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Vanishing viscosity solutions
of nonlinear hyperbolic systems

By STEFANO BIANCHINI and ALBERTO BRESSAN

(Dedicated to Prof. Constantine Dafermos on the occasion of his 60" birthday)

Abstract

We consider the Cauchy problem for a strictly hyperbolic, n x n system
in one-space dimension: u; + A(u)u, = 0, assuming that the initial data have
small total variation.

We show that the solutions of the viscous approximations u; + A(u)u, =
€Uy, are defined globally in time and satisfy uniform BV estimates, indepen-
dent of e. Moreover, they depend continuously on the initial data in the L'
distance, with a Lipschitz constant independent of ¢,e. Letting ¢ — 0, these
viscous solutions converge to a unique limit, depending Lipschitz continuously
on the initial data. In the conservative case where A = Df is the Jacobian
of some flux function f : R™ — R"”, the vanishing viscosity limits are pre-
cisely the unique entropy weak solutions to the system of conservation laws
ug + f(u)y = 0.

1. Introduction

The Cauchy problem for a system of conservation laws in one space di-
mension takes the form

(1'1) Ut‘f‘f(u)xzoa
(1.2) u(0, ) =u(x).
Here u = (uy,...,uy,) is the vector of conserved quantities, while the compo-

nents of f = (fi,...,fn) are the flures. We assume that the flux function
f :R"™ — R™ is smooth and that the system is strictly hyperbolic; i.e., at each
point u the Jacobian matrix A(u) = D f(u) has n real, distinct eigenvalues

(1.3) A(u) < - < Ap(u).
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One can then select bases of right and left eigenvectors 7;(u), l;(u), normalized
so that

. 1 if ¢ =7,

Several fundamental laws of physics take the form of a conservation equa-
tion. For the relevance of hyperbolic conservation laws in continuum physics
we refer to the recent book of Dafermos [D].

A distinguished feature of nonlinear hyperbolic systems is the possible loss
of regularity. Even with smooth initial data, it is well known that the solution
can develop shocks within finite time. Therefore, global solutions can only
be constructed within a space of discontinuous functions. The equation (1.1)
must then be interpreted in a distributional sense. A vector-valued function
u = u(t,x) is a weak solution of (1.1) if

(1.5) // [y + f(u) pz] dzdt =0

for every test function ¢ € C!, continuously differentiable with compact sup-
port. When discontinuities are present, weak solutions may not be unique. To
single out a unique “good” solution of the Cauchy problem, additional entropy
conditions must be imposed along shocks [Lx], [L1]. These are often motivated
by physical considerations [D].

Toward a rigorous mathematical analysis of solutions, the lack of regu-
larity has always been a considerable source of difficulties. For discontinuous
solutions, most of the standard tools of differential calculus do not apply. More-
over, for general n x n systems, the powerful techniques of functional analysis
cannot be used. In particular, solutions cannot be obtained as fixed points of a
nonlinear transformation, or in variational form as critical points of a suitable
functional. Dealing with vector valued functions, comparison arguments based
on upper and lower solutions do not apply either. Up to now, the theory of
conservation laws has thus progressed largely by developing ad hoc methods.
In particular, a basic building block is the so-called Riemann problem, where
initial data are piecewise constant with a single jump at the origin:

u- ifx <0,
u(O,:c)—{u+ if x>0.

Weak solutions to the Cauchy problem (1.1) and (1.2) were constructed
in the celebrated paper of Glimm [G]. This global existence result is valid for
small BV initial data and under the additional assumption

(H) For each i € {1,...,n}, the i*® characteristic field is either linearly de-
generate, so that

(1.6) DXi(u) - ri(u) =0 for all wu,
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or else it is genuinely nonlinear; i.e.,
(1.7) DX;(u) - ri(u) >0 for all w.

In [G], an approximate solution of the general Cauchy problem is obtained
by piecing together solutions of several Riemann problems, with a restarting
procedure based on random sampling. The key step in Glimm’s proof is an
a priori estimate on the total variation of the approximate solutions, obtained
by introducing a wave interaction potential. In turn, the control of the total
variation yields the compactness of the family of approximate solutions, and
hence the existence of a strongly convergent subsequence. Alternative con-
structions of approximate solutions, based on front-tracking approximations,
were subsequently developed in [DP1], [B2], [Ri], [BaJ].

The above existence results are all based on a compactness argument
which, by itself, does not guarantee the uniqueness of solutions. The continu-
ous dependence of solutions on the initial data was first proved in [BC1] and
[BCP], with a technique based on linearization + homotopy. As a first step,
one estimates the distance between a reference solution v and an infinitesimal
perturbation. This is achieved by constructing a Lyapunov functional ¥(u; z)
which is nonincreasing along all solutions z to a linearized system, describing
the evolution of a first order perturbation (see [B1], [B4]). In a second step, to
compare two solutions u, v, one constructs a one-parameter family of solutions
u? connecting v with v. For each time ¢, the distance Hu(t) —v(t)|lL: can then
be bounded in terms of the length of the curve § — wuf(t). A drawback of
this approach comes from the possible loss of regularity of the solutions «?. In
order to retain the minimal regularity (piecewise Lipschitz continuity) required
for the existence of tangent vectors, in [BC1] and [BCP] various approxima-
tion and restarting procedures had to be devised. These yield entirely rigorous
proofs, but at the price of heavy technicalities.

A quite different approach was introduced in [LY2] by Liu and Yang, defin-
ing a functional ®(u,v) which is equivalent to the L! distance and decreases
along couples of solutions of the hyperbolic system. In their construction, a
key role is played by a new entropy functional for genuinely nonlinear scalar
fields, introduced in [LY1]. This approach was developed into its final form in
[BLY]. For yet another proof of continuous dependence, see also [HLF].

Relying on the continuous dependence of limits of front-tracking approx-
imations, general uniqueness results for entropy weak solutions could then be
proved in [B3], [BLF1], [BG] and [BLe]. The main results can be summarized
as follows:

— The solutions obtained as limits of Glimm or front-tracking approxima-
tions are unique and depend Lipschitz continuously on the initial data,
in the L' norm.
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— Every small BV solution of the Cauchy problem (1.1) and (1.2) which
satisfies the Lax entropy conditions coincides with the unique limit of
front tracking approximations.

For a comprehensive account of the recent uniqueness and stability theory we
refer to [B5].

A long standing conjecture is that the entropic solutions of the hyperbolic
system (1.1) actually coincide with the limits of solutions to the parabolic
System

(1.8). up + f(u)z = € Uga

when the viscosity coefficient ¢ — 0. In view of the recent uniqueness results, it
looks indeed very plausible that the vanishing viscosity limit should single out
the unique “good” solution of the Cauchy problem, satisfying the appropriate
entropy conditions. In earlier literature, results in this direction were based on
three main techniques:

1. Comparison principles for parabolic equations. For a scalar conserva-
tion law, the existence, uniqueness and global stability of vanishing viscosity
solutions were first established by Oleinik [O] in one space dimension. The
famous paper of Kruzhkov [K] covers the more general class of L solutions,
in several space dimensions. For an alternative approach based on nonlinear
semigroup theory, see also [Cr].

2. Singular perturbations. Let v be a piecewise smooth solution of
the n x n system (1.1), with finitely many noninteracting, entropy admissible
shocks. In this special case, using a singular perturbation technique, Goodman
and Xin [GX] were able to construct a sequence of solutions u® to (1.8)., with
u® — u as € — 0. See also [Yu] for further results in this direction.

3. Compensated compactness. 1If, instead of a BV bound, only a uniform
bound on the L*® norm of solutions of (1.8). is available, one can still construct
a weakly convergent subsequence u® — wu. In general, we cannot expect that
this weak limit satisfies the nonlinear equations (1.5). However, for a class of
2 x 2 systems, in [DP2] DiPerna showed that this limit u is indeed a weak
solution of (1.1). The proof relies on a compensated compactness argument,
based on the representation of the weak limit in terms of Young measures,
which must reduce to a Dirac mass due to the presence of a large family of
entropies. We remark that the solution is here found in the space L*>. Since
the known uniqueness results apply only to BV solutions, the uniqueness of
solutions obtained by the compensated compactness method remains a difficult
open problem.
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In our point of view, to develop a satisfactory theory of vanishing viscosity
limits, the heart of the matter is to establish a priori BV bounds on solutions
u(t, ) of (1.8), uniformly valid for all ¢t € [0, co[ and € > 0. This is indeed what
we will accomplish in the present paper. Our results apply, more generally, to
strictly hyperbolic n x n systems with viscosity, not necessarily in conservation
form:

(1.9)c up + A(u)uy = € Ugy .

As a preliminary, we observe that the rescaling of coordinates s = t/e, y = z/e
transforms the Cauchy problem (1.9), (1.2) into

Us + A(U)uy = Uyy, U(O, y) = ﬂg(y) = Q(Ey) .

Clearly, the total variation of the initial data u° does not change with €. To
obtain a priori BV bounds and stability estimates for solutions of (1.9)., it
thus suffices to consider the system

and derive estimates uniformly valid for all times ¢ > 0, depending only on
the total variation of the initial data .

The first step in our proof is a decomposition of the gradient u, = Y v;7;
into scalar components. In the purely hyperbolic case without viscosity, it
is natural to decompose u, along a basis {ri,...,r,} of eigenvectors of the
matrix A(u). Remarkably, this choice does not work here. Instead, we will
decompose u, as a sum of gradients of viscous travelling waves, selected by a
center manifold technique.

As a second step, we study the evolution of each component v;, which is
governed by a scalar conservation law with a source term, accounting for non-
linear wave interactions. Uniform bounds on these source terms are achieved
by means of a transversal interaction functional, controlling the interaction
between waves of different families, and suitable swept area and curve length
functionals, controlling the interaction of waves of the same family. All these
can be regarded as “viscous” counterparts of the wave interaction potential,
introduced by Glimm [G] in the purely hyperbolic case. Indeed, our “area
functional” is closely related to the interaction potential used by Liu in [L4].
Finally, on regions where the diffusion is dominant, the strength of the source
term is bounded by an energy functional. All together, these estimates yield
the desired a priori bound on Hux(t, ~)HL1, independent of ¢ € [0, 00| .

Similar techniques can also be applied to a solution z = z(t,x) of the
variational equation

(1.11) 2+ [DA(u) - 2]ug + A(u)zz = 20,

which describes the evolution of a first order perturbation to a solution u
of (1.10). Assuming that the total variation of w remains small, we shall
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establish an estimate of the form
(1.12) l|2(t, )| < L |20, forall t>0,

valid for all solutions of (1.11). As soon as this estimate is proved, as in [B1],
a standard homotopy argument yields the Lipschitz continuity of the flow of
(1.10) with respect to the initial data, uniformly in time.

By the simple rescaling of coordinates ¢ — &t, x — ez, all of the above
estimates remain valid for solutions u® of the system (1.9).. By a compactness
argument, these BV bounds imply the existence of a strong limit u*™ — v in
Llloc, at least for some subsequence €, — 0. In the conservative case where
A = Df, it is now easy to show that this limit v provides a weak solution to
the Cauchy problem (1.1) and (1.2).

At this intermediate stage of the analysis, since we are using a compactness
argument, it is not yet clear whether the vanishing viscosity limit is unique. In
principle, different subsequences €, — 0 may yield different limits. Toward a
uniqueness result, in [B3] the second author introduced a definition of viscosity
solution for the hyperbolic system of conservation laws (1.1), based on local
integral estimates. Roughly speaking, a function u is a wviscosity solution if

e In a forward neighborhood of each point of jump, the function u is well
approximated by the self-similar solution of the corresponding Riemann
problem.

e On a region where its total variation is small, u can be accurately ap-
proximated by the solution of a linear system with constant coefficients.

For a strictly hyperbolic system of conservation laws satisfying the stan-
dard assumptions (H), the analysis in [B3] proved that the viscosity solution
of a Cauchy problem is unique, and coincides with the limit of Glimm and
front-tracking approximations. The definition given in [B3] was motivated by
a natural conjecture. Namely, the viscosity solutions (characterized in terms of
local integral estimates) should coincide precisely with the limits of vanishing
viscosity approximations.

In the present paper we adopt a similar definition of viscosity solutions
and prove that the above conjecture is indeed true. Our results apply to the
more general case of (possibly nonconservative) quasilinear strictly hyperbolic
systems. In particular, we obtain the uniqueness of the vanishing viscosity
limit.

As in [B3], [BLFP], the underlying idea is that a semigroup is entirely
determined by its local behavior on piecewise constant initial data. Namely, if
two semigroups yield the same solution to each Riemann problem, then they
coincide. In our proof of uniqueness, a basic step is thus the analysis of the
vanishing viscosity solution to a general Riemann problem. The construction
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given here extends the previous results by Lax and by Liu to general, non-
conservative hyperbolic systems. As in the cases considered in [Lx], [L1], for
a given left state u™ there exists a Lipschitz continuous curve of right states
u' which can be connected to u~ by i-waves. These right states are here
obtained by looking at the fixed point of a suitable contractive transforma-
tion. Remarkably, our center manifold plays again a key role, in defining this
transformation.
Our main results are as follows.

THEOREM 1. Consider the Cauchy problem for the hyperbolic system with
ViSCoSIty

(1.13) up + Alu)uy = € Ugy u(0,z) = u(x).

Assume that the matrices A(u) are strictly hyperbolic, smoothly depending on
u in a neighborhood of a compact set K C R™. Then there exist constants
C,L,L" and § > 0 such that the following holds. If

(1.14) Tot.Var{u} < 4, lim u(z) e K,

T——00

then for each € > 0 the Cauchy problem (1.13). has a unique solution uf,
defined for all t > 0. With a semigroup notation, this will be written as t —
us(t,-) = Siu. In addition,

(1.15) BV bounds : Tot.Var.{S;u} < C Tot.Var.{u}

(1.16) L' stability :  ||Sfa — S0

p<La-1l

Ll?

(1.17) Is7a — Szally, <& (1t = 5| + [Vet = vEs ).

Convergence: As e — 0+, the solutions u® converge to the trajectories of
a semigroup S such that

(1.18) | St — Ssv|| ., < Llla— ol + L' |t — s].

These vanishing viscosity limits can be regarded as the unique vanishing vis-
cosity solutions of the hyperbolic Cauchy problem

(1.19) u + A(u)u, =0, u(0,2) = u(x).

In the conservative case A(u) = D f(u), every vanishing viscosity solution
s a weak solution of

(1.20) ut + f(u)g =0, u(0,z) = u(x),

satisfying the Liu admissibility conditions.

Assuming, in addition, that each field is genuinely nonlinear or linearly
degenerate, the vanishing viscosity solutions coincide with the unique limits of
Glimm and front-tracking approximations.
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Notice that in the above theorem the only key assumptions are the strict
hyperbolicity of the system and the small total variation of the initial data. It
is interesting to compare this result with previous literature.

1. Concerning the global existence of weak solutions, Glimm’s proof re-
quires the additional assumption (H) of genuine nonlinearity or linear degen-
eracy of each characteristic field. This assumption has been greatly relaxed in
subsequent works by Liu [L4] and Liu and Yang [LY3], and eventually removed
in [ILF], but at the price of considerable technicalities. The underlying reason
is the following. In all papers based on the Glimm scheme (or front-tracking),
the construction of approximate solutions as well as the BV estimates rely on
a careful analysis of the Riemann problem and of interactions between elemen-
tary waves. In this connection, the hypothesis (H) is a simplifying assumption,
which guarantees that every Riemann problem can be solved in terms of n el-
ementary waves (shocks, centered rarefactions or contact discontinuities), one
for each characteristic field 2 = 1,...,n. When this assumption fails, construct-
ing a solution to each Riemann problem and deriving interaction estimates are
still possible, but far more complicated.

On the other hand, our present approach based on vanishing viscosity
marks the first time where uniform BV estimates are obtained without any
reference to Riemann problems. Global existence is obtained for the whole
class of strictly hyperbolic systems.

2. Concerning the uniform stability of entropy weak solutions, the results
previously available for n x n hyperbolic systems [BC1], [BCP], [BLY] always
required the assumption (H). For 2 x 2 systems, this condition was somewhat
relaxed in [AM]. Again, we remark that the present result makes no reference
to the assumption (H).

3. For the viscous system (1.10), previous results in [L5], [SX], [SZ], [Yu]
have established the stability of special types of solutions, such as travelling
viscous shocks or viscous rarefactions, with respect to suitably small perturba-
tions. Taking € = 1, our present theorem yields at once the uniform Lipschitz
stability of all viscous solutions with sufficiently small total variation, with
respect to the L' distance.

Remark 1.1. The vanishing viscosity approach is based on a different
building block, namely the viscous travelling waves. This appears to be more
basic, and yields more general results. However, the earlier point of view based
on piecewise constant approximations and the analysis of the Riemann problem
retains some advantages. In particular, it gives a better geometrical intuition
and provides additional results on the qualitative structure and asymptotic
properties of solutions as in [L2], [L3], [L4], [BLF2], [B5].
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Remark 1.2. It remains an important open problem to establish the
convergence of vanishing viscosity approximations of the form
(1.21), ur + A(u)u, = e(B(u)ug)

for more general viscosity matrices B. In the present paper we are exclusively
concerned with the case where B is the identity matrix. For systems which
are not in conservative form, we expect that the limit of solutions of (1.21).,
as ¢ — 0, will be heavily dependent on the choice of the matrix B.

Remark 1.3. In the present paper we only consider initial data with small
total variation. This is a convenient setting, adopted in much of the current
literature, which guarantees the global existence of BV solutions of (1.1) and
captures all basic features of the problem. A recent example of Jenssen [J]
shows that, for initial data with large total variation, the solution can blow
up in finite time. In this more general setting, one expects that the existence
and uniqueness of weak solutions, together with the convergence of vanishing
viscosity approximations, will hold locally in time as long as the total variation
remains bounded. For the hyperbolic system (1.1), results on the existence and
stability of solutions with large BV data can be found in [S] and [BC2].

Remark 1.4. For initial data in L°°, on the other hand, one cannot expect
to have any general theorem on uniqueness and stability of vanishing viscosity
solutions. A simple example of nonuniqueness was given in [BS].

The plan of the paper is as follows. Section 2 collects those estimates
which can be obtained by standard parabolic techniques. In particular, we
show that the solution of (1.10) with initial data « € BV is well defined on an
initial time interval [0, ] where the L norms of all derivatives decay rapidly.
Moreover, for large times, as soon as an estimate on the total variation is
available, one immediately obtains a bound on the L! norms of all higher order
derivatives. Our basic strategy for obtaining the BV estimate is outlined in
Section 3. The decomposition of u; as a sum of gradients of viscous travelling
profiles is performed in Section 5. This decomposition will depend pointwise
on the second order jet (g, uyy), involving 2n scalar parameters. To fit these
data, we must first select n smooth families of viscous travelling waves, each
depending on two parameters. This preliminary construction is achieved in
Section 4, by reliance on the center manifold theorem. In Section 6 we derive
the evolution equation satisfied by the gradient components and analyze the
form of the various source terms. As in [G], our point of view is that these
source terms are the result of interactions between viscous waves, and can
thus be controlled by suitable interaction functionals. In Sections 7 to 9 we
introduce various Lyapounov functionals, which eventually allow us to estimate
the integral of all source terms. The proof of the uniform BV bounds is then
completed in Section 10.
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In Section 11 we study the linearized evolution equation (1.11) for an in-
finitesimal perturbation z, and derive the key estimate (1.12). In turn, this
yields the Lipschitz continuity of the flow, stated in (1.16). Some of the esti-
mates here require lengthy calculations, which are postponed to the appendices.
Section 12 contains an additional estimate for solutions of (1.11), showing that,
even in the parabolic case, the bulk of a perturbation propagates at a finite
speed. This estimate is crucial because, passing to the limit ¢ — 0, it im-
plies that the values of a vanishing viscosity solution (¢, ) on an interval [a, b]
depend only on the values of the initial data u(0,-) on a bounded interval
[a — Bt, b+ [t]. In Section 13 we study the existence and various properties
of a semigroup obtained as a vanishing viscosity limit: S = lim S°~. At this
stage, we only know that the limit exists for a suitable subsequence ¢, — 0. In
the case of a system of conservation laws satisfying the standard assumptions
(H), we can show that every limit solution satisfies the Lax shock conditions
and the tame oscillation property. Hence, by the uniqueness theorem in [BG],
the limit is unique and does not depend on the subsequence {e,, }. This already
achieves a proof of Theorem 1 valid for this special case.

Toward a proof of uniqueness in the general case, in Section 14 we con-
struct a self-similar solution w(t,z) = @(x/t) to the nonconservative Riemann
problem, and show that it provides the unique vanishing viscosity limit. A
definition of viscosity solution in terms of local integral estimates is introduced
in Section 15. By a minor modification of the arguments in [B3], [B5] we prove
that these viscosity solutions are unique and coincide with the trajectories of
any semigroup .S = lim S obtained as a limit of vanishing viscosity approxi-
mations. Since this result is independent of the subsequence {e,,}, we obtain
the convergence to a unique limit of the whole family of viscous approximations
S;u — Syu, over all real values of €. This completes the proof of Theorem 1.

Finally, in Section 16 we derive two easy estimates. One is concerned with
the dependence of the limit semigroup S on the coefficients of the matrix A in
(1.19). The other estimate describes the asymptotic limit of solutions of the
parabolic system (1.10) as t — oo.

2. Parabolic estimates

In classical textbooks, the local existence and regularity of solutions to the
parabolic system (1.10) are derived by regarding the hyperbolic term A(u)u,
as a first order perturbation of the heat equation. This leads to the definition
of mild solutions, characterized by the representation

u(t) = G(t) *u(0) — /0 G(t — s) = A(u(s))us(s) ds

in terms of convolutions with the standard heat kernel G.
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In this initial section we collect all the relevant estimates which can be
achieved by this approach. In particular, we prove various decay and regularity
results for solutions of (1.10) as well as (1.11). Given a BV solution u = u(t, x)
of (1.10), consider the state

(2.1) v = lim wu(t,x),

T——00

which is clearly independent of time. We then define the matrix A* = A(u™)
and let A7, r’, [7 be the corresponding eigenvalues and right and left eigen-

[P

vectors, normalized as in (1.4). It will be convenient to use “o” to denote a
directional derivative, so that z @ A(u) = DA(u) - z indicates the derivative of
the matrix-valued function u — A(u) in the direction of the vector z. We can
now rewrite the systems (1.10) and (1.11) respectively as

(2.2) up + A Uy — Upy = (A* — A(u))uw ,
(2.3) 2+ A'zg — 2ge = (A" — A(u)2zp — (20 A(u))ug .

In both cases, we regard the right-hand side as a perturbation of the linear
parabolic system with constant coefficients

(2.4) wy + A'wy — Wy = 0.

We denote by G* the Green kernel for (2.4), so that

wlta) = [ 660 —y)w(0.9)dy.
The matrix-valued function G* is easily computed. Indeed, if w solves (2.4),
then its i*" component w; = [ - w satisfies the scalar equation
wi ¢ + )\:wz,x — Wi gz = 0.

Therefore w;(t) = G} (t) * w;(0), where

oA"Y,

1
2v/7t
Looking at the explicit form of its components, we see clearly that the Green
kernel G* = G*(t, z) satisfies the bounds
K

1§—a
RV

for some constant « and all £ > 0. It is important to observe that, if u is a

(25) [|G*(t)|

L Sk, 1GL(t)]

|G ()]

K
ng?’

solution of (2.2), then z = u, is a particular solution of the variational equation
(2.3). Hence all the estimates proved for z,, z,, are certainly valid also for the
corresponding derivatives gy, Uzz,. Assuming that the initial data u(0, -) have
small total variations, we now derive some estimates on higher derivatives. In
particular, we will show that
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e The solution is well defined on some initial interval [0, ], where the L>
norm of all derivatives decays rapidly.

e As long as the total variation remains small, the solution can be pro-
longed in time. In this case, all higher order derivatives remain small.
Indeed, waiting a long enough time, one has

|tz (t)||p < ||tee(t)]]f < ||t (t)||y, = Tot.Var.{u(t)}.

PROPOSITION 2.1. Let u, z be solutions of the systems (2.2)—(2.3), satis-
fying the bounds

(2:6) lea@®lg, < o, =@l < o,

for some constant 69 < 1 and all t € [0,1], where

P 1 ? - 2

@1 Q= (m) = s (IDA] + 0?4

and k is the constant in (2.5). Then fort € [0,1] the following estimates hold:
2kK0,

(28) e @l s 22Ol <=7
5k%0

(2.9) e (8) g+ [1220(8)]| g0 < 22
16470

(2.10 ol ool < 22

Proof. The function z, can be represented as
(2.11)

t
zz(t) = G(t) * 2(0) —|—/ GL(t—s)x* (A* — A(u))zz(s) — (z @ A(u))ux(s)} ds.
Using (2.5) and (2.6) we obtain

/ G(t—s) (A — A(u)) z5(s) — (zOA(u))ux(s)}ds
< [ 1620 = 9l g 1A (6,
)l [ DA o)

t 1
< 200 [ DAl - [ a9y

Consider first the case of smooth initial data. We shall argue by contradiction.

Assume that there exists a first time 7 < ¢ such that the equality in (2.8) holds.
Then, observing that

Lt

1}ds

ds = do=m<4

[ ==L 7=
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we compute

1 2(50/-4:

d
T—s\/§S

K T
L ) L ey
2/1(50

<—+16/‘$ HA50 S 7,

VT

reaching a contradiction. Hence, (2.8) is satisfied as a strict inequality for all
t € [0,f]. Observing that this estimate depends only on the L' norms of wu,
and z, by an approximation argument we obtain the same bound for general
initial data, not necessarily smooth. Since z = wu, is a particular solution of
(2.3), the bounds (2.8) certainly apply also to z; = ugs.

A similar technique is used to establish (2.9). Indeed, we can write

(212)  za0(t) = GL(t/2) * z2(t/2)

— | Gt —s) {(z o A(u))ux(s) + (A(u) — A*)zm(s)} ds .

t/2 @

We will prove (2.9) first in the case z;» = Ugyq, then in the general case. If

(2.9) is satisfied as an equality at a first time 7 < £, using (2.12) and recalling
the definitions (2.7) we compute

K 2k0¢
Zoa(T) {1 S —F— -
222(7)]l, NN
# [ s A+ 2o s A0 0,
JrHZ'A(u)umc(S)Hp + ||U1c o Au)z(s ||L1 =+ H A*)zx,(s) L1}d5

2K26 i K 2
< 7_/20 + /7—/2 m ! {60|DA||L°CHZ$1(S)||L1 +50||D2A||L°°Huzx(5)||L1

‘HSO”DAHLOO Hummr(s) HLl

+00[| DA|L= || 202 (5)|| . + S0l DAL= || 202 (s

e s pd

4I€ 50

+ k6o (4705 | D* Al| L + 20780 || DA|L~) /

4K2%5 4 26
<y 205%KA08 - ——= < 5 0
T T/2 T

)

reaching a contradiction.

Finally, by (2.12) and (2.8), (2.9), the bounds in (2.10) are proved by the
estimate
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ezl < 5 L //2 N
{ |22 @ A(u)ua(s)|| o + |2 @ (uz ® A(u))ua(s)]|
+ [z 0 Alw)aa(s) || + [luw @ Alw) 2 ()|

+ H(A(u) - A*)zm(s)HLw} ds

153 50 4 163680
< . O

COROLLARY 2.2. In the same setting as Proposition 2.1, assume that the
bounds (2.6) hold on a larger interval [0,T]. Then for all t € [t, T1,

(2.13) Hum(t)‘ L1 ‘ugg(t)HLoo , ‘zx(t)‘ Lt =0(1) - 5(2],
Q1) s e et =0 -85,
(2.15) Humxx(t)HLm ) ‘le’(t)HLoo = O(l) ) 53 :
Proof. Tt suffices to apply Proposition 2.1 on the interval [t — t t]. O

PROPOSITION 2.3. Let u = u(t,x), z = z(t,z) be solutions of (2.2), (2.3)
respectively, such that

<% 90
(2.16) Tot.Var.{u(0,-)} < <10 12(0)||: < P
Then u, z are well defined on the whole interval [0,1] in (2.7), and satisfy
) )
(2.17) lua@®llp < 5 =)l < 5 o, 4].

Proof. We have the identity
*2(0)

(2.18)  2(t)=G*(t
/ G*(t —s) (A — A(u))zg(s) — (z @ A(u))ux(s)} ds.

As before, we first establish the result for z = u,, then for a general solution z
of (2.3). Assume that there exists a first time 7 < ¢ where the bound in (2.17)
is satisfied as an equality. Estimating the right-hand side of (2.18) by means
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[t ||
|tz |2
|z |2
t
Figure 1
of (2.5) and (2.8), we obtain
KdQ T 2558
< — —— ||DA||p~ d
ol < G2+ [ 22 DA ds
do 2 do
Sz+4I€I€A50\/7__ < ?,
reaching a contradiction. O

To simplify the proofs, in all previous results we used the same hypotheses
on the functions u, and z. However, observing that z solves a linear homo-
geneous equation, similar estimates can be immediately derived without any
restriction on the initial size Hz(())‘
follows

i~ In particular, from Proposition 2.3 it

COROLLARY 2.4. Let u = u(t,x), z = z(t,x) be solutions of (2.2), (2.3)
respectively, such that HUI(O)”L1 < 0o/4k. Then u,z are well defined on the
whole interval [0,1] in (2.7), and satisfy

219) Ol <26l 0]l <2620 0.,
A summary of the main estimates is illustrated in Figure 1. On the initial

interval ¢ € [0, ], with ¢ ~ 1/62 we have

(2.20) [|ua(t)]

Lt < 60’
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while the norms of the higher derivatives decay:

|tae ||, = O(1) - 60/ VE, [taaa|| g0 = O(1) - S0/t
On the other hand, for t > £, as long as (2.20) remains valid we also have
HUx:JcHLl = 0(1) . 58 , HummHLl = 0(1) . 58 .

These bounds (the solid lines in Fig. 1) were obtained in the present section by
standard parabolic-type estimates. The most difficult part of the proof is to
obtain the estimate (2.20) for large times ¢ € [t, co[ (the broken line in Fig. 1).
This will require hyperbolic-type estimates, based on the local decomposition
of the gradient u, as a sum of travelling waves, and on a careful analysis of all
interaction terms.

3. Outline of the BV estimates

It is our aim to derive global a priori bounds on the total variation of
solutions of

(3.1) up + A(u)uy = gy

for small initial data. We always assume that the system is strictly hyperbolic,
so that each matrix A(u) has real distinct eigenvalues \;(u) as in (1.3), and
dual bases of right and left eigenvectors r;(u), {;(u) normalized as in (1.4). The
directional derivative of a function ¢ = ¢(u) in the direction of the vector v is

written
(3.2) vep(u)=D¢p-v= lir% B(u + e:) — ¢(u) ’
while

[T‘j,’f’k] = r;eTg —TpeT;

denotes a Lie bracket. In order to obtain uniform bounds on Tot.Var.{u(t, )}
for all t > 0, our basic strategy is as follows. We choose dy > 0 sufficiently
small and consider an initial data u(0,-) = @ satisfying the first inequality in
(2.16). By Proposition 2.3, the corresponding solution is well defined on the
initial time interval [0, ] and its total variation remains bounded, according to
(2.17). The main task is to establish BV estimates on the remaining interval
[f, oo[. For this purpose, we decompose the gradient u, along a suitable basis
of unit vectors 7q,...,7,, say

n

i=1
Differentiating (3.1), we obtain a system of n evolution equations for these
scalar components

(3.4) Vig + (Nivi)e — Vigx = b5, i=1,...,n.



VANISHING VISCOSITY SOLUTIONS 239
Since the left-hand side is in conservation form, (3.4) implies

(3.5) ot )|, . / / |a(t, )| drdt

for all t > . By (3.3),

(3.6) Tot.Var.{u(t, )} = Hum HL1 < Z HUZ HLl )

s < i, )]

In order to obtain a uniform bound on the total variation, the key step is thus
to construct the basis of unit vectors {ry,...,7,} in (3.3) in a clever way, so
that the functions ¢; on the right-hand side of (3.4) become integrable on the
half plane {t > f, x € R}.

As a preliminary, we observe that the choice 7; = r;(u), the i*" eigenvector
of the matrix A(u), seems quite natural. This choice was indeed adopted in
[BiB1], where the authors proved Theorem 1 restricted to the special class of
systems where all Rankine-Hugoniot curves are straight lines. Unfortunately,
for general n x n hyperbolic systems it does not work. To understand why, let
us write

(3.7) ul = 1;(u) - u

for the i*® component of u, in this basis of eigenvectors. As shown in [BiB1],
these components satisfy the system of evolution equations

(3.8)
(u;)t + ()‘zugc)w - (u;)m

:ll-{Z)\j[rj,rk u]u +2Z i e 7)( xu —I—ng, T @ 1jlul, ul;uf;}

j#k 7,k,0
= ;.

Assume that the ' characteristic field is genuinely nonlinear, with shock
and rarefaction curves not coinciding, and consider a travelling wave solu-
tion u(t,z) = U(x — At), representing a viscous i-shock. It is then easy to see
that the right-hand side of (3.8) is not identically zero. Since it corresponds
to a travelling wave, the integral

/{(ﬁi(t,x)‘da: #0

is constant in time. Hence ¢; is certainly not integrable over the half plane
{t >t, v € R}

The previous example clearly points out a basic requirement for our de-
composition (3.3). Namely, in connection with a viscous travelling wave, the
source terms ¢; in (3.4) should vanish identically. To achieve this goal, we
shall seek a decomposition of u, not along eigenvectors of the matrix A(u),
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but as a sum of gradients of viscous travelling waves. More precisely, consider
a smooth function u : R — R"™. At each point z, depending on the second or-
der jet (u,uy, uzy), we shall uniquely determine n travelling waves Uy, ..., U,
passing through wu(z). We then write u, in the form (3.3), as the sum of the
gradients of these waves. As a guideline, we shall try to achieve the following
relations:

(3.9) Ui(z) =u(z), i=1,...,n,
(3.10) Z Ul(x) = ug(z), D U/ () = tga() .

i

Details of this construction will be worked out in the next two sections.

4. A center manifold of viscous travelling waves

To carry out our program, we must first select certain families of travelling
waves, depending on the correct number of parameters to fit the data. Given
a state u € R", a second order jet (ug, uy,;) determines 2n scalar parameters.
In order to uniquely satisfy the equations (3.10), we thus need to construct
n families of travelling wave profiles through u, each depending on two scalar
parameters. This will be achieved by an application of the center manifold
theorem.

Travelling waves for the viscous hyperbolic system (3.1) correspond to
(possibly unbounded) solutions of

(4.1) (A(U) —o)U" =U".

We write (4.1) as a first order system on the space R” x R" x R:

=,
(4.2) b= (A(u) —o)v,

c=0.
Let a state u* be given and fix an index i € {1,...,n}. Linearizing (4.2) at

the equilibrium point P* = (u*, 0, )\Z(u*)) we obtain the linear system

(13) b= (A() = M),
oc=0.

Let {r],...,m:} and {I7,...,0}} be dual bases of right and left eigenvectors of
A(u*) normalized as in (1.4). We call (V4,...,V,) the coordinates of a vector
v € R™ with respect to this basis, so that

‘Ti‘_la U—Zvﬂ"j, V]—lj V.
J
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The center subspace N for (4.3) consists of all vectors (u,v,0) € R" x R" x R
such that
(4.4) V;=0 for all j # 1,

and therefore has dimension n + 2. By the center manifold theorem [V], there
exists a smooth manifold M C R*™+1 tangent to N at the stationary point
P*, which is locally invariant under the flow of (4.2). This manifold has di-
mension n + 2 and can be locally defined by the n — 1 equations

(4.5) Vi = oi(u,Vi.0) jAi.

We can assume that the n — 1 smooth scalar functions ¢; are defined on the
domain

Di{\u—u*\<e, |Vi| <e, ‘J—Ai(u*)‘<e}_
Moreover, the tangency condition implies

(46) oy Vi) = O) - (Ju— w4 [ViP + [o = () ).

We now take a closer look at the flow on this center manifold. By con-
struction, every trajectory

ti= P(t) = (u(t), v(t), o(t))

of (4.2), which remains within a small neighborhood of the point P* =
(u*, 0, )\l(u*)) for all t € R, must lie entirely on the manifold M. In particular,
M contains all viscous i-shock profiles joining a pair of states u—,u™ suffi-
ciently close to u*. Moreover, all equilibrium points (u,0,0) with |u — u*| < e
and |0 — A\i(u*)| < € must lic on M. Hence

(4.7) ©j(u,0,0) =0 for all j # 1.

By (4.7) and the smoothness of the functions ¢;, we can “factor out” the
component V; and write

pi(u, Vi, o) = ¢j(u, Vi, 0) - Vi,
for suitable smooth functions ¢;. From (4.6) it follows that
(4.8) p; — 0 as (u, Vi, o) — (u*,(), )\,(u*))
On the manifold M we thus have

(4.9) U:ZVkTZ»:Vi' 7‘;‘+Z1/)j(u,‘/;,a)r;f iVﬂg(u,Vi,a).
3 i

By (4.8), the function r# defined by the last equality in (4.9) satisfies

(4.10) rf(u,Vi,a) -y as (u, Vi, o) — (u*,0, \i(u)).
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Remark 4.1. Trajectories on the center manifold correspond to the pro-
files of viscous travelling i-waves. We thus expect that the derivative @ = v
should be a vector “almost parallel” to the eigenvector =} = r;(u*). This is
indeed confirmed by (4.10).

We can now define the new variable
(4.11) v; = vi(u, Vi,o) =V; - ’Tf(u,%,aﬂ.

As (u,V;,0) range in a small neighborhood of (u*,0,\;(u*)), by (4.10) the
vector r; remains close to the eigenvector r;. In particular, its norm remains
uniformly positive. Therefore, the transformation V; «— wv; is invertible and
smooth. We can thus reparametrize the center manifold M in terms of the
variables (u,v;,0) € R" x R x R. Moreover, we define the unit vector

(4.12) ri(u,vi,0) = —

Led

Observe that 7; is also a smooth function of its arguments. With the above
definitions, instead of (4.5) we can write the manifold M in terms of the
equation

(4.13) v = i

The above construction of a center manifold can be repeated for every
i = 1,...,n. We thus obtain n center manifolds M; C R?>**! and vector
functions 7; = 7;(u, v, 0;) such that

(4.14) 7] = 1,

(4.15) M; = {(u,v,ai) ;v =v;Ti(u, Ui,O'i)},
as (u,v;,0;) € R" x R x R ranges in a neighborhood of (u*, 0, A;(u*)).

We derive here some useful identities, for later use. The partial derivatives
of 7; = 7 (u, v;, 0;) with respect to its arguments will be written as

d _ . 0 . . 0
T Tiw = 7 T% Tig = 7 Ti-
Ou’ "’ oo 0o
Clearly, 7;, is an m x n matrix, while 7;,, 7; , are n-vectors. Higher order
derivatives are denoted as 7; yg, Tioo - .. We claim that
) ’ 3

(4.16) 7i(u,0,0;) = ri(u) for all u,o;.

Tiu =

Indeed, consider again the equations for a viscous travelling i-wave:

(4.17) Uzy = (A(u) — 07)ug.
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For a solution contained in the center manifold, taking the derivative with
respect to x of

(4.18) Uy = v = v;Ti(u, v, 0;)
and using (4.17) we obtain
(4.19) /Ui’x/";fi + Uﬂ:i’m = (A(u) — O‘i)’(}if,'.

Since || = 1, the vector 7; is perpendicular to its derivative 7; .. Taking the
inner product of (4.19) with 7; we thus obtain

(4.20) Vig = (X — 03)vi

where the speed is defined N = Xz(u, v;,0;) as the inner product
(4.21) N = (7, A(u)F).

Using (4.20) in (4.19) and dividing by v; we finally obtain

(4.22) (5\Z — O‘i)’U@"FZ‘ + v; (ﬂ'}ufﬂji + fi,v(j\i — Ui)vi) = (A(u) — UZ')’UZ"FZ‘ ,

(4.23) vi (Fiufi + Fiw(Ni — 03)) = (Au) — Ao 7.

By (4.23), as v; — 0, the unit vector 7;(u,v;,0;) approaches an eigenvector
of the matrix A(u), while Ai approaches the corresponding eigenvalue. By
continuity, this establishes (4.16).

In turn, by the smoothness of the vector field 7; we also have

(4.24) Ti(u, vi, 04) — ri(u) = O(1) - v;, Tio = O(1) - vy,
Tiwo = O(1) - v;, Fivo = O(1) - v;.
Using (4.24), from (4.21) one obtains
(4.25) ‘S\z(u, vi,05) — Ai(w)| = O(1) - vy, Aio =0O(1) - v;.
A further identity will be of use. Differentiating (4.19) one finds

(4.26) Vi aaTi + 20i2Ti g + Vifize = (A(W)ViF;) | — 030 2Ti — 00Tz -

From the identities

(Fi, Fig) =0, (Fi, Tiga) = —(Tiz, Ti),
taking the inner product of (4.19) with 7; , we obtain
(427) <fz; fi,a:1’>vi - _<fi,$7 A(u)f1>vl .

Taking now the inner product of (4.26) with 7; we find

Viga + (Fis Tiga )vi = (Ti, (A(W)Fivi)e) — Ovia -
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Since v; ¢ + 0jv; , = 0, using the identity (4.27) we conclude
(4.28) Vi + (Nivi)z — Vige = 0,
where J; is the speed at (4.21).

Remark 4.2. It is important to appreciate the difference between the
identities

(4.29)  (A(w) —N)ri =0, (A(u) — X)) Fi = i (FiFi + Fiw(Xi — 07)),

satisfied respectively by an eigenvector r; and by a unit vector 7; parallel to the
gradient of a travelling wave. Decomposing u, along the eigenvectors r; one
obtains the evolution equations (3.8), with nonintegrable source terms on the
right-hand side. When a similar computation is performed in connection with
the vectors 7;, thanks to the presence of the additional terms on the right-hand
side in (4.29) a crucial cancellation is achieved. In this case, we will show that
the source terms ¢; in (3.4) are integrable over the half plane x € R, ¢ > .

5. Gradient decomposition

Let v : R — R™ be a smooth function with small total variation. At
each point z, we seek a decomposition of the gradient wu, in the form (3.3),
where 7; = 7;(u,v;,0;) are the vectors defining the center manifold in (4.15).
To uniquely determine the 7;, we should first define the wave strengths v; and
speeds o; in terms of u, U, Uys.

Consider first the special case where u is precisely the profile of a viscous
travelling wave of the j*" family (contained in the center manifold M;). In
this case, our decomposition should clearly contain one single component:

(5.1) Uz = v;75(u, v, 05) .

It is easy to guess what v;, 05 in (5.1) should be. Indeed, since by construction
|7;| = 1, the quantity
vj = *[ug|

is the signed strength of the wave. Notice also that for a travelling wave the
vectors u, and u; are always parallel, since u; = —oju, where o; is the speed
of the wave. We can thus write

(5.2) U = Ugz — A(u)uy = wiT;(u,vj, 05)
for some scalar w;. The speed of the wave is now obtained as 0; = —w;/v;.

Motivated by the previous analysis, as a first attempt we define

(5.3) Up = Ugy — A(U) Uy
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Figure 2

and try to find scalar quantities v;, w; such that

- o, = ——.
Ut = Zzwl ’ri(uaviaai)v ‘ (%

(5.4) { Uy = ;0 Ti(u, v, 03), w;

The trouble with (5.4) is that the vectors 7; are defined only for speeds o; close
to the " characteristic speed A\ = \;(u*). However, when u, ~ 0 one has
v; &~ 0 and the ratio w;/v; may become arbitrarily large.

To overcome this problem, we introduce a cutoff function (Fig. 2). Fix 61 €
10, 1/3] sufficiently small. Define a smooth odd function 6 : R +— [—267, 241]
such that

S if [s| <&y ' "

(5.5) 0(s) = { 0 if |s| > 36, 07 <1, 10" < 4/01.
We now rewrite (5.4) in terms of the new variable w;, related to w; by w; =
w; — Afv;. We require that o; coincide with —w;/v; only when this ratio is
sufficiently close to A} = \;(u*). Our basic equations thus take the form

(5 6) Uy = Zl (% ’Fi(uvviao—i))
' up = (wi — Ajvi) 7ilu, v, 04),
where
(5.7) = gy — A}ty o= A0 (f_) .

Notice that o; is not well defined when v; = w; = 0. However, recalling (4.16),
in this case we have 7; = r;(u), regardless of ;. Hence the two equations in
(5.6) are still meaningful.
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Remark 5.1. The decomposition (5.6) corresponds to viscous travelling
waves U; such that

Ui(x) = u(z), Ul(z) = vy, U/ = (A(u) — 03)U; .

From the first equation in (5.6) it follows that
ug(2) =Y Ui(z).

If o; = A} —w;/v; for all i = 1,...,n, ie. if none of the cutoff functions is
active, then

Uge () =up + A(u)uy

= Z (A(u) — Ui)vifi
= Z Ul'(z).

In this case, both of the equalities in (3.10) hold. Notice however that the
second equality in (3.10) may fail if |w;/v;| > §; for some i.

LEMMA 5.2. For |u — u*|, |uz| and |uzg| sufficiently small, the system

of 2n equations (5.6) has a unique solution (v,w) = (Vi,...,Vp, Wi,..., Wy).
The map (u,uz, Uuzg) — (v,w) is smooth outside the n manifolds N; =
{v; = w; = 0}; moreover it is CY1, i.e. continuously differentiable with

Lipschitz continuous derivatives on a whole neighborhood of the point (u*,0,0).

Proof. Given (v,w) in a neighborhood of (0,0) € R?", the vectors u,, us
are uniquely determined. Hence the solution of (5.6), (5.7) is certainly unique.
To prove its existence, consider the mapping A : R? x R™ x R" — R?" defined
by

(5.8) A(u,v,w)iZAi(u,vi,wi),
=1
. Uz"':z‘ u, vy, )\;k —G(wi/vi)

This map is well defined and continuous also when v; = 0, because in this case
(4.16) implies 7; = r;(u). Computing the Jacobian matrix of partial derivatives
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with respect to (v;, w;) we find

(5.10)
on, 0
8(vi,wi) n _)\:'Fz’ 'Fi
ViTiw + (Wi /0:)0}F; & —0/F; »
WiTi0 — Nf0iTi e — AN (Wi /03)00T o + (Wi f0;)200F o NFOLT; o — (wi/v;)0l7F; &

Here and throughout the following, by 6;, 0, we denote the function # and its
derivative, evaluated at the point s = w;/v;. By (5.10) we can write

oA
d(v,w)

(5.11) = Bo(u,v,w) + Bi(u,v,w).

Because of (4.24), the matrix functions By, By are well defined and continuous
also when v; = 0. Moreover, for (v,w) small, By has a uniformly bounded
inverse and By — 0 as (v, w) — 0. Since A(u,0,0) = (0,0) € R?", we conclude
that the map (v, w) — A(u; v,w) is C* and invertible in a neighborhood of the
origin. Therefore, given (u,u,,uz,), there exist unique values of (v, w) such
that

(5.12) Au, v, w) = (Ug, Uze — A(W)uy).
The inverse of the map A with respect to the variables v, w will be denoted
by A= (u; p,q). In other words,
AN u; p,q) = (v,w)  ifandonly if  A(u; v,w) = (p,q).

Since 7;(u, 0, 0;) = ri(u), we have
A(u,0,w) = ( 0, szrz(u))

Therefore,
A Y(u,0,q) = (0,w) where w; =li(u) - q.

In particular, A=1(u,0,0) = (0,0) € R?". Concerning first derivatives (which
we regard here as linear operators), we have

(5.13)

aAa(('ti; ?;)w).(@,w) = Bo(u; 0, w)-(9,10) = (Z diri(u) Z (i — )\jﬁi)ri(u)> :
(5.14)

OA" (10, 9) A

(p,q) = (v, where 0; = i (u)-p, W; = l;(u)-G+A;0; .
30.0) (p,q) = (0,0) (u)-p (u)-q
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We shall not compute the second derivatives explicitly. However, one
easily checks that
9?A %A %A

.1 = pu—
(5 5) 8vi8vj 81)1‘810]' 8wi8wj

=0 if i#j.
Moreover, recalling (4.24) and (5.5), we have the estimate

0?°N 9PN O*A 1

5.16 = 0O() - —.
( ) 81)7;2 ’ c%iawi’ 311)2-2 ( ) (51

Since the cutoff function € vanishes for |s| > 34;, it is clear that each A;
is smooth outside the manifold N; = {(v,w); v; = w; = 0}, having codi-
mension 2. Since all second derivatives are uniformly bounded outside the n
manifolds N;, we conclude that A is continuously differentiable with Lipschitz
continuous first derivatives on a whole neighborhood of the point (u*,0,0).
Hence the same holds for A= O

Remark 5.3. By performing a linear transformation of variables, we can
assume that the matrix A(u*) is diagonal; hence its eigenvectors 77, ... 7} form
an orthonormal basis:

(5.17) (ri, r) = 0.

Observing that

(5.18) (7o, 05, 5) — 7| = O(1) - (fu — '] + [oi]),

from (4.16) and the above assumption we deduce

(5.19)  (Fi(u,vi,04), 7j(u,vj,05)) =i + O(1) - (Ju — w*| + |v;| + |v;])
=0i; + O(1) - 0g ,

(5.20) (ri, 7) = O(1) - do , (ri, A(w)7j) = O(1) - & for j#1i.

Another useful consequence of (5.17), (5.18) is the following. Choosing dp > 0
small enough, the decomposition (5.6) will satisfy

(5.21) Jue| < Jvi] < 2v/nug].
7

We conclude this section by deriving estimates corresponding to (2.13)—
(2.15), valid for the components v;, w;. In the following, given a solution u =
u(t, ) of (3.1) with small total variation, we consider the decomposition (5.6)
of u; in terms of gradients of travelling waves. It is understood that the vectors
7; are constructed as in Section 4, when we take P = (u*, 0, Az(u*)) as basic
points in the construction of the center manifolds M;. Here u* = u(t, —00) is
the constant state in (2.1).
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LEMMA 5.4. In the same setting as Proposition 2.1, assume that the bounds
) hold on a larger interval [0,T]. Then for all t € [t, T], the decomposition
) is well defined. The components v;, w; satisfy the estimates

2.6
5.6
5'22) Hvi(t)HL1 ) Hwi(t)HLl :O(l) -0,
3) Hvi(t)HLoo ) ‘wi(t)HLoc ; | Ui»fv(t)} L’ wa(t)] L =001) -85 5

24) loie O] » [lwia(®) g = OQ) - 6.

ot
[N]

(
(
(
(5.
(5.

Proof. By Lemma 5.2, in a neighborhood of the origin the map (v, w) —
A(u,v,w) in (5.8) is well defined, locally invertible, and continuously differen-
tiable with Lipschitz continuous derivatives. Hence, for dg > 0 suitably small,
the L* bounds in (2.13) and (2.14) guarantee that the decomposition (5.6) is
well defined. From the identity (5.12) it now follows that

vi, w; = O(1) - (\U:v’ + ’Uw‘)-

By (2.6) and (2.13), (2.14) this yields the L' bounds in (5.22) and the L*>
bounds in (5.23). Differentiating (5.12) with respect to x we obtain

oA OA
(5.25) %ux + W(vz, wy) = (um, Ugre — AU Ugy — (ux ° A(u))ux)
Using the estimate
% —001) - (jo] + fu])
ou v

since the derivative dA/9(v,w) has bounded inverse, from (5.25) we deduce
(e w2) = O - (Jtae] + ltazal + 1l + ] (0] + u0])).

This yields the remaining estimates in (5.23) and (5.24). O

6. Bounds on the source terms

We now consider a smooth solution v = u(t,z) of (3.1) and let v;, w;
be the corresponding components in the decomposition (5.6), which are well
defined in view of Lemma 5.2. The equations governing the evolution of these
2n components can be written in the form

(6.1) { Vit + (Nivi)e — Vige = @i,

wi g 4+ (Nw;) e — Wi gz = b5 .
As in (4.21), we define here the speed \; = (Fi, A(u)f;). The source terms

¢i,1; can be computed by differentiating (3.1) and using the implicit relations
(5.6). However, it is not necessary to carry out in detail all these computations.
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T ffo
Figure 3b

Indeed, we are interested not in the exact form of these terms, but only in an
upper bound for the norms ||¢;||L: and |[¢;||L: -

Before giving these estimates, we provide an intuitive explanation of how
the source terms arise. Consider first the special case where u is precisely one
of the travelling wave profiles on the center manifold (Fig. 3a), say u(t,z) =
Uj(x — ojt). We then have

Uy = VT, ut:(wj—)\;vj)fj, vi=w; =0 fori#j,
and therefore
(62) { Uit + (szz)x — Vigxr = 0’

Wit + (Aiwi)g — Wize =0.

Indeed, this is obvious when i # j. The identity ¢; = 0 follows from (4.28),
while the relation w; = (A} — 0;)v; implies 1; = 0.
Next, consider the case of a general solution u = u(t,z). The sources on

the right-hand sides of (6.1) arise for three different reasons (Fig. 3b).

1. The ratio |w;/v;| is large and hence the cutoff function 6 in (5.7) is
active. Typically, this will happen near a point xg where u, = 0 but u; =
Uz # 0. In this case the identity (4.28) fails because of a “wrong” choice of
the speed: o; # A7 — (w;/v;).
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2. Waves of two different families j # k are present at a given point z.
These will produce quadratic source terms, due to transversal interactions.

3. Since the decomposition (3.10) is defined pointwise, it may well
happen that the travelling j-wave profile U; at a point x is not the same as
the profile U; at a nearby point /. Indeed, these two travelling waves may
have slightly different speeds. It is the rate of change in this speed, i.e. 0; 4,
that determines the infinitesimal interaction between nearby waves of the same
family. A detailed analysis will show that the corresponding source terms can
only be linear or quadratic with respect to o; ., with the square of the strength
of the wave always appearing as a factor. These terms can thus be estimated

as O(1) - 1)]2.0]-@ +0(1) v ]2 321

LEMMA 6.1. The source terms in (6.1) satisfy the bounds

¢i, i = O(1) - ZJ (‘UJ o] + [w, x|) lwj — 0;v;] (wrong speed)
+0(1) - 32 [vjew) — vjwjal (change in speed, linear)
2
+0(1) - >, ‘v ( ) X{|w]/v7|<361} (change in speed, quadratic)
+O(1) - 3254k (|vjvk| + vjevk] + [vjwg|

ij,xwﬂ + |U]wk,a:| + |ijk|) (interaction of
waves of different families)

From a direct inspection of the equations (6.1), it will be clear that the
source terms depend only on the third order jet (u, ug, Uyg, Ugzzy). Since all
functions ¢;, 1; vanish in the case of a travelling wave, for a general solution u
their size can be estimated in terms of the distance between the third order jet
of u and the (nearest) jet of some travelling wave. This is indeed the strategy
adopted in the following proof. An alternative proof, based on more direct
calculations, will be given in Appendix A.

Proof of Lemma 6.1. The conclusion will be reached in several steps.

1. The vector (ug,u;) = A(u, v, w) satisfies the evolution equation

oo (o) (10 1Ci)) - (),
= < (umoA(u))utE (ue ® Alu))ua ) '

Observe that, in the conservative case A(u) = Df(u), the right-hand side
vanishes because

(uz @ A(u))ur = (ur @ A(w))uy = D?f(u) (ug @ uy) .
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In the general case, recalling (5.6) we deduce

(6.4) (uz @ A(w))up — (ur @ A(u))u, = O(1) - Z (|vjvk| + [vjwgl).
i#k
2. For notational convenience, we introduce the variable z = (v, w) and
write A for the 2n x 2n diagonal matrix with entries \; defined at (4.21):

v (Y )

From (6.3) it now follows
OA u 1 A oA N A) _OA [ _0A
du 0z . A( u) w ) o Ou oz
%A 021\ Vg Vg
- au[Q] (ua: & Ux) - 82[2 : au 82 ® w,

Therefore,

6 (2]
() ( ]),

g A+ (e A — (v # Al )

%A 9%\ N Vg 5 9%\ Vg
+8u[2] (e ® ug) + 9212] Wy ® Wy + Ou 0z Us ® Wy

=F.

+

Since the differential JA/Jz has uniformly bounded inverse, the right-hand
sides in (6.1) clearly satisfy the bounds

(6.6) ¢i=0(1) E, ¥; = O(1) - E, i=1,...,n.

3. To estimate the quantity F in (6.5), it is convenient to introduce the
function

(67) Ai(u, 01, w1, 07) = < » Uifi(U,z)i;Ui) ) 7

w; — Njvi)Ti(u, vs, o)

so that A = > A; and E =) E;, where
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os)  m=( by ([0 0 Ta)

OA; < oA _
—f—% i 03, 90 Z A(u)v;7;

* ( i ((ug @ A(U))Uto— (ut @ Au))us) )

821\ 821\@' (e Uiz
o [2]ux® +8Z[2}- i A .

- )
(2

+82A 2 +2 82A ( O'i,xvi,:r: )
o zz

0o; 0z; 04,2 Wi g

621\1’ ( Ui x

Wi 2

2

Dup +2. 005,
e ou do; Tiothe

0N (070 , 0?0, 0%a; w?
(W“ 2w, i g > :

Notice that in (6.5) we regarded A as a function of the three independent
variables (u,v,w), while in (6.8) we regard A as a function of the four inde-
pendent variables (u,v,w, o). Regarding the o; as independent variables, one
has the advantage that the maps A; = A;(u, v;, w;, 0;) are now smooth, while
A; = Aj(u,v,w) in (5.8) was only Cb!, because of the singularities of the map
(u,vi,w;) — o5 in (5.7). The last term in (6.8) is due to the nonlinear de-
pendence of o; with respect to v;, w;. By 7;(v) we denoted the i*" component
of a vector v with respect to the basis {r],...,r:}. Also notice that in the
previous computation we used the identity

0N doi5 O Do 5
90, 0v; T Do o

.y w; [vi - ;T4 =0l o v \ _ (0
- wifvi(wifvi — X0 —(wifvi — NF)OIT & w; )\ 0 )"

4. By Lemma 5.2, the inverse map A~! sets a one-to-one correspondence

)\2 Wi

(’U,, Uyg, uxr) — (U, v, w)

between two neighborhoods of the point (u*,0,0) € R3". This map is C' with
Lipschitz continuous derivative. It can be prolonged to a map

(6-9) (U, Uz, Uz Ugaa) — (U, v, W, 0, nywa:,Ux)

which is one-to-one, but of course not onto. Indeed, (5.6) and the identity



254 STEFANO BIANCHINI AND ALBERTO BRESSAN

up + A(u)uy = Uy, together imply

(6.10) E w;iTr; + E it
= E Vi zTi + g Vil VT + g ViTiwViz + E ViTi 000z -
i ij i i

A vector (u,v,w, 0o, v, ws,0,) € R™ corresponds to some third order jet
(U Uz, Ugy, Uz ) Provided that it satisfies the vector equation (6.10), together
with
(6.11)
" Wil o — We s W
ai:)\f—G(—l) gy = Witia — Wisbiy <_) i=1,...n.

(3 Ui Vi

5. By the analysis at (6.2), E;(u,v?, w®, 09, 0%, w%,0¢) = 0 whenever

A
the argument corresponds to the third order jet of a viscous travelling i-wave.

This is the case if

(6.12) U]<~> = wj<-> = v;?l, = wﬁm =0, J;-?x =0, for all j # 1,
(6.13)
v’zx - (%\1 B U’Q)v?’ —l<> <386, o0 =\-— w? o =0
wi@ _ ()\’L N O_l<>)wz<> ’ ’UZ'<> 3 7 7 v? ) 1,T

In order to estimate E;(u,v,w,o,v;, wy,0,) we proceed as follows. We in-
troduce a new vector (u,v?, wO 08w, 0¥) corresponding to the jet of a
travelling i-wave, by setting

&
w; w!

(6.14) v=v,  wd = <—Z> vi, ol =o0i=\— % -
Ui

i i
Vi

The quantities v, w® , o are then defined according to (6.13), while the

,x 7 LX) T ,T
components j # i are as in (6.12). The above construction implies EZ<> =
Ei(u,v®,w®, 0%, 0%, w¢,09) = 0. Hence E; = E; — EZ<>

T T

6. Taking the inner product of (6.10) with 7;, recalling that 7; has unit
norm and is thus orthogonal to its derivatives, we obtain

(6.15) w; + (:\Z — /\f)vi =iz + 6,

where
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(6 16)
0, = Z <T‘z, )\ — f >Uj +ZZ T, T]urk UV
J#i j#i k
+ Z <ri, rj,v>vjvj,x + Z <m’, Tj,g>vj0j,x - Z <7“z'7 Tj> (wj - Uj,z)
J#i J#i J#i
=0(1) 60 Y (o] + lwj — vjal) -
J#i

The above estimate on ©; is obtained using (5.20) together with the L* bounds
n (5.23), (5.24) and the bound on 7, in (4.24). Summing (6.15) over i =
1,...,n and recalling that

o < 1, Ai = [ = O(1) - b, Jvil, Jwil = O(1) - 63 ,
from (6.16) we deduce

(6.17) Z lwi — vie| = O(1) - & Z lvj| .

We can now write
(6.18) vip =w; + (A — A)vi + O(1) - 60 Y _ (Joj] + [w; — vja])
J#i
= (5\Z — O‘i)’UZ' + (wi — Givi) + 0(1) - 0g Z (’Uj’ + |wj — Uj,x|) .
J#i
We recall that 6; = 0(w;/v;). The first equality in (6.18) yields the implications

(6.19)  |wi <30ivil = vie=01) v;+01) &Y |vj|.
J#i
(6.20) wil > 1l = vi=0) vig +O1) -6 Y |vj].
J#i
Moreover, using both equalities in (6.18) we deduce
(5\1 — Ui)wi = (5\1 — Ui) [vm — (:\1 — Af)vi] + 0(1) - dp Z (|Uj| + |wj — 1)j7$|)
J#i
= (N — 0i)vig — (N — A (vig — (w; — 0;0;))
+O(1) - 80 > (lvj| + wj — vj.)

JFi
Wy ws ~
=—Viz— | — —0i ) vig+ N — X)) (wi — Ov;
P (2= 00) v+ (= A1 = 6)

+O(1) - 80 > (lvj| + [wj — vj.l)
J#i
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and hence, by (6.20),

Wiy — (S\i — o) w; = w +O(1)- vzx lw; — 0;vi]
K 1
+0(1) - 80 > ([s] + [w; — vjal) -

i#i
From the definitions (6.13), (6.14), using the above estimates, we obtain
(6.21)  |w; — wl| = Jw; — O;vi]
vie — vl = O1) - [wi — Opvi + O(1) - 60 Y _ (Jvs] + [w; — vja])

J#i
Wi — wy| = [T L 0(1) [Py — Gy
+0(1) - 80 > (|vs] + [w; — vjal) -

JF

7. We now compute

(6.22) ]
OA; [ \v Aw) 0
R _ O — Y _
Ei=FEi—E; 0z; < Ajw; >ac ([ 0 A(u) ] A2>x
_8AZ<> ;\?v? B A(u) 0 A
0z )\?w? . 0  A(u) ‘).,
O\, OA; _
+6—Ji NiCig+ 3 Z A(u)v;T;

J#i
+ ( i ((ug @ A(U))Uto— (ur @ Au))ug) >

0%A; PN o
+ mum &Q Uz + Sull vir, Q@ vir;

azAi Vix Vix 821\? Uga: U7Z<,>w
" 82[2] ’ Wiz “ Wiz B 82[2] . ,wzom “ wz<>z
2A' 2A' .
07\ 2 9 0°A; ( Vi x > ® g

ol
907 %ot 25000 e

O2AC [ vf %A,
_2 ? ,T . ~§> 2 v .
auazi < wf?x ® vy + ou 80’1‘ O Uy

4o 02\ CixVix
821'80'1' O04,xWi z
OA; (820—1- 2 820'1‘ 8201' 2 >

+ U+ 2 Wi+ W
Oo; \ 0%v; “* ov; 0w; B ?w; “*
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Observe that the quantities u, v;, 03, 7, A; remain the same in the computations
of E; and ElO . Moreover, all the terms involving derivatives with respect to o;
vanish when we compute EZ<> .

In the remaining steps, we will examine the various terms on the right-
hand side of (6.22) and show that they can all be bounded according to the
lemma. As a preliminary, we observe that by (6.7) and (4.24) the derivatives
of the smooth function A; = A;(u, z;, 0;) satisfy

oA, %A, O2A;
u’ ouPl’ 9200,
IN;  O%A; 0%\,
Oo;’ Oudo;’ Oo?

)

(6.23) =0(1) - (Joil + |wil),

(6.24) =0(1) - (Jvf] + Jvwi]) .

8. We start by collecting some transversal terms. Using (6.4), (6.23) and
(6.24) we obtain
6.2

(6.25)

- 0
w A ( (102 @ A)ue = (w0 @ Afw)) i) )
82A’L - . 2~ - a A Uhm ~
B zk:vjvkrj QT — VT @ T; 8uazl %: ( Wig > R VT
7, 1

=0(1) > (Jojvel + lwyor]) +O1) > (Jwjwi] + [vjvi0] + [vjwiz]).
j#k i
Here and in the following, by “transversal terms” we mean terms whose size is
bounded by products of distinct components j # k, as in (6.25).

9. We now look at terms involving derivatives with respect to o;. One
should here keep in mind that, if o;, # 0, then both sides of the implication
(6.19) hold true. Using (6.23) we obtain

aQAi ( O4,2Vix

(6.26)

82@'801' O4,xWi x

=0(1)- v?ai,x + O(1) - (wivi g — W; 4V;)0; » + transversal terms

) = O(1) - vi (Jvig| + [wiz|)oi 0

= 0(1) . |’wﬂ}i7x — wi,xvi|

2
W;
(Y z

An application of (6.24) yields
O\, ~ 02\, 2 %A

)\om + 250 g Uy

Oo; do? Tia Oudo;

=0(1) - v; (’sz| + |0m\) + transversal terms

+0(1) -

transversal terms .
X s jorl <360y

(6.27)
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= 0(1) . |ini,x — wivi’x|

2
Wy
Vi x

Next, we observe that the quantity

+ transversal terms.

1) - )
+0(1) X {ws Jvs| <36, }

0%0; 9 0%0; &o; 9
V; 22— LW wW;

821}1' b + (%Z-awi LETLE + BQwi b

vanishes in the special case where w; ; = (w;/v;)v; 5. In general, using (6.19)

and (6.24) one obtains

(6.28)
2 2 2
(2 et
2

(o) (5
= gﬁ: {292(viwi,x - wivi,x)v;j - 9?(%)2}

= O(1) - piw; e — wivi gl

Lo@)- |u <q:)}_:> 2 . X{le/vj|<361} + transversal terms.
x

10. We now complete the analysis of the remaining terms. As a prelimi-
nary, we observe that the only difference between A? and A; is due to the fact
that one may have w? # w;. The first equality in (6.21) thus implies

(6.29) |AY — A, |DAY — DA,

|D?AY — D*Ai| = O(1) - |w; — ivi| + O(1) - 60 > _ [v] .
J#i

By (6.20) and (6.29), if we compute A; or its partial derivatives at the point
(u, v, w;, 0;) instead of (u,vio, w?,a?) = (u,vi,w?,ai), the difference in each

of the corresponding terms in (6.22) will have magnitude

O(1) - |w; — Ovi| - (|vie| + |wiz]) + transversal terms.

For example,

(6.30)
27 . 2 <
<% - %%} ) (viF; @ viF;) = O(1) - |w; — ;v v? + transversal terms
u u

=0(1) - |w; — B4 vzx + transversal terms.

Indeed, if w; # 0;v;, then both sides of the implication (6.20) hold true.
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Observing that 9%A;/0w? = 0 and using again (6.18), we have

82Ai Ui x Uiz vi<>a: Uiozv
ooy 5[ Yo ()= (s o ()]
=0(1) - (v2, — (v2,)?) + O(1) - (viwwiz — v wE,)

= O(l) . vi,xlwi - 921}1‘ + 0(1) . wfi@]wi — GZ’UZ‘

+0(1)|w;iv z — viw; | + transversal terms.

In a similar way, using (6.20) and (6.21) one derives the estimate

(6.32)
82Ai Yiw — vioz .
ou0z; ( u)’7 — w7,<> > Q@ vir; :O(l) : 'Ui,x|wi - 91’01’

+0O(1) - |w;v; & — Viw; 5| + transversal terms.

Using the identity (4.23), we now compute

() ([ 0]

. Uifiw(;\ivi):c 4 UiA(U)fi,uUi,x
T\ (wi = X)) (Nivi)a (wi = Ajvi) A(U)7i p0ig

s |: Tiuli + (~7,~_ Ui)fi,v ~0 :| < Vi x >
LN (FiuTi + (N — 00)Fin) Fiafi + (N — 00)Fin Wiz

‘{Ag“) A?M“Z%—Z[DAW" 0 ]A

With similar arguments as above, we obtain

(S\ivz’)zvm,v B (S‘i ”z’o)xvz‘of%
(Ai0s)20i (Wi — NFvi)Fi Av2) 08 (wf — AP )Y

= O0(1) - |viwiz — Vi gwi| - X

{lwi/vi|<36:}

+0O(1) - v o|w; — ;v;| + transversal terms,

< g\zxvz >_ f\?ﬂ?
)\mwi )\Z?mw?

= O0(1) - |vjw; 5z — Vigw;| + O(1) - v; z|w; — O;v;] + transversal terms,
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¢
ViVi.x . v, Ui,x
ViWi,x U?wﬁr

=0(1) - Jvjw; z — vigwi| + O(1) - v z|w; — O;v;] + transversal terms.

The above estimates together imply

os () ([0 0 1a)
_aaAj < A::Zz )m_ ({ A((JU) A?U) ] Ay)z
= 0(1) - lw; — G| (Jvia] + |wi])

+O(1) - |wiv; x — Viw; 5| + transversal terms.

~

This completes the proof of Lemma 6.1. O

7. Transversal wave interactions

The goal of this section is to establish an a priori bound on the total
amount of interactions between waves of different families. More precisely, let
u = u(t,x) be a solution of the parabolic system (3.1) and assume that

(7.1) |ue®)||p <00,  te[0,T].

In this case, for t > t, by Corollary 2.2 all higher derivatives will be suitably
small and we can thus define the components v;, w; according to (5.6), (5.7).
These will satisfy the linear evolution equation (6.1), with source terms ¢;,;
described in Lemma 6.1. Assuming that

T
(7.2) /t /1@(15,:3)\ + ity )| dad < 6o, i=1,....m,

and relying on the bounds (5.22)—(5.24), we shall prove the estimate
(7.3)

T
[ /Z (|vj0k |+ 05,20k |4 [vjwE| + |V 2wk |+ |vj Wk o |+ [wjwy] ) dedt = O(1)-62 .
R

As a preliminary, we establish a more general estimate on solutions of two
independent linear parabolic equations, with strictly different drifts.

LEMMA 7.1. Let z, 2% be solutions of the two independent scalar equations
(7.4) ze + ()\(t, :c)z)x — zgx = (t, ),

i+ (Wt 2)2), - 2k = ()
defined for t € [0,T]. Assume that
(7.5) itnf M(t,z) — supA(t,z) > ¢ > 0.
T
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Then

(7.6)
! ‘z(t,x)‘ ‘zﬁ(t,m)‘dmdgl ’z((),w)‘dx—i— ' ‘cp(t,:n)‘d:ndt
0 ¢ 0
. </ ]zﬁ(O,x)‘ dﬂc—l—/OT/ ‘gpﬁ(t, z)| dxdt) .

Proof. We consider first the homogeneous case, where ¢ = ¢! = 0. Define
the interaction potential

(7.7) Qz, ) = / Kz —y) |2(@)| |+ )| dedy,
by

. 1/c if s>0,
(78) K(s) = { 1/c-e/? if s <0.

Computing the distributional derivatives of the kernel K we find that
cK' — 2K" is precisely the Dirac distribution, i.e. a unit mass at the origin. A
direct computations now yields

—Q( dt/ K(z — y)|=(2)] |24(y)| dudy
= [ 56 =0 (e — 02))signs(o) |0
+ |2(2)| (25, — (ARH),) signzﬁ(y)} dzdy
— [ [ K@= {A@)] |F)] - ¥z 240)] } dady
+ [ K@ = { @] [F@)] + 20|50} dody
- / / (cK' —2K")|2(2)] |24 (y)| dzdy

——/ ‘z(m)‘ }zn(:v)‘ dx .
Therefore

T
(7.9) /0 /\z(t,x)\ |24(t, )| dadt < Q(2(0), 2*(0)) < % |200)|| . [[2*(0)]] s -

proving the lemma in the homogeneous case.
To handle the general case, call I',T* the Green functions for the corre-
sponding linear homogenous systems. The general solution of (7.4) can thus
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be written in the form

(7.10) Z(t,x):/F(t,x,ojy)z((),y)dy-i—/O/F(t,x,s,y)go(s,y)dyds,

t
Hta) = [T, 0.0)F0 )y + [ [ To(t.5.0)0 s 0)dyds.
0
From (7.9) it follows that
r 1
(7.11) / /F(t,:):, $,Y) - Fﬁ(t,x, s’ y) dedt < -

max{s,s’}

for every couple of initial points (s,y) and (s’,3'). The estimate (7.6) now
follows from (7.11) and the representation formula (7.10). O

Remark 7.2. Exactly the same estimate (7.6) would be true also for a
system without viscosity. In particular, if
2z + ()\(t,x)z)m =0, thj + ()\ﬁ(t, x)zﬁ)x =0,

and if the speeds satisfy the gap condition (7.5), then

% E //M\zﬁ(t,x)z(t,y)\dxdy] < —/\z(t,x)| |4(¢,2)| d.

In the case where viscosity is present, our definition (7.7), (7.8) thus provides
a natural counterpart to the Glimm interaction potential between waves of
different families, introduced in [G] for strictly hyperbolic systems.

Lemma 7.1 allows us to estimate the integral of the terms |v;vg|, |vjwy]
and |wjwg| in (7.3). We now work toward an estimate of the remaining terms
|0j,2Vk|, |vjcwg| and |vjwy 5|, containing one derivative with respect to .

LEMMA 7.3. Let z,2% be solutions of (7.4) and assume that (7.5) holds,
together with the estimates

(7.12) /OT/ lo(t, )| dzdt < b, /OT/ | (t,x)| dadt < by,

(113) e@lgs s 120y, <o, 2ol [# Ol <%
(7.14) [Xe )]+ [[Ae@)]| g0 < CF 60, lim A7) =0

for allt € [0,T]. Then one has the bound

T
(7.15) /O /}zx(t,xﬂ |2*(t, z)| dzdt = O(1) - &3.
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Proof. The left-hand side of (7.15) is clearly bounded by the quantity

T—1
I(T) =  sup / / |20 (t, 2)24(t + 7,2 + €)| dadt < (C*63)*- T,
(1,£)€[0,T|xR JO

the last inequality being a consequence of (7.13). For ¢t > 1 we can write z, in
the form

zx(t,x):/GI(l,y)z(t— L,z —y)dy
//G s, y) [ — (N2)a] (t — s, © — y) dyds,

where G(t,z) = exp{—x?/4t}/2/7t is the standard heat kernel. Using (7.6)

we obtain

(7.16)
T—1
/1 /’zx(t,:c) zu(t+7,$+§)‘da:dt

< /T_T// ‘Gx(l,y)z(t — 1,z —y) 2t + 7,2+ &)|dydadt
1
+/1TT//:/ H)\x”Loc ‘Gm(s,y)z(t —s,x—y) At +T2 +§)‘ dydsdxdt
—i—/TT//l / | Al ‘G$(s,y)zz(t —s,x—y) At +T,2 —1—5)‘ dydsdxdt
/T T// /‘G -8, T — )gp(s,y)zﬁ(t+7,$+£)’dydsd:rdt
t—1
< (/’Gz(l’y)’dy+||)‘x||[4°°/0 /\Gx(s,y)!dde)
ssyufg (/ITT/ |2(t — s, z — y)| ‘zﬁ(t+r,x+§)‘ dxdt)
+ (H)\HLw . /01/ |Gz (s,9)| dyds>
. (S,Syl,lf,g/f_T/ |2o(t — s, z —y)| [ (t+ 7,2 + &) dmdt)
+12* |- - / /‘G s,y)| dsdy - / /‘go (t,x)| dwdt

1 4(52 *
< (2 + Il 2= ) 22 4 A 2 D) + 076 i,
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On the initial time interval [0, 1], by (7.13),

1
(7.17) /0/|zx(t,x)zﬁ(t+7,x+€)}dwdt

< [ el 110+ Dl e < (7532,
Moreover, (7.14) implies
ML < [[AellLr < C*do < 1.
From (7.16) and (7.17) it thus follows that

2
4% + 1I(T) +C*53.

I(1) < (€' + =2 + 3

For 4y sufficiently small, this implies Z(7) < 952/c, proving the lemma. O

Using the two previous lemmas we now prove the estimate (7.3). Setting
z = vy, 2=y, A= :\j, M = X, we apply Lemma 7.1 which yields the
desired bound on the integral of |vjvg|. Moreover, Lemma 7.3 allows us to
estimate the integral of |v; ;v;|. Notice that the assumptions (7.13), (7.14) are
a consequence of (5.22), (5.23). The simplifying condition (¢, —00) = 0 in
(7.14) can be easily achieved, by use of a new space coordinate ' = z — Ajt.

The other terms |vjwy|, |lwjwg|, |vjwg| and |vjwy, .| are handled similarly.

8. Functionals related to shortening curves

We now study the interaction of viscous waves of the same family. As in
the previous section, let u = u(t, z) be a solution of the parabolic system (3.1)
whose total variation remains bounded according to (7.1). Assume that the
components v;, w; satisfy the evolution equation (6.1), with source terms ¢;, 1;
bounded as in (7.2). Relying on the bounds (5.22)-(5.24), foreach i = 1,...,n
we shall prove the estimates

T
(8.1) / /|wi7wvi — wiv; | dedt =O(1) - 62,
i

T .
o )
{ |wi/vi|<3§1 /Ui x

The above integrals will be controlled in terms of two functionals, related to

2
dzdt=0(1) - 63.

shortening curves. Consider a parametrized curve in the plane v : R — R2.
Assuming that ~y is sufficiently smooth, its length is computed by

(83 £0) = [ hata)] de.
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Following [BiB2], we also define the area functional as the integral of a wedge
product:

(3.4) A0 =5 [ ote) n o] dady.

To understand its geometrical meaning, observe that if v is a closed curve, the
integral

%/v(yM%(y)dy= %//Ky%(fv)/\%(y) dx dy

yields the sum of the areas of the regions enclosed by the curve -, multiplied
by the corresponding winding number. In general, the quantity A(y) provides
an upper bound for the area of the convex hull of ~.

Let now v = 7