi, λ∗

i − θ(wi/vi)
)

(wi − λ∗
i vi) r̃i

(
u, vi, λ∗

i − θ(wi/vi)
)

)
.(5.9)

This map is well defined and continuous also when vi = 0, because in this case

(4.16) implies r̃i = ri(u). Computing the Jacobian matrix of partial derivatives
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with respect to (vi, wi) we find

(5.10)

∂Λi

∂(vi, wi)
=

(
r̃i 0

−λ∗

i r̃i r̃i

)

+

(
vir̃i,v + (wi/vi)θ

′

ir̃i,σ −θ′ir̃i,σ

wir̃i,v − λ∗

i vir̃i,v − λ∗

i (wi/vi)θ
′

ir̃i,σ + (wi/vi)
2θ′ir̃i,σ λ∗

i θ
′

ir̃i,σ − (wi/vi)θ
′

ir̃i,σ

)
.

Here and throughout the following, by θi, θ′i we denote the function θ and its

derivative, evaluated at the point s = wi/vi. By (5.10) we can write

(5.11)
∂Λ

∂(v, w)
= B0(u, v, w) + B1(u, v, w).

Because of (4.24), the matrix functions B0, B1 are well defined and continuous

also when vi = 0. Moreover, for (v, w) small, B0 has a uniformly bounded

inverse and B1 → 0 as (v, w) → 0. Since Λ(u, 0, 0) = (0, 0) ∈ R
2n, we conclude

that the map (v, w) �→ Λ(u; v, w) is C1 and invertible in a neighborhood of the

origin. Therefore, given (u, ux, uxx), there exist unique values of (v, w) such

that

(5.12) Λ(u, v, w) =
(
ux, uxx − A(u)ux

)
.

The inverse of the map Λ with respect to the variables v, w will be denoted

by Λ−1(u; p, q). In other words,

Λ−1(u; p, q) = (v, w) if and only if Λ(u; v, w) = (p, q) .

Since r̃i(u, 0, σi) = ri(u), we have

Λ(u, 0, w) =
(

0 ,
∑

i

wiri(u)
)
.

Therefore,

Λ−1(u, 0, q) = (0, w) where wi = li(u) · q .

In particular, Λ−1(u, 0, 0) = (0, 0) ∈ R
2n. Concerning first derivatives (which

we regard here as linear operators), we have

(5.13)

∂Λ(u; 0, w)

∂(v, w)
·(v̂, ŵ) = B0(u; 0, w)·(v̂, ŵ) =

(
∑

i

v̂iri(u) ,
∑

i

(
ŵi − λ∗

i v̂i

)
ri(u)

)
,

(5.14)
∂Λ−1(u; 0, q)

∂(p, q)
·(p̂, q̂) = (v̂, ŵ) where v̂i = li(u)·p̂ , ŵi = li(u)·q̂+λ∗

i v̂i .
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We shall not compute the second derivatives explicitly. However, one

easily checks that

(5.15)
∂2Λ

∂vi∂vj
=

∂2Λ

∂vi∂wj
=

∂2Λ

∂wi∂wj
= 0 if i �= j .

Moreover, recalling (4.24) and (5.5), we have the estimate

(5.16)
∂2Λ

∂v2
i

,
∂2Λ

∂vi∂wi
,

∂2Λ

∂w2
i

= O(1) · 1

δ1
.

Since the cutoff function θ vanishes for |s| ≥ 3δ1, it is clear that each Λi

is smooth outside the manifold Ni
.
=

{
(v, w) ; vi = wi = 0

}
, having codi-

mension 2. Since all second derivatives are uniformly bounded outside the n

manifolds Ni, we conclude that Λ is continuously differentiable with Lipschitz

continuous first derivatives on a whole neighborhood of the point (u∗, 0, 0).

Hence the same holds for Λ−1.

Remark 5.3. By performing a linear transformation of variables, we can

assume that the matrix A(u∗) is diagonal; hence its eigenvectors r∗1, . . . r
∗
n form

an orthonormal basis:

(5.17)
〈
r∗i , r∗j

〉
= δij .

Observing that

(5.18)
∣∣r̃i(u, vi, σi) − r∗i

∣∣ = O(1) ·
(
|u − u∗| + |vi|

)
,

from (4.16) and the above assumption we deduce
〈
r̃i(u, vi, σi), r̃j(u, vj , σj)

〉
= δij + O(1) ·

(
|u − u∗| + |vi| + |vj |

)
(5.19)

= δij + O(1) · δ0 ,

(5.20)
〈
r̃i, r̃j

〉
= O(1) · δ0 ,

〈
r̃i, A(u)r̃j

〉
= O(1) · δ0 for j �= i .

Another useful consequence of (5.17), (5.18) is the following. Choosing δ0 > 0

small enough, the decomposition (5.6) will satisfy

(5.21) |ux| ≤
∑

i

|vi| ≤ 2
√

n|ux| .

We conclude this section by deriving estimates corresponding to (2.13)–

(2.15), valid for the components vi, wi. In the following, given a solution u =

u(t, x) of (3.1) with small total variation, we consider the decomposition (5.6)

of ux in terms of gradients of travelling waves. It is understood that the vectors

r̃i are constructed as in Section 4, when we take P ∗
i

.
=

(
u∗, 0, λi(u

∗)
)

as basic

points in the construction of the center manifolds Mi. Here u∗ .
= u(t,−∞) is

the constant state in (2.1).
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Lemma 5.4. In the same setting as Proposition 2.1, assume that the bounds

(2.6) hold on a larger interval [0, T ]. Then for all t ∈ [t̂, T ], the decomposition

(5.6) is well defined. The components vi, wi satisfy the estimates
∥∥vi(t)

∥∥
L1

,
∥∥wi(t)

∥∥
L1

=O(1) · δ0 ,(5.22)

∥∥vi(t)
∥∥
L∞

,
∥∥wi(t)

∥∥
L∞

,
∥∥vi,x(t)

∥∥
L1

,
∥∥wi,x(t)

∥∥
L1

=O(1) · δ2
0 ,(5.23)

∥∥vi,x(t)
∥∥
L∞

,
∥∥wi,x(t)

∥∥
L∞

=O(1) · δ3
0 .(5.24)

Proof. By Lemma 5.2, in a neighborhood of the origin the map (v, w) �→
Λ(u, v, w) in (5.8) is well defined, locally invertible, and continuously differen-

tiable with Lipschitz continuous derivatives. Hence, for δ0 > 0 suitably small,

the L∞ bounds in (2.13) and (2.14) guarantee that the decomposition (5.6) is

well defined. From the identity (5.12) it now follows that

vi, wi = O(1) ·
(
|ux| + |uxx|

)
.

By (2.6) and (2.13), (2.14) this yields the L1 bounds in (5.22) and the L∞

bounds in (5.23). Differentiating (5.12) with respect to x we obtain

(5.25)
∂Λ

∂u
ux +

∂Λ

∂(v, w)
(vx, wx) =

(
uxx, uxxx − A(u)uxx −

(
ux • A(u)

)
ux

)
.

Using the estimate
∂Λ

∂u
= O(1) ·

(
|v| + |w|

)
,

since the derivative ∂Λ/∂(v, w) has bounded inverse, from (5.25) we deduce

(vx, wx) = O(1) ·
(
|uxx| + |uxxx| + |ux|2 + |ux|

(
|v| + |w|

))
.

This yields the remaining estimates in (5.23) and (5.24).

6. Bounds on the source terms

We now consider a smooth solution u = u(t, x) of (3.1) and let vi, wi

be the corresponding components in the decomposition (5.6), which are well

defined in view of Lemma 5.2. The equations governing the evolution of these

2n components can be written in the form

(6.1)

{
vi,t + (λ̃ivi)x − vi,xx = φi ,

wi,t + (λ̃iwi)x − wi,xx = ψi .

As in (4.21), we define here the speed λ̃i
.
=

〈
r̃i , A(u)r̃i

〉
. The source terms

φi, ψi can be computed by differentiating (3.1) and using the implicit relations

(5.6). However, it is not necessary to carry out in detail all these computations.
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Indeed, we are interested not in the exact form of these terms, but only in an

upper bound for the norms ‖φi‖L1 and ‖ψi‖L1 .

Before giving these estimates, we provide an intuitive explanation of how

the source terms arise. Consider first the special case where u is precisely one

of the travelling wave profiles on the center manifold (Fig. 3a), say u(t, x) =

Uj(x − σjt). We then have

ux = vj r̃j , ut = (wj − λ∗
jvj)r̃j , vi = wi = 0 for i �= j ,

and therefore

(6.2)

{
vi,t + (λ̃ivi)x − vi,xx = 0 ,

wi,t + (λ̃iwi)x − wi,xx = 0 .

Indeed, this is obvious when i �= j. The identity φj = 0 follows from (4.28),

while the relation wj = (λ∗
j − σj)vj implies ψj = 0.

Next, consider the case of a general solution u = u(t, x). The sources on

the right-hand sides of (6.1) arise for three different reasons (Fig. 3b).

1. The ratio |wj/vj | is large and hence the cutoff function θ in (5.7) is

active. Typically, this will happen near a point x0 where ux = 0 but ut =

uxx �= 0. In this case the identity (4.28) fails because of a “wrong” choice of

the speed: σj �= λ∗
j − (wj/vj).
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2. Waves of two different families j �= k are present at a given point x.

These will produce quadratic source terms, due to transversal interactions.

3. Since the decomposition (3.10) is defined pointwise, it may well

happen that the travelling j-wave profile Uj at a point x is not the same as

the profile Uj at a nearby point x′. Indeed, these two travelling waves may

have slightly different speeds. It is the rate of change in this speed, i.e. σj,x,

that determines the infinitesimal interaction between nearby waves of the same

family. A detailed analysis will show that the corresponding source terms can

only be linear or quadratic with respect to σj,x, with the square of the strength

of the wave always appearing as a factor. These terms can thus be estimated

as O(1) · v2
j σj,x + O(1) · v2

j σ
2
j,x.

Lemma 6.1. The source terms in (6.1) satisfy the bounds

φi, ψi = O(1) · ∑j

(
|vj,x| + |wj,x|

)
· |wj − θjvj | (wrong speed)

+O(1) · ∑j |vj,xwj − vjwj,x| (change in speed, linear)

+O(1) · ∑j

∣∣∣vj

(
wj

vj

)

x

∣∣∣
2
· χ{

|wj/vj |<3δ1

} (change in speed, quadratic)

+O(1) · ∑j �=k

(
|vjvk| + |vj,xvk| + |vjwk|
+|vj,xwk| + |vjwk,x| + |wjwk|

)
(interaction of

waves of different families)

From a direct inspection of the equations (6.1), it will be clear that the

source terms depend only on the third order jet (u, ux, uxx, uxxx). Since all

functions φi, ψi vanish in the case of a travelling wave, for a general solution u

their size can be estimated in terms of the distance between the third order jet

of u and the (nearest) jet of some travelling wave. This is indeed the strategy

adopted in the following proof. An alternative proof, based on more direct

calculations, will be given in Appendix A.

Proof of Lemma 6.1. The conclusion will be reached in several steps.

1. The vector (ux, ut) = Λ(u, v, w) satisfies the evolution equation

(6.3)

(
ux

ut

)

t

+

([
A(u) 0

0 A(u)

] (
ux

ut

))

x

−
(

ux

ut

)

xx

=

(
0(

ux • A(u)
)
ut −

(
ut • A(u)

)
ux

)
.

Observe that, in the conservative case A(u) = Df(u), the right-hand side

vanishes because

(
ux • A(u)

)
ut =

(
ut • A(u)

)
ux = D2f(u) (ux ⊗ ut) .
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In the general case, recalling (5.6) we deduce

(6.4)
(
ux • A(u)

)
ut −

(
ut • A(u)

)
ux = O(1) ·

∑

j �=k

(
|vjvk| + |vjwk|

)
.

2. For notational convenience, we introduce the variable z
.
= (v, w) and

write λ̃ for the 2n × 2n diagonal matrix with entries λ̃i defined at (4.21):

λ̃
.
=

(
diag(λ̃i) 0

0 diag(λ̃i)

)
.

From (6.3) it now follows

∂Λ

∂u
ut +

∂Λ

∂z

(
v

w

)

t

+

([
A(u) 0

0 A(u)

]
Λ

)

x

− ∂Λ

∂z

(
v

w

)

xx

− ∂Λ

∂u
uxx

− ∂2Λ

∂u[2]
(ux ⊗ ux) − ∂2Λ

∂z[2]
·
(

vx

wx

)
⊗

(
vx

wx

)
− 2

∂2Λ

∂u ∂z
ux ⊗

(
vx

wx

)

=

(
0(

ux • A(u)
)
ut −

(
ut • A(u)

)
ux

)
.

Therefore,

(6.5)

∂Λ

∂z

[(
v

w

)

t

+

(
λ̃

(
v

w

))

x

−
(

v

w

)

xx

]

=
∂Λ

∂z

(
λ̃

(
v

w

))

x

−
([

A(u) 0

0 A(u)

]
Λ

)

x

+
∂Λ

∂u
A(u)ux +

(
0(

ux • A(u)
)
ut −

(
ut • A(u)

)
ux

)

+
∂2Λ

∂u[2]
(ux ⊗ ux) +

∂2Λ

∂z[2]
·
(

vx

wx

)
⊗

(
vx

wx

)
+ 2

∂2Λ

∂u ∂z
ux ⊗

(
vx

wx

)

.
= E .

Since the differential ∂Λ/∂z has uniformly bounded inverse, the right-hand

sides in (6.1) clearly satisfy the bounds

(6.6) φi = O(1) · E , ψi = O(1) · E, i = 1, . . . , n .

3. To estimate the quantity E in (6.5), it is convenient to introduce the

function

(6.7) Λi(u, vi, wi, σi)
.
=

(
vir̃i(u, vi, σi)

(wi − λ∗
i vi)r̃i(u, vi, σi)

)
,

so that Λ =
∑

Λi and E =
∑

Ei, where
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Ei =
∂Λi

∂zi

(
λ̃ivi

λ̃iwi

)

x

−
([

A(u) 0

0 A(u)

]
Λi

)

x

(6.8)

+
∂Λi

∂σi
λ̃i σi,x +

∂Λi

∂u

∑

j

A(u)vj r̃j

+

(
0

πi

(
(ux • A(u))ut − (ut • A(u))ux

)
)

+
∂2Λi

∂u[2]
ux ⊗ ux +

∂2Λi

∂z
[2]
i

·
(

vi,x

wi,x

)
⊗

(
vi,x

wi,x

)

+
∂2Λi

∂σ2
i

σ2
i,x + 2

∂2Λi

∂σi ∂zi

(
σi,xvi,x

σi,xwi,x

)

+2
∂2Λi

∂u ∂zi

(
vi,x

wi,x

)
⊗ ux + 2

∂2Λi

∂u ∂σi
σi,xux

+
∂Λi

∂σi

(
∂2σi

∂v2
i

v2
i,x + 2

∂2σi

∂vi∂wi
vi,xwi,x +

∂2σi

∂w2
i

w2
i,x

)
.

Notice that in (6.5) we regarded Λ as a function of the three independent

variables (u, v, w), while in (6.8) we regard Λ as a function of the four inde-

pendent variables (u, v, w, σ). Regarding the σi as independent variables, one

has the advantage that the maps Λi = Λi(u, vi, wi, σi) are now smooth, while

Λi = Λi(u, v, w) in (5.8) was only C1,1, because of the singularities of the map

(u, vi, wi) �→ σi in (5.7). The last term in (6.8) is due to the nonlinear de-

pendence of σi with respect to vi, wi. By πi(v) we denoted the ith component

of a vector v with respect to the basis {r∗1, . . . , r∗n}. Also notice that in the

previous computation we used the identity

∂Λi

∂σi

∂σi

∂vi
λ̃i,xvi +

∂Λi

∂σi

∂σi

∂wi
λ̃i,xwi

= λ̃i,x

(
wi/vi · θ′ir̃i,σ −θ′ir̃i,σ

wi/vi(wi/vi − λ∗
i )θ

′
ir̃i,σ −(wi/vi − λ∗

i )θ
′
ir̃i,σ

)(
vi

wi

)
=

(
0

0

)
.

4. By Lemma 5.2, the inverse map Λ−1 sets a one-to-one correspondence

(u, ux, uxx) �→ (u, v, w)

between two neighborhoods of the point (u∗, 0, 0) ∈ R
3n. This map is C1 with

Lipschitz continuous derivative. It can be prolonged to a map

(6.9) (u, ux, uxx, uxxx) �→ (u, v, w, σ, vx, wx, σx)

which is one-to-one, but of course not onto. Indeed, (5.6) and the identity
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ut + A(u)ux = uxx together imply

(6.10)
∑

i

wir̃i +
∑

i

(
A(u) − λ∗

i )vir̃i

=
∑

i

vi,xr̃i +
∑

ij

vir̃i,u vj r̃j +
∑

i

vir̃i,vvi,x +
∑

i

vir̃i,σσi,x .

A vector (u, v, w, σ, vx, wx, σx) ∈ R
7n corresponds to some third order jet

(u, ux, uxx, uxxx) provided that it satisfies the vector equation (6.10), together

with

(6.11)

σi = λ∗
i − θ

(
wi

vi

)
, σi,x =

wivi,x − wi,xvi

v2
i

θ′
(

wi

vi

)
i = 1, . . . , n .

5. By the analysis at (6.2), Ei(u, v♦, w♦, σ♦, v♦x , w♦
x , σ♦

x ) = 0 whenever

the argument corresponds to the third order jet of a viscous travelling i-wave.

This is the case if

(6.12) v♦j = w♦
j = v♦j,x = w♦

j,x = 0, σ♦
j,x = 0, for all j �= i,

(6.13){
v♦i,x = (λ̃i − σ♦

i )v♦i ,

w♦
i,x = (λ̃i − σ♦

i )w♦
i ,

∣∣∣∣∣
w♦

i

v♦i

∣∣∣∣∣ < 3δ1 , σ♦
i = λ∗

i −
w♦

i

v♦i
, σ♦

i,x = 0 .

In order to estimate Ei(u, v, w, σ, vx, wx, σx) we proceed as follows. We in-

troduce a new vector (u, v♦, w♦, σ♦, v♦x , w♦
x , σ♦

x ) corresponding to the jet of a

travelling i-wave, by setting

(6.14) v♦i = vi , w♦
i = θ

(
wi

vi

)
vi, σ♦

i = σi = λ∗
i −

w♦
i

v♦i
.

The quantities v♦i,x , w♦
i,x, σ♦

i,x are then defined according to (6.13), while the

components j �= i are as in (6.12). The above construction implies E♦
i

.
=

Ei(u, v♦, w♦, σ♦, v♦x , w♦
x , σ♦

x ) = 0. Hence Ei = Ei − E♦
i .

6. Taking the inner product of (6.10) with r̃i, recalling that r̃i has unit

norm and is thus orthogonal to its derivatives, we obtain

(6.15) wi + (λ̃i − λ∗
i )vi = vi,x + Θi ,

where
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(6.16)

Θi =
∑

j �=i

〈
r̃i,

(
λ∗

j − A(u)
)
r̃j

〉
vj +

∑

j �=i

∑

k

〈
r̃i, r̃j,ur̃k

〉
vjvk

+
∑

j �=i

〈
ri, rj,v

〉
vjvj,x +

∑

j �=i

〈
ri, rj,σ

〉
vjσj,x −

∑

j �=i

〈
ri, rj

〉
(wj − vj,x)

=O(1) · δ0

∑

j �=i

(
|vj | + |wj − vj,x|

)
.

The above estimate on Θi is obtained using (5.20) together with the L∞ bounds

in (5.23), (5.24) and the bound on r̃j,σ in (4.24). Summing (6.15) over i =

1, . . . , n and recalling that

δ0 ≪ 1 , |λ̃i − λ∗
i | = O(1) · δ0 , |vi|, |wi| = O(1) · δ2

0 ,

from (6.16) we deduce

(6.17)
∑

i

|wi − vi,x| = O(1) · δ0

∑

j

|vj | .

We can now write

vi,x = wi + (λ̃i − λ∗
i )vi + O(1) · δ0

∑

j �=i

(
|vj | + |wj − vj,x|

)
(6.18)

= (λ̃i − σi)vi + (wi − θivi) + O(1) · δ0

∑

j �=i

(
|vj | + |wj − vj,x|

)
.

We recall that θi
.
= θ(wi/vi). The first equality in (6.18) yields the implications

|wi| < 3δ1|vi| =⇒ vi,x = O(1) · vi + O(1) · δ0

∑

j �=i

|vj | .(6.19)

|wi| > δ1|vi| =⇒ vi = O(1) · vi,x + O(1) · δ0

∑

j �=i

|vj | .(6.20)

Moreover, using both equalities in (6.18) we deduce

(λ̃i − σi)wi = (λ̃i − σi)
[
vi,x − (λ̃i − λ∗

i )vi

]
+ O(1) · δ0

∑

j �=i

(
|vj | + |wj − vj,x|

)

= (λ̃i − σi)vi,x − (λ̃i − λ∗
i )

(
vi,x − (wi − θivi)

)

+O(1) · δ0

∑

j �=i

(
|vj | + |wj − vj,x|

)

=
wi

vi
vi,x −

(
wi

vi
− θi

)
vi,x + (λ̃i − λ∗

i )(wi − θivi)

+O(1) · δ0

∑

j �=i

(
|vj | + |wj − vj,x|

)
,
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and hence, by (6.20),

wi,x − (λ̃i − σi)wi =
wi,xvi − wivi,x

vi
+ O(1) ·

∣∣∣∣
vi,x

vi

∣∣∣∣ |wi − θivi|

+O(1) · δ0

∑

j �=i

(
|vj | + |wj − vj,x|

)
.

From the definitions (6.13), (6.14), using the above estimates, we obtain

|wi − w♦
i |= |wi − θivi| ,(6.21)

|vi,x − v♦i,x|=O(1) · |wi − θivi| + O(1) · δ0

∑

j �=i

(
|vj | + |wj − vj,x|

)
,

|wi,x − w♦
i,x|=

∣∣∣∣
wi,xvi − wivi,x

vi

∣∣∣∣ + O(1) ·
∣∣∣∣
vi,x

vi

∣∣∣∣ |wi − θivi|

+O(1) · δ0

∑

j �=i

(
|vj | + |wj − vj,x|

)
.

7. We now compute

(6.22)

Ei = Ei − E♦
i =

∂Λi

∂zi

(
λ̃ivi

λ̃iwi

)

x

−
([

A(u) 0

0 A(u)

]
Λi

)

x

−∂Λ♦
i

∂zi

(
λ̃♦

i v♦i
λ̃♦

i w♦
i

)

x

−
([

A(u) 0

0 A(u)

]
Λ♦

i

)

x

+
∂Λi

∂σi
λ̃i σi,x +

∂Λi

∂u

∑

j �=i

A(u)vj r̃j

+

(
0

πi

(
(ux • A(u))ut − (ut • A(u))ux

)
)

+

(
∂2Λi

∂u[2]
ux ⊗ ux +

∂2Λ♦
i

∂u[2]
vir̃

♦
i ⊗ vir̃

♦
i

)

+
∂2Λi

∂z
[2]
i

·
(

vi,x

wi,x

)
⊗

(
vi,x

wi,x

)
− ∂2Λ♦

i

∂z
[2]
i

·
(

v♦i,x
w♦

i,x

)
⊗

(
v♦i,x
w♦

i,x

)

+
∂2Λi

∂σ2
i

σ2
i,x + 2

∂2Λi

∂u∂zi

(
vi,x

wi,x

)
⊗ ux

−2
∂2Λ♦

i

∂u∂zi

(
v♦i,x
w♦

i,x

)
⊗ vir̃

♦
i + 2

∂2Λi

∂u ∂σi
σi,xux

+2
∂2Λi

∂zi∂σi

(
σi,xvi,x

σi,xwi,x

)

+
∂Λi

∂σi

(
∂2σi

∂2vi
v2
i,x + 2

∂2σi

∂vi∂wi
vi,xwi,x +

∂2σi

∂2wi
w2

i,x

)
.
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Observe that the quantities u, vi, σi, r̃i, λ̃i remain the same in the computations

of Ei and E♦
i . Moreover, all the terms involving derivatives with respect to σi

vanish when we compute E♦
i .

In the remaining steps, we will examine the various terms on the right-

hand side of (6.22) and show that they can all be bounded according to the

lemma. As a preliminary, we observe that by (6.7) and (4.24) the derivatives

of the smooth function Λi = Λi(u, zi, σi) satisfy

∂Λi

∂u
,

∂2Λi

∂u[2]
,

∂2Λi

∂zi∂σi
=O(1) ·

(
|vi| + |wi|

)
,(6.23)

∂Λi

∂σi
,

∂2Λi

∂u∂σi
,

∂2Λi

∂σ2
i

=O(1) ·
(
|v2

i | + |viwi|
)
.(6.24)

8. We start by collecting some transversal terms. Using (6.4), (6.23) and

(6.24) we obtain

(6.25)

∂Λi

∂u

∑

j �=i

A(u)vj r̃j +

(
0

πi

(
(ux • A(u))ut − (ut • A(u))ux

)
)

+
∂2Λi

∂u[2]




∑

j,k

vjvkr̃j ⊗ r̃k − v2
i r̃i ⊗ r̃i



 + 2
∂2Λi

∂u∂zi

∑

j �=i

(
vi,x

wi,x

)
⊗ vj r̃j

= O(1) ·
∑

j �=k

(
|vjvk| + |wjvk|

)
+ O(1) ·

∑

j �=i

(
|wjwi| + |vjvi,x| + |vjwi,x|

)
.

Here and in the following, by “transversal terms” we mean terms whose size is

bounded by products of distinct components j �= k, as in (6.25).

9. We now look at terms involving derivatives with respect to σi. One

should here keep in mind that, if σi,x �= 0, then both sides of the implication

(6.19) hold true. Using (6.23) we obtain

∂2Λi

∂zi∂σi

(
σi,xvi,x

σi,xwi,x

)
= O(1) · vi

(
|vi,x| + |wi,x|

)
σi,x(6.26)

= O(1) · v2
i σi,x + O(1) · (wivi,x − wi,xvi)σi,x + transversal terms

= O(1) · |wivi,x − wi,xvi|

+O(1) ·
∣∣∣∣vi ·

(
wi

vi

)

x

∣∣∣∣
2

· χ
{|wi/vi|<3δ1}

+ transversal terms .

An application of (6.24) yields

∂Λi

∂σi
λ̃iσi,x +

∂2Λi

∂σ2
i

σ2
i,x + 2

∂2Λi

∂u∂σi
σi,xux(6.27)

= O(1) · v2
i

(
|σi,x| + |σ2

i,x|
)

+ transversal terms
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= O(1) · |viwi,x − wivi,x|

+O(1) ·
∣∣∣∣vi ·

(
wi

vi

)

x

∣∣∣∣
2

· χ
{|wi/vi|<3δ1}

+ transversal terms .

Next, we observe that the quantity

∂2σi

∂2vi
v2
i,x + 2

∂2σi

∂vi∂wi
vi,xwi,x +

∂2σi

∂2wi
w2

i,x

vanishes in the special case where wi,x = (wi/vi)vi,x. In general, using (6.19)

and (6.24) one obtains

(6.28)

∂Λi

∂σi

(
∂2σi

∂2vi
v2
i,x + 2

∂2σi

∂vi∂wi
vi,xwi,x +

∂2σi

∂2wi
w2

i,x

)

=
∂Λi

∂σi

{(
−θ′′i

w2
i

v4
i

− 2θ′i
wi

v3
i

)
v2
i,x + 2

(
θ′′i

wi

v3
i

+ θ′i
1

v2
i

)
vi,xwi,x − θ′′i

w2
i,x

v2
i

}

=
∂Λi

∂σi

{
2θ′i(viwi,x − wivi,x)

vi,x

vi
− θ′′i

(viwi,x − wivi,x

v2
i

)2
}

= O(1) · |viwi,x − wivi,x|

+O(1) ·
∣∣∣∣vi

(
wi

vi

)

x

∣∣∣∣
2

· χ
{|wj/vj |<3δ1}

+ transversal terms .

10. We now complete the analysis of the remaining terms. As a prelimi-

nary, we observe that the only difference between Λ♦
i and Λi is due to the fact

that one may have w♦
i �= wi. The first equality in (6.21) thus implies

(6.29)
∣∣Λ♦

i − Λi

∣∣ ,
∣∣DΛ♦

i − DΛi

∣∣ ,
∣∣D2Λ♦

i − D2Λi

∣∣ = O(1) · |wi − θivi| + O(1) · δ0

∑

j �=i

|vj | .

By (6.20) and (6.29), if we compute Λi or its partial derivatives at the point

(u, vi, wi, σi) instead of (u, v♦i , w♦
i , σ♦

i ) = (u, vi, w
♦
i , σi), the difference in each

of the corresponding terms in (6.22) will have magnitude

O(1) · |wi − θivi| ·
(
|vi,x| + |wi,x|

)
+ transversal terms .

For example,

(6.30)(
∂2Λi

∂u[2]
− ∂2Λ♦

i

∂u[2]

)
(vir̃i ⊗ vir̃i) =O(1) · |wi − θivi| v2

i + transversal terms

=O(1) · |wi − θivi| v2
i,x + transversal terms .

Indeed, if wi �= θivi, then both sides of the implication (6.20) hold true.
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Observing that ∂2Λi/∂w2
i = 0 and using again (6.18), we have

∂2Λi

∂z
[2]
i

[ (
vi,x

wi,x

)
⊗

(
vi,x

wi,x

)
−

(
v♦i,x
w♦

i,x

)
⊗

(
v♦i,x
w♦

i,x

)]
(6.31)

= O(1) ·
(
v2
i,x − (v♦i,x)2

)
+ O(1) ·

(
vi,xwi,x − v♦i,xw♦

i,x)

= O(1) · vi,x|wi − θivi| + O(1) · wi,x|wi − θivi|
+O(1)|wivi,x − viwi,x| + transversal terms .

In a similar way, using (6.20) and (6.21) one derives the estimate

(6.32)

∂2Λi

∂u∂zi

(
vi,x − v♦i,x
wi,x − w♦

i,x

)
⊗ vir̃i =O(1) · vi,x|wi − θivi|

+O(1) · |wivi,x − viwi,x| + transversal terms .

Using the identity (4.23), we now compute

∂Λi

∂zi

(
λ̃ivi

λ̃iwi

)

x

−
([

A(u) 0

0 A(u)

]
Λi

)

x

=

(
vir̃i,v(λ̃ivi)x

(wi − λ∗
i vi)r̃i,v(λ̃ivi)x

)
+

(
viA(u)r̃i,vvi,x

(wi − λ∗
i vi)A(u)r̃i,vvi,x

)

+

[
r̃i 0

−λ∗
i r̃i r̃i

] (
λ̃i,xvi

λ̃i,xwi

)

−vi

[
r̃i,ur̃i + (λ̃i − σi)r̃i,v 0

−λ∗
i (r̃i,ur̃i + (λ̃i − σi)r̃i,v) r̃i,ur̃i + (λ̃i − σi)r̃i,v

] (
vi,x

wi,x

)

−
[

A(u) 0

0 A(u)

]
∂Λi

∂σi
σi,x −

∑

j

[
DA(u)r̃j 0

0 DA(u)r̃j

]
vjΛi

−
∑

j

[
A(u) 0

0 A(u)

]
∂Λi

∂u
vj r̃j .

With similar arguments as above, we obtain
(

(λ̃ivi)xvir̃i,v

(λ̃ivi)xvi(wi − λ∗
i vi)r̃i,v

)
−

(
(λ̃♦

i v♦i )xv♦i r̃♦i,v
(λ̃♦

i v♦i )xv♦i (w♦
i − λ∗

i v
♦
i )r̃♦i,v

)

= O(1) · |viwi,x − vi,xwi| · χ
{|wi/vi|≤3δ1}

+O(1) · vi,x|wi − θivi| + transversal terms ,

(
λ̃i,xvi

λ̃i,xwi

)
−

(
λ̃♦

i,xv♦i
λ̃♦

i,xw♦
i

)

= O(1) · |viwi,x − vi,xwi| + O(1) · vi,x|wi − θivi| + transversal terms ,
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(
vivi,x

viwi,x

)
−

(
v♦i v♦i,x
v♦i w♦

i,x

)

= O(1) · |viwi,x − vi,xwi| + O(1) · vi,x|wi − θivi| + transversal terms .

The above estimates together imply

∂Λi

∂zi

(
λ̃ivi

λ̃iwi

)

x

−
([

A(u) 0

0 A(u)

]
Λi

)

x

(6.33)

−∂Λ♦
i

∂zi

(
λ̃♦

i v♦i
λ̃♦

i w♦
i

)

x

−
([

A(u) 0

0 A(u)

]
Λ♦

i

)

x

= O(1) · |wi − θivi|
(
|vi,x| + |wi,x|

)

+O(1) · |wivi,x − viwi,x| + transversal terms .

This completes the proof of Lemma 6.1.

7. Transversal wave interactions

The goal of this section is to establish an a priori bound on the total

amount of interactions between waves of different families. More precisely, let

u = u(t, x) be a solution of the parabolic system (3.1) and assume that

(7.1)
∥∥ux(t)

∥∥
L1

≤ δ0, t ∈ [0, T ] .

In this case, for t ≥ t̂, by Corollary 2.2 all higher derivatives will be suitably

small and we can thus define the components vi, wi according to (5.6), (5.7).

These will satisfy the linear evolution equation (6.1), with source terms φi, ψi

described in Lemma 6.1. Assuming that

(7.2)

∫ T

t̂

∫ ∣∣φi(t, x)
∣∣ +

∣∣ψi(t, x)
∣∣ dxdt ≤ δ0 , i = 1, . . . , n,

and relying on the bounds (5.22)–(5.24), we shall prove the estimate

(7.3)∫ T

t̂

∫ ∑

j �=k

(
|vjvk|+|vj,xvk|+|vjwk|+|vj,xwk|+|vjwk,x|+|wjwk|

)
dxdt = O(1)·δ2

0 .

As a preliminary, we establish a more general estimate on solutions of two

independent linear parabolic equations, with strictly different drifts.

Lemma 7.1. Let z, z♯ be solutions of the two independent scalar equations

zt +
(
λ(t, x)z

)
x
− zxx = ϕ(t, x) ,(7.4)

z♯
t +

(
λ♯(t, x)z♯

)
x
− z♯

xx = ϕ♯(t, x) ,

defined for t ∈ [0, T ]. Assume that

(7.5) inf
t,x

λ♯(t, x) − sup
t,x

λ(t, x) ≥ c > 0 .
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Then

(7.6)
∫ T

0

∫ ∣∣z(t, x)
∣∣ ∣∣z♯(t, x)

∣∣ dxd≤ 1

c

(∫ ∣∣z(0, x)
∣∣ dx +

∫ T

0

∫ ∣∣ϕ(t, x)
∣∣ dxdt

)

·
(∫ ∣∣z♯(0, x)

∣∣ dx +

∫ T

0

∫ ∣∣ϕ♯(t, x)
∣∣ dxdt

)
.

Proof. We consider first the homogeneous case, where ϕ = ϕ♯ = 0. Define

the interaction potential

(7.7) Q(z, z♯)
.
=

∫∫
K(x − y)

∣∣z(x)
∣∣ ∣∣z♯(y)

∣∣ dxdy ,

by

(7.8) K(s)
.
=

{
1/c if s ≥ 0,

1/c · ecs/2 if s < 0.

Computing the distributional derivatives of the kernel K we find that

cK ′ − 2K ′′ is precisely the Dirac distribution, i.e. a unit mass at the origin. A

direct computations now yields

d

dt
Q

(
z(t), z♯(t)

)
=

d

dt

∫∫
K(x − y)

∣∣z(x)
∣∣ ∣∣z♯(y)

∣∣ dxdy

=

∫∫
K(x − y)

{(
zxx − (λz)x

)
signz(x)

∣∣z♯(y)
∣∣

+
∣∣z(x)

∣∣(z♯
yy − (λ♯z♯)y

)
signz♯(y)

}
dxdy

=

∫∫
K ′(x − y)

{
λ
∣∣z(x)

∣∣ ∣∣z♯(y)
∣∣ − λ♯

∣∣z(x)
∣∣ ∣∣z♯(y)

∣∣
}

dxdy

+

∫∫
K ′′(x − y)

{∣∣z(x)
∣∣ ∣∣z♯(y)

∣∣ +
∣∣z(x)

∣∣ ∣∣z♯(y)
∣∣
}

dxdy

≤−
∫∫ (

cK ′ − 2K ′′
)∣∣z(x)

∣∣ ∣∣z♯(y)
∣∣ dxdy

=−
∫ ∣∣z(x)

∣∣ ∣∣z♯(x)
∣∣ dx .

Therefore

(7.9)

∫ T

0

∫ ∣∣z(t, x)
∣∣ ∣∣z♯(t, x)

∣∣ dxdt ≤ Q
(
z(0), z♯(0)

)
≤ 1

c

∥∥z(0)
∥∥
L1

∥∥z♯(0)
∥∥
L1

.

proving the lemma in the homogeneous case.

To handle the general case, call Γ, Γ♯ the Green functions for the corre-

sponding linear homogenous systems. The general solution of (7.4) can thus
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be written in the form

z(t, x) =

∫
Γ(t, x, 0, y)z(0, y)dy +

∫ t

0

∫
Γ(t, x, s, y)ϕ(s, y)dyds,(7.10)

z♯(t, x) =

∫
Γ♯(t, x, 0, y)z♯(0, y)dy +

∫ t

0

∫
Γ♯(t, x, s, y)ϕ♯(s, y)dyds.

From (7.9) it follows that

(7.11)

∫ T

max{s,s′}

∫
Γ(t, x, s, y) · Γ♯(t, x, s′, y′) dxdt ≤ 1

c

for every couple of initial points (s, y) and (s′, y′). The estimate (7.6) now

follows from (7.11) and the representation formula (7.10).

Remark 7.2. Exactly the same estimate (7.6) would be true also for a

system without viscosity. In particular, if

zt +
(
λ(t, x)z

)
x

= 0, z♯
t +

(
λ♯(t, x)z♯

)
x

= 0,

and if the speeds satisfy the gap condition (7.5), then

d

dt

[
1

c

∫∫

x<y

∣∣z♯(t, x)z(t, y)
∣∣ dxdy

]
≤ −

∫ ∣∣z(t, x)
∣∣ ∣∣z♯(t, x)

∣∣ dx .

In the case where viscosity is present, our definition (7.7), (7.8) thus provides

a natural counterpart to the Glimm interaction potential between waves of

different families, introduced in [G] for strictly hyperbolic systems.

Lemma 7.1 allows us to estimate the integral of the terms |vivk|, |vjwk|
and |wjwk| in (7.3). We now work toward an estimate of the remaining terms

|vj,xvk|, |vj,xwk| and |vjwk,x|, containing one derivative with respect to x.

Lemma 7.3. Let z, z♯ be solutions of (7.4) and assume that (7.5) holds,

together with the estimates

(7.12)

∫ T

0

∫ ∣∣ϕ(t, x)
∣∣ dxdt ≤ δ0,

∫ T

0

∫ ∣∣ϕ♯(t, x)
∣∣ dxdt ≤ δ0 ,

(7.13)
∥∥z(t)

∥∥
L1

,
∥∥z♯(t)

∥∥
L1

≤ δ0 ,
∥∥zx(t)

∥∥
L1

,
∥∥z♯(t)

∥∥
L∞

≤ C∗δ2
0 ,

(7.14)
∥∥λx(t)

∥∥
L∞

,
∥∥λx(t)

∥∥
L1

≤ C∗δ0 , lim
x→−∞

λ(t, x) = 0

for all t ∈ [0, T ]. Then one has the bound

(7.15)

∫ T

0

∫ ∣∣zx(t, x)
∣∣ ∣∣z♯(t, x)

∣∣ dxdt = O(1) · δ2
0 .
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Proof. The left-hand side of (7.15) is clearly bounded by the quantity

I(T )
.
= sup

(τ,ξ)∈[0,T ]×R

∫ T−τ

0

∫ ∣∣zx(t, x)z♯(t + τ, x + ξ)
∣∣ dxdt ≤ (C∗δ2

0)
2 · T ,

the last inequality being a consequence of (7.13). For t > 1 we can write zx in

the form

zx(t, x) =

∫
Gx(1, y)z(t − 1, x − y) dy

+

∫ 1

0

∫
Gx(s, y)

[
ϕ − (λz)x

]
(t − s, x − y) dyds ,

where G(t, x)
.
= exp{−x2/4t}/2

√
πt is the standard heat kernel. Using (7.6)

we obtain

(7.16)
∫ T−τ

1

∫ ∣∣zx(t, x) z♯(t + τ, x + ξ)
∣∣ dxdt

≤
∫ T−τ

1

∫∫ ∣∣∣Gx(1, y)z(t − 1, x − y) z♯(t + τ, x + ξ)
∣∣∣ dydxdt

+

∫ T−τ

1

∫∫ 1

0

∫ ∥∥λx‖L∞

∣∣∣Gx(s, y)z(t − s, x − y) z♯(t + τ, x + ξ)
∣∣∣ dydsdxdt

+

∫ T−τ

1

∫∫ 1

0

∫ ∥∥λ‖L∞

∣∣∣Gx(s, y)zx(t − s, x − y) z♯(t + τ, x + ξ)
∣∣∣ dydsdxdt

+

∫ T−τ

1

∫∫ t

t−1

∫ ∣∣∣Gx(t − s, x − y) ϕ(s, y) z♯(t + τ, x + ξ)
∣∣∣ dydsdxdt

≤
(∫ ∣∣Gx(1, y)

∣∣ dy + ‖λx‖L∞

∫ 1

0

∫ ∣∣Gx(s, y)
∣∣ dyds

)

· sup
s,y,τ,ξ

(∫ T−τ

1

∫ ∣∣z(t − s, x − y)
∣∣ ∣∣z♯(t + τ, x + ξ)

∣∣ dxdt

)

+

(
‖λ‖L∞ ·

∫ 1

0

∫ ∣∣Gx(s, y)
∣∣ dyds

)

·
(

sup
s,y,τ,ξ

∫ T−τ

1

∫ ∣∣zx(t − s, x − y)
∣∣ ∣∣z♯(t + τ, x + ξ)

∣∣ dxdt

)

+‖z♯‖L∞ ·
∫ 1

0

∫ ∣∣Gx(s, y)
∣∣ dsdy ·

∫ T

0

∫ ∣∣ϕ(t, x)
∣∣ dxdt

≤
(

1√
π

+ ‖λx‖L∞

2√
π

)
4δ2

0

c
+ ‖λ‖L∞

2√
π
I(T ) + C∗δ2

0

2√
π

δ0 .



264 STEFANO BIANCHINI AND ALBERTO BRESSAN

On the initial time interval [0, 1], by (7.13),

(7.17)

∫ 1

0

∫ ∣∣zx(t, x) z♯(t + τ, x + ξ)
∣∣ dxdt

≤
∫ 1

0

∥∥zx(t)
∥∥
L1

∥∥z♯(t + τ)
∥∥
L∞

dt ≤ (C∗δ2
0)

2 .

Moreover, (7.14) implies

‖λ‖L∞ ≤ ‖λx‖L1 ≤ C∗δ0 ≪ 1 .

From (7.16) and (7.17) it thus follows that

I(T ) ≤ (C∗δ2
0)

2 +
4δ2

0

c
+

1

2
I(T ) + C∗δ3

0 .

For δ0 sufficiently small, this implies I(T ) ≤ 9δ2
0/c, proving the lemma.

Using the two previous lemmas we now prove the estimate (7.3). Setting

z
.
= vj , z♯ .

= vk, λ
.
= λ̃j , λ♯ .

= λ̃k, we apply Lemma 7.1 which yields the

desired bound on the integral of |vjvk|. Moreover, Lemma 7.3 allows us to

estimate the integral of |vj,xvk|. Notice that the assumptions (7.13), (7.14) are

a consequence of (5.22), (5.23). The simplifying condition λ(t,−∞) = 0 in

(7.14) can be easily achieved, by use of a new space coordinate x′ .
= x − λ∗

j t.

The other terms |vjwk|, |wjwk|, |vj,xwk| and |vjwk,x| are handled similarly.

8. Functionals related to shortening curves

We now study the interaction of viscous waves of the same family. As in

the previous section, let u = u(t, x) be a solution of the parabolic system (3.1)

whose total variation remains bounded according to (7.1). Assume that the

components vi, wi satisfy the evolution equation (6.1), with source terms φi, ψi

bounded as in (7.2). Relying on the bounds (5.22)–(5.24), for each i = 1, . . . , n

we shall prove the estimates

∫ T

t̂

∫
|wi,xvi − wivi,x| dxdt =O(1) · δ2

0 ,(8.1)

∫ T

t̂

∫

|wi/vi|<3δ1

|vi|2
∣∣∣∣

(
wi

vi

)

x

∣∣∣∣
2

dxdt =O(1) · δ3
0 .(8.2)

The above integrals will be controlled in terms of two functionals, related to

shortening curves. Consider a parametrized curve in the plane γ : R �→ R
2.

Assuming that γ is sufficiently smooth, its length is computed by

(8.3) L(γ)
.
=

∫ ∣∣γx(x)
∣∣ dx .
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Following [BiB2], we also define the area functional as the integral of a wedge

product:

(8.4) A(γ)
.
=

1

2

∫∫

x<y

∣∣γx(x) ∧ γx(y)
∣∣ dxdy .

To understand its geometrical meaning, observe that if γ is a closed curve, the

integral
1

2

∫
γ(y) ∧ γx(y) dy =

1

2

∫∫

x<y
γx(x) ∧ γx(y) dx dy

yields the sum of the areas of the regions enclosed by the curve γ, multiplied

by the corresponding winding number. In general, the quantity A(γ) provides

an upper bound for the area of the convex hull of γ.

Let now γ = γ(t, x) be a planar curve which evolves in time, according to

the vector equation

(8.5) γt + λγx = γxx .

Here λ = λ(t, x) is a sufficiently smooth scalar function. It is then clear that

the length L
(
γ(t)

)
of the curve is a decreasing function of time. It was shown

in [BiB2] that also the area functional A
(
γ(t)

)
is monotonically decreasing.

Moreover, the amount of decrease dominates the area swept by the curve during

its motion. An intutive way to see this is the following. In the special case

where γ is a polygonal line, with vertices at the points P0, . . . , Pm, the integral

in (8.4) reduces to a sum:

A(γ) =
1

2

∑

i<j

∣∣vi ∧ vj

∣∣ , vi
.
= Pi − Pi−1 .

If we now replace γ by a new curve γ′ obtained by replacing two consecutive

edges vh, vk by one single edge (Fig. 4b), the area between γ and γ′ is precisely

|vh ∧ vk|/2, while an easy computation yields

A(γ′) ≤ A(γ) − 1

2
|vh ∧ vk| .

The estimate on the area swept by a smooth curve (Fig. 4a) is now obtained by

approximating a shortening curve γ by a sequence of polygonals, each obtained

from the previous one by replacing two consecutive edges by a single segment.

γ

γ ′

γ

vh
vk

γ ′

Figure 4a Figure 4b
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We shall apply the previous geometric considerations toward a proof of

the estimates of (8.1), (8.2). Let v, w be two scalar functions, satisfying

vt + (λv)x − vxx = φ ,(8.6)

wt + (λw)x − wxx = ψ .

Define the planar curve γ by setting

(8.7) γ(t, x) =

(∫ x

−∞
v(t, y)dy,

∫ x

−∞
w(t, y)dy

)
.

Integrating (8.6) with respect to x, one finds the corresponding evolution equa-

tion for γ:

(8.8) γt + λγx − γxx = Φ(t, x)
.
=

(∫ x

−∞
φ(t, y)dy,

∫ x

−∞
ψ(t, y)dy

)
.

In particular, if no sources were present, the motion of the curve would reduce

to (8.5). At each fixed time t, we now define the Length Functional as

(8.9) L(t) = L
(
γ(t)

)
=

∫ √
v2(t, x) + w2(t, x) dx

and the Area Functional as

(8.10) A(t) = A
(
γ(t)

)
=

1

2

∫∫

x<y

∣∣v(t, x)w(t, y) − v(t, y)w(t, x)
∣∣ dxdy .

We now estimate the time derivative of the above functionals, in the gen-

eral case when sources are present.

Lemma 8.1. Let v, w be solutions of (8.6), defined for t ∈ [0, T ]. For

each t, assume that the maps x �→ v(t, x) x �→ w(t, x) and x �→ λ(t, x) are C1,1,

i.e. continuously differentiable with Lipschitz derivative. Then the correspond-

ing area functional (8.10) satisfies

d

dt
A(t)≤−

∫ ∣∣∣vx(t, x)w(t, x) − v(t, x)wx(t, x)
∣∣∣dx(8.11)

+
∥∥v(t)

∥∥
L1

∥∥ψ(t)
∥∥
L1

+
∥∥w(t)

∥∥
L1

∥∥φ(t)
∥∥
L1

.

Proof. In the following, given a curve γ, at each point x where γx �= 0

we define the unit normal n = n(x) (see Fig. 5), oriented so that γx(x) ∧ n =∣∣γx(x)
∣∣ > 0. For every vector v ∈ R

2 this implies

γx(x) ∧ v =
∣∣γx(x)

∣∣ 〈
n , v

〉
.

Given a unit vector n, we shall also consider the projection of γ along n,

namely

y �→ χn(y)
.
=

〈
n , γ(y)

〉
.
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γ

γ(y1)

γ(y2)
n

γ(x)

Figure 5

If γ = γ(t, x) is any smooth curve evolving in time, the time derivative of the

area functional in (8.4) can be computed as

dA
dt

=
1

2

∫∫

x<y
sign

(
γx(x) ∧ γx(y)

) {
γxt(x) ∧ γx(y) + γx(x) ∧ γxt(y)

}
dxdy

=
1

2

∫∫
sign

(
γx(x) ∧ γx(y)

) {
γx(x) ∧ γxt(y)

}
dydx

=
1

2

∫ ∣∣γx(x)
∣∣
(∫

sign
〈
n , γx(y)

〉
·
〈
n , γxt(y)

〉
dy

)
dx

=
1

2

∫ ∣∣γx(x)
∣∣ d

dt

(
Tot.Var.{χn}

)
dx .

For each x, we are here choosing the unit normal n = n(x) to the curve γ(t, ·)
at the point x. We emphasize that, in the last expression, the derivative with

respect to time of the total variation is taken regarding n as a constant. To

compute this derivative, assume that the function y �→ χn(x)(y) has a finite

number of local maxima and minima, say, attained at the points (Fig. 5)

y−p < · · · < y−1 < y0 = x < y1 < · · · < yq .

Assume, in addition, that its derivative dχn/dy changes sign across every such

point. Then

(8.13)
d

dt

(
Tot.Var.{χn}

)
= −sign

〈
n , γxx(x)

〉
· 2

∑

−p≤α≤q

(−1)α
〈
n , γt(yα)

〉
.

Notice the sign factor in (8.13). If the inner product
〈
n , γxx(x)

〉
is positive,

the even indices α correspond to local minima and the odd indices to local

maxima. The opposite is true if the inner product is negative. We now apply

(8.13) to the curve γ considered at (8.7), (8.8). Observing that
〈
n , γx(x)

〉
= 0 , sign

〈
n , γxx(yα)

〉
= (−1)α · sign

〈
n , γxx(x)

〉
,
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one obtains

(8.14)

dA
dt

=−
∫ ∣∣γx(x)

∣∣sign
〈
n , γxx(x)

〉
·




∑

−p≤α≤q

(−1)α
〈
n , γt(yα)

〉


 dx

≤−
∫ ∑

α

∣∣γx(x) ∧ γxx(yα)
∣∣ dx +

∫ ∣∣γx(x)
∣∣ ·

∣∣∣∣∣
∑

α

(−1)α
〈
n , Φ(yα)

〉
∣∣∣∣∣ dx

≤−
∫ ∣∣γx(x) ∧ γxx(x)

∣∣ dx +

∫∫ ∣∣γx(x) ∧ Φx(y)
∣∣ dydx

=−
∫ ∣∣∣∣

(
v(x)

w(x)

)
∧

(
vx(x)

wx(x)

)∣∣∣∣ dx +

∫∫ ∣∣∣∣

(
v(x)

w(x)

)
∧

(
φ(y)

ψ(y)

)∣∣∣∣ dydx .

From this estimate, (8.11) clearly follows. Notice that, by an approximation

argument, we can assume that the functions χn(x) have the required regularity

for almost every (t, x) ∈ R
2.

Lemma 8.2. Together with the hypotheses of Lemma 8.1, at a fixed time

t assume that γx(t, x) �= 0 for every x. Then

(8.15)

d

dt
L(t) ≤ − 1

(1 + 9δ2
1)

3/2

∫

|w/v|≤3δ1

∣∣v(t)
∣∣

∣∣∣∣

(
w(t)

v(t)

)

x

∣∣∣∣
2

dx+
∥∥φ(t)

∥∥
L1

+
∥∥ψ(t)

∥∥
L1

.

Proof. As a preliminary, recalling that

γx = (v, w) , γxt + (λγx)x − γxxx = (φ, ψ) ,

we derive the identities

|γxx|2 |γx|2 −
〈
γx, γxx

〉2
=

(
v2
x + w2

x

)
(v2 + w2) −

(
vvx + wwx

)2

=
(
vwx − vxw

)2
= v4

∣∣(w/v)x

∣∣2,

|v|3
|γx|3

=
1

(
1 + (w/v)2

)3/2
.

Thanks to the assumption that γx never vanishes, we can now integrate

by parts and obtain

d

dt
L(t) =

∫ 〈
γx, γxt

〉
√〈

γx, γx

〉 dx

=

∫ {〈
γx, γxxx

〉

|γx|
−

〈
γx, (λγx)x

〉

|γx|
+

〈
γx, (φ, ψ)

〉

|γx|

}
dx



VANISHING VISCOSITY SOLUTIONS 269

=

∫ {
|γx|xx −

(
λ |γx|

)
x
− |γxx|2 −

〈
γx/|γx|, γxx

〉2

|γx|

}
dx

+

∫ 〈
γx, (φ, ψ)

〉

|γx|
dx

≤−
∫ |v|

∣∣(w/v)x

∣∣2
(
1 + (w/v)2

)3/2
dx +

∥∥φ(t)
∥∥
L1

+
∥∥ψ(t)

∥∥
L1

.

Since the integrand is nonnegative, the last inequality clearly implies (8.15).

Remark 8.3. Let u = u(t, x) be a solution to a scalar, viscous conservation

law

ut + f(u)x − uxx = 0 ,

and consider the planar curve γ
.
=

(
u, f(u) − ux

)
whose components are

respectively the conserved quantity and the flux (Fig. 6). If λ
.
= f ′, the com-

ponents v
.
= ux and w

.
= −ut evolve according to (8.6), with φ = ψ = 0;

hence γt + λγx − γxx = 0. Defining the speed s(x)
.
= −ut(x)/ux(x), the area

functional A(γ) in (8.4) can now be written as

A(γ) =
1

2

∫∫

x<y

∣∣ux(x)ut(y) − ut(x)ux(y)
∣∣ dxdy

=
1

2

∫∫

x<y

∣∣ux(x) dx
∣∣ ·

∣∣ux(y) dy
∣∣ ·

∣∣s(x) − s(y)
∣∣

=
1

2

∫∫

x<y
[wave at x] × [wave at y] × [difference in speeds] .

It now becomes clear that the area functional can be regarded as an interaction

potential between waves of the same family. In the case where viscosity is

present, this provides a counterpart to the interaction functional introduced in

[L4] in connection with strictly hyperbolic systems.

u

γ

x

a

b

c

d f

a b c d

Figure 6
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Recalling that the components vi, wi satisfy the equations (6.1), we can

apply the previous lemmas with v
.
= vi, w

.
= wi, λ

.
= λ̃i, φ

.
= φi, ψ

.
= ψi, calling

Li and Ai the corresponding length and area functionals. For t ∈ [t̂, T ], the

bounds (5.22), (5.23) yield

Ai(t) ≤
∥∥vi(t)

∥∥
L∞

·
∥∥wi(t)

∥∥
L1

=O(1) · δ3
0 ,(8.16)

Li(t) ≤
∥∥vi(t)

∥∥
L1

+
∥∥wi(t)

∥∥
L1

=O(1) · δ0.(8.17)

Using (8.11) we now obtain

(8.18)
∫ T

t̂

∫ ∣∣wi,xvi − wivi,x

∣∣dxdt≤
∫ T

t̂

[
− d

dt
Ai(t)

]
dt

+

∫ T

t̂

(∥∥vi(t)
∥∥
L1

∥∥ψi(t)
∥∥
L1

+
∥∥wi(t)

∥∥
L1

∥∥φi(t)
∥∥
L1

)
dt

≤Ai(t̂) + sup
t∈[t̂,T ]

(∥∥vi(t)
∥∥
L1

+
∥∥wi(t)

∥∥
L1

)

·
∫ T

t̂

∫ (∣∣φi(t, x)
∣∣ +

∣∣ψi(t, x)
∣∣
)

dxdt

=O(1) · δ2
0 ,

proving (8.1). To establish (8.2), we first observe that, by an approximation

argument, it is not restrictive to assume that the set of points in the t-x plane

where vi,x(t, x) = wi,x(t, x) = 0 is at most countable. In this case, for almost

every t ∈ [t̂, T ] the inequality (8.15) is valid. Moreover, our choice δ1 ≤ 1/3

implies (1 + 9δ2
1)

3/2 < 4. Therefore

∫ T

t̂

∫

|wi/vi|<3δ1

|vi|
∣∣∣∣

(
wi

vi

)

x

∣∣∣∣
2

dxdt(8.19)

≤ 4

∫ T

t̂

[
− d

dt
Li(t)

]
dt +

∫ T

t̂

(∥∥φi(t)
∥∥
L1

+
∥∥ψi(t)

∥∥
L1

)
dt

≤ 4Li(t̂) +

∫ T

t̂

∫ (∣∣φi(t, x)
∣∣ +

∣∣ψi(t, x)
∣∣
)
dxdt

=O(1) · δ0.

Using the bound (5.23) on ‖vi‖L∞ , from (8.19) we deduce (8.2).

9. Energy estimates

In the same setting as the two previous sections, we shall now prove the

estimate

(9.1)

∫ T

t̂

∫ (
|vi,x| + |wi,x|

)
|wi − θivi| dxdt = O(1) · δ2

0 .
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We recall that θi
.
= θ(wi/vi), where θ is the cutoff function introduced in (5.5).

Notice that the integrand can be unequal to 0 only when |wi/vi| > δ1.

Consider another cutoff function η : R �→ [0, 1] such that (Fig. 2)

(9.2) η(s) =

{
0 if |s| ≤ 3δ1/5 ,

1 if |s| ≥ 4δ1/5 .

We can assume that η is a smooth even function, such that

|η′| ≤ 21/δ1 , |η′′| ≤ 101/δ2
1 .

A third cutoff function

η̄(s)
.
= η

(
|s| − δ1/5

)
≤ η(s)

will also be used. For convenience, we shall write ηi
.
= η(wi/vi), η̄i

.
= η̄(wi/vi).

As a preliminary, we prove some simple estimates relating the sizes of vi, wi

and vi,x. It is here useful to keep in mind the bounds

(9.3) λ̃i − λ∗
i = O(1) · |r̃i − r∗i | = O(1) · δ0 , |vi|, |wi| = O(1) · δ2

0 ,

valid for t ≥ t̂ and i = 1, . . . , n. Recall also our choice of the constants

(9.4) 0 < δ0 ≪ δ1 ≤ 1

3
.

Lemma 9.1. If |wi/vi| ≥ 3δ1/5, then

(9.5)

|wi| ≤ 2|vi,x| + O(1) · δ0

∑

j �=i

|vj |, |vi| ≤
5

2δ1
|vi,x| + O(1) · δ0

∑

j �=i

|vj | .

On the other hand, if |wi/vi| ≤ δ1, then

(9.6) |vi,x| ≤ 2δ1|vi| + O(1) · δ0

∑

j �=i

|vj | .

Proof. We recall the first estimate in (6.18):

vi,x = wi + (λ̃i − λ∗
i )vi + Θi(9.7)

= wi + (λ̃i − λ∗
i )vi + O(1) · δ0

∑

j �=i

(
|vj | + |wj − vj,x|

)
,

with Θi defined as in (6.16). By (9.3)–(9.4), from the condition |wi/vi| ≥ 3δ1/5

two cases can arise. On one hand, if

(9.8) |Θi| ≤
δ1

10
|vi| ,

then

|vi,x| ≥
3δ1

5
|vi| − O(1) · δ0|vi| −

δ1

10
|vi| ≥

2δ1

5
|vi| ,
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and hence

(9.9) |vi| ≤
5

2δ1
|vi,x|, |wi| ≤ |vi,x| +

δ1

5
|vi| ≤ 2|vi,x| .

On the other hand, if (9.8) fails, then by (9.3) and (6.17) we conclude

(9.10)
∣∣λ̃i − λ∗

i

∣∣ |vi| = O(1) · δ2
0

∑

j �=i

|vj | .

In both cases, the estimates in (9.5) hold.

Next, assume that |wi/vi| ≤ δ1. Observing that |λ̃i−λ∗
i | = O(1)·δ0 < δ1/2

and using (6.16) and (6.17), from (9.7) we deduce

(9.11) |vi,x| ≤ δ1|vi| +
δ1

2
|vi| + O(1) · δ0

∑

j

|vj | ,

proving (9.6).

Toward a proof of the estimate (9.1), we first reduce the integrand to a

more tractable expression. Since the term |wi−θivi| vanishes when |wi/vi| ≤ δ1,

and is ≤ |wi| otherwise, by (9.5) we always have the bound

|wi − θivi| ≤ |η̄iwi| ≤ η̄i



2|vi,x| + O(1) · δ0

∑

j �=i

|vj |



 .

Therefore

(9.8)

(
|vi,x| + |wi,x|

)
· |wi − θivi| ≤

(
|vi,x| + |wi,x|

)
η̄i



2|vi,x| + O(1) · δ0

∑

j �=i

|vj |





≤ 2ηiv
2
i,x + 2η̄i|vi,xwi,x| +

∑

j �=i

(
|vjvi,x| + |vjwi,x|

)

≤ 3ηiv
2
i,x + η̄iw

2
i,x +

∑

j �=i

(
|vjvi,x| + |vjwi,x|

)
.

Notice that here we can assume O(1) · δ0 < 1. Since we already proved the

bounds (7.3) on the integrals of transversal terms, to prove (9.1) we only need

to consider the integrals of v2
i,x and w2

i,x, in the region where ηi �= 0. In both

cases, energy type estimates will be used.

We start with v2
i,x. Multiplying the first equation in (6.1) by ηivi and

integrating by parts, we obtain
∫

ηiviφi dx =

∫ {
ηivivi,t + ηivi(λ̃ivi)x − ηivivi,xx

}
dx

=

∫ {
ηi(v

2
i /2)t − ηiλ̃ivivi,x − ηi,xλ̃iv

2
i + ηiv

2
i,x + ηi,xvi,xvi

}
dx
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=

∫ {(
ηiv

2
i /2

)
t
+ (λ̃iηi)x(v2

i /2)

−
(
ηi,t + 2λ̃iηi,x − ηi,xx

)
(v2

i /2) + ηiv
2
i,x + 2ηi,xvivi,x

}
dx .

Therefore
∫

ηiv
2
i,x dx =− d

dt

[∫
ηiv

2
i /2 dx

]
+

∫ (
ηi,t + λ̃iηi,x − ηi,xx

)
(v2

i /2) dx(9.13)

−
∫

λ̃i,xηi(v
2
i /2) dx − 2

∫
ηi,xvivi,x dx +

∫
ηiviφi dx .

A direct computation yields

(9.14)

ηi,t + λ̃iηi,x − ηi,xx = η′i

(
wi,t

vi
− vi,twi

v2
i

)
+ λ̃iη

′
i

(
wi,x

vi
− vi,xwi

v2
i

)
− η′′i

(
wi

vi

)2

x

−η′i

(
wi,xx

vi
− vi,xxwi

v2
i

− 2
vi,xwi,x

v2
i

+ 2
v2
i,xwi

v3
i

)

=
[
η′i

(
wi,t + (λ̃iwi)x − wi,xx

)
/vi

−η′iwi

(
vi,t + (λ̃ivi)x − vi,xx

)
/v2

i

]

+2vi,xη′i/vi · (wi/vi)x − η′′i (wi/vi)
2
x

= η′i

(
ψi

vi
− wi

vi

φi

vi

)
+ 2η′i

vi,x

vi

(
wi

vi

)

x

− η′′i

(
wi

vi

)2

x

.

Since λ̃i,x = (λ̃i − λ∗
i )x, integrating by parts and using the second estimate in

(9.5) one obtains
∣∣∣∣
∫

λ̃i,xηi(v
2
i /2) dx

∣∣∣∣ =

∣∣∣∣
∫

(λ̃i − λ∗
i )

(
ηi,xv2

i /2 + ηivivi,x

)
dx

∣∣∣∣(9.15)

≤ ‖λ̃i − λ∗
i ‖L∞ ·





1

2

∫ ∣∣η′i
∣∣ |wi,xvi − vi,xwi| dx

+
5

2δ1

∫
ηiv

2
i,x dx + O(1) · δ0

∫ ∑

j �=i

|vi,xvj | dx






≤
∫

|wi,xvi − vi,xwi| dx +
1

2

∫
ηiv

2
i,x dx + δ0

∫ ∑

j �=i

|vi,xvj | dx .

Indeed, by (9.3), (9.4), |λ̃i − λ∗
i | = O(1) · δ0 ≪ δ1. Using (9.14) and (9.15)
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in (9.13) we now obtain

(9.16)

1

2

∫
ηi v

2
i,x dx≤− d

dt

[∫
ηiv

2
i

2
dx

]

+
1

2

∫ ∣∣η′i
∣∣(|viψi| + |wiφi|

)
dx +

∫ ∣∣∣∣η
′
ivivi,x

(
wi

vi

)

x

∣∣∣∣ dx

+
1

2

∫ ∣∣∣∣∣η
′′
i v2

i

(
wi

vi

)2

x

∣∣∣∣∣ dx +

∫ ∣∣wi,xvi − wivi,x

∣∣ dx

+δ0

∫ ∑

j �=i

|vi,xvj | dx + 2

∫
|ηi,xvivi,x| dx +

∫
|viφi| dx .

Recalling the definition of ηi, on regions where η′i �= 0 one has |wi/vi| < δ1;

hence the bounds (9.6) hold. In turn, they imply

∣∣ηi,xvivi,x

∣∣ =

∣∣∣∣η
′
ivivi,x

(
wi

vi

)

x

∣∣∣∣(9.17)

≤ 2

∣∣∣∣δ1η
′
iv

2
i

(
wi

vi

)

x

∣∣∣∣ + O(1) · δ0

∑

j �=i

∣∣∣∣η
′
ivivj

(
wi

vi

)

x

∣∣∣∣

≤ 2
∣∣δ1η

′
i

∣∣ |wi,xvi − wivi,x|

+O(1) · δ0|η′i|
∑

j �=i

(
|vjwi,x| + |vjvi,x|

∣∣∣∣
wi

vi

∣∣∣∣

)
.

Using the bounds (5.22), (5.23), (7.2), (7.3), (8.1) and (8.2), from (9.16) we

conclude

(9.18)
∫ T

t̂

∫
ηi v

2
i,x dxdt ≤

∫
ηiv

2
i (t̂, x) dx + O(1) ·

∫ T

t̂

∫ (
|viψi| + |wiφi|

)
dxdt

+O(1) ·
∫ T

t̂

∫
|wi,xvi − wivi,x| dxdt

+O(1) · δ0

∫ T

t̂

∫ ∑

j �=i

(
|vjwi,x| + |vjvi,x|

)
dxdt

+O(1) ·
∫ T

t̂

∫

|wi/vi|<δ1

∣∣vi(wi/vi)x

∣∣2 dxdt + 2δ0

∫ T

t̂

∫ ∑

j �=i

|vi,xvj | dxdt

+2

∫ T

t̂

∫
|viφi| dxdt

= O(1) · δ2
0 .



VANISHING VISCOSITY SOLUTIONS 275

We now perform a similar computation for w2
i,x. Multiplying the second

equation in (6.1) by η̄iwi and integrating by parts, we obtain

∫
η̄iwiψi dx =

∫ {(
η̄iw

2
i /2

)
t
+ (λ̃iη̄i)x(w2

i /2) −
(
η̄i,t + 2λ̃iη̄i,x

− η̄i,xx

)
(w2

i /2) + η̄iw
2
i,x + 2η̄i,xwiwi,x

}
dx .

Therefore, the identity (9.13) still holds, with vi, φi replaced by wi, ψi, respec-

tively:

(9.19)
∫

η̄iw
2
i,x dx =− d

dt

[∫
η̄iw

2
i /2 dx

]
+

∫ (
η̄i,t + λ̃iη̄i,x − η̄i,xx

)
(w2

i /2) dx

−
∫

λ̃i,xη̄i(w
2
i /2) dx − 2

∫
η̄i,xwiwi,x dx +

∫
η̄iwiψi dx .

The equality (9.14) can again be used, with ηi replaced by η̄i. To obtain a

suitable replacement for (9.15), we observe that, if η̄i �= 0 then (9.5) implies

|wiwi,x| ≤ 2|vi,xwi,x|+O(1) · δ0

∑

j �=i

|vjwi,x

∣∣ ≤ v2
i,x +w2

i,x +O(1) · δ0

∑

j �=i

|vjwi,x| .

Integrating by parts we thus obtain
∣∣∣∣
∫

λ̃i,xη̄i(w
2
i /2) dx

∣∣∣∣ =

∣∣∣∣
∫

(λ̃i − λ∗
i )

(
η̄i,xw2

i /2 + η̄iwiwi,x

)
dx

∣∣∣∣(9.20)

≤ ‖λ̃i − λ∗
i ‖L∞ ·

{ ∫ ∣∣η̄′i
∣∣ |wi,xvi − vi,xwi|

∣∣∣∣
w2

i

v2
i

∣∣∣∣ dx +

∫
η̄iv

2
i,x dx

+

∫
η̄iw

2
i,x dx + O(1) · δ0

∫ ∑

j �=i

|vjwi,x| dx

}

≤
∫

|wi,xvi − vi,xwi| dx +
1

2

∫
ηiv

2
i,x dx

+
1

2

∫
η̄iw

2
i,x dx + O(1) · δ0

∫ ∑

j �=i

|vjwi,x| dx .

Using (9.14) and (9.20) in (9.19) and observing that |w2
i /v2

i | ≤ δ2
1 on the region

where η̄′i �= 0, we now obtain an estimate similar to (9.16):

(9.21)

1

2

∫
η̄i w

2
i,x dx≤− d

dt

[∫
η̄iw

2
i

2
dx

]
+

δ2
1

2

∫ ∣∣η̄′i
∣∣(|viψi| + |wiφi|

)
dx

+δ2
1

∫ ∣∣∣∣η̄
′
ivivi,x

(
wi

vi

)

x

∣∣∣∣ dx
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+
δ2
1

2

∫ ∣∣∣∣∣η̄
′′
i v2

i

(
wi

vi

)2

x

∣∣∣∣∣ dx+

∫ ∣∣wi,xvi − wivi,x

∣∣dx+
1

2

∫
ηiv

2
i,xdx

+δ0

∫ ∑

j �=i

|vjwi,x| dx + 2

∫
|η̄i,xwiwi,x| dx +

∫
|wiψi| dx .

We now observe that η̄′i �= 0 only when 4δ1/5 < |wi/vi| < δ1. In this case one

has ηi = 1 and moreover, recalling our choice δ1 < 1/3,
∣∣∣∣vi

(
wi

vi

)

x

∣∣∣∣
2

≥ w2
i,x − 2

∣∣∣∣
wi

vi

∣∣∣∣ |wi,xvi,x| −
∣∣∣∣
wi

vi

∣∣∣∣
2

v2
i,x ≥ 1

2
w2

i,x − 1

2
v2
i,x .

Hence

(9.22)
∣∣η̄i,xwiwi,x

∣∣ = O(1) ·
∣∣vi(wi/vi)x

∣∣2 · χ
{|wi/vi|<δ1}

+ O(1) · ηiv
2
i,x .

Using the bounds (5.22), (5.23), (7.2), (7.3), (8.1), (8.2), (9.17), (9.18) and

(9.22), from (9.21) we conclude

(9.22)
∫ T

t̂

∫
η̄i w

2
i,x dxdt ≤

∫
η̄iw

2
i (t̂, x) dx + O(1) ·

∫ T

t̂

∫ (
|viψi| + |wiφi|

)
dxdt

+O(1) ·
∫ T

t̂

∫
|wi,xvi − wivi,x| dxdt

+O(1) · δ0

∫ T

t̂

∫ ∑

j �=i

(
|vjwi,x| + |vjvi,x|

)
dxdt

+O(1) ·
∫ T

t̂

∫

|wi/vi|<δ1

∣∣vi(wi/vi)x

∣∣2 dxdt + O(1) ·
∫ T

t̂

∫
ηi v

2
i,x dxdt

+δ0

∫ T

t̂

∫ ∑

j �=i

|wi,xvj | dxdt + 2

∫ T

t̂

∫
|wiψi| dxdt

= O(1) · δ2
0 .

Using (9.18) and (9.23) in (9.12), we obtain the desired estimate (9.1).

10. Proof of the BV estimates

In this section we conclude the proof of the uniform BV bounds. Consider

any initial data ū : R �→ R
n, with

(10.1) Tot.Var.{ū} ≤ δ0

8
√

nκ
, lim

x→−∞
ū(x) = u∗ ∈ K .

We recall that κ is the constant defined at (2.5), related to the Green kernel G∗

of the linearized equation (2.4). This constant actually depends on the matrix
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A(u∗), but it is clear that it remains uniformly bounded when u∗ varies in a

compact set K ⊂ R
n.

An application of Corollary 2.4 yields the existence of the solution to the

Cauchy problem (1.10), (1.2) on an initial interval [0, t̂], satisfying the bound

(10.2)
∥∥ux(t̂)

∥∥
L1

≤ δ0

4
√

n
.

This solution can be prolonged in time as long as its total variation remains

small. Define the time

(10.3) T
.
= sup

{
τ ;

∑

i

∫ τ

t̂

∫ ∣∣φi(t, x)
∣∣ +

∣∣ψi(t, x)
∣∣ dxdt ≤ δ0

2

}
.

If T < ∞, a contradiction is obtained as follows. By (5.21) and (10.2), for all

t ∈ [t̂, T ] one has
∥∥ux(t)

∥∥
L1

≤
∑

i

∥∥vi(t)
∥∥
L1

(10.4)

≤
∑

i

(∥∥vi(t̂)
∥∥
L1

+

∫ T

t̂

∫ ∣∣φi(t, x)
∣∣ dxdt

)

≤ 2
√

n
∥∥ux(t̂)

∥∥
L1

+
δ0

2
≤ δ0 .

Using Lemma 6.1 and the bounds (7.3), (8.1), (8.2) and (9.1) we now obtain

(10.5)
∑

i

∫ T

t̂

∫ ∣∣φi(t, x)
∣∣ +

∣∣ψi(t, x)
∣∣ dxdt = O(1) · δ2

0 <
δ0

2
,

provided that δ0 was chosen suitably small. Therefore T cannot be a supre-

mum. This contradiction with (10.3) shows that the total variation remains

< δ0 for all t ∈ [t̂, ∞[ . In particular, the solution u is globally defined.

Remark 10.1. The estimates (8.1) and (9.1) were obtained under the as-

sumption (7.2) on the source terms. A posteriori , by (10.5) the integral of

the source terms is quadratic with respect to δ0. Using (10.5) instead of (7.2)

in the inequalities (8.18) and (9.18), (9.23), we now see that the quantities in

(8.1) and (9.1) are both = O(1) · δ3
0 . Recalling that δ0 is the order of magni-

tude of the total variation, we see here another analogy with the the purely

hyperbolic case [G]. Namely, the total amount of interactions between waves

of different families is of quadratic order with respect to the total variation,

while the interaction between waves of the same family is cubic.

Remark 10.2. Within the previous proof, we constructed wave speeds

σi
.
= λ∗

i − θ(wi/vi) for which the following holds. Decomposing the gradients

ux, ut according to

(10.6)

{
ux =

∑
i vi r̃i(u, vi, σi),

ut =
∑

i(wi − λ∗
i vi) r̃i(u, vi, σi),
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the components vi, wi then satisfy

(10.7)

{
vi,t + (λ̃ivi)x − vi,xx = φi(t, x) ,

wi,t + (λ̃iwi)x − wi,xx = ψi(t, x) ,

where all source terms φi,ψi are integrable:

(10.8)

∫ ∞

0

∫ ∣∣φi(t, x)
∣∣ dxdt < δ0 ,

∫ ∞

0

∫ ∣∣ψi(t, x)
∣∣ dxdt < δ0 .

In general, the speeds σi defined at (5.7) are not even continuous, as functions

of t, x. However, by a suitable modification we can find slightly different speed

functions σi(t, x) which are smooth and such that the corresponding decom-

position (10.6) is achieved in terms of (smooth) functions vi, wi satisfying a

system of the form (10.7), with source terms again bounded as in (10.8).

We conclude this section by studying the continuous dependence with

respect to time of the solution t �→ u(t, ·). By (10.4),

(10.9) Tot.Var.
{
u(t)

}
=

∥∥ux(t)
∥∥
L1

≤ δ0 for all t > 0.

By the estimate (2.8) in Proposition 2.1, the second derivative satisfies

(10.10)
∥∥uxx(t)

∥∥
L1

≤
{

2κδ0/
√

t if t < t̂,

2κδ0/
√

t̂ if t ≥ t̂.

Therefore, from (1.10) it easily follows

∥∥ut(t)
∥∥
L1

≤ L′
(
1 +

1

2
√

t

)
,

for some constant L′. For any t > s ≥ 0 we now have

∥∥u(t) − u(s)
∥∥
L1

≤
∫ t

s

∥∥ut(τ)
∥∥
L1

dτ(10.11)

≤L′
(
|t − s| +

∣∣√t −√
s
∣∣
)
.

Remark 10.3. A more careful analysis shows that in (10.11) one can ac-

tually take L′ = O(1) · Tot.Var.{ū}. However, this sharper estimate will not

be needed in the sequel.

11. Stability estimates

Let u = u(t, x) be any solution of (3.1) with small total variation. The

evolution of a first order perturbation z = z(t, x) is then governed by the linear

equation

(11.1) zt +
(
A(u)z

)
x
− zxx =

(
ux • A(u)

)
z −

(
z • A(u)

)
ux .
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As usual, by “•” we denote a directional derivative. The primary goal of our

analysis is to establish the bound

(11.2)
∥∥z(t, ·)

∥∥
L1

≤ L
∥∥z(0, ·)

∥∥
L1

for all t ≥ 0 ,

for some constant L. By a standard homotopy argument [B1], [BiB1], this

implies the uniform stability of solutions, with respect to the L1 distance.

Indeed, consider two initial data ū, v̄ with suitably small total variation. We

can assume that u∗ .
= ū(−∞) = v̄(−∞), otherwise ‖ū − v̄‖L1 = ∞ and there

is nothing to prove. Consider the smooth path of initial data

θ �→ ūθ .
= θū + (1 − θ)v̄, θ ∈ [0, 1],

and call t �→ uθ(t, ·) the solution of (3.1) with initial data ūθ. The tangent

vector

zθ(t, x)
.
=

duθ

dθ
(t, x)

is then a solution of the linearized Cauchy problem

zθ
t +

[
DA(uθ) · zθ

]
uθ

x + A(uθ)zθ
x = zθ

xx,

zθ(0, x) = z̄θ(x) = ū(x) − v̄(x);

hence it satisfies (11.2) for every θ. For every t ≥ 0 we now have

∥∥u(t) − v(t)
∥∥
L1

≤
∫ 1

0

∥∥∥∥
duθ(t)

dθ

∥∥∥∥
L1

dθ

≤L ·
∫ 1

0

∥∥∥∥
duθ(0)

dθ

∥∥∥∥
L1

dθ

= L · ‖ū − v̄‖L1 .

This proves the Lipschitz continuous dependence of solutions of (3.1) with

respect to the initial data, with a Lipschitz constant independent of time. In

particular, it shows that all solutions with small total variation are uniformly

stable.

Remark 11.1. In the hyperbolic case, a priori estimates on first order

tangent vectors for solutions with shocks were first derived in [B2]. However,

even with the aid of these estimates, controlling the L1 distance between any

two solutions remains a difficult task. Indeed, a straightforward use of the

homotopy argument fails, due to lack of regularity. These difficulties were

eventually overcome in [BC1] and [BCP], at the price of heavy technicalities.

On the other hand, in the present case with viscosity, all solutions are smooth

and the homotopy argument goes through without any effort.
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Throughout the following, we consider a reference solution u = u(t, x) of

(3.1) with small total variation. According to Remark 10.2, we can assume

that there exist smooth functions vi, wi, σi for which the decomposition (10.6)

holds, together with (10.7) and (10.8).

The techniques that we shall use to prove (11.2) are similar to those used

to control the total variation. By (2.19) we already know that the desired

estimate holds on the initial time interval [0, t̂]. To obtain a uniform estimate

valid for all t > 0, we decompose the vector z along a basis of unit vectors

and derive an evolution equation for these scalar components. At first sight,

it looks promising to write

z =
∑

i

zir̃i(u, vi, σi),

where r̃1, . . . , r̃n are the same vectors used in the decomposition of ux at (5.6).

Unfortunately, this choice would lead to nonintegrable source terms. Instead,

we shall use a different basis of unit vectors r̂1, . . . , r̂n, depending not only on

the reference solution u but also on the perturbation z.

Toward this decomposition, we introduce the variable

Υ
.
= zx − A(u)z ,

related to the flux of z. By (11.1), this quantity evolves according to the

equation

Υt +
(
A(u)Υ

)
x
− Υxx =

[(
ux • A(u)

)
z −

(
z • A(u)

)
ux

]

x
(11.3)

−A(u)
[(

ux • A(u)
)
z −

(
z • A(u)

)
ux

]

+
(
ux • A(u)

)
Υ −

(
ut • A(u)

)
z .

We now decompose z, Υ according to

(11.4)

{
z =

∑
i hir̃i

(
u, vi, λ

∗
i − θ(gi/hi)

)
,

Υ =
∑

i(gi − λ∗
i hi)r̃i

(
u, vi, λ

∗
i − θ(gi/hi)

)
,

where θ is the cutoff function introduced at (5.5). In the following we shall

write

r̂i
.
= r̃i

(
u, vi, λ∗

i − θ(gi/hi)
)
,

to distinguish these unit vectors from the vectors r̃i

(
u, vi, λ∗

i − θ(wi/vi)
)

pre-

viously used in the decomposition (5.6) of ux. Moreover we introduce the

speed

(11.5) λ̂i
.
=

〈
r̂i, A(u)r̂i

〉
,

and denote by

(11.6) θ̂i
.
= θ(gi/hi)

the correction in the speed for the perturbation. The next result, similar to

Lemma 5.2, provides the existence and regularity of the decomposition (11.4).
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Lemma 11.2. Let |u − u∗| and |v| be sufficiently small. Then for all z,

Υ ∈ R
n the system of 2n equations (11.4) has a unique solution (h1, . . . , hn,

g1, . . . , gn). The map (z, Υ) �→ (h, g) is Lipschitz continuous. Moreover, it is

smooth outside the n manifolds N̂i
.
= {hi = gi = 0}.

Proof. The uniqueness of the decomposition is clear. To prove the exis-

tence, consider the mapping Λ̂ : R
2n �→ R

2n defined by

Λ̂(h, g)
.
=

n∑

i=1

Λ̂i(hi, gi),(11.7)

Λ̂i(hi, gi)
.
=

(
hi r̃i

(
u, vi, λ∗

i − θ(gi/hi)
)

(gi − λ∗
i hi) r̃i

(
u, vi, λ∗

i − θ(gi/hi)
)

)
.(11.8)

Computing the Jacobian matrix of partial derivatives we find

(11.9)

∂Λ̂i

∂(hi, gi)

=

(
r̂i + (gi/hi)θ̂

′

ir̂i,σ −θ̂′ir̂i,σ

−λ∗

i r̂i − λ∗

i (gi/hi)θ̂
′

ir̂i,σ + (gi/hi)
2θ̂′ir̂i,σ r̂i + λ∗

i θ̂
′

ir̂i,σ − (gi/hi)θ̂
′

ir̂i,σ

)
.

By (4.24), r̂i,σ = O(1) · vi. Hence, for vi small enough, the differential DΛ̂

is invertible. By the implicit function theorem, Λ̂ is a one-to-one map whose

range covers a whole neighborhood of the origin. Observing that Λ̂ is positively

homogeneous of degree 1, we conclude that the decomposition is well defined

and Lipschitz continuous on the whole space R
2n. Outside the manifolds N̂i,

i = 1, . . . , n, the smoothness of the decomposition is clear.

Writing the identity Υ = zx −A(u)z in terms of the decomposition (11.4)

we obtain
∑

i

(gi − λ∗
i hi)r̂i =

∑

i

hi,xr̂i −
∑

i

A(u)hir̂i +
∑

ij

hir̂i,u vj r̃j(11.10)

+
∑

i

hir̂i,vvi,x −
∑

i

hir̂i,σ θ̂i,x .

Taking the inner product with r̂i and observing that r̂i is a unit vector and

hence is perpendicular to its derivatives, we obtain

gi = hi,x − (λ̂i − λ∗
i )hi + Θ̂i

with

Θ̂i =−
∑

j �=i

〈
r̂i , A(u)r̂j

〉
hj +

∑

j �=i

∑

k

〈
r̂i , r̂j,ur̃k

〉
hjvk(11.11)

+
∑

j �=i

〈
r̂i , r̂j,v

〉
hjvj,x −

∑

j �=i

〈
r̂i , r̂j,σ

〉
hj θ̂j,x .
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Hence, by (5.20) and (4.24),

(11.12) gi = hi,x − (λ̂i − λ∗
i )hi + O(1) · δ0

∑

j �=i

(
|hj | + |vj |

)
.

A straightforward consequence of (11.12) is the following analogue of Lemma 9.1.

Corollary 11.3. If |gi/hi| ≥ 3δ1/5, then

(11.13)

|gi| ≤ 2|hi,x|+O(1)·δ0

∑

j �=i

(
|vj |+|hj |

)
, |hi| ≤

5

2δ1
|hi,x|+O(1)·δ0

∑

j �=i

(
|vj |+|hj |

)
.

On the other hand, if |gi/hi| ≤ 4δ1/5, then

(11.14) |hi,x| ≤ δ1|hi| + O(1) · δ0

∑

j �=i

(
|vj | + |hj |

)
.

Our eventual goal is to show that the components hi, gi satisfy a system

of evolution equations of the form

(11.15)

{
hi,t + (λ̃ihi)x − hi,xx = φ̂i ,

gi,t + (λ̃igi)x − gi,xx = ψ̂i ,

where the source terms on the right-hand sides are integrable on [t̂, ∞[×R.

Before embarking on calculations, we must first dispose of a technical difficulty

due to the lack of regularity of the equations (11.4).

Since our equations (3.1) and (11.1) are uniformly parabolic, it is clear

that for t > 0 all solutions are smooth. Moreover, by Remark 10.2, we can

slightly modify the speeds σi occurring in the decomposition of ux, so that

(10.6)–(10.8) hold and the corresponding functions vi are now smooth. On

the other hand, the map Λ̂ in (11.7) is only Lipschitz continuous, hence the

same is true in general for the functions hi = hi(t, x) and gi = gi(t, x). Indeed,

at points where hi = gi = 0 for some index i, the derivatives hi,x or gi,x

may well be discontinuous. In this case, the equations (11.15) would make

no sense. To avoid this unpleasant situation, we observe that each manifold

N̂i has codimension 2. Given the smooth functions z, Υ and ǫ > 0, by an

arbitrarily small perturbation we can construct new functions z♯, Υ♯ satisfying

‖z♯ − z‖C2 + ‖Υ♯ − Υ‖C2 < ǫ

and such that the corresponding decomposition (11.4) is C∞ outside a count-

able set of isolated points (tm, xm)m≥1. A further implementation of this tech-

nique yields
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Lemma 11.4. Let z, Υ be solutions of (11.1) and (11.3) respectively. Then

for any ǫ > 0 there exist smooth functions z♯, Υ♯ such that the corresponding

coefficients in the decomposition (11.4) are smooth except at countably many

isolated points (tm, xm), m ≥ 1. Moreover, these perturbed functions solve the

system of equations

z♯
t +

(
A(u)z♯

)
x
− z♯

xx =
(
ux • A(u)

)
z♯ −

(
z♯ • A(u)

)
ux + e1(t, x) ,

Υ♯
t +

(
A(u)Υ♯

)
x
− Υ♯

xx =
[(

ux • A(u)
)
z♯ −

(
z♯ • A(u)

)
ux

]

x

−A(u)
[(

ux • A(u)
)
z♯ −

(
z♯ • A(u)

)
ux

]

+
(
ux • A(u)

)
Υ♯ −

(
ut • A(u)

)
z♯ + e2(t, x) ,

for some perturbations e1, e2 such that

∫ ∞

t̂

∫ ∣∣e1(t, x)
∣∣ +

∣∣e2(t, x)
∣∣ dxdt < ǫ .

Thanks to this lemma, we can study the time evolution of the components

hi, gi by means of a second order parabolic system, at the price of an arbitrarily

small perturbation on the right-hand side. In the remainder of the paper, for

simplicity we derive all the estimates in the case e1 = e2 = 0. The general case

easily follows by an approximation argument.

In Section 6 we showed that the source terms in the equations (6.1) could

be reduced to four basic types. The following result is an analogue of Lemma

6.1, providing an estimate for the source terms in the equations (11.15). The

proof, involving lengthy calculations, will be given in Appendix B.

Lemma 11.5. The source terms in the equations (11.15) satisfy the esti-

mates

(11.16)

φ̂i(t, x), ψ̂i(t, x) = O(1) ·
∑

j

(
|hj,x| + |hjvj | + |gjvj | + |gj,x|

)
|wj − θjvj |

+O(1) ·
∑

j

(
|vjhj,x − hjvj,x| + |vj,xgj − gj,xvj |

+ |hjwj,x − wjhj,x| + |gjwj,x − gj,xwj |
)

+O(1) ·
∑

j

(
|vj | + |hj |

)
∣∣∣∣∣hj

(
gj

hj

)2

x

∣∣∣∣∣ · χ
{
|gj/hj |<3δ1

}
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+O(1) ·
∑

j �=k

(
|hjvk| + |hj,xvk| + |hjvk,x| + |hjwk|

+ |gjvk| + |gj,xvk| + |gjvk,x| + |hjhk| + |hjgk|
)

+O(1) ·
∑

j

(
|hjφj | + |hjψj | + |gjφj | + |gjψj |

)
.

The key step in establishing the bound (11.2) is to prove

Lemma 11.6. Consider a solution z of (11.1), satisfying

(11.17)
∥∥z(t)

∥∥
L1

≤ δ0 for all t ∈ [0, T ],

and assume that the source terms in (11.4) satisfy

(11.18)

∫ T

t̂

∫ ∣∣φ̂i(t, x)
∣∣ +

∣∣ψ̂i(t, x)
∣∣ dxdt ≤ δ0 i = 1, . . . , n.

Then for each i = 1, . . . , n, there exist the estimates

(11.19)

∫ T

t̂

∫ ∣∣φ̂i(t, x)
∣∣ dxdt = O(1)·δ2

0 ,

∫ T

t̂

∫ ∣∣ψ̂i(t, x)
∣∣ dxdt = O(1)·δ2

0 .

Assuming the validity of this lemma, we can easily recover the estimate

(11.2). Indeed, since the equations (11.1) are linear, it suffices to prove the

estimate in the case where

(11.20)
∥∥z(0)

∥∥
L1

=
δ0

8
√

nκ
.

We recall that κ is the constant defined at (3.5). By Corollary 2.4, on the

initial interval [0, t̂] we have

(11.21)
∥∥z(t)

∥∥
L1

≤ 2κ
∥∥z(0)

∥∥
L1

=
δ0

4
√

n
t ∈ [0, t̂] .

Define the time

(11.22) T
.
= sup

{
τ ;

∑

i

∫ τ

t̂

∫ ∣∣φ̂i(t, x)
∣∣ +

∣∣ψ̂i(t, x)
∣∣ dxdt ≤ δ0

2

}
.

If T < ∞, a contradiction is obtained as follows. First, we observe that the

inequalities in (5.21) remain valid for the decomposition of z, namely

(11.23) |z| ≤
∑

i

|hi| ≤ 2
√

n |z| .

For every τ ∈ [t̂, T ], by (11.22) and (11.23) one has
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∥∥z(τ)
∥∥
L1

≤
∑

i

∥∥hi(τ)
∥∥
L1

(11.24)

≤
∑

i

(∥∥hi(t̂)
∥∥
L1

+

∫ τ

t̂

∫ ∣∣φ̂i(t, x)
∣∣ dxdt

)

≤ 2
√

n
∥∥z(t̂)

∥∥
L1

+
δ0

2
≤ δ0 .

We can thus use Lemma 11.5 and conclude

(11.25)
∑

i

∫ T

t̂

∫ ∣∣φ̂i(t, x)
∣∣ +

∣∣ψ̂i(t, x)
∣∣ dxdt = O(1) · δ2

0 <
δ0

2
,

provided that δ0 was chosen suitably small. Therefore T cannot be a supre-

mum. This contradiction shows that the bound (11.2) holds for all t ≥ 0 and

z ∈ L1, with L
.
= 8κ

√
n. The remainder of this section is aimed at establishing

the estimates (11.19).

Proof of Lemma 11.6. By Corollary 2.2, for t ∈ [t̂, T ], as long as∥∥z(t)
∥∥
L1

≤ δ0 we also have the bounds

∥∥zx(t)
∥∥
L1

= O(1) · δ2
0 ,

∥∥zxx(t)
∥∥
L1

= O(1) · δ3
0 ,

∥∥zxx(t)
∥∥
L∞

= O(1) · δ4
0 .

By Lemma 11.2, the map (z, Υ) �→ (h, g) is uniformly Lipschitz continuous.

From the previous bounds, for every t ∈ [t̂, T ] and all j = 1, . . . , n it thus

follows

∥∥hj,x(t)
∥∥
L1

,
∥∥gj,x(t)

∥∥
L1

,
∥∥hj(t)

∥∥
L∞

,
∥∥gj(t)

∥∥
L∞

=O(1) · δ2
0 ,(11.26)

∥∥hj,x(t)
∥∥
L∞

,
∥∥gj,x(t)

∥∥
L∞

=O(1) · δ3
0 .(11.27)

Recalling that vi, wi, hi, gi satisfy the systems of equations (10.7) and (11.15)

with source terms bounded by (10.8) and (11.18), we now provide an estimate

on the integrals of all terms on the right-hand side of (11.16).

The same techniques used in Section 7 yield an estimate on all transversal

terms, with j �= k:

(11.28)

∫ T

t̂

∫ (
|hjvk| + |hj,xvk| + |hjvk,x| + |hjwk|

+ |gjvk| + |gj,xvk| + |gjvk,x| + |hjhk| + |hjgk|
)

dxdt = O(1) · δ2
0 .

From (10.8) and (11.26) one easily obtains
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∫ T

t̂

∫ (
|hjφj | + |hjψj | + |gjφj | + |gjψj |

)
dxdt(11.29)

≤
∫ T

t̂

∫ (
‖hj‖L∞ + ‖gj‖L∞

)
·
(
|φj | + |ψj |

)
dxdt

= O(1) · δ3
0 .

A further set of terms will now be bounded using functionals related to short-

ening curves, as in Section 8. At each fixed time t ∈ [t̂, T ], for i = 1, . . . , n

consider the curves

γ
(v,h)
i (x)

.
=

(∫ x

−∞
vi(t, y)dy,

∫ x

−∞
hi(t, y)dy

)
.

Using obvious of notation, we also consider the curves γ
(v,g)
i , γ

(w,h)
i , γ

(w,g)
i ,

γ
(h,g)
i . By (6.1) and (11.15), the evolution of these curves is governed by vector

equations similar to (8.8). For example,

γ
(v,h)
i,t + λ̃γ

(v,h)
i,x − γ

(v,h)
i,xx =

(∫ x

−∞
φi(t, y)dy,

∫ x

−∞
φ̂i(t, y)dy

)
.

As in (8.9) and (8.10), we introduce the corresponding Length and Area Func-

tionals, by setting

L(v,h)
i (t) =L

(
γ

(v,h)
i (t)

)
=

∫ √
v2
i (t, x) + h2

i (t, x) dx ,

A(v,h)
i (t) =A

(
γ

(v,h)
i (t)

)
=

1

2

∫∫

x<y

∣∣vi(t, x)hi(t, y) − vi(t, y)hi(t, x)
∣∣ dxdy .

Similarly we define L(v,g)
i (t), A(v,g)

i (t), etc. . . . A computation entirely analo-

gous to (8.18) now yields the bounds

(11.30)

∫ T

t̂

∫ (
|vihi,x − hivi,x| + |vi,xgi − gi,xvi

∣∣ + |hiwi,x − wihi,x|

+ |giwi,x − gi,xwi| + |gihi,x − higi,x|
)
dxdt = O(1) · δ2

0 .

Moreover, repeating the argument in (8.19) we obtain

(11.31)

∫ T

t̂

∫

|wi/vi|<3δ1

∣∣∣∣∣hi

(
gi

hi

)2

x

∣∣∣∣∣ dxdt = O(1) · δ0 .

Using the bounds (5.23) on ‖vi‖L∞ and (11.26) on ‖hi‖L∞ , from (11.31) we

deduce

(11.32)

∫ T

t̂

∫

|wi/vi|<3δ1

(
|vi| + |hi|

)
∣∣∣∣∣hi

(
gi

hi

)2

x

∣∣∣∣∣ dxdt = O(1) · δ3
0 .
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The integrals of the remaining terms in (11.16) will be bounded by means

of energy estimates. For convenience, we write η̂i
.
= η(gi/hi), where η is the

cutoff function introduced in (9.2). In Appendix C we will prove the estimates
∫ T

0

∫
η̂i h

2
i,x dx =O(1) · δ2

0 ,(11.33)

∫ T

0

∫
η̂i g

2
i,x dx =O(1) · δ2

0 .(11.34)

Using (11.33) and (11.34) we now bound the terms containing the “wrong

speed” |wi − θivi|. All these terms can be unequal to 0 only when |wi/vi| > δ1.

Hence by (6.20) we can write

(
|hivi| + |givi|

)
|wi − θivi|

= O(1) ·
(
|hi| + |gi|

)(∣∣∣vi,x (wi − θivi)
∣∣∣ +

∑

j �=i

∣∣∣vj (wi − θivi)
∣∣∣
)

.

By (7.3), (9.1) and (11.26),

(11.35)

∫ T

t̂

∫ (
|hivi| + |givi|

)
|wi − θivi|dxdt = O(1) · δ4

0 .

To estimate the remaining terms, we split the domain according to the size of

|gi/hi|.

Case 1. |gi/hi| > 4δ1/5, |wi/vi| > δ1. Recalling (9.5) we then have
(
|hi,x| + |gi,x|

)
|wi − θivi| ≤

(
|hi,x| + |gi,x|

)
|wi|

=
(
|hi,x| + |gi,x|

)(
2|vi,x| + O(1) ·

∑

j �=i

|vj |
)

≤
(
h2

i,x + g2
i,x + 2v2

i,x

)
+ O(1) ·

∑

j �=i

|hi,xvj |

+O(1) ·
∑

j �=i

|gi,xvj | .

Using (11.33), (11.34), (9.18) and (11.28), we conclude
∫ T

t̂

∫

|gi/hi|>4δ1/5

(
|hi,x| + |gi,x|

)
|wi − θivi| dxdt(11.36)

≤
∫ T

t̂

∫ (
η̂i h

2
i,x + η̂i g

2
i,x + 2ηi v

2
i,x

)
dxdt

+O(1) ·
∫ T

t̂

∫ ∑

j �=i

(
|hi,xvj | + |gi,xvj |

)
dxdt

= O(1) · δ2
0 .
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Case 2. |gi/hi| ≤ 4δ1/5, |wi/vi| > δ1. In this case we have

(11.37) |givi| ≤
4δ1|hi|

5

|wi|
δ1

=
4

5
|hiwi| .

By (11.14),

(11.38)

|hi,x| |wi − θivi| ≤ |hi,xwi|

=

∣∣∣∣∣∣
gi − (λ̂i − λ∗

i )hi + O(1) · δ0

∑

j �=i

(
|hj | + |vj |

)
∣∣∣∣∣∣
|wi|

≤ δ1|hiwi| + O(1) · δ0

∑

j �=i

(
|hj | + |vj |

)
|wi| .

By (11.28), the integral of the last terms on the right-hand side of (11.38) is

O(1) · δ3
0 . Concerning the first term, using (11.36) and then (6.18) and (11.14),

we can write

1

5
|hiwi| ≤ |hiwi − givi|

≤ |hivi,x − hi,xvi| + |hi|
∣∣wi − vi,x

∣∣ + |vi|
∣∣gi − hi,x

∣∣

= |hivi,x − hi,xvi| + O(1) · δ0|hi|
(
|wi| +

∑

j �=i

|vj |
)

+O(1) · δ0|wi|
(
|hi| +

∑

j �=i

(
|hj | + |vj |

))
.

Hence, for δ0 small, one has

|hiwi| ≤ 6|hivi,x − hi,xvi| + O(1) ·
∑

j �=i

(
|hivj | + |wihj | + |wivj |

)
.

By (11.28) and (11.30),

(11.39)

∫ T

t̂

∫

|gi/hi|≤4δ1/5
|hi,x|

∣∣wi − θivi

∣∣ dxdt

≤
∫ T

t̂

∫

|gi/hi|≤4δ1/5, |wi/vi|>δ1

|hi,xwi| dxdt = O(1) · δ2
0 .

Since δ1 ≤ 1, the last remaining term can now be bounded as

|gi,x|
∣∣wi − θivi

∣∣≤ |gi,xwi|
≤ |gi,xwi − giwi,x| + |giwi,x|

≤ |gi,xwi − giwi,x| +
4δ1

5
|hiwi,x|

≤ |gi,xwi − giwi,x| + |hiwi,x − hi,xwi| + |hi,xwi| .
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By (11.30) and (11.39) we conclude

(11.40)

∫ T

t̂

∫

|gi/hi|≤4δ1/5
|gi,x|

∣∣wi − θivi

∣∣ dxdt = O(1) · δ2
0 .

This completes the proof of Lemma 11.6.

12. Propagation speed

Consider two solutions u, v of the same viscous system (1.10), whose initial

data coincide outside a bounded interval [a, b]. Since the system is parabolic,

at a given time t > 0 one may well have u(t, x) �= v(t, x) for all x ∈ R. Yet, we

want to show that the bulk of the difference |u− v| remains confined within a

bounded interval [a−βt, b+βt]. This result will be useful in the final section of

the paper, because it implies the finite propagation speed of vanishing viscosity

limits.

Lemma 12.1. For some constants α, β > 0 the following holds. Let u, v

be solutions of (1.10), with small total variation, whose initial data satisfy

(12.1) u(0, x) = v(0, x) x /∈ [a, b] .

Then for all x ∈ R, t > 0,

(12.2)
∣∣u(t, x) − v(t, x)

∣∣ ≤
∥∥u(0) − v(0)

∥∥
L∞

· min
{

αeβt−(x−b), αeβt+(x−a)
}

.

On the other hand, when

(12.3) u(0, x) = v(0, x) x ∈ [a, b] ,

(12.4)
∣∣u(t, x) − v(t, x)

∣∣ ≤
∥∥u(0) − v(0)

∥∥
L∞

·
(
αeβt−(x−a) + αeβt+(x−b)

)
.

Proof. 1. As a first step, we consider a solution z of the linearized system

(12.5) zt +
[
A(u)z

]
x

+
[
DA(u) · z

]
ux −

[
DA(u) · ux

]
z = zxx

with initial data satisfying
{ ∣∣z(0, x)

∣∣ ≤ 1 if x ≤ 0 ,

z(0, x) = 0 if x > 0 .

We will show that z(t, x) becomes exponentially small on a domain of the form

{x > βt}. More precisely, let B(t) be a continuous increasing function such

that

B(t) ≥ 1 + 2‖A‖∞
∫ t

0

(
1√

t − s
+
√

π

)
B(s) ds , B(0) = 1.
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One can show that such a function exists, satisfying the additional inequality

B(t) ≤ 2eCt, for some constant C large enough and for all t ≥ 0. We claim

that

(12.6)
∣∣z(t, x)

∣∣ ≤ E(t, x)
.
= B(t) exp

{
4‖DA‖L∞

∫ t

0

∥∥ux(s)
∥∥
L∞

ds + t − x

}

for all x ∈ R and t ≥ 0. Indeed, any solution of (12.5) admits the integral

representation

z(t) = G(t) ∗ z(0) −
∫ t

0
Gx(t − s) ∗

[
A(u)z

]
(s)ds

+

∫ t

0
G(t − s) ∗

[(
ux • A(u)

)
z(s) −

(
z • A(u)

)
ux(s)

]
ds ,

in terms of convolutions with the standard heat kernel G(t, x)
.
= e−x2/4t/2

√
πt.

Therefore
∣∣z(t, x)

∣∣≤
∫

G(t, x − y)
∣∣z(0, y)

∣∣dy(12.7)

+‖A‖L∞

∫ t

0

∫ ∣∣∣Gx(t − s, x − y)
∣∣∣
∣∣z(s, y)

∣∣dyds

+2‖DA‖L∞

∫ t

0

∫ ∥∥ux(s)
∥∥
L∞

G(t − s, x − y)
∣∣z(s, y)

∣∣dyds .

For every t > 0 the following estimates hold (see Appendix D for details):

(12.8)

∫
G(t, x − y)

∣∣z(0, y)
∣∣ dy <

∫
e−(x−y)2/4t

2
√

πt
e−ydy = et−x ,

(12.9) ‖A‖L∞

∫ t

0

∫ ∣∣Gx(t − s, x − y)
∣∣E(s, y)dyds ≤ 1

2
E(t, x) − 1

2
et−x,

(12.10)

2‖DA‖L∞

∫ t

0

∥∥ux(s)
∥∥
L∞

(∫
G(t − s, x − y)E(s, y)dy

)
ds ≤ 1

2
E(t, x) − 1

2
et−x.

The bounds (12.7)–(12.10) show that, if (12.6) is satisfied for all t ∈ [0, τ [, then

at time t = τ one always has a strict inequality:
∣∣z(τ, x)

∣∣ < E(τ, x). A simple

argument now yields the validity of (12.6) for all t > 0 and x ∈ R.

2. Recalling (10.10) we have

∥∥ux(s)
∥∥
L∞

≤ max

{
2κδ0√

s

2κδ0√
t̂

}
.

From the definition of E at (12.6), for some constants α, β > 0 we now obtain

(12.11)∣∣z(t, x)
∣∣ ≤ E(t, x) ≤ 2eCt exp

{
4‖DA‖L∞ · 2κδ0

(
2
√

t + t/
√

t̂
)}

et−x ≤ αeβt−x.
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3. More generally, now let z be a solution of (12.5) whose initial data

satisfy { ∣∣z(0, x)
∣∣ ≤ ρ if x ≤ b ,

z(0, x) = 0 if x > b .

By the linearity of the equations (11.1) and translation invariance, a straight-

forward extension of the above arguments yields
∣∣z(t, x)

∣∣ ≤ ρ · αeβt−(x−b).

On the other hand, if
{ ∣∣z(0, x)

∣∣ ≤ ρ if x ≥ a ,

z(0, x) = 0 if x < a ,

then ∣∣z(t, x)
∣∣ ≤ ρ · αeβt+(x−a).

4. When the corresponding bounds on first order tangent vectors have

been established, the estimates (12.2) and (12.4) can now be recovered by a

simple homotopy argument. For each θ ∈ [0, 1], let uθ be the solution of (1.10)

with initial data

uθ(0) = θu(0) + (1 − θ)v(0).

Moreover, call zθ the solution of the linearized Cauchy problem

zθ
t +

[
DA(uθ) · zθ

]
uθ

x + A(uθ)zθ
x = zθ

xx,

zθ(0, x) = u(0, x) − v(0, x).

If (12.1) holds, then by the previous analysis all functions zθ satisfy the two

inequalities
∣∣zθ(t, x)

∣∣≤
∥∥u(0) − v(0)

∥∥
L∞

· αeβt−(x−b),
∣∣zθ(t, x)

∣∣≤
∥∥u(0) − v(0)

∥∥
L∞

· αeβt+(x−a).

Therefore
∣∣u(t, x) − v(t, x)

∣∣≤
∫ 1

0

∣∣∣∣
duθ(t, x)

dθ

∣∣∣∣ dθ =

∫ 1

0

∣∣zθ(t, x)
∣∣ dθ

≤
∥∥u(0) − v(0)

∥∥
L∞

· min
{

αeβt−(x−b), αeβt−(a−x)
}

.

This proves (12.2). On the other hand, if (12.3) holds, we consider a third

solution w of (1.10), with initial data

w(0, x) =

{
u(0, x) if x ≤ b,

v(0, x) if x ≥ a.

For every x ∈ R and t > 0, the previous arguments now yield
∣∣u(t, x) − w(t, x)| ≤

∥∥u(0) − w(0)
∥∥
L∞

· αeβt+(x−b),
∣∣v(t, x) − w(t, x)| ≤

∥∥w(0) − v(0)
∥∥
L∞

· αeβt−(x−a).

Combining these two inequalities we obtain (12.4).
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13. The vanishing viscosity limit

Up to now, all the analysis has been concerned with solutions of the

parabolic system (1.10), with unit viscosity. Our results, however, can be

immediatly applied to the Cauchy problem

(13.1) uε
t + A(uε)uε

x = ε uε
xx , uε(0, x) = ū(x)

for any ε > 0. Indeed, as remarked in the introduction, a function uε is a

solution of (13.1) if and only if

(13.2) uε(t, x) = u(t/ε, x/ε),

where u is the solution of the Cauchy problem

(13.3) ut + A(u)ux = uxx , u(0, x) = ū(εx) .

Since the rescaling (13.2) does not change the total variation, from our earlier

analysis we easily obtain the first part of Theorem 1. Namely, for every initial

datum ū with sufficiently small total variation, the corresponding solution

uε(t)
.
= Sε

t ū is well defined for all times t ≥ 0. The bounds (1.15)–(1.17) follow

from

Tot.Var.
{
uε(t)

}
= Tot.Var.

{
u(t/ε)

}
≤ C Tot.Var.{ū},(13.4)

∥∥uε(t) − vε(t)
∥∥
L1

= ε
∥∥u(t) − v(t)

∥∥
L1

≤ εL
∥∥u(0) − v(0)

∥∥
L1

= εL
1

ε
‖ū − v̄‖L1 ,

(13.5)

∥∥uε(t) − uε(s)
∥∥
L1

≤ ε
∥∥u(t/ε) − u(s/ε)

∥∥
L1

≤ εL′

(∣∣∣
t

ε
− s

ε

∣∣∣ +

∣∣∣∣∣

√
t

ε
−

√
s

ε

∣∣∣∣∣

)
.

(13.6)

Moreover, if ū(x) = v̄(x) for x ∈ [a, b], then (12.4) implies

(13.7)
∣∣uε(t, x) − vε(t, x)

∣∣

≤ ‖ū − v̄‖L∞ ·
{

α exp
(βt − (x − a)

ε

)
+ α exp

(βt + (x − b)

ε

)}
.

We now consider the vanishing viscosity limit. Call U ⊂ L1
loc the set of

all functions ū : R �→ R
n with small total variation, satisfying (1.14). For each

t ≥ 0 and every initial condition ū ∈ U , call Sε
t ū

.
= uε(t, ·) the corresponding

solution of (13.1). Thanks to the uniform BV bounds (13.4), we can apply

Helly’s compactness theorem and obtain a sequence εν → 0 such that

(13.8) lim
ν→∞

uεν (t, ·) = u(t, ·) in L1
loc

holds for some BV function u(t, ·). By extracting further subsequences and

then using a standard diagonalization procedure, we can assume that the limit
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in (13.8) exists for all rational times t and all solutions uε with initial data in

a countable dense set U∗ ⊂ U . Adopting semigroup notation, we thus define

(13.9) Stū
.
= lim

m→∞
Sεm

t ū in L1
loc ,

for some particular subsequence εm → 0. By the uniform continuity of the

maps (t, ū) �→ uε(t, ·) .
= Sε

t ū , stated in (13.5), (13.6), the set of couples (t, ū)

for which the limit (13.9) exists must be closed in R+ × U . Therefore, this

limit is well defined for all ū ∈ U and t ≥ 0.

Remark 13.1. The function u(t, ·) = Stū is here defined as a limit in L1
loc.

Since it has bounded variation, we can remove any ambiguity concerning its

pointwise values by choosing, say, a right continuous representative:

u(t, x) = lim
y→x+

u(t, y).

With this choice, the function u is certainly jointly measurable with respect to

t, x (see [B5, p. 16]).

To complete the proof of Theorem 1, we need to show that the map S

defined at (13.9) is a semigroup, satisfies the continuity properties (1.18) and

does not depend on the choice of the subsequence {εm}. These results will be

achieved in several steps.

1. (Continuous dependence). Let S be the map defined by (13.9). Then

∥∥Stū − Stv̄
∥∥
L1

= sup
r>0

∫ r

−r

∣∣∣
(
Stū

)
(x) −

(
Stv̄

)
(x)

∣∣∣ dx .

For every r > 0, the convergence in L1
loc implies

∫ r

−r

∣∣∣
(
Stū

)
(x) −

(
Stv̄

)
(x)

∣∣∣ dx

= lim
m→∞

∫ r

−r

∣∣∣
(
Sεm

t ū
)
(x) −

(
Sεm

t v̄
)
(x)

∣∣∣ dx ≤ L
∥∥ū − v̄

∥∥
L1

,

because of (13.5). This yields Lipschitz continuous dependence with respect

to the initial data:

(13.10)
∥∥Stū − Stv̄

∥∥
L1

≤ L
∥∥ū − v̄

∥∥
L1

.
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The continuous dependence with respect to time is proved in a similar

way. By (13.6), for every r > 0 we have

∫ r

−r

∣∣∣
(
Stv̄

)
(x) −

(
Ssv̄

)
(x)

∣∣∣ dx = lim
m→∞

∫ r

−r

∣∣∣
(
Sεm

t v̄
)
(x) −

(
Sεm

s v̄
)
(x)

∣∣∣ dx

≤ lim
m→∞

εmL′

(∣∣∣
t

εm
− s

εm

∣∣∣ +

∣∣∣∣

√
t

εm
−

√
s

εm

∣∣∣∣

)

= L′|t − s| .

Hence

(13.11)
∥∥Stv̄ − Ssv̄

∥∥
L1

≤ L′|t − s| .

Together, (13.10) and (13.11) yield (1.18).

2. (Finite propagation speed). Consider any interval [a, b] and two initial

data ū, v̄, with ū(x) = v̄(x) for x ∈ [a, b]. By (13.7), for every t ≥ 0 and

x ∈ ]a + βt, b − βt[ one has

(13.12)∣∣∣
(
Stū

)
(x) −

(
Stv̄

)
(x)

∣∣∣

≤ lim sup
m→∞

∣∣∣
(
Sεm

t ū
)
(x) −

(
Sεm

t v̄
)
(x)

∣∣∣

≤ lim
m→∞

‖ū − v̄‖L∞ ·
{

α exp
(βt − (x − a)

εm

)
+ α exp

(βt + (x − b)

εm

)}
= 0 .

In other words, the restriction of the function Stū ∈ L1
loc to a given inter-

val [a′, b′] depends only on the values of the initial data ū on the interval

[a′ − βt, b′ + βt]. Using (13.12), we now prove a sharper version of the contin-

uous dependence estimate (13.10):

(13.13)

∫ b

a

∣∣∣
(
Stū

)
(x) −

(
Stv̄

)
(x)

∣∣∣ dx ≤ L ·
∫ b+βt

a−βt

∣∣ū(x) − v̄(x)
∣∣ dx .

valid for every ū, v̄ and t ≥ 0. Indeed, define the auxiliary function

w̄(x) =

{
ū(x) if x ∈ [a − βt, b + βt] ,

v̄(x) if x /∈ [a − βt, b + βt] .

Using the finite propagation speed, we now have

∫ b

a

∣∣∣
(
Stū

)
(x) −

(
Stv̄

)
(x)

∣∣∣ dx =

∫ b

a

∣∣∣
(
Stw̄

)
(x) −

(
Stv̄

)
(x)

∣∣∣ dx

≤L ‖w̄ − v̄‖L1 = L ·
∫ b+βt

a−βt

∣∣ū(x) − v̄(x)
∣∣ dx .
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3. (Semigroup property). We now show that the map (t, ū) �→ Stū is a

semigroup; i.e.,

(13.14) S0ū = ū , SsStū = Ss+tū .

Since every Sε is a semigroup, the first equality in (13.14) is a trivial con-

sequence of the definition (13.9). To prove the second equality, we observe

that

(13.15) Ss+tū = lim
m→∞

Sεm

s Sεm

t ū , SsStū = lim
m→∞

Sεm

s Stū .

We can assume s > 0. Fix any r > 0 and consider the function

ũm(x)
.
=

{ (
Stū

)
(x) if |x| > r + 2βs ,(

Sεm

t ū
)
(x) if |x| < r + 2βs .

Observing that Sεm

t ū → Stū in L1
loc and hence ũm → Stū in L1, we can use

(13.7) and (13.5) and obtain

lim sup
m→∞

∫ r

−r

∣∣∣
(
Sεm

s Sεm

t ū
)
(x) −

(
Sεm

s Stū
)
(x)

∣∣∣ dx

≤ lim
m→∞

2r · sup
|x|<r

∣∣∣
(
Sεm

s Sεm

t ū
)
(x) −

(
Sεm

s ũm

)
(x)

∣∣∣

+ lim
m→∞

∥∥Sεm

s ũm − Sεm

s Stū
∥∥
L1

≤ lim
m→∞

2r
∥∥Sεm

t ū − ũm

∥∥
L∞

· 2αe−βs/εm + lim
m→∞

L ·
∥∥ũm − Stū

∥∥
L1

= 0 .

By (13.15), this proves the second identity in (13.14).

4. (Tame oscillation). We now exhibit a regularity property which is

shared by all semigroup trajectories. This property, introduced in [BG], plays a

key role in the proof of uniqueness. We begin by recalling the main definitions.

Given a < b and τ ≥ 0, we denote by Tot.Var.
{
u(τ) ; ]a, b[

}
the total variation

of u(τ, ·) over the open interval ]a, b[ . Moreover, consider the triangle

∆τ
a,b

.
=

{
(t, x) ; t > τ, a + β(t − τ) < x < b − β(t − τ)

}
.

The oscillation of u over ∆τ
a,b will be denoted by

Osc.
{
u ; ∆τ

a,b

} .
= sup

{∣∣u(t, x) − u(t′, x′)
∣∣ ; (t, x), (t′, x′) ∈ ∆τ

a,b

}
.

We claim that each function u(t, x) =
(
Stū

)
(x) satisfies the tame oscillation

property: there exists a constant C ′ such that, for every a < b and τ ≥ 0,

(13.16) Osc.
{
u ; ∆τ

a,b

}
≤ C ′ · Tot.Var.

{
u(τ) ; ]a, b[

}
.
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Indeed, let a, b, τ be given, together with an initial datum ū. By the semigroup

property, it is not restrictive to assume τ = 0. Consider the auxiliary initial

condition

(13.17) v̄(x)
.
=






ū(x) if a < x < b,

ū(a+) if x ≤ a,

ū(b−) if x ≥ b,

and call v(t, x)
.
=

(
Stv̄

)
(x) the corresponding trajectory. Observe that

lim
x→−∞

v(t, x) = ū(a+)

for every t ≥ 0. Using (1.15) and the finite propagation speed, we can thus

write

Osc.
{
u ; ∆τ

a,b

}
= Osc.

{
v ; ∆τ

a,b

}
≤ 2 sup

t

(
Tot.Var.

{
Stv̄

})

≤ 2C · Tot.Var.{v̄} = 2C · Tot.Var.
{
u(τ) ; ]a, b[

}
,

proving (13.16) with C ′ = 2C.

5. (Conservation equations). Assume that the system (13.1) is in con-

servation form, i.e. A(u) = Df(u) for some flux function f . In this special

case, we claim that every vanishing viscosity limit is a weak solution of the

system of conservation laws (1.1). Indeed, with the usual notation, if φ is a C2

function with compact support contained in the half plane {x ∈ R, t > 0}, one

can repeatedly integrate by parts and obtain
∫∫ [

uφt + f(u)φx

]
dxdt

= lim
m→∞

∫∫ [
uεm φt + f(uεm)φx

]
dxdt

= − lim
m→∞

∫∫ [
uεm

t φ + f(uεm)xφ
]
dxdt = − lim

m→∞

∫∫
εm uεm

xxφ dxdt

= − lim
m→∞

∫∫
εm uεmφxx dxdt = 0 .

An easy approximation argument shows that the identity (1.5) holds more

generally, assuming only φ ∈ C1
c .

6. (Approximate jumps). From the uniform bound on the total variation

and the Lipschitz continuity with respect to time, it follows that each function

u(t, x) =
(
Stū

)
(x) is a BV function, jointly with respect to the two variables

t, x. In particular, an application of Theorem 2.6 in [B5] yields the existence

of a set of times N ⊂ R+ of measure zero such that, for every (τ, ξ) ∈ R+ × R

with τ /∈ N , the following holds. When

(13.18) u− .
= lim

x→ξ−
u(τ, x), u+ .

= lim
x→ξ+

u(τ, x),
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there exists a finite speed λ such that the function

(13.19) U(t, x)
.
=

{
u− if x < λt,

u+ if x > λt,

for every constant κ > 0 satisfies

lim
r→0+

1

r2

∫ r

−r

∫ κr

−κr

∣∣u(τ + t, ξ + x) − U(t, x)
∣∣ dxdt = 0,(13.20)

lim
r→0+

1

r

∫ κr

−κr

∣∣u(τ + r, ξ + x) − U(r, x)
∣∣ dx = 0.(13.21)

In the case where u− �= u+, we say that (τ, ξ) is a point of approximate

jump for the function u. On the other hand, if u− = u+ (and hence λ can be

chosen arbitrarily), we say that u is approximately continuous at (τ, ξ). The

above result can thus be restated as follows: with the exception of a null set

N of “interaction times”, the solution u is either approximately continuous or

has an approximate jump discontinuity at each point (τ, ξ).

7. (Shock conditions). Assume again that the system is in conservation

form. Consider a semigroup trajectory u(t, ·) = Stū and a point (τ, ξ) where

u has an approximate jump. Since u is a weak solution, the states u−, u+ and

the speed λ in (13.19) must satisfy the Rankine-Hugoniot equations

(13.22) λ (u+ − u−) = f(u+) − f(u−).

For a proof, see Theorem 4.1 in [B5].

If u is a limit of vanishing viscosity approximations, the same is true

of the solution U in (13.19). In particular (see [MP] or [D]), the Liu shock

conditions must hold. More precisely, call s �→ Si(s) the parametrized shock

curve through u− and let λi(s) be the speed of the corresponding shock. If

u+ = Si(s) for some s, then

(13.23) λi(s
′) ≥ λi(s) for all s′ ∈ [0, s] .

Under the additional assumption that each characteristic field is either

linearly degenerate or genuinely nonlinear, it is well known that the Liu con-

ditions imply the Lax shock conditions:

(13.24) λi(u
+) ≤ λ ≤ λi(u

−).

8. (Uniqueness in a special case). Assume that the system is in conserva-

tion form and that each characteristic field is either linearly degenerate or gen-

uinely nonlinear. By the previous steps, the semigroup trajectory u(t, ·) = Stū

provides a weak solution to the Cauchy problem (1.1), (1.2) which satisfies the

tame oscillation and the Lax shock conditions. By a well known uniqueness

theorem in [BG], [B5], such a weak solution is unique and coincides with the
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limit of front tracking approximations. In particular, it does not depend on

the choice of the subsequence {εm}:
Stū = lim

ε→0+
Sε

t ū ;

i.e., the same limit actually holds over all real values of ε.

The above results already yield a proof of Theorem 1 in the special case

where the system is in conservation form and satisfies the standard assumptions

(H). To handle the general (nonconservative) case, we shall need to understand

first the solution of the Riemann problem.

14. The nonconservative Riemann problem

The aim of this section is to characterize the vanishing viscosity limit for

solutions uε of (13.1), in the case of Riemann data

(14.1) ū(x) =

{
u− if x < 0,

u+ if x > 0.

More precisely, we will show that, as ε → 0+, the solutions uε converge to a

self-similar limit ω(t, x) = ω̃(x/t). We first describe a method for constructing

this solution ω.

As a first step, given a left state u− and i ∈ {1, . . . , n}, we seek a one-

parameter curve of right states u+ = Ψi(s) such that the nonconservative

Riemann problem

(14.2) ωt + A(ω)ωx = 0, ω(0, x) =

{
u− if x < 0

u+ if x > 0

admits a vanishing viscosity solution consisting only of i-waves. In the case

where the system is in conservation form and the ith field is genuinely nonlinear,

it is well known [Lx] that one should take

Ψi(s) =

{
Ri(s) if s ≥ 0,

Si(s) if s < 0.

Here Ri and Si are the ith rarefaction and shock curves through u−, respec-

tively. We now describe a method for constructing such curves Ψi in the general

case.

Fix ǫ, s > 0. Consider the family Γ ⊂ C0
(
[0, s] ; R

n × R × R
)

of all

continuous curves

τ �→ γ(τ) =
(
u(τ), vi(τ), σi(τ)

)
, τ ∈ [0, s] ,

with

u(0) = u−,
∣∣u(τ) − u−

∣∣ ≤ ǫ ,
∣∣vi(τ)

∣∣ ≤ ǫ ,
∣∣σi(τ) − λi(u

−)
∣∣ ≤ ǫ .
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In connection with a given curve γ ∈ Γ, define the scalar flux function

(14.3) fi(γ, τ)
.
=

∫ τ

0
λ̃i

(
u(ς), vi(ς), σi(ς)

)
dς , τ ∈ [0, s] ,

where λ̃i is the speed in (4.21). Moreover, consider the lower convex envelope

conv fi(γ, τ)
.
= inf

{
θfi(γ, τ ′) + (1 − θ)fi(γ, τ ′′) ;

θ ∈ [0, 1] , τ ′, τ ′′ ∈ [0, s] , τ = θτ ′ + (1 − θ)τ ′′
}

.

We now define a continuous mapping Ti,s : Γ �→ Γ by setting Ti,sγ = γ̂ =

(û, v̂i, σ̂i), where

(14.4)






û(τ)
.
= u− +

∫ τ
0 r̃i

(
u(ς), vi(ς), σi(ς)

)
dς ,

v̂i(τ)
.
= fi(γ, τ) − conv fi(γ, τ) ,

σ̂i(τ)
.
= d

dτ conv fi(γ, τ) .

We recall that the r̃i are the unit vectors that define the center manifold in

(4.13). Because of the bounds
∣∣û(τ) − u−

∣∣ ≤ τ ≤ s ,

∣∣σ̂i(τ) − λi(u
−)

∣∣ = O(1) · sup
ς∈[0,s]

∣∣∣λ̃i

(
u(ς), vi(ς), σi(ς)

)
− λi(u

−)
∣∣∣ = O(1) · s ,

∣∣v̂i(τ)
∣∣ = O(1) · s sup

ς∈[0,s]

∣∣∣λ̃i

(
u(ς), vi(ς), σi(ς)

)
− λi(u

−)
∣∣∣ = O(1) · s2 ,

it is clear that for 0 ≤ s ≪ ǫ ≪ 1 the transformation Ti,s maps Γ into itself.

We now show that, in this same range of parameters, Ti,s is a contraction with

respect to the weighted norm
∥∥(u, vi, σi)

∥∥
†

.
= ‖u‖L∞ + ‖vi‖L∞ + ǫ ‖σi‖L∞ .

Indeed, consider two curves γ, γ′ ∈ Γ. For each τ ∈ [0, s],

‖û − û′‖L∞ ≤
∫ s

0

∣∣∣r̃i(u, vi, σi) − r̃i(u
′, v′i, σ

′
i)

∣∣∣ dς

=O(1) · s
(∥∥u − u′

∥∥
L∞

+ ‖vi − v′i‖L∞ + ‖vi‖L∞‖σi − σ′
i‖L∞

)
,

‖v̂i − v̂′i‖L∞ ≤ 2
∥∥fi(γ) − fi(γ

′)
∥∥
L∞

≤ 2

∫ s

0

∣∣∣λ̃i(u, vi, σi) − λ̃i(u
′, v′i, σ

′
i)

∣∣∣ dς

=O(1) · s
(∥∥u − u′

∥∥
L∞

+ ‖vi − v′i‖L∞ + ‖vi‖L∞‖σi − σ′
i‖L∞

)
,

‖σ̂i(τ) − σ̂′
i‖L∞ ≤ sup

τ∈[0,s]

∣∣∣∣
d

dτ
conv fi(γ, τ) − d

dτ
conv f ′

i(γ, τ)

∣∣∣∣

≤ sup
τ∈[0,s]

∣∣∣∣
d

dτ
fi(γ, τ) − d

dτ
f ′

i(γ, τ)

∣∣∣∣
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≤
∥∥λ̃i − λ̃′

i

∥∥
L∞

=O(1) ·
(∥∥u − u′

∥∥
L∞

+ ‖vi − v′i‖L∞ + ‖vi‖L∞‖σi − σ′
i‖L∞

)
.

For some constant C0, the previous estimates imply

(14.5) ‖γ̂ − γ̂′‖† ≤ C0 ǫ ‖γ − γ′‖† ≤
1

2
‖γ − γ′‖† ,

provided that ǫ is sufficiently small. Therefore, by the contraction mapping

principle, the map Ti,s admits a unique fixed point, i.e. a continuous curve

γ = (u, vi, σi) such that

(14.6)






u(τ) = u− +
∫ τ
0 r̃i

(
u(ς), vi(ς), σi(ς)

)
dς ,

vi(τ) = fi(γ, τ) − conv fi(γ, τ) ,

σi(τ) = d
dτ conv fi(γ, τ) .

From the definition (14.3) and the continuity of u, vi, σi it follows that the

maps τ �→ u(τ), τ �→ vi(τ) and τ �→ fi(γ, τ) are continuously differentiable.

We now show that, taking u+ = u(s) corresponding to the endpoint of this

curve γ, the Riemann problem (14.2) admits a self-similar solution containing

only i-waves.

Lemma 14.1. In the previous setting, let γ : τ �→
(
u(τ), vi(τ), σi(τ)

)
be

the fixed point of the transformation Ti,s. Define the right state u+ .
= u(s).

Then the unique vanishing viscosity solution of the Riemann problem (14.2) is

the function

(14.7) ω(t, x)
.
=






u− if x/t ≤ σi(0) ,

u(τ) if x/t = σi(τ) ,

u+ if x/t ≥ σi(s) .

Proof. With the semigroup notation introduced in Theorem 1, we will

show that, for every t ≥ 0,

(14.8) lim
ε→0+

∥∥ω(t) − Sε
t ω(0)

∥∥
L1

= 0 .

The proof will be given in several steps.

1. Assume that we can construct a family vε of solutions to

(14.9)ε vt + A(v)vx = ε vxx ,

with

(14.10) lim
ε→0+

∥∥vε(t) − ω(t)
∥∥
L1

= 0

for all t ∈ [0, 1]. Then (14.8) follows. Indeed, by a simple rescaling we immedi-

ately have a family of solutions vε such that (14.9)ε, (14.10) hold on any fixed
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interval [0, T ]. For every t ∈ [0, T ], since by assumption vε(t) = Sε
t v

ε(0), using

(1.16) we obtain

lim
ε→0+

∥∥ω(t) − Sε
t ω(0)

∥∥
L1

≤ lim
ε→0+

∥∥ω(t) − vε(t)
∥∥
L1

+ lim
ε→0+

∥∥vε(t) − Sε
t ω(0)

∥∥
L1

≤ 0 + L · lim
ε→0+

∥∥vε(0) − ω(0)
∥∥
L1

= 0 .

2. For notational convenience, call VVL the set of all vanishing viscosity

limits, i.e. all functions v : [0, 1] × R �→ R
n such that

(14.11) lim
ε→0+

∥∥vε(t) − v(t)
∥∥
L1

= 0 , t ∈ [0, 1],

for some family of solutions vε of (14.9)ε . By Step 1, it suffices to show that

the function ω at (14.7) lies in VVL.

Let us make some preliminary considerations. Consider a piecewise smooth

function v = v(t, x) which provides a classical solution to the quasilinear sys-

tem

vt + A(v)vx = 0 , t ∈ [0, 1] ,

outside a finite number of straight lines, say x = xj(t), j = 1, . . . , N . Assume

that there exists δ > 0 and constant states ω−
j , ω+

j such that

v(t, x) =

{
ω−

j if xj(t) − δ ≤ x < xj(t) ,

ω+
j if xj(t) < x ≤ xj(t) + δ .

Moreover, assume that each pair of states ω−
j , ω+

j can be connected by a viscous

travelling wave having speed ẋj . Finally, let v be constant on each of the two

regions where x > r0 or x < −r0, for some r0 sufficiently large. Under all of the

above hypotheses, it is then clear that v ∈ VVL. Indeed, a family of viscous

approximations vε can be constructed by a simplified version of the singular

perturbation technique used in [GX].

As a second observation, notice that if we have a sequence of functions

vm ∈ VVL with

lim
m→∞

∥∥vm(t) − v(t)
∥∥
L1

= 0 , t ∈ [0, 1] ,

then also v ∈ VVL.

3. Consider first the (generic) case where the set of points in which fi is

disjoint from its convex envelope is a finite union of open intervals (Fig. 7), say

(14.12)
{

τ ∈ [0, s] ; fi(γ, τ) > conv fi(γ, τ)
}

=

N⋃

j=1

]aj , bj [ .

Our strategy is to prove that ω ∈ VVL first in this special case. Later we shall

deal with the general case, by an approximation argument.
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fi

0 a1 b1 a2 b2

x1
x2

0 δ 2δ

Figure 7 Figure 8

If (14.12) holds, we can make the two following observations.

(i) For each j = 1, . . . , N , we claim that the left and right states u(aj),

u(bj) are connected by a viscous travelling profile U such that

(14.13) U ′′ =
(
A(U) − σij

)
U ′, U(−∞) = u(aj), U(∞) = u(bj).

Here σij is the constant speed

σij
.
= σi(τ) =

d

dτ
conv fi(γ, τ) , τ ∈ [aj , bj ] .

To construct the function U , consider the variable transformation ]aj , bj [ �→ R,

say τ �→ x(τ), defined by

x
(aj + bj

2

)
= 0 ,

dx(τ)

dτ
=

1

vi(τ)
.

Let τ = τ(x) be its inverse. Then the function U(x)
.
= u

(
τ(x)

)
is the required

travelling wave profile. Indeed, U obviously takes the correct limits at ±∞.

Moreover,

U ′ =
du

dτ

dτ

dx
= vir̃i,

U ′′ = vi,xr̃i + vir̃i,x

= vi

(
vi,τ r̃i + vir̃i,τ

)

= vi(λ̃i − σij)r̃i + v2
i

(
r̃i,ur̃i + r̃i,v(λ̃i − σij)

)
.

Recalling the identity (4.22), we see that U also satisfies the differental equation

in (14.13), thus proving our claim.

(ii) On the intervals where fi(γ, τ) = conv fi(γ, τ) we have vi(τ) = 0.

Hence, by the first equation in (14.6) and by (4.16), uτ = r̃i = ri(u) is an

i-eigenvector of the matrix A(u).
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4. In general, even if condition (14.12) is satisfied, we do not expect that

the function ω has the regularity specified in Step 2. However, we now show

that it can be approximated in L1 by functions ωδ satisfying all the required

assumptions. To fix the ideas, let

0
.
= b0 ≤ a1 < b1 ≤ a2 < b2 ≤ · · · ≤ aN < bN ≤ aN+1

.
= s .

A piecewise smooth viscosity solution can be defined as follows (Fig. 8). Fix a

small δ > 0. For each k = 0, . . . , N , consider a smooth nondecreasing map

τk :
[
kδ, (k + 1)δ

]
�→ [bk, ak+1]

such that

τk(x) =

{
bk if x ≤ kδ + δ/3,

ak+1 if x ≥ kδ + 2δ/3.

We then define the initial condition

ωδ(0, x)
.
=






u(0) if x < 0 ,

u
(
τk(x)

)
if kδ < x < (k + 1)δ ,

u(s) if x > (N + 1)δ .

A corresponding solution of the Cauchy problem can then be constructed by

the method of characteristics:

ωδ(t, x)
.
=






u(0) = u− if x < σi(0) t ,

u(0) if x = y + σi

(
τk(y)

)
t for some y ∈

]
kδ, (k + 1)δ

[
,

u(s) = u+ if x > (N + 1)δ + σi(s)t .

It is clear that the above function ωδ satisfies all of the assumptions considered

in Step 2. Hence ωδ ∈ V V L. Letting δ → 0 we have
∥∥ωδ(t) − ω(t)

∥∥
L1

→ 0

for every t. Therefore, by the last observation in Step 2 we conclude that also

ω ∈ VVL.

5. To prove the lemma in the general case, where the set in (14.12)

may be the union of infinitely many open intervals, we use an approximation

argument. For each δ > 0, by slightly perturbing the values of A, we can

construct a second matrix-valued function A′ with

(14.14) sup
u

∣∣A′(u) − A(u)
∣∣ ≤ δ ,

such that the following properties hold. For some right state ũ+ with

|ũ+ − u+| ≤ δ, the nonconservative Riemann problem

(14.15) ut + A′(u)ux = 0, u(0, x) =

{
u− if x < 0,

ũ+ if x > 0

admits a self-similar solution ω′ which is the limit of vanishing viscosity ap-

proximations and satisfies

(14.16)

∫ 3β

−3β

∣∣ω′(t, x) − ω(t, x)
∣∣ dx ≤ δ t ∈ [0, 1] .
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Clearly, the fact that ω′ is a limit of vanishing viscosity approximations can be

achieved by choosing A′ so that a corresponding transformation T ′
s′ will admit

as fixed point some curve γ′ : τ �→
(
u′(τ) , v′i(τ) , σ′

i(τ)
)

for which u′(0) = u−,

u′(s′) ≈ u+ and with fi(γ
′, τ) differing from its convex envelope on a finite

number of open intervals.

Call ωε the solution of the viscous Riemann problem (13.1) with initial

data (14.1). Using (13.7) with vε ≡ u+, a = 0, b = ∞, for all t ∈ [0, 1] we

obtain

(14.17) lim
ε→0

∫ ∞

β

∣∣ωε(t, x)−ω(t, x)
∣∣ dx ≤ lim

ε→0

∫ ∞

β
|u−−u+| ·αe(βt−x)/ε dx = 0 .

Similarly,

(14.18) lim
ε→0

∫ −β

−∞

∣∣ωε(t, x) − ω(t, x)
∣∣ dx = 0 .

To establish the convergence also on the interval [−β, β], call vε the solution

of the Cauchy problem

vε
t + A′(vε)vε

x = εvε
xx , vε(0, x) =






u− if x < 0 ,

ũ+ if 0 < x < 3β ,

u+ if x > 3β .

Clearly,

(14.19) lim
ε→0

∫ β

−β

∣∣vε(t, x) − ω′(t, x)
∣∣ dx = 0

because ω′ is a vanishing viscosity limit and because of the finite propagation

speed. Using the triangle inequality we can write

(14.20)

lim sup
ε→0

∫ β

−β

∣∣ωε(t, x) − ω(t, x)
∣∣ dx ≤ lim sup

ε→0

∫ β

−β

∣∣ωε(t, x) − vε(t, x)
∣∣ dx

+ lim
ε→0

∫ β

−β

∣∣vε(t, x) − ω′(t, x)
∣∣ dx +

∫ β

−β

∣∣ω′(t, x) − ω(t, x)
∣∣ dx .

Since t �→ ωε(t) = Sε
t ω(0) is a trajectory of the Lipschitz semigroup Sε, recall-

ing (14.14) we have the estimate

(14.21)
∥∥vε(t) − ωε(t)

∥∥
L1

≤ L
∥∥vε(0) − ωε(0)

∥∥
L1

+ L ·
∫ t

0

{
lim

h→0+

∥∥vε(s + h) − Sε
hvε(s)

∥∥
L1

h

}
ds
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≤ 3βL |ũ+ − u+| + L ·
∫ t

0

{∫ ∣∣∣A(vε(s, x)) − A′(vε(s, x))
∣∣∣
∣∣vε

x(s, x)
∣∣ dx

}
ds

≤ 3βLδ + Lδ C · Tot.Var.
{
vε(0)

}

≤ C ′′δ ,

for some constant C ′′. Estimating the right-hand side of (14.20) by means of

(14.21), (14.19) and (14.16), we obtain

lim sup
ε→0

∫ β

−β

∣∣ωε(t, x) − ω(t, x)
∣∣ dx ≤ C ′′δ + 0 + δ.

Since δ > 0 can be arbitrarily small, together with (14.17)–(14.18) this yields

lim
ε→0

∥∥ωε(t) − ω(t)
∥∥
L1

= 0 for all t ∈ [0, 1] ,

completing the proof.

Remark 14.2. The transformation Ti,s defined at (14.4) depends on the

vectors r̃i, and hence on the center manifold (which is not unique). However,

the curve γ obtained as a fixed point of Ti,s involves only a concatenation of

bounded travelling profiles or stationary solutions. These are bounded solu-

tions of (4.2), and will certainly be included in every center manifold. For

this reason, the curve γ (and hence the solution of the Riemann problem) is

independent of our choice of the center manifold.

For negative values of the parameter s, a right state u+ = Ψi(s) can be

constructed exactly in the same way as before, except that one now takes the

upper concave envelope of fi:

conc fi(γ, τ)
.
= sup

{
θfi(γ, τ ′) + (1 − θ)fi(γ, τ ′′) ;

θ ∈ [0, 1] , τ ′, τ ′′ ∈ [0, s] , τ = θτ ′ + (1 − θ)τ ′′
}

,

instead of the lower convex envelope.

Our next step is to study the regularity of the curve of right states u+ =

Ψi(s).

Lemma 14.3. Given a left state u− and i ∈ {1, . . . , n}, the curve of right

states s �→ Ψi(s) is Lipschitz continuous and satisfies

(14.22) lim
s→0

dΨi(s)

ds
= ri(u

−).

Proof. We assume s > 0, the other case being entirely alike. For the

sake of clarity, let us introduce some notation. For fixed i and s > 0, let

γi,s = (ui,s, vs
i , σ

s
i ) be the fixed point of the transformation Ti,s : Γ �→ Γ in
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(14.4). Notice that, as soon as s is fixed, we can choose ǫ = O(1) · s in the

definition of the domain Γ. By definition we now have

Ψi(s)
.
= ui,s(s) .

For 0 < s′ < s, let γ′ .
= (u′, v′i, σ

′
i) be the restriction of γi,s to the subinterval

[0, s′]. Since Ti,s′ is a strict contraction, the distance of γ′ from the fixed point

of Ti,s′ is estimated as
∥∥γ′ − γi,s′

∥∥
†

= O(1) ·
∥∥γ′ − Ti,s′γ′

∥∥
†

= O(1) · (s − s′) s .

In particular, ∣∣ui,s′

(s′) − ui,s(s′)
∣∣ = O(1) · (s − s′) s .

Observing that

ui,s(s) − ui,s(s′) =

∫ s

s′

r̃i

(
ui,s(ς), vs

i (ς), σs
i (ς)

)
dς

= (s − s′) · ri(u
−) + O(1) · (s − s′)s ,

we conclude

(14.23)
∣∣Ψi(s) − Ψi(s

′) − (s − s′)ri(u
−)

∣∣ = O(1) · (s − s′) s .

By (14.23), the map s �→ Ψi(s) is Lipschitz continuous, hence differentiable

almost everywhere, by Rademacher’s theorem. The limit in (14.22) is again a

consequence of (14.23).

Thanks to the previous analysis, the solution of the general Riemann

problem (14.2) can now be constructed following standard procedure. Given a

left state u−, call s �→ Ψi(s)(u
−) the curve of right states that can be connected

to u− by i-waves. Consider the composite mapping

Ψ : (s1, . . . , sn) �→ Ψn(sn) ◦ · · · ◦ Ψ1(s1)(u
−) .

By Lemma 14.3 and a version of the implicit function theorem valid for Lip-

schitz continuous maps (see [Cl, p. 253]), Ψ is a one-to-one mapping from a

neighborhood of the origin in R
n onto a neighborhood of u−. Hence, for all

u+ sufficiently close to u−, one can find unique values s1, . . . , sn such that

Ψ(s1, . . . , sn) = u+. In turn, this yields intermediate states u0 = u−, u1, . . . ,

un = u+ such that each Riemann problem with data ui−1, ui admits a van-

ishing viscosity solution ωi = ωi(t, x) consisting only of i-waves. By strict

hyperbolicity, we can now choose intermediate speeds

−∞ .
= λ′

0 < λ′
1 < λ′

2 < · · · < λ′
n−1 < λ′

n = ∞
such that all i-waves in the solution ωi have speeds contained inside the interval

[λ′
i−1, λ′

i]. The general solution of the general Riemann problem (14.2) is then

given by

(14.24) ω(t, x) = ωi(t, x) for λ′
i−1 <

x

t
< λ′

i .
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Because of Lemma 14.1, it is clear that the function ω is the unique limit of

viscous approximations:

(14.25) lim
ε→0+

∥∥ω(t) − Sε
t ω(0)

∥∥
L1

= 0 for every t ≥ 0 .

15. Viscosity solutions and uniqueness of the semigroup

In [B3], one of the authors introduced a definition of viscosity solution for

a system of conservation laws, based on local integral estimates. Assuming the

existence of a Lipschitz semigroup of entropy weak solutions, it was proved that

such a semigroup is necessarily unique and every viscosity solution coincides

with a semigroup trajectory. We shall follow here exactly the same approach,

in order to prove the uniqueness of the Lipschitz semigroup constructed in

(13.9) as limit of vanishing viscosity approximations.

Toward the definition of a viscosity solution for the general hyperbolic

system

(15.1) ut + A(u)ux = 0,

we first introduce some notation. Given a function u = u(t, x) and a point

(τ, ξ), we denote by U ♯
(u;τ,ξ) the solution of the Riemann problem (14.1) with

initial data

(15.2) u− = lim
x→ξ−

u(τ, x), u+ = lim
x→ξ+

u(τ, x).

Of course, we refer here to the vanishing viscosity solution constructed in Sec-

tion 14. In addition, we define U ♭
(u;τ,ξ) as the solution of a linear hyperbolic

Cauchy problem with constant coefficients:

(15.3) wt + Âwx = 0, w(0, x) = u(τ, x).

Here Â
.
= A

(
u(τ, ξ)

)
. Observe that (15.3) is obtained from the quasilinear

system (15.1) by “freezing” the coefficients of the matrix A(u) at the point

(τ, ξ) and choosing u(τ) as initial data.

As in [B3], the notion of viscosity solution is now defined by locally com-

paring a function u with the self-similar solution of a Riemann problem and

with the solution of a linear hyperbolic system with constant coefficients.

Definition 15.1. A function u = u(t, x) is a viscosity solution of the system

(15.1) if t �→ u(t, ·) is continuous as a map with values into L1
loc, and moreover

the following integral estimates hold.

(i) At every point (τ, ξ), for every β′ > 0,

(15.4) lim
h→0+

1

h

∫ ξ+β′h

ξ−β′h

∣∣∣u(τ + h, x) − U ♯
(u;τ,ξ)(h, x − ξ)

∣∣∣ dx = 0.
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(ii) There exist constants C, β > 0 such that, for every τ ≥ 0 and a < ξ < b,

(15.5) lim sup
h→0+

1

h

∫ b−βh

a+βh

∣∣∣u(τ + h, x) − U ♭
(u;τ,ξ)(h, x)

∣∣∣ dx

≤ C ·
(
Tot.Var.

{
u(τ); ]a, b[

})2
.

The main result of this section shows that the above viscosity solutions

coincide precisely with the limits of vanishing viscosity approximations.

Lemma 15.2. Let S : D × [0,∞[ �→ D be a semigroup of vanishing vis-

cosity solutions, constructed as the limit of a sequence Sεm as in (13.9) and

defined on a domain D ⊂ L1
loc of functions with small total variation. A map

u : [0, T ] �→ D satisfies

(15.6) u(t) = Stu(0) for all t ∈ [0, T ]

if and only if u is a viscosity solution of (15.1).

Proof. Necessity. Assume that (15.6) holds. By (13.11), the map t �→ u(t)

is continuous. Let any β′ > 0 be given and let L, β be the constants in (13.13).

Then, for any (τ, ξ), an application of (13.13) yields
∫ ξ+β′h

ξ−β′h

∣∣∣u(τ + h, x) − U ♯
(u;τ,ξ)(h, x − ξ)

∣∣∣ dx

≤ L ·
{∫ ξ

ξ−(β+β′)h

∣∣∣u(τ, x) − u(τ, ξ−)
∣∣∣ dx

+

∫ ξ+(β+β′)h

ξ

∣∣∣u(τ, x) − u(τ, ξ+)
∣∣∣ dx

}

≤ L(β + β′)h

{
sup

ξ−(β+β′)h < x < ξ

∣∣u(τ, x) − u(τ, ξ−)
∣∣

+ sup
ξ < x < ξ+(β+β′)h

∣∣u(τ, x) − u(τ, ξ+)
∣∣
}

.

Hence (15.4) is clear.

To prove the second estimate, fix τ and a < ξ < b. Define the function

v̄(x)
.
=






u(τ, a+) if x ≤ a ,

u(τ, x) if a < x < b ,

u(τ, b−) f x ≥ b .

Call vε, wε respectively the solutions of the viscous systems

(15.7) vε
t + A(vε)vε

x = ε vε
xx , wε

t + Âwε
x = εwε

xx ,

with the same initial data vε(0, x) = wε(0, x) = v̄(x).
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Recalling that Sε is a semigroup with Lipschitz constant L, as in [B3],

[B5], we can use the error formula
∥∥wε(h) − vε(h)

∥∥
L1

=
∥∥wε(h) − Sε

hv̄
∥∥
L1

≤L ·
∫ h

0

{
lim inf
r→0+

∥∥wε(t + r) − Sε
rw

ε(t)
∥∥
L1

r

}
dt

≤L ·
∫ h

0

∫ ∣∣∣Â − A
(
wε(t, x)

)∣∣∣
∣∣wε

x(t, x)
∣∣ dxdt

≤L h

(
sup
t,x

∣∣∣A
(
wε(0, ξ)

)
− A

(
wε(t, x)

)∣∣∣
)
· sup

t

∥∥wε
x(t)

∥∥
L1

≤C h
(
Tot.Var.{v̄}

)2
,

for some constant C. Letting ε → 0 and using the estimate (13.13) on the

finite speed of propagation, we obtain

1

h

∫ b−βh

a+βh

∣∣∣u(τ + h, x) − U ♭
(u;τ,ξ)(h, x)

∣∣∣ dx≤ 1

h
lim
ε→0

∫ b−βh

a+βh

∣∣vε(h, x) − wε(h, x)
∣∣ dx

≤ C
(
Tot.Var.{v̄}

)2
= C

(
Tot.Var.

{
ū ; ]a, b[

})2
.

This proves (15.5), with β the constant in (13.13).

Sufficiency. Let u = u(t, x) be a viscosity solution of (15.1). By assump-

tion, the map t �→ u(t) is continuous with values in a domain D ⊂ L1
loc of

functions with small total variation. From (15.5) and the uniform bound on

the total variation it follows that this map is actually Lipschitz continuous:

(15.8)
∥∥u(t) − u(s)

∥∥
L1

≤ L′′ |t − s| ,

for some constant L′′ and all s, t ∈ [0, T ]. Let L be the Lipschitz constant of

the semigroup S, as in (13.13). Given any interval [a, b], thanks to (15.8) one

has the error estimate

(15.9)

∫ b−tβ

a+tβ

∣∣∣u(t, x) −
(
Stu(0)

)
(x)

∣∣∣ dx

≤ L ·
∫ t

0

{
lim inf
h→0+

1

h

∫ b−(τ+h)β

a+(τ+h)β

∣∣∣u(τ + h, x) −
(
Shu(τ)

)
(x)

∣∣∣ dx

}
dτ .

To prove the identity (15.6) it thus suffices to show that the integrand on the

right-hand side of (15.9) vanishes for all τ ∈ [0, T ].

Fix any time τ ∈ [0, T ] and let ǫ > 0 be given. Since the total variation

of u(τ, ·) is finite, we can choose finitely many points

a + τβ = x0 < x1 < · · · < xN = b − τβ
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such that, for every j = 1, . . . , N ,

Tot.Var.
{
u(τ, ·) ; ]xj−1, xj [

}
< ǫ .

By the necessity part of the theorem, which has already been proved, the func-

tion w(t, ·) .
= St−τu(τ) is itself a viscosity solution and hence it also satisfies

the estimates (15.4)–(15.5). We now consider the midpoints yj
.
= (xj−1+xj)/2.

Using the estimate (15.4) at each of the points ξ = xj and the estimate (15.5)

with ξ
.
= yj on each of the intervals ]xj−1, xj [ , taking β > 0 sufficiently large

we now compute

lim sup
h→0+

1

h

∫ b−(τ+h)β

a+(τ+h)β

∣∣∣u(τ + h, x) −
(
Shu(τ)

)
(x)

∣∣∣ dx

≤
N−1∑

j=1

lim sup
h→0+

1

h

∫ xj+hβ

xj−hβ

(∣∣∣u(τ + h, x) − U ♯
(u;τ,xj)

(τ + h, x)
∣∣∣

+
∣∣∣U ♯

(u;τ,xj)
(τ + h, x) −

(
Shu(τ)

)
(x)

∣∣∣
)

dx

+

N∑

j=1

lim sup
h→0+

1

h

∫ xj−hβ

xj−1+hβ

(∣∣∣u(τ + h, x) − U ♭
(u;τ,yj)

(h, x)
∣∣∣

+
∣∣∣U ♭

(u;τ,yj)
(h, x) −

(
Shu(τ)

)
(x)

∣∣∣
)

dx

≤ 0 +

N∑

j=1

C
(
Tot.Var.

{
u(τ); ]xj−1, xj [

})2

≤ C ǫ · Tot.Var.
{
u(τ); ]a + τβ , b − τβ[

}
.

Since ǫ > 0 was arbitrary, the integrand on the right-hand side of (15.9) must

vanish at time τ . This completes the proof of the lemma.

Remark 15.3. From the proof of the sufficiency part, it is clear that the

identity (15.6) still holds if we require that the integral estimates (15.4) hold

only for τ outside a set of times N ⊂ [0, T ] of measure zero. By a well known

result in the theory of BV functions [EG], any BV function of two variables

u = u(t, x) is either approximately continuous or has an approximate jump

discontinuity at every point (τ, ξ), with τ outside a set N having zero measure.

To decide whether a function u is a viscosity solution, it thus suffices to check

(15.4) only at points of approximate jump, where the Riemann problem is

solved in terms of a single shock.

Using Lemma 15.2, we now obtain at one stroke the uniqueness of viscosity

solutions and of vanishing viscosity limits:
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Completion of the proof of Theorem 1. What remains to be proved is

that the whole family of viscous approximations converges to a unique limit;

i.e.,

(15.10) lim
ε→0+

Sε
t ū = Stū ,

where the limit holds over all real values of ε and not only along a particular

sequence {εm}. If (15.10) fails, we can find v̄, τ and two different sequences

εm, ε′m → 0 such that

(15.11) lim
m→∞

Sεm

τ v̄ �= lim
m→∞

Sε′

m
τ v̄ .

By extracting further subsequences, we can assume that the limits

(15.12) lim
m→∞

Sεm

t ū = Stū , lim
m→∞

S
ε′

m

t ū = S′
tū ,

exist in L1
loc, for all t ≥ 0 and ū ∈ U . By the analysis in Section 13, both S and

S′ are semigroups of vanishing viscosity solutions. In particular, the necessity

part of Lemma 14.2 implies that the map t �→ v(t)
.
= Stv̄ is a viscosity solution

of (15.1), while the sufficiency part implies v(t) = S′
tv(0) for all t ≥ 0. But this

is in contradiction with (15.11), hence the unique limit (15.10) is well defined.

Remark 15.4. The above uniqueness result is obtained within the family

of vanishing viscosity limits of the form (1.13)ε, with unit viscosity matrix. In

the more general case (1.21)ε, if the system is not in conservation form, we

expect that the limit of solutions as ε → 0 will depend on the form of the

viscosity matrices B(u). Indeed, by choosing different matrices B(u), one will

likely alter the vanishing viscosity solutions of the Riemann problems (14.2).

In turn, this affects the definition of the viscosity solution in (15.4).

16. Dependence on parameters and large time asymptotics

We wish to derive here a simple estimate on how the viscosity solution

changes, depending on hyperbolic matrices A(u).

Corollary 16.1. Assume that the two hyperbolic systems

ut + A(u)ux = 0,

ut + Â(u)ux = 0 ,

both satisfy the hypotheses of Theorem 1. Call S, Ŝ the corresponding semi-

groups of viscosity solutions. Then, for all initial data ū with small total vari-

ation,

(16.1)
∥∥Stū − Ŝtū

∥∥
L1

= O(1) · t
(

sup
u

∣∣Â(u) − A(u)
∣∣
)
· Tot.Var.{ū} .
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Proof. Call Sε, Ŝε the semigroups of solutions to the corresponding viscous

problems

ut + A(u)ux = ε uxx, ut + Â(u)ux = ε uxx .

Let L be the Lipschitz constant in (1.16) and call wε(t)
.
= Ŝε

t ū. For every t ≥ 0

we have the error estimate
∥∥Ŝε

t ū − Sε
t ū

∥∥
L1

=
∥∥wε(t) − Sε

t ū
∥∥
L1

≤L ·
∫ t

0

{
lim inf
h→0+

∥∥wε(s + h) − Sε
hwε(s)

∥∥
L1

h

}
ds

≤L ·
∫ t

0

∫ ∣∣∣Â
(
wε(s, x)

)
− A

(
wε(s, x)

)∣∣∣
∣∣wε

x(s, x)
∣∣ dxds

≤L
(

sup
u

∣∣Â(u) − A(u)
∣∣
) ∫ t

0

∥∥wε
x(s)

∥∥
L1

ds

=O(1) · t
(

sup
u

∣∣Â(u) − A(u)
∣∣
)

Tot.Var.{ū} .

.

Next, we show that some semigroup trajectories are asymptotically self-

similar.

Corollary 16.2. Under the assumption of Theorem 1, consider an ini-

tial datum ū with small total variation, such that

(16.2)

∫ 0

−∞

∣∣ū(x) − u−
∣∣ dx +

∫ ∞

0

∣∣ū(x) − u+
∣∣ dx < ∞ ,

for some states u−, u+. Call ω(t, x) = ω̃(x/t) the self -similar solution of

the corresponding Riemann problem (14.2). Then the solution of the viscous

Cauchy problem

(16.3) ut + A(u)ux = uxx , u(0, x) = ū(x)

satisfies

(16.4) lim
τ→∞

∫ ∣∣u(τ, τy) − ω̃(y)
∣∣ dy = 0 .

Proof. The assumption on ω implies that the limit (14.25) holds. For

fixed τ , call ε
.
= 1/τ and consider the function vε(t, x)

.
= u(τx, τt). Clearly, vε

satisfies the equation

vε
t + A(vε)vε

x = ε vε
xx , vε(0, x) = ū(x/ε).

Therefore,
∫ ∣∣u(τ, τy) − ω̃(y)

∣∣ dy =

∫ ∣∣vε(1, x) − ω(1, x)
∣∣ dx(16.5)

≤
∥∥Sε

1v
ε(0) − Sε

1ω(0)
∥∥
L1

+
∥∥Sε

1ω(0) − ω(1)
∥∥
L1

.
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Observing that

∥∥Sε
1v

ε(0) − Sε
1ω(0)

∥∥
L1

≤L ·
∥∥Sε

1v
ε(0) − Sε

1ω(0)
∥∥
L1

= Lε

(∫ 0

−∞

∣∣ū(x) − u−
∣∣ dx +

∫ ∞

0

∣∣ū(x) − u+
∣∣ dx

)
,

and using (14.25), from (16.5) we obtain (16.4).

Appendix A

We derive here the explicit form of the evolution equations (6.1), for the

variables vi and wi defined by the decomposition

(A.1)

ux =
∑

i

vir̃i

(
u, vi, λ

∗
i −θ(wi/vi)

)
, ut =

∑

i

(
wi−λ∗

i vi

)
r̃i

(
u, vi, λ

∗
i −θ(wi/vi)

)
.

By checking one by one all source terms, we then provide an alternative proof

of Lemma 6.1. The computations are lengthy but straightforward: one has to

rewrite the evolution equations for ux and ut:

(A.2)

{
(ux)t +

(
A(u)ux

)
x
− (ux)xx = 0 ,

(ut)t +
(
A(u)ut

)
x
− (ut)xx =

(
ux • A(u)

)
ut −

(
ut • A(u)

)
ux ,

in terms of vi, wi. For convenience, we set θi
.
= θ(wi/vi). The fundamental

relation (4.23) can be written as

(A.3) vir̃i,ur̃i − A(u)r̃i = −λ̃ir̃i +
(
−λ̃i + λ∗

i − θi

)
vir̃i,v .

Differentiating (A.1) with respect to x and using (A.3) we obtain

(A.4)

uxx − A(u)ux =
∑

i

vi,xr̃i +
∑

i

vir̃i,x −
∑

i

A(u)vir̃i

=
∑

i

vi,xr̃i +
∑

i

vi

[
vir̃i,ur̃i − A(u)r̃i

]

+
∑

i

vi

[
vi,xr̃i,v − θ′i

(
(viwi,x − wivi,x)/v2

i

)
r̃i,σ

]
+

∑

i�=j

vivj r̃i,ur̃j

=
∑

i

(vi,x − λ̃ivi)r̃i +
∑

i

(−λ̃i + λ∗
i − θi)v

2
i r̃i,v

+
∑

i

vi

[
vi,xr̃i,v − θ′i

(
(viwi,x − wivi,x)/v2

i

)
r̃i,σ

]
+

∑

i�=j

vivj r̃i,ur̃j
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=
∑

i

(
vi,x − λ̃ivi

)[
r̃i + vir̃i,v + θ′i

(
wi/vi

)
r̃i,σ

]

+
∑

i

(
wi,x − λ̃iwi

)[
− θ′ir̃i,σ

]

+
∑

i

v2
i

(
λ∗

i − θi

)
r̃i,v +

∑

i�=j

vivj r̃i,ur̃j ,

(A.5)

utx − A(u)ut =
∑

i

(wi,x − λ∗
i vi,x)r̃i

+
∑

i

(wi − λ∗
i vi)r̃i,x −

∑

i

(wi − λ∗
i vi)A(u)r̃i

=
∑

i

(wi,x − λ∗
i vi,x)r̃i +

∑

i

(wi − λ∗
i vi)

[
vir̃i,ur̃i − A(u)r̃i

]

+
∑

i

(wi − λ∗
i vi)

[
vi,xr̃i,v − θ′i

(
(viwi,x − wivi,x)/v2

i

)
r̃i,σ

]

+
∑

i�=j

(
wi − λ∗

i vi

)
vj r̃i,ur̃j

=
∑

i

(wi,x − λ̃iwi)r̃i −
∑

i

λ∗
i (vi,x − λ̃ivi)r̃i

+
∑

i

(wi − λ∗
i vi)

(
− λ̃i + λ∗

i − θi

)
vir̃i,v

+
∑

i

(wi − λ∗
i vi)

[
vi,xr̃i,v − θ′i

(
(viwi,x − wivi,x)/v2

i

)
r̃i,σ

]

+
∑

i�=j

(
wi − λ∗

i vi

)
vj r̃i,ur̃j

=
∑

i

(
vi,x − λ̃ivi

)[
wir̃i,v + θ′i

(
wi/vi

)2
r̃i,σ

]

+
∑

i

(
wi,x − λ̃iwi

)[
r̃i −

(
θ′iwi/vi

)
r̃i,σ

]

+
∑

i

viwi

(
λ∗

i − θi

)
r̃i,v +

∑

i�=j

wivj r̃i,ur̃j

−
∑

i

λ∗
i

{(
vi,x − λ̃ivi

)[
r̃i + vir̃i,v +

(
θ′iwi/vi

)
r̃i,σ

]

+
(
wi,x − λ̃iwi

)[
− θ′ir̃i,σ

]
+ v2

i

(
λ∗

i − θi

)
r̃i,v +

∑

j �=i

vivj r̃i,ur̃j

}
.
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Differentiating (A.1) with respect to t one obtains

uxt =
∑

i

vi,tr̃i +
∑

i

vir̃i,t(A.6)

=
∑

i

vi,tr̃i +
∑

i

vi

[
vi,tr̃i,v − θ′i

(
(wi,tvi − wivi,t)/v2

i

)
r̃iσ

]

+
∑

i,j

vi

(
wj − λ∗

jvj

)
r̃i,ur̃j

=
∑

i

vi,t

[
r̃i + vir̃i,v +

(
θ′iwi/vi

)
r̃i,σ

]
+

∑

i

wi,t

[
− θ′ir̃i,σ

]

+
∑

i,j

vi

(
wj − λ∗

jvj

)
r̃i,ur̃j ;

utt =
∑

i

(
wi,t − λ∗

i vi,t

)
r̃i +

∑

i

(
wi − λ∗

i vi

)
r̃i,t(A.7)

=
∑

i

(
wi,t − λ∗

i vi,t

)
r̃i

+
∑

i

(
wi − λ∗

i vi

)[
vi,tr̃i,v − θ′i

(
(wi,tvi − wivi,t)/v2

i

)
r̃iσ

]

+
∑

i,j

(
wi − λ∗

i vi

)(
wj − λ∗

jvj

)
r̃i,ur̃j

=
∑

i

vi,t

[
wir̃i,v + θ′i

(
wi/vi

)2
r̃i,σ

]

+
∑

i

wi,t

[
r̃i − θ′i

(
wi/vi

)
r̃i,σ

]
+

∑

i,j

wi

(
wj − λ∗

jvj

)
r̃i,ur̃j

−
∑

i

λ∗
i

{
vi,t

[
r̃i + vir̃i,v +

(
θ′iwi/vi

)
r̃i,σ

]

− wi,tθ
′
ir̃i,σ +

∑

j

vi

(
wj − λ∗

jvj

)
r̃i,ur̃j

}
.

Differentiating again uxx − A(u)ux and utx − A(u)ut with respect to x, from

(A.4) and (A.5) one finds

(A.8)

utx =
(
ux

)
xx

−
(
A(u)ux

)
x

=
∑

i

(
vi,xx − (λ̃ivi)x

)[
r̃i + vir̃i,v + θ′i(wi/vi)r̃i,σ

]

+
∑

i

(
wi,xx − (λ̃iwi)x

)[
−θ′ir̃i,σ

]
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+
∑

i

(vi,x − λ̃ivi)

[∑

j

vj r̃i,ur̃j + 2vi,xr̃i,v

+
(
− θi,x + (θ′iwi/vi)x

)
r̃i,σ +

∑

j

vjvir̃i,vur̃j

+ vivi,xr̃i,vv +
(
− viθi,x + θ′ivi,xwi/vi

)
r̃i,vσ

+
∑

j

vjθ
′
i(wi/vi)r̃i,σur̃j − θi,xθ′i(wi/vi)r̃i,σσ

]

+
∑

i

(wi,x − λ̃iwi)

[
−θ′i,xr̃i,σ −

∑

j

θ′ivj r̃i,σur̃j − vi,xθ′ir̃i,σv + θ′iθi,xr̃i,σσ

]

+
∑

i

(
v2
i (λ

∗
i − θi)

)
x
r̃i,v

+
∑

i

v2
i (λ

∗
i − θi)

[∑

j

vj r̃i,vur̃j + vi,xr̃i,vv − θi,xr̃i,vσ

]
+

∑

i�=j

(
vivj

)
x
r̃i,ur̃j

+
∑

i�=j

vivj

[∑

k

vk

(
r̃i,uu(r̃j ⊗ r̃k) + r̃i,ur̃j,ur̃k

)

+ vj,xr̃i,ur̃j,v + vi,xr̃i,uv r̃j − θj,xr̃i,ur̃j,σ − θi,xr̃i,uσ r̃j

]
;

(A.9)

(ut)xx −
(
A(u)ut

)
x

=
∑

i

(
vi,xx − (λ̃ivi)x

)[
wir̃i,v + θ′i

(
wi/vi

)2
r̃i,σ

]

+
∑

i

(
wi,xx − (λ̃iwi)x

)[
r̃i − θ′i(wi/vi)r̃i,σ

]

+
∑

i

(vi,x − λ̃ivi)

[
wi,xr̃i,v +

∑

j

wivj r̃i,vur̃j

+ wivi,x r̃i,vv +
(
− wiθi,x + θ′i(wi/vi)

2vi,x

)
r̃i,vσ

+
(
θ′i(wi/vi)

2
)
x
r̃i,σ +

∑

j

vjθ
′
i(wi/vi)

2r̃i,σur̃j

− θ′i(wi/vi)
2θi,xr̃i,σσ

]
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+
∑

i

(wi,x − λ̃iwi)

[∑

j

vj r̃j r̃i,u + vi,xr̃i,v −
(
θi,x + (θ′iwi/vi)x

)
r̃i,σ

−
∑

j

vjθ
′
i(wi/vi)r̃i,σur̃j

− vi,xθ′i(wi/vi)r̃i,σv + θi,xθ′i(wi/vi)r̃i,σσ

]

+
∑

i

(
wivi(λ

∗
i − θi)

)
x
r̃i,v +

∑

i

wivi

(
λ∗

i − θi

)

×
[∑

j

vj r̃i,vur̃j + vi,xr̃i,vv − θi,xr̃i,vσ

]
+

∑

i�=j

(wivj)xr̃i,ur̃j

+
∑

i�=j

wivj

[∑

k

vk

(
r̃i,uu(r̃j ⊗ r̃k) + r̃i,ur̃j,ur̃k

)
+ vj,xr̃i,ur̃j,v

+ vi,xr̃i,vur̃j − θj,xr̃i,ur̃j,σ − θi,xr̃i,uσ r̃j

]

−
∑

i

λ∗
i

{
(vi,x − λ̃ivi)

[
r̃i + vir̃i,v + θ′i(wi/vi)r̃i,σ

]

+
(
wi,x − λ̃iwi

)[
−θ′ir̃i,σ

]
+ v2

i

(
λ∗

i − θi

)
r̃i,v +

∑

j �=i

vivj r̃i,ur̃j

}

x

.

Substituting the expressions (A.6)–(A.9) inside (A.2) and observing that
(
ux •A(u)

)
ut−

(
ut •A(u)

)
ux =

∑

j �=i

(wi−λ∗
i vi)vj

[(
r̃j •A(u)

)
r̃i−

(
r̃i •A(u)

)
r̃j

]
,

we finally obtain an implicit system of 2n scalar equations, describing the

evolution of the components vi, wi:

(A.10)
∑

i

(
vi,t +

(
λ̃ivi

)
x
− vi,xx

)[
r̃i + vir̃i,v + θ′i(wi/vi)r̃i,σ

]

+
∑

i

(
wi,t +

(
λ̃iwi

)
x
− wi,xx

)[
−θ′ir̃i,σ

]

=
∑

i

r̃i,ur̃i

[
vi

(
vi,x − λ̃ivi

)
− vi

(
wi − λ∗

i vi

)]

+
∑

i�=j

r̃i,ur̃j

[(
vi,x − λ̃ivi

)
vj +

(
vivj

)
x
− vi

(
wj − λ∗

jvj

)]

+
∑

i

r̃i,v

[
2vi,x

(
vi,x − λ̃ivi

)
+

(
v2
i (λ

∗
i − θi)

)
x

]

+
∑

i

r̃i,σ

[
(vi,x − λ̃ivi)

(
− θi,x + (θ′iwi/vi)x

)
−

(
wi,x − λ̃iwi

)
θ′i,x

]



318 STEFANO BIANCHINI AND ALBERTO BRESSAN

+
∑

i

r̃i,vur̃i

[
v2
i

(
vi,x − λ̃ivi

)
+ v3

i (λ
∗
i − θi)

]

+
∑

i�=j

r̃i,vur̃j

[
vivj

(
vi,x − λ̃ivi

)
+ vjv

2
i (λ

∗
i − θi)

]

+
∑

i

r̃i,vv

[
vivi,x

(
vi,x − λ̃ivi

)
+ vi,xv2

i (λ
∗
i − θi)

]

+
∑

i

r̃i,vσ

[(
vi,x − λ̃ivi

)(
−viθi,x + θ′ivi,xwi/vi

)

−
(
wi,x − λ̃iwi

)
vi,xθ′i − v2

i (λ
∗
i − θi)θi,x

]

+
∑

i

r̃i,σur̃i

[(
vi,x − λ̃ivi

)
θ′iwi −

(
wi,x − λ̃iwi

)
viθ

′
i

]

+
∑

i�=j

r̃i,σur̃j

[(
vi,x − λ̃ivi

)
vjθ

′
iwi/vi −

(
wi,x − λ̃iwi

)
vjθ

′
i

]

+
∑

i

r̃i,σσ

[
−

(
vi,x − λ̃ivi

)
θi,xθ′iwi/vi +

(
wi,x − λ̃iwi

)
θ′iθi,x

]

+
∑

i�=j

vivj

[∑

k

vk

(
r̃i,uu(r̃j ⊗ r̃k) + r̃i,ur̃j,ur̃k

)

+ vj,xr̃i,ur̃j,v + vi,xr̃i,uv r̃j − θj,xr̃i,ur̃j,σ − θi,xr̃i,uσ r̃j

]

.
=

∑

i

ai(t, x);

(A.11)
∑

i

(
vi,t + (λivi)x − vi,xx

)[
wir̃i,v + θ′i(wi/vi)

2r̃i,σ

]

+
∑

i

(
wi,t + (λiwi)x − wi,xx

)[
r̃i − θ′i(wi/vi)r̃i,σ

]

−
∑

i

λ∗
i

{(
vi,t +

(
λ̃ivi

)
x
− vi,xx

)[
r̃i + vir̃i,v + θ′i(wi/vi)r̃i,σ

]

−
(
wi,t +

(
λ̃iwi

)
x
− wi,xx

)[
θ′ir̃i,σ

]}

=
∑

i

r̃i,ur̃i

[(
wi,x − λ̃iwi

)
vi − wi

(
wi − λ∗

i vi

)]

+
∑

i�=j

r̃i,ur̃j

[(
wi,x − λ̃iwi

)
vj − wi

(
wj − λ∗

jvj

)
+

(
wivj

)
x

]

+
∑

i

r̃i,v

[(
vi,x − λivi

)
wi,x +

(
wi,x − λ̃iwi

)
vi,x +

(
wivi(λ

∗
i − θi)

)
x

]



VANISHING VISCOSITY SOLUTIONS 319

+
∑

i

r̃i,σ

[(
vi,x − λ̃ivi

)(
θ′i(wi/vi)

2
)
x
− (wi,x − λ̃iwi)

(
θi,x + (θ′iwi/vi)x

)]

+
∑

i

r̃i,vur̃i

[(
vi,x − λ̃ivi

)
wivi + wiv

2
i (λ

∗
i − θi)

]

+
∑

i

r̃i,vv

[(
vi,x − λ̃ivi

)
wivi,x + wivivi,x(λ∗

i − θi)
]

+
∑

i�=j

r̃i,vur̃j

[(
vi,x − λ̃ivi

)
wivj + wivivj(λ

∗
i − θi)

]

+
∑

i

r̃i,vσ

[
(vi,x − λ̃ivi)

(
− wiθi,x + θ′i(wi/vi)

2vi,x

)

−(wi,x − λ̃iwi)θ
′
ivi,xwi/vi − wivi(λ

∗
i − θi)θi,x

]

+
∑

i

r̃i,σur̃i

[(
vi,x − λ̃ivi

)
θ′iw

2
i /vi −

(
wi,x − λ̃iwi

)
θ′iwi

]

+
∑

i�=j

r̃i,σur̃j

[
(vi,x − λ̃ivi)vjθ

′
i(wi/vi)

2 − (wi,x − λ̃iwi)vjθ
′
iwi/vi

]

+
∑

i

r̃i,σσ

[
−

(
vi,x − λ̃ivi

)
θ′i(wi/vi)

2θi,x +
(
wi,x − λ̃iwi

)
θ′θi,xwi/vi

]

+
∑

i�=j

wivj

[∑

k

vk

(
r̃i,uu(r̃j ⊗ r̃k) + r̃i,ur̃j,ur̃k

)
+ vj,xr̃i,ur̃j,v

+ vi,xr̃i,uv r̃j − θj,xr̃i,ur̃j,σ − θi,xr̃i,uσ r̃j

]

+
∑

i�=j

(wi − λ∗
i vi)vj

[(
r̃j • A(u)

)
r̃i −

(
r̃i • A(u)

)
r̃j

]

−
∑

i

λ∗
i ai(t, x)

.
=

∑

i

bi(t, x) −
∑

i

λ∗
i ai(t, x).

Recalling the expression (5.10) for the differential ∂Λ/∂(v, w), we recognize

that the equations (A.10) and (A.11) provide the explicit form of the system

(6.5). The uniform invertibility of the differential of Λ implies the estimates

φj , ψj = O(1) ·
∑

i

(
|ai| + |bi|

)
.

To prove Lemma 6.1, it thus suffices to show that all the terms in the summa-

tions defining ai, bi have the correct order of magnitude.
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First of all, one checks that all those terms which involve a product of

distinct components i �= j can be bounded as

(A.12) O(1) ·
∑

j �=k

(
|vjvk| + |vj,xvk| + |vjwk| + |vj,xwk| + |vjwk,x| + |wjwk|

)
.

In most cases, this estimate is straightforward. For the terms containing the

factor θi,x or θj,x this is proved as follows. Recalling the bounds (4.24) we have,

for example,

θj,xr̃j,σ = O(1) · vj θ′j
wj,xvj − wjvj,x

v2
j

= O(1) ·
(
|wj,x| + |vj,x|

)
= O(1) · δ3

0 ,

because of (5.24). Hence

vivjθj,xr̃i,ur̃j,σ = O(1) · δ3
0 |vivj | .

Next, we look at each one of the remaining terms on the right-hand side

of (A.10) and (A.11) and show that its size can be bounded as claimed by

Lemma 6.1. To appreciate the following computations, one should keep in

mind that:

1. By (6.18),

vi,x − (λ̃i − λ∗
i )vi − wi = O(1) · δ0

∑

j �=i

(
|vj | + |wj − vj,x|

)
.

2. By (5.5) the cutoff functions satisfy θ′i = θ′′i = 0 whenever |wi/vi| ≥ 3δ1.

3. By (4.24) we have r̃i,σ/vi , r̃i,σσ/vi , r̃i,σu/vi = O(1).

4. One can have |wi − θivi| �= 0 only when |wi| > δ1|vi|. In this case, (6.20)

yields

vi = O(1) · vi,x + O(1) · δ0

∑

j �=i

|vj | .

What follows is a list of the various terms, first those appearing in ai, then the

ones in bi.

Coefficients of r̃i,ur̃i:

vi(vi,x − λ̃ivi) − vi(wi − λ∗
i vi) = vi

[
vi,x − (λ̃i − λ∗

i )vi − wi

]
,

vi(wi,x − λ̃iwi) − wi(wi − λ∗
i vi) =

[
viwi,x − vi,xwi

]
+ wi

[
vi,x − (λ̃i − λ∗

i )vi − wi

]
.

Coefficients of r̃i,v:

2vi,x(vi,x − λ̃ivi) +
(
v2
i (λ

∗
i − θi)

)
x

= 2vi,x

[
vi,x − (λ̃i − λ∗

i )vi − θivi

]
+ θ′i

[
vi,xwi − viwi,x

]

= 2vi,x

[
vi,x − (λ̃i − λ∗

i )vi − wi

]

+2vi,x

[
wi − θivi

]
+ θ′i

[
vi,xwi − viwi,x

]
,
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wi,x(vi,x − λ̃ivi) + vi,x(wi,x − λ̃iwi) +
(
wivi(λ

∗
i − θi)

)
x

= 2wi,x

[
vi,x − (λ̃i − λ∗

i )vi − wi

]
+ 2wi,x

[
wi − θivi

]

+
(
λ∗

i − θi − λ̃i + θ′iwi/vi

)[
vi,xwi − viwi,x

]
.

Coefficients of r̃i,σ/vi:

vi

(
vi,x − λ̃ivi

)(
−θi,x + (θ′iwi/vi)x

)
− vi

(
wi,x − λ̃iwi

)
θ′i,x

= −
(
viwi,x − wivi,x

)
θ′′i

(
wi/vi

)
x

= −θ′′i

[
vi

(
wi/vi

)
x

]2
,

vi

(
vi,x − λ̃ivi

)(
θ′i(wi/vi)

2
)

x
− vi

(
wi,x − λ̃iwi

)(
θi,x + (θ′iwi/vi)x

)

= −
(
θ′′i (wi/vi) + 2θ′i

)[
vi

(
wi/vi

)
x

]2
.

Coefficients of r̃i,vur̃i:

v2
i

(
vi,x − λ̃ivi

)
+ v3

i (λ
∗
i − θi) = v2

i

[
vi,x − (λ̃i − λ∗

i )vi − wi

]

+v2
i

[
wi − θivi

]
,

viwi

(
vi,x − λ̃ivi

)
+ v2

i wi(λ
∗
i − θi) = viwi

[
vi,x − (λ̃i − λ∗

i )vi − wi

]

+viwi

[
wi − θivi

]
.

Coefficients of r̃i,vv:

vivi,x(vi,x − λ̃ivi) + vi,xv2
i (λ

∗
i − θi)

= vivi,x

[
vi,x − (λ̃i − λ∗

i )vi − wi

]
+ vivi,x

[
wi − θivi

]
,

wivi,x

(
vi,x − λ̃ivi

)
+ vi,xviwi(λ

∗
i − θi)

= wivi,x

[
vi,x −

(
λ̃i − λ∗

i

)
vi − wi

]
+ wivi,x

[
wi − θivi

]
.

Coefficients of r̃i,vσ:

(vi,x − λ̃ivi)
(
− viθi,x + θ′ivi,xwi/vi

)

−(wi,x − λ̃iwi)θ
′
ivi,x − v2

i (λ
∗
i − θi)θi,x

= vi,xθ′i
(
vi,xwi − viwi,x

)
/vi − θi,xvi

(
vi,x − (λ̃i − λ∗

i + θi)vi

)

= 2θ′i

(
vi,x

wi

vi
− wi,x

) {[
vi,x − (λ̃i − λ∗

i )vi − wi

]
+ [wi − θivi]

}

−
(
λ̃i − λ∗

i + θi

)
θ′i

[
wi,xvi − wivi,x

]
,
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(
vi,x − λ̃ivi

)(
−wiθi,x + θ′i(wi/vi)

2vi,x

)

−
(
wi,x − λ̃iwi

)
θ′ivi,xwi/vi − viwi(λ

∗
i − θi)θi,x

= 2θ′i
wi

vi

(
vi,x

wi

vi
− wi,x

) {[
vi,x − (λ̃i − λ∗

i )vi − wi

]
+ [wi − θivi]

}

−
(
λ̃i − λ∗

i + θi

)
θ′i

[
wi,xvi − wivi,x

]
wi/vi .

Coefficients of r̃i,σur̃i/vi:

(vi,x − λ̃ivi)wiviθ
′
i − (wi,x − λ̃iwi)v

2
i θ

′
i = θ′ivi

[
vi,xwi − viwi,x

]
,

(vi,x − λ̃ivi)w
2
i θ

′
i − (wi,x − λ̃iwi)wiviθ

′
i = θ′iwi

[
vi,xwi − viwi,x

]
.

Coefficients of r̃i,σσ/vi:

−(vi,x − λ̃ivi)wiθ
′
iθi,x + (wi,x − λ̃iwi)viθ

′
iθi,x = (θ′i)

2
[
vi

(
wi/vi

)
x

]2
,

−(vi,x − λ̃ivi)wi

(
wi/vi

)
θ′iθi,x +

(
wi,x − λ̃iwi

)
wiθ

′
iθi,x =−(θ′i)

2 wi

vi

[
vi

(
wi/vi

)
x

]2
.

This completes our analysis, showing that all terms in the summations that

define ai, bi have the correct order of magnitude, as claimed by Lemma 6.1.

Appendix B

We compute here the source terms φ̂i, ψ̂i in the equations (11.15) for the

components of a first order perturbation, and prove Lemma 11.4. We recall

that

(B.1)

z =
∑

i

hir̃i

(
u, vi, λ

∗
i − θ(gi/hi)

)
, Υ =

∑

i

(
gi − λ∗

i hi

)
r̃i

(
u, vi, λ

∗
i − θ(gi/hi)

)
,

θ̂i
.
= θ

(
gi

hi

)
, r̂i

.
= r̃i(u, vi, λ∗

i − θ̂i), λ̂i
.
=

〈
r̂i, A(u)r̂i

〉
.

As in (A.4)–(A.11), the computations are lengthy but straightforward: one has

to rewrite the evolution equations for z and Υ:

(B.2)






zt +
(
A(u)z

)
x
− zxx =

(
ux • A(u)

)
z −

(
z • A(u)

)
ux ,

Υt +
(
A(u)Υ

)
x
− Υxx =

[(
ux • A(u)

)
z −

(
z • A(u)

)
ux

]

x

− A(u)
[(

ux • A(u)
)
z −

(
z • A(u)

)
ux

]

+
(
ux • A(u)

)
Υ −

(
ut • A(u)

)
z ,

in terms of hi, gi.
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The fundamental relation (4.23) implies

(B.3) A(u)r̂i = λ̂ir̂i + vi

(
r̂i,ur̂i + (λ̂i − λ∗

i + θ̂i)r̂i,v

)
.

Differentiating (B.1) with respect to x and using (B.3) we obtain

(B.4)

zx − A(u)z =
∑

i

hi,xr̂i +
∑

i

hi

[
vir̂i,ur̃i − A(u)r̂i

]

+
∑

i

hi

[
vi,xr̂i,v −

(
θ̂′i(higi,x − gihi,x)/h2

i

)
r̂i,σ

]
+

∑

i�=j

hivj r̂i,ur̃j

=
∑

i

(
hi,x − λ̂ihi

)
r̂i +

∑

i

hiviri,u

(
r̃i − r̂i

)

+
∑

i

hi

[
vi,x − (λ̂i − λ∗

i + θ̂i)vi

]
r̂i,v

−
∑

i

θ̂′i

[(
gi,x − λ̂igi

)
− gi

hi

(
hi,x − λ̂hi

)]
r̂i,σ +

∑

i�=j

hivj r̂i,ur̃j

=
∑

i

(
hi,x − λ̂ihi

)[
r̂i + θ̂′i(gi/hi)r̂i,σ

]
−

∑

i

(
gi,x − λ̂igi

)
θ̂′ir̂i,σ

+
∑

i

hivir̃i,u

(
r̃i − r̂i

)

+
∑

i

hi

[
vi,x − (λ̂i − λ∗

i + θ̂i)vi

]
r̂i,v +

∑

i�=j

hivjri,ur̃j ;

(B.5)

Υx − A(u)Υ

=
∑

i

(
gi,x − λ∗

i hi,x

)
r̂i +

∑

i

(
gi − λ∗

i hi

)[
vir̂i,ur̃i − A(u)r̂i

]

+
∑

i

(
gi − λ∗

i hi

)[
vi,xr̂i,v −

(
θ̂′i(higi,x − gihi,x)/h2

i

)
r̂i,σ

]

+
∑

i�=j

(
gi − λ∗

i hi

)
vj r̂i,ur̃j

=
∑

i

(
gi,x − λ̂igi

)
r̂i −

∑

i

λ∗
i

(
hi,x − λ̂ihi

)
r̂i +

∑

i

(
gi − λ∗

i hi

)
vir̂i,u(r̃i − r̂i)

+
∑

i

(
gi − λ∗

i hi

)[
vi,x − (λ̂i − λ∗

i + θ̂i)vi

]
r̂i,v

−
∑

i

θ̂′i

(
gi

hi
− λ∗

i

)[(
gi,x − λ̂igi

)
− gi

hi

(
hi,x − λ̂ihi

)]
r̂i,σ

+
∑

i�=j

(
gi − λ∗

i hi

)
vj r̂i,ur̃j
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=
∑

i

(
hi,x − λ̂ihi

)[
θ̂′i

(
gi/hi

)2
r̂i,σ

]
+

∑

i

(
gi,x − λ̂igi

)[
r̂i − θ̂′i(gi/hi)r̂i,σ

]

+
∑

i

gi

[
vi,x − (λ̂ − λ∗

i + θ̂i)vi

]
r̂i,v

+
∑

i

givir̂i,u

(
r̃i − r̂i

)
+

∑

i�=j

givj r̂i,ur̃j

−
∑

i

λ∗
i

{(
hi,x − λ̂ihi

)[
r̂i + θ̂′i(gi/hi)r̂i,σ

]
−

(
gi,x − λ̂igi

)
θ̂′ir̂i,σ

+hi

[
vi,x − (λ̂i − λ∗

i + θ̂i)vi

]
r̂i,v + hivir̂i,u

(
r̃i − r̂i

)
+

∑

j �=i

hivj r̂i,ur̃j

}
.

Next, differentiating (B.1) with respect to t we obtain

zt =
∑

i

hi,tr̂i +
∑

i

hi

(
r̂i,uut + vi,tr̂i,v − θ̂i,tr̂i,σ

)
(B.6)

=
∑

i

hi,tr̂i +
∑

i

hi

[
vi,tr̂i,v −

(
θ̂′i(gi,thi − gihi,t)/h2

i

)
r̂i,σ

]

+
∑

i,j

hi

(
wj − λ∗

jvj

)
r̂i,ur̃j

=
∑

i

hi,t

[
r̂i + θ̂′i(gi/hi)r̂i,σ

]
−

∑

i

θ̂′igi,tr̂i,σ

+
∑

i

hivi,tr̂i,v +
∑

i,j

hi

(
wj − λ∗

jvj

)
r̂i,ur̃j ;

(B.7)

Υt =
∑

i

(
gi,t − λ∗

i hi,t

)
r̂i +

∑

i

(
gi − λ∗

i hi

)(
r̂i,uut + vi,tr̂i,v − θ̂i,tr̂i,σ

)

=
∑

i

(
gi,t − λ∗

i hi,t

)
r̂i +

∑

i

(
gi − λ∗

i hi

)[
vi,tr̂i,v −

(
θ̂′i(gi,thi − gihi,t)/h2

i

)
r̂i,σ

]

+
∑

i,j

(
gi − λ∗

i hi

)(
wj − λ∗

jvj

)
r̂i,ur̃j

=
∑

i

hi,t

[
θ̂′i(gi/hi)

2r̂i,σ

]
+

∑

i

gi,t

[
r̂i − θ̂′i(gi/hi)r̂i,σ

]

+
∑

i

givi,tr̂i,v +
∑

i,j

gi(wj − λ∗
jvj)r̂i,ur̃j

−
∑

i

λ∗
i

{
hi,t

[
r̂i + θ̂′i(gi/hi)r̂i,σ

]
− θ̂′igi,tr̂i,σ + hivi,tr̂i,v

+
∑

j

hi

(
wj − λ∗

jvj

)
r̂i,ur̃j

}
.
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Differentiating again zx−A(u)z and Υx−A(u)Υ with respect to x, from (B.4)

and (B.5) one finds

(B.8)

zxx −
(
A(u)z

)
x

=
∑

i

(
hi,xx − (λ̂ihi)x

)[
r̂i + θ̂′i(gi/hi)r̂i,σ

]
−

∑

i

(
gi,xx − (λ̂igi)x

)
θ̂′ir̂i,σ

+
∑

i

(
hi,x − λ̂ihi

)[∑

j

vj r̂i,ur̃j + vi,xr̂i,v +
(
−θ̂i,x + (θ̂′igi/hi)x

)
r̂i,σ

+θ̂′ivi,x(gi/hi)r̂i,σv +
∑

j

vj θ̂
′
i(gi/hi)r̂i,uσ r̃j − θ̂i,xθ̂′i(gi/hi)r̂i,σσ

]

+
∑

i

(
gi,x − λ̂igi

)[
−θ̂′′i (gi/hi)xr̂i,σ −

∑

j

θ̂′ivj r̂i,uσ r̃j

− vi,xθ̂′ir̂i,vσ + θ̂′iθ̂i,xr̂i,σσ

]

+
∑

i

(
hivir̂i,u(r̃i − r̂i)

)
x

+
∑

i

(
hi

(
vi,x − (λ̂i − λ∗

i + θ̂i)vi

))

x
r̂i,v

+
∑

i

hi

(
vi,x − (λ̂i − λ∗

i + θ̂i)vi

)[∑

j

vj r̂i,vur̃j + vi,xr̂i,vv − θ̂i,xr̂i,vσ

]

+
∑

i�=j

(
hivj

)
x
r̂i,ur̃j +

∑

i�=j

hivj

[∑

k

vk

(
r̂i,ur̃j,ur̃k + r̃i,uu(r̃j ⊗ r̃k)

)

+vj,xr̂i,ur̃j,v + vi,xr̂i,vur̃j − θj,xr̃i,ur̃j,σ − θ̂i,xr̂i,σur̃j

]
;

(B.9)

Υxx −
(
A(u)Υ

)
x

=
∑

i

(
hi,xx − (λ̂ihi)x

)[
θ̂′i(gi/hi)

2r̂i,σ

]

+
∑

i

(
gi,xx − (λ̂igi)x

)[
r̂i − θ̂′i(gi/hi)r̂i,σ

]

+
∑

i

(
hi,x − λ̂ihi

)[
θ̂′i(wi/vi)

2vi,xr̂i,vσ +
(
θ̂′i(gi/hi)

2
)
x
r̂i,σ

+
∑

j

vj θ̂
′
i

(
gi/hi

)2
r̂i,σur̂j − θ̂′i(gi/hi)

2θ̂i,xr̂i,σσ

]

+
∑

i

(
gi,x − λ̃igi

)[∑

j

vj r̂i,ur̃j + vi,xr̂i,v −
(
θ̂i,x + (θ̂′igi/hi)x

)
r̂i,σ

−
∑

j

vj θ̂
′
i(gi/hi)r̂i,σur̃j − vi,xθ̂′i(gi/hi)r̂i,vσ + θ̂i,xθ̂′i(gi/hi)r̂i,σσ

]
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+
∑

i

[
gi

(
vi,x − (λ̂i − λ∗

i + θ̂i)vi

)]

x
r̂i,v +

∑

i

(
givir̂i,u(r̃i − r̂i)

)

x

+
∑

i

gi

(
vi,x − (λ̂i − λ∗

i + θ̂i)vi

)[∑

j

vj r̂i,v r̃j + vi,xr̂i,vv − θ̂i,xr̂i,vσ

]

+
∑

i�=j

(givj)xr̂i,ur̃j

+
∑

i�=j

givj

[∑

k

vk

(
r̂i,ur̃j,ur̃k + r̂i,uu(r̃j ⊗ r̃k)

)
+ vj,xr̂i,ur̃j,v

+ vi,xr̂i,vur̃j − θj,xr̂i,ur̃j,σ − θ̂i,xr̂i,σur̃j

]

−
∑

i

λ∗
i

{(
hi,x − λ̂ihi

)[
r̂i + θ̂′i(gi/hi)r̂i,σ

]
−

(
gi,x − λ̂igi

)
θ̂′ir̂i,σ

+hi

(
vi,x − (λ̂i − λ∗

i + θ̂i)vi

)
r̂i,v + hivir̂i,u

(
r̃i − r̂i

)
+

∑

j �=i

vivj r̂i,ur̃j

}

x

.

Substituting the expressions (B.6)–(B.9) inside (B.2) we obtain an implicit

system of 2n scalar equations governing the evolution of the components hi, gi:

(B.10)
∑

i

(
hi,t + (λ̂ihi)x − hi,xx

)[
r̂i + θ̂′i(gi/hi)r̂i,σ

]

+
∑

i

(
gi,t +

(
λ̂igi

)
x
− gi,xx

)[
− θ̂′ir̂i,σ

]

=
∑

i

r̂i,ur̃i

[
vi(hi,x − λ̂ihi) − hi(wi − λ∗

i )
]

+
∑

i�=j

r̂i,ur̃j

[
(hi,x − λ̂ihi)vj +

(
hivj

)
x
− hi(wj − λ∗

jvj)
]

+
∑

i

r̂i,v

[
(hi,x − λ̂ihi)vi,x +

(
hi

(
vi,x − (λ̂i − λ∗

i + θ̂i)vi

))

x
− hivi,t

]

+
∑

i

r̂i,σ

[
(hi,x − λ̂ihi)

(
− θ̂i,x + (θ̂′igi/hi)x

)
− (gi,x − λ̂igi)θ̂

′
i,x

]

+
∑

i

r̂i,vur̃i

[
hivi

(
vi,x − (λ̂i − λ∗

i + θ̂i)vi

)]

+
∑

i�=j

r̂i,vur̃j

[
hivj

(
vi,x − (λ̂i − λ∗

i + θ̂i)vi

)]

+
∑

i

r̂i,vv

[
hivi,x

(
vi,x − (λ̂i − λ∗

i + θ̂i)vi

)]
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+
∑

i

r̂i,vσ

[(
hi,x − λ̂ihi

)
θ̂′ivi,xgi/hi

−
(
gi,x − λ̂igi

)
vi,xθ̂′i − hi

(
vi,x − (λ̂i − λ∗

i + θ̂i)vi

)
θ̂i,x

]

+
∑

i

r̂i,σur̃i

[(
hi,x − λ̂ihi

)
viθ̂

′
igi/hi −

(
gi,x − λ̂igi

)
viθ̂

′
i

]

+
∑

i�=j

r̂i,σur̃j

[(
hi,x − λ̂ihi

)
vj θ̂

′
igi/hi −

(
gi,x − λ̂igi

)
vj θ̂

′
i

]

+
∑

i

r̂i,σσ

[
−

(
hi,x − λ̂ihi

)
θ̂′iθ̂i,xgi/hi +

(
gi,x − λ̂igi

)
θ̂′iθ̂i,x

]

+
∑

i

(
hivir̂i,u(r̃i − r̂i)

)

x

+
∑

i�=j

hivj

[∑

k

vk

(
r̂i,ur̃j,ur̃k + r̂i,uu(r̃j ⊗ r̃k)

)

+ vj,xr̂i,ur̃j,v + vi,xr̂vur̃j − θj,xr̂i,ur̃j,σ − θ̂i,xr̂σur̃j

]

+
∑

i,j

hivj

[(
r̃j • A(u)

)
r̂i −

(
r̂i • A(u)

)
r̃j

]

.
=

∑

i

âi(t, x);

(B.11)
∑

i

(
hi,t +

(
λ̂ihi

)
x
− hi,xx

)[
θ̂′i(gi/hi)

2r̂i,σ

]

+
∑

i

(
gi,t +

(
λ̂igi

)
x
− gi,xx

)[
r̂i − θ̂′i(gi/hi)r̂i,σ

]

−
∑

i

λ∗
i

{(
hi,t + (λ̂ihi)x − hi,xx

)[
r̂i + θ̂′i(gi/hi)r̂i,σ

]

+
∑

i

(
gi,t + (λ̂igi)x − gi,xx

)[
− θ̂′ir̂i,σ

]}

=
∑

i

r̂i,ur̃i

[(
gi,x − λ̂igi

)
vi − gi

(
wi − λ∗

i vi

)]

+
∑

i�=j

r̂i,ur̃j

[
(gi,x − λ̂igi)vj − gi(wj − λ∗

jvj) + (givj)x

]

+
∑

i

r̂i,v

[(
gi

(
vi,x − (λ̂i − λ∗

i + θ̂i)vi

))

x
+

(
gi,x − λ̂igi

)
vi,x − givi,t

]
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+
∑

i

r̂i,σ

[(
hi,x − λ̂ihi

)(
θ̂′i(gi/hi)

2
)
x
− (gi,x − λ̂igi)

(
θ̂i,x + (θ̂′igi/hi)x

)]

+
∑

i

r̂i,vur̃i

[(
vi,x − (λ̂i − λ∗

i + θ̂i)vi

)
givi

]

+
∑

i

r̂i,vv

[(
vi,x − (λ̂i − λ∗

i + θ̂i)vi

)
givi,x

]

+
∑

i�=j

r̂i,vur̃j

[(
vi,x − (λ̃i − λ∗

i + θ̂i)vi

)
givj

]

+
∑

i

r̂i,vσ

[(
hi,x − λ̂ihi

)
θ̂′i(gi/hi)

2vi,x

−
(
gi,x − λ̂igi

)
θ̂′ivi,xgi/hi − gi

(
vi,x − (λ̂i − λ∗

i + θ̂i)vi

)
θ̂i,x

]

+
∑

i

r̂i,σur̃i

[(
hi,x − λ̂ihi

)
θ̂′i(gi/hi)

2vi −
(
gi,x − λ̂igi

)
θ̂′ivigi/hi

]

+
∑

i�=j

r̂i,σur̃j

[(
hi,x − λ̂ihi

)
vj θ̂

′
i(gi/hi)

2 −
(
gi,x − λ̂igi

)
vj θ̂

′
igi/hi

]

+
∑

i

r̂i,σσ

[
−

(
hi,x − λ̂ihi

)
θ̂′i(gi/hi)

2θ̂i,x +
(
gi,x − λ̂igi

)
θ̂′θ̂i,xgi/hi

]

+
∑

i

(
givir̂i,u(r̃i − r̂i)

)

x

+
∑

i�=j

givj

[∑

k

vk

(
r̂i,ur̃j,ur̃k + r̂i,uu(r̃j ⊗ r̃k)

)

+ vj,xr̂i,ur̃j,v + vi,xr̂i,vur̃j − θj,xr̂i,ur̃j,σ − θ̂i,xr̂i,σur̃j

]

+
∑

i,j

(
wihj − vigj

)(
r̃i • A(u)

)
r̂j

+
∑

i,j

[
vihj

((
r̃i • A(u)

)
r̂j −

(
r̂j • A(u)

)
r̃i

)]

x

+
∑

i�=j

(λ∗
j − λ∗

i )vihj

(
r̃i • A(u)

)
r̂j

+
∑

i,j

vihjA(u)
[(

r̃i • A(u)
)
r̂j −

(
r̂j • A(u)

)
r̃i

]

−
∑

i

λ∗
i âi(t, x)

.
=

∑

i

b̂i(t, x) −
∑

i

λ∗
i âi(t, x).
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Recalling the expression (11.11) for the differential ∂Λ̂/∂(h, g), we can

write (B.10) and (B.11) in the more compact form

∂Λ̂

∂(h, g)
·
( [

hi,t + (λ̂ihi)x − hi,xx

]
[
gi,t +

(
λ̂igi

)
x
− gi,xx

]
)

=
∑

i

(
âi

b̂i − λ∗
i âi

)
.

By the uniform invertibility of the differential of Λ̂, to prove the estimates

stated in Lemma 11.4, it suffices to show that, for every i = 1, . . . , n, the four

quantities

âi , b̂i ,
(
(λ̃i − λ̂i)hi

)
x
,

(
(λ̃i − λ̂i)gi

)
x
,

can all be bounded according to the right-hand side of (11.16).

We start by looking at all the terms in the expressions (B.10) and (B.11)

for âi and b̂i. First of all, one checks that all those terms which involve a

product of distinct components i �= j can be bounded as

(B.12) O(1) ·
∑

j �=k

(
|hjhk| + |hjvk| + |hj,xvk| + |hjvk,x|

+ |hjwk| + |gjvk| + |gx,jvk| + |gjvk,x| + |gjwk|
)
.

For convenience, quantities whose sizes are bounded as in (B.12) will be called

“transversal terms”. More generally, quantities whose sizes are bounded ac-

cording to the right-hand side of (11.16) will be called “admissible terms”.

We denote by A the family of all admissible terms. We now exhibit various

additional terms which are admissible.

1. By (6.18),

(B.13)
(
|hi| + |gi| + |hi,x| + |gi,x|

)∣∣∣vi,x − (λ̃i − λ∗
i )vi − wi

∣∣∣

= O(1) · δ0

∑

j �=i

(
|hivj | + |givj | + |hi,xvj | + |gi,xvj |

)
∈ A .

2. Two other other admissible terms are

hi[wi,xvi − wivi,x] = [hiwi,x − wihi,x]vi + wi[hi,xvi − hivi,x] ∈ A ,(B.14)

gi[wi,xvi − wivi,x] = [giwi,x − wigi,x]vi + wi[gi,xvi − givi,x] ∈ A .

3. We now consider terms that involve the difference between the speeds:

θ̂i − θi. We claim that the following four quantities are admissible:

(B.15) hivi(θ̂i − θi), givi(θ̂i − θi), hi,xvi(θ̂i − θi), gi,xvi(θ̂i − θi) ∈ A .

Indeed, from the definitions and the bounds (4.24) it follows that

(B.16) |λ̂i − λ̃i| = O(1) · |r̂i − r̃i| = O(1) · vi |θ̂i − θi| = O(1) · δ0 |θ̂i − θi|.
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Since |θ′| ≤ 1,

|θ̂i − θi| ≤
∣∣(gi/hi) − (wi/vi)

∣∣.

Using (6.18) and (11.12) we now obtain

|hivi|
∣∣θ̂i − θi

∣∣≤ |givi − wihi|(B.16)

=

∣∣∣∣
(
hi,x + (λ̂i − λ∗

i )hi + O(1) · δ0

∑

j �=i

(
|hj | + |vj |

))
vi

−
(
vi,x + (λ̃i − λ∗

i )vi + O(1) · δ0

∑

j �=i

|vj |
)
hi

∣∣∣∣

=

∣∣∣∣(hi,xvi − vi,xhi) + (λ̂i − λ̃i)vihi

+ O(1) · δ0

∑

j �=i

(
|vjvi| + |hjvi|

)∣∣∣∣

≤
∣∣hi,xvi − vi,xhi

∣∣ + O(1) · δ0

∣∣θ̂i − θi

∣∣|hivi|
+O(1) · δ0

∑

j �=k

(
|vjvk| + |hjvk|

)
.

Hence

(B.17) |givi − wihi| ≤ 2
∣∣hi,xvi − vi,xhi

∣∣ + O(1) · δ0

∑

j �=k

(
|vjvk| + |hjvk|

)
∈ A ,

showing that the quantity hivi(θ̂i − θi) is admissible.

Observing that θ̂i − θi �= 0 only if either |gi/hi| ≤ 6δ1 and |wi/vi| ≤ 3δ1,

or else |gi/hi| ≥ 6δ1 and |wi/vi| ≤ 3δ1, we can write
∣∣∣givi(θ̂i − θi)

∣∣∣≤ |gi/hi|
∣∣hivi(θ̂i − θi)

∣∣ · χ{
|gi/hi|≤6δ1

}

+2δ1|givi| · χ{
|gi/hi|≥6δ1, |wi/vi|≤3δ1

}

≤ 6δ1|gi/hi|
∣∣hivi(θ̂i − θi)

∣∣ + 4δ1

∣∣givi − wihi

∣∣.

Hence givi(θ̂i − θi) ∈ A. In turn, using (11.12) we obtain

hi,xvi(θ̂i−θi) = givi

(
θ̂i−θi

)
+(λ̂i−λ∗

i

)
hivi(θ̂i−θi)+O(1)·δ0

∑

j �=i

(
|vivj |+|vihj |

)
,

showing that the term hi,xvi(θ̂i − θi) is also admissible. Finally, using (6.18)

one can write

gi,xvi(θ̂i − θi) = (θ̂i − θi)
[
gi,xvi − vi,xgi

]
+ givi,x(θ̂i − θi)

= (θ̂i − θi)
[
gi,xvi − vi,xgi

]
+ giwi(θ̂i − θi)

+(λ̃i − λ∗
i )givi(θ̂i − θi) + O(1) · δ0

∑

j �=i

|vivj | .
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To estimate the term giwi(θ̂i − θi), we observe that θ̂i − θi = 0 if |wi/vi| and

|gi/hi| are both ≥ 3δ1. Hence, using again (6.18), we can write
∣∣giwi

(
θ̂i − θi

)∣∣ = 3δ1

∣∣givi

(
θ̂i − θi

)∣∣ · χ{
|wi/vi|<3δ1

}

+3δ1

∣∣hiwi(θ̂i − θi

)
| · χ{

|gi/hi|<3δ1

}

= 3δ1|givi|
∣∣θ̂i − θi

∣∣

+
∣∣∣hi

(
vi,x − (λ̃i − λ∗

i )vi

)∣∣∣|θ̂i − θi| + O(1) ·
∑

j �=i

|hivj | .

By the previous estimates, this shows that gi,xvi(θ̂i − θi) ∈ A, completing the

proof of (B.15). By (B.16), the following terms are also admissible:

(B.18) hi(λ̃i − λ̂i), gi(λ̃i − λ̂i), hi,x(λ̃i − λ̂i), gi,x(λ̃i − λ̂i) ∈ A.

4. Next, we claim that

(B.19) hi(r̃i − r̂i)x , gi(r̃i − r̂i)x , hi(λ̃i − λ̂i)x , gi(λ̃i − λ̂i)x ∈ A .

Indeed, one can write

hi(r̃i − r̂i)x = hivi(θ̂i − θi)

{∑

j

vj
(r̃i,u − r̂i,u)r̃j

vi(θ̂i − θi)
+ vi,x

r̃i,v − r̂i,v

vi(θ̂i − θi)

}

+θ̂′i(gi/hi)
[
vi,xhi − hi,xvi

]
(r̂i,σ/vi) + θ̂′i

[
vigi,x − givi,x

]
(r̂i,σ/vi)

+(wi/vi)θ
′
i

[
vi,xhi − vihi,x

]
(r̃i,σ/vi) + θ′i

[
hi,xwi − hiwi,x

]
(r̃i,σ/vi);

gi(r̃i − r̂i)x = givi(θ̂i − θi)

{∑

j

vj
(r̃i,u − r̂i,u)r̃j

vi(θ̂i − θi)
+ vi,x

r̃i,v − r̂i,v

vi(θ̂i − θi)

}

+θ̂′i(gi/hi)
2
[
vi,xhi − hi,xvi

]
(r̂i,σ/vi)

+θ̂′i(gi/hi)
[
vigi,x − givi,x

]
(r̂i,σ/vi)

+(wi/vi)θ
′
i

[
vi,xgi − vigi,x

]
(r̃i,σ/vi) + θ′i

[
gi,xwi − giwi,x

]
(r̃i,σ/vi).

By (4.24), the above expressions within braces are uniformly bounded. Hence

the first two quantities in (B.19) are admissible. To prove the admissibility of

the last two terms it suffices to repeat the above computation, with r̃i and r̂i

replaced by by λ̃i and λ̂i.

In a similar way and as in Appendix A, we are now ready to check one by

one all the (nontranversal) terms in the expressions of âi, b̂i in (B.10)–(B.11),

showing that all of them are admissible.

Coefficients of r̂i,ur̃i:

vi(hi,x − λ̂ihi) − hi(wi − λ∗
i vi)

=
[
vihi,x − hivi,x

]
+

[
vihi(λ̃i − λ̂i)

]
+

[
hi

(
vi,x − (λ̃i − λ∗

i )vi − wi

)]
;
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vi(gi,x − λ̂igi) − gi(wi − λ∗
i vi)

=
[
gi,xvi − vi,xgi

]
+

[
vigi(λ̃i − λ̂i)

]
+

[
gi

(
vi,x − (λ̃i − λ∗

i )vi − wi

)]
.

Coefficients of r̂i,v:

vi,x(hi,x − λ̂ihi) +
(
hi

(
vi,x − (λ̂i − λ∗

i + θ̂i)vi

))

x
− hivi,t

= 2
[
hi,x

(
vi,x − (λ̃i − λ∗

i )vi − wi

)]
+ 2

[
hi,x(wi − θivi)

]

+
[
hivi,x − hi,xvi

](
λ∗

i − θ̂i − λ̂i + θ̂′igi/hi

)
+ θ̂′i

[
vigi,x − vi,xgi

]

+2
[
hi,xvi(λ̂i + θ̂i − λ̃i − θi)

]
+

[
hi

(
(λ̃i − λ̂i)vi

)
x

]
− hiφi ;

(
gi

(
vi,x − (λ̂i − λ∗

i + θ̂i)vi

))

x
+ vi,x(gi,x − λ̂igi) − givi,t

= 2
[
gi,x

(
vi,x −

(
λ̃i − λ∗

i

)
vi − wi

)]
+ 2

[
gi,x

(
wi − θivi

)]

+
(
λ∗

i − θ̂i − λ̂i + θ̂′igi/hi

)[
vi,xgi − vigi,x

]
+ θ̂′i(gi/hi)

2
[
vihi,x − vi,xhi

]

+2
[
gi,xvi(λ̃i + θi − λ̂i − θ̂i)

]
+

[
gi

(
(λ̃i − λ̂i)vi

)
x

]
− giφi .

Coefficients of r̂i,σ/vi:

vi(hi,x − λ̂ihi)
(
−θ̂i,x + (θ̂′igi/hi)x

)
− vi(gi,x − λ̂igi)θ̂

′
i,x = −vi

[
θ̂′′i hi

(
gi

hi

)2

x

]
;

vi

(
hi,x − λ̂ihi

)(
θ̂′i

(
gi/hi

)2
)

x
+ vi

(
gi,x − λ̂igi

)(
θ̂′i,x −

(
θ̂′igi/hi

)
x

)

= −vi

[(
θ̂′′i

gi

hi
+ 2θ̂′i

)
hi

(
gi

hi

)2

x

]
.

Coefficients of r̂i,vur̃i:

vihi

(
vi,x − (λ̂i − λ∗

i + θ̂i)vi

)
=

[
vihi

(
vi,x − (λ̃i − λ∗

i )vi − wi

)]
+

[
vihi

(
wi − θivi

)]

+
[
v2
i hi(λ̃i + θi − λ̂i − θ̂i)

]
;

vigi

(
vi,x − (λ̂i − λ∗

i + θ̂i)vi

)
=

[
vigi

(
vi,x − (λ̃i − λ∗

i )vi − wi

)]
+

[
vigi(wi − θivi)

]

+
[
v2
i gi(λ̃i + θi − λ̂i − θ̂i)

]
.
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Coefficients of r̂i,vv:

hivi,x

(
vi,x − (λ̂i − λ∗

i + θ̂i)vi

)

=
[
hivi,x

(
vi,x − (λ̃i − λ∗

i + θi)vi

)]
+

[
hivivi,x(λ̃i + θi − λ̂i − θ̂i)

]

=
[
vihi,x

(
vi,x − (λ̃i − λ∗

i )vi − wi

)]
+

[
hivivi,x(λ̃i + θi − λ̂i − θ̂i)

]

+vi

[
hi,x(wi − θivi)

]
+

(
vi,x + (λ̃i − λ∗

i )vi − θivi

)[
hivi,x − vihi,x

]
;

givi,x

(
vi,x − (λ̂i − λ∗

i )vi + θ̂ivi

)

= vi

[
gi,x

(
vi,x − (λ̃i − λ∗

i )vi − wi

)]
+

[
givivi,x(λ̃i + θi − λ̂i − θ̂i)

]

+vi

[
gi,x(wi − θivi)

]
+

(
vi,x − (λ̃i − λ∗

i )vi − θivi

)[
givi,x − vigx

]
.

Coefficients of r̂i,vσ:
(
hi,x − λ̂ihi

)
θ̂′i(gi/hi)vi,x − (gi,x − λ̂igi)θ̂

′
ivi,x

−hi

(
vi,x − (λ̂i − λ∗

i + θ̂i)vi

)
θ̂i,x

= vi,xθ̂′i(hi,xgi − higi,x)/hi − θ̂i,xhi

(
vi,x − (λ̂i − λ∗

i + θ̂i)vi

)

= 2θ̂′i
(
hi,x(gi/hi) − gi,x

)[(
vi,x − (λ̃i − λ∗

i )vi − wi

)
+ (wi − θivi)

]

+
(
2(λ̃i − λ∗

i + θi) − (λ̂i − λ∗
i + θ̂i)

)

·
{

θ̂′i
[
vi,xgi − vigi,x

]
− θ̂′i(gi/hi)

[
vi,xhi − vihi,x

]}
;

(
hi,x − λ̂ihi

)
θ̂′i(gi/hi)

2vi,x

−
(
gi,x − λ̂igi

)
θ̂′ivi,xgi/hi − gi

(
vi,x − (λ̂i − λ∗

i + θ̂i)vi

)
θ̂i,x

= 2θ′i
gi

hi

(
hi,x

gi

hi
− gi,x

) [(
vi,x − (λ̃i − λ∗

i )vi − wi

)
+ (wi − θvi)

]

+
(
2(λ̃i − λ∗

i + θi) − (λ̂i − λ∗
i + θ̂i)

)

·
{

θ̂′i(gi/hi)
[
vi,xgi − vigi,x

]
− θ̂′i(gi/hi)

2
[
vi,xhi − vihi,x

]}
.

Coefficients of r̂i,σur̃i/vi:

(hi,x − λ̂hi)θ̂
′
iv

2
i gi/hi − (gi,x − λ̂igi)v

2
i θ̂

′
i

= θ̂′ivi

[
vi,xgi − vigi,x

]
+ θ̂′ivi(gi/hi)

[
vihi,x − hivi,x

]
;

(hi,x − λ̂hi)θ̂
′
iv

2
i (gi/hi)

2 − (gi,x − λ̂igi)θ̂
′
iv

2
i (gi/hi)

= θ̂′ivi(gi/hi)
{[

vi,xgi − vigi,x

]
+ (gi/hi)

[
vihi,x − hivi,x

]}
.
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Coefficients of r̂i,σσ/vi:

−
(
hi,x − λ̂ihi

)
vi(gi/hi)θ̂

′
iθ̂i,x +

(
gi,x − λ̂igi

)
viθ̂

′
iθ̂i,x = (θ̂′i)

2vihi

[
(gi/hi)x

]2
;

−
(
hi,x−λ̂ihi

)
vi(gi/hi)

2θ̂′iθ̂i,x+
(
gi,x−λ̂igi

)
θ̂′iθ̂i,xvi(gi/hi) = (θ̂′i)

2vigi

[
(gi/hi)x

]2
.

There are a few remaining terms in (B.10) and (B.11) which we now

examine. Recalling (B.14) we have

(
hivir̂i,u(r̃i − r̂i)

)

x
=O(1) · hi,xv2

i (θi − θ̂i) + O(1) · hivivi,x(θi − θ̂i)

+O(1) · hiv
2
i (θi − θ̂i) + O(1) · hivi(r̃i − r̂i)x ;

(
givir̂i,u(r̃i − r̂i)

)

x
=O(1) · gi,xv2

i (θi − θ̂i) + O(1) · givivi,x(θi − θ̂i)

+O(1) · giv
2
i (θi − θ̂i) + O(1) · givi(r̃i − r̂i)x ;

hivi

[(
r̃i • A(u)

)
r̂i −

(
r̂i • A(u)

)
r̃i

]
=O(1) · hivi(r̃i − r̂i) ,

hiviA(u)
[(

r̃i • A(u)
)
r̂i −

(
r̂i • A(u)

)
r̃i

]
=O(1) · hivi(r̃i − r̂i) .

(wihi − vigi)
(
r̃i • A(u)

)
r̂i =O(1) · |wihi − givi| ,

[
vihi

((
r̃i • A(u)

)
r̂i −

(
r̂i • A(u)

)
r̃i

)]

x

= O(1) ·
(
|vi,xhi| + |vihi,x|

)
|r̃i − r̂i| + O(1) · vihi(r̃i − r̂i)x .

These terms are all admissible because of (B.15)–(B.19).

We have thus completed the analysis of all terms in (B.10) and (B.11),

showing that the quantities âi, b̂i are admissible. The admissibility of the terms(
(λ̃i − λ̂i)hi

)
x

and
(
(λ̃i − λ̂i)gi

)
x

follows immediately from (B.18) and (B.19).

This completes the proof of Lemma 11.4.

Appendix C

The aim of this section is to derive energy estimates for the components

hi, gi and prove the bounds (11.33), (11.34). We write the evolution equations

(11.15) for the components hi, gi in the form

(C.1)

{
hi,t + (λ̃ihi)x − hi,xx = φ̂i ,

gi,t + (λ̃igi)x − gi,xx = ψ̂i .

For convenience, we define η̂i
.
= η(gi/hi). Multiplying the first equation
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in (C.1) by hiη̂i and integrating by parts, we obtain

∫
η̂ihiφ̂i dx =

∫ {
η̂ihihi,t + η̂ihi(λ̃ihi)x − η̂ihihi,xx

}
dx

=

∫ {
η̂i(h

2
i /2)t − η̂iλ̃ihihi,x − η̂i,xλ̃ih

2
i + η̂ih

2
i,x + η̂i,xhi,xhi

}
dx

=

∫ {(
η̂ih

2
i /2

)
t
+ (λ̃iη̂i)x(h2

i /2)

−
(
η̂i,t + 2λ̃iη̂i,x − η̂i,xx

)
(h2

i /2) + η̂ih
2
i,x − 2η̂i,xhihi,x

}
dx .

Therefore

∫
η̂ih

2
i,x dx =− d

dt

[∫
η̂ih

2
i /2 dx

]
+

∫ (
η̂i,t + λ̃iη̂i,x − η̂i,xx

)
(h2

i /2) dx(C.2)

−
∫

λ̃i,xη̂i(h
2
i /2) dx +

∫
η̂ihiφ̂i dx + 2

∫
η̂i,xhihi,x dx .

As in (9.14), a direct computation yields

(C.3) η̂i,t + λ̃iη̂i,x − η̂i,xx = η̂′i

(
ψ̂i

hi
− gi

hi

φ̂i

hi

)
+ 2η̂′i

hi,x

hi

(
gi

hi

)

x

− η̂′′i

(
gi

hi

)2

x

.

Since λ̃i,x = (λ̃i − λ∗
i )x, integrating by parts and using the second estimate in

(11.13) one obtains

(C.4)∣∣∣∣
∫

λ̃i,xη̂i(h
2
i /2) dx

∣∣∣∣ =

∣∣∣∣
∫

(λ̃i − λ∗
i )

(
η̂i,xh2

i /2 + η̂ihihi,x

)
dx

∣∣∣∣

≤‖λ̃i − λ∗
i ‖L∞ ·

{
1

2

∫ ∣∣η̂′i
∣∣ |gi,xhi − gihi,x| dx

+
5

2δ1

∫
η̂ih

2
i,x dx + O(1) · δ0

∑

j �=i

∫ (
|hivj | + |hihj |

)
dx

}

≤
∫

|gi,xhi − hi,xgi| dx +
1

2

∫
η̂ih

2
i,x dx

+δ0

∑

j �=i

∫ (
|hivj | + |hihj |

)
dx ,

because

|λ̃i − λ∗
i | = O(1) · δ0 ≪ δ1 ≤ 1 .

Using (C.3) and (C.4) in (C.2), we now obtain
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(C.5)
1

2

∫
η̂i h

2
i,x dx≤− d

dt

[∫
η̂ih

2
i

2
dx

]

+
1

2

∫ ∣∣η̂′i
∣∣(|hiψ̂i| + |giφ̂i|

)
dx +

∫ ∣∣∣∣η̂
′
ihihi,x

(
gi

hi

)

x

∣∣∣∣ dx

+
1

2

∫ ∣∣∣∣∣η̂
′′
i h2

i

(
gi

hi

)2

x

∣∣∣∣∣ dx +

∫ ∣∣gi,xhi − gihi,x

∣∣ dx

+δ0

∑

j �=i

∫ (
|hivj | + |hihj |

)
dx

+

∫
|hiφ̂i| dx + 2

∫ ∣∣η̂i,xhihi,x

∣∣ dx .

Recalling the definition of η̂i, on regions where η̂′i �= 0 one has |gi/hi| ≤ 4δ1/5,

hence the bounds (11.14) hold. In turn, they imply

∣∣η̂i,xhihi,x

∣∣ =

∣∣∣∣η̂
′
ihihi,x

(
gi

hi

)

x

∣∣∣∣(C.6)

≤ 5

2δ1

∣∣∣∣η̂
′
ih

2
i

(
gi

hi

)

x

∣∣∣∣ + O(1) · δ0

∑

j �=i

∣∣∣∣η̂
′
ihi

(
gi

hi

)

x

∣∣∣∣
(
|vj | + |hj |

)

=O(1) · |gi,xhi − gihi,x|
+O(1) · δ0

∑

j �=i

(
|vjgi,x| + |vjhi,x| + |hjgi,x| + |hjhi,x|

)
.

Using (C.6) and then the bounds (11.18), (11.26), (11.28), (11.30) and (11.31),

from (C.5) we conclude
∫ T

t̂

∫
η̂i h

2
i,x dxdt(C.7)

≤
∫

η̂ih
2
i (t̂, x) dx + O(1) ·

∫ T

t̂

∫ (
|hiψ̂i| + |giφ̂i|

)
dxdt

+O(1) ·
∫ T

t̂

∫
|gi,xhi − gihi,x| dxdt

+O(1) ·
∫ T

t̂

∫

gi/hi|<δ1

∣∣hi(gi/hi)x

∣∣2 dxdt

+O(1) · δ0

∑

j �=i

∫ T

t̂

∫ (
|vjgi,x| + |vjhi,x| + |hjgi,x| + |hjhi,x|

)
dxdt

+δ0

∑

j �=i

∫ T

t̂

∫ (
|hivj | + |hihj |

)
dxdt + 2

∫ T

t̂

∫
|hiφ̂i| dxdt

=O(1) · δ2
0 ,

proving the estimate (11.33)
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We now perform a similar computation for g2
i,x. Define η̌i

.
= η̄(hi/gi),

where η̄(s) = η
(
|s| − δ1/5

)
. Multiplying the second equation in (C.1) by η̌igi

and integrating by parts, one obtains

∫
η̌igiψ̂i dx =

∫ {(
η̌ig

2
i /2

)
t
+ (λ̃iη̌i)x(g2

i /2)

−
(
η̌i,t + 2λ̃iη̌i,x − η̌i,xx

)
(g2

i /2) + η̌ig
2
i,x − 2η̌i,xgigi,x

}
dx .

Therefore, the identity (C.2) still holds, with hi, φ̂i, η̂i replaced by gi, ψ̂i, η̌i,

respectively:

∫
η̌ig

2
i,x dx =− d

dt

[∫
η̌ig

2
i /2 dx

]
+

∫ (
η̌i,t + λ̃iη̌i,x − η̌i,xx

)
(g2

i /2) dx(C.8)

−
∫

λ̃i,xη̌i(g
2
i /2) dx +

∫
η̌igiψ̂i dx + 2

∫
η̌i,xgigi,x dx .

The equality (C.3) can again be used, with η̂i replaced by η̌i. To obtain a

suitable replacement for (C.4) we observe that, if η̌i �= 0, then (11.13) implies

|gigi,x| ≤ 2|hi,xgi,x| + O(1) · δ0

∑

j �=i

(
|vjgi,x| + |hjgi,x|

)

and hence

|gigi,x| ≤ h2
i,x + g2

i,x + O(1) · δ0

∑

j �=i

(
|vjgi| + |hjgi|

)
.

Integrating by parts we thus obtain

(C.9)∣∣∣∣
∫

λ̃i,xη̌i(g
2
i /2) dx

∣∣∣∣ =

∣∣∣∣
∫

(λ̃i − λ∗
i )

(
η̌i,xg2

i /2 + η̌igigi,x

)
dx

∣∣∣∣

≤ ‖λ̃i − λ∗
i ‖L∞ ·

{ ∫ ∣∣η̌′i
∣∣ |gi,xhi − gihi,x|

∣∣∣∣
g2
i

h2
i

∣∣∣∣ dx +

∫
η̌ih

2
i,x dx

+

∫
η̌ig

2
i,x dx + O(1) · δ0

∑

j �=i

∫ (
|vjgi| + |hjgi|

)
dx

}

≤
∫

|gi,xhi − hi,xgi| dx +
1

2

∫
η̌ih

2
i,x dx

+
1

2

∫
η̌ig

2
i,x dx + δ0

∑

j �=i

∫ (
|vjgi| + |hjgi|

)
dx .

Using (C.3) and (C.9) in (C.8) and observing that |g2
i /h2

i | ≤ δ2
1 on the region

where η̌′i �= 0, we now obtain an estimate similar to (C.5):
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1

2

∫
η̌i g

2
i,x dx≤− d

dt

[∫
η̌ig

2
i

2
dx

]
+

δ2
1

2

∫
|η̌′i|

(
|hiψ̂i| + |giφ̂i|

)
dx(C.10)

+δ2
1

∫ ∣∣∣∣η̌
′
ihihi,x

(
gi

hi

)

x

∣∣∣∣ dx +
δ2
1

2

∫ ∣∣∣∣∣η̌
′′
i h2

i

(
gi

hi

)2

x

∣∣∣∣∣ dx

+

∫
|gi,xhi − gihi,x| dx

+
1

2

∫
η̌ih

2
i,x dx + δ0

∑

j �=i

∫ (
|vjgi| + |hjgi|

)
dx

+

∫
|giψ̂i| dx + 2

∫ ∣∣η̌i,xgigi,x

∣∣ dx .

We now observe that η̌′i �= 0 only when 4δ1/5 < |gi/hi| < δ1. In this case one

has η̂i = 1 and moreover, recalling our choice δ1 < 1/3,
∣∣∣∣hi

(
gi

hi

)

x

∣∣∣∣
2

≥ g2
i,x − 2

∣∣∣∣
gi

hi

∣∣∣∣ |gi,xhi,x| −
∣∣∣∣
gi

hi

∣∣∣∣
2

h2
i,x ≥ 1

2
g2
i,x − 1

2
h2

i,x .

Hence

(C.11) (η̂i−η̌i)g
2
i,x+

∣∣η̌i,xgigi,x

∣∣ = O(1)·
∣∣hi(gi/hi)x

∣∣2·χ
{|hi/gi|<δ1}

+O(1)·η̂ih
2
i,x .

Using (C.6) and then the bounds (C.7), (11.18), (11.26), (11.28), (11.30),

(11.31) and (C.11), from (C.10) we conclude

(C.12)
∫ T

t̂

∫
η̂i g

2
i,x dxdt

≤
∫

η̂ig
2
i (t̂, x) dx + O(1) ·

∫ T

t̂

∫ (
|hiψ̂i| + |giφ̂i|

)
dxdt

+O(1) ·
∫ T

t̂

∫
|gi,xhi − gihi,x| dxdt

+O(1) ·
∫ T

t̂

∫

|gi/hi|<δ1

∣∣hi(gi/hi)x

∣∣2 dxdt

+O(1) · δ0

∑

j �=i

∫ T

t̂

∫ (
|vjgi,x| + |vjhi,x| + |hjgi,x| + |hjhi,x|

)
dxdt

+O(1) ·
∫ T

t̂

∫
η̂i h

2
i,x dxdt + δ0

∑

j �=i

∫ (
|vjgi| + |hjgi|

)
dx

+2

∫ T

t̂

∫
|hiφ̂i| dxdt

= O(1) · δ2
0 ,

proving the estimate (11.34).
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Appendix D

We derive here the two estimates (12.9) and (12.10), used in the proof of

Lemma 12.1.

‖A‖L∞

∫ t

0

∫ ∣∣Gx(t − s, x − y)
∣∣E(s, y)dyds

= ‖A‖L∞

∫ t

0

∫ |x − y|
4(t − s)

√
π(t − s)

B(s)

· exp

{
−(x − y)2

4(t − s)
+ 4‖DA‖L∞

∫ s

0

∥∥ux(σ)
∥∥
L∞

dσ + s − y

}
dyds

≤ ‖A‖L∞ exp

{
4‖DA‖L∞

∫ t

0

∥∥ux(σ)
∥∥
L∞

dσ + t − x

}

·
∫ t

0

B(s)

4(t − s)
√

π(t − s)

(∫
|x − y| exp

{
−(y + 2(t − s) − x)2

4(t − s)

}
dy

)
ds

= exp

{
4‖DA‖L∞

∫ t

0

∥∥ux(σ)
∥∥
L∞

dσ + t − x

}

·
∫ t

0

‖A‖L∞B(s)√
π(t − s)

(∫ ∣∣ζ −
√

t − s
∣∣e−ζ2

dζ

)
ds

≤ exp

{
4‖DA‖L∞

∫ t

0

∥∥ux(σ)
∥∥
L∞

dσ + t − x

}

·
∫ t

0
‖A‖L∞

(
1√

t − s
+

√
π

)
B(s) ds

≤ exp

{
4‖DA‖L∞

∫ t

0

∥∥ux(σ)
∥∥
L∞

dσ + t − x

} (
B(t)

2
− 1

2

)

=
1

2
E(t, x) − 1

2
exp

{
4‖DA‖L∞

∫ t

0

∥∥ux(σ)
∥∥
L∞

dσ + t − x

}

≤ 1

2
E(t, x) − 1

2
et−x;

2‖DA‖L∞

∫ t

0

∥∥ux(s)
∥∥
L∞

(∫
G(t − s, x − y)E(s, y)dy

)
ds

= 2‖DA‖L∞

∫ t

0
B(s) · exp

{
4‖DA‖L∞

∫ s

0

∥∥ux(σ)
∥∥
L∞

dσ + s

}

·
∥∥ux(s)

∥∥
L∞

2
√

π(t − s)

(∫
exp

{
−(x − y)2

4(t − s)
− y

}
dy

)
ds

≤ B(t)et−x

∫ t

0
2‖DA‖L∞

∥∥ux(s)
∥∥
L∞

· exp

{
4‖DA‖L∞

∫ s

0

∥∥ux(σ)
∥∥
L∞

dσ

}
ds
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= B(t)et−x

[
1

2
exp

{
4‖DA‖L∞

∫ t

0

∥∥ux(σ)
∥∥
L∞

dσ

}
− 1

2

]

≤ 1

2
E(t, x) − 1

2
et−x.
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