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Abstract. An arrangement of oriented pseudohyperplanes in affine d-space defines 

on its set X of pseudohyperplanes a set system (or range space) (X, ~), ~ __q 2 x of 

VC-dimension d in a natural way: to every cell c in the arrangement assign the subset 

of pseudohyperplanes having c on their positive side, and let ~ be the collection of 

all these subsets. We investigate and characterize the range spaces corresponding to 

simple arrangements of pseudohyperplanes in this way; such range spaces are called 

pseudogeometric, and they have the property that the cardinality of ~ is maximum 

for the given VC-dimension. In general, such range spaces are called maximum, and 

we show that the number of ranges R e ~ for which X - R ~ ~ also, determines 

whether a maximum range space is pseudogeometric. Two other characterizations 

go via a simple duality concept and "small" subspaces. The correspondence to 

arrangements is obtained indirectly via a new characterization of uniform oriented 

matroids: a range space (X, ~) naturally corresponds to a uniform oriented matroid 

of rank I X I -  d if and only if its VC-dimension is d, R e ~ implies X - R e ~,  and 

I~1 is maximum under these conditions. 

1. Introduction and Statement of Results 

Set systems of finite VC-dimension have been investigated since the early 1970s 

(starting with [Sh], [Sa], and [VC]), and the concept has found numerous  
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applications in statistics (e.g., [Dul], [Va], [A1], [GZ], [Du2], [Pol], [Ta], 

[Po2]), combinatorics (e.g., [As], [DSW], [Hau], [KPW], [MWW]), learning 

theory (e.g., [BEHW], [Pea], [HKS], [BH], [G J], [LMR], [F1], see also the books 

[Na] and [AB]), and computational geometry (e.g., [CM], [CW], [HW], [Ma]). 

Although the VC-dimension is a purely combinatorial parameter associated witl~ 

a set system, it seems that it is mainly applicable to (and naturally occurs in) 

geometric settings, i.e., when the set system (X, ~) is obtained with X as a set ot 

points in d-space, and with ~ containing the intersections of X with certain ranges 

in d-space (hyperplanes, half-spaces, balls, simplices, etc.). That is why we use the 

terms range space for (X, ~), and range for a set in ~. 

The goal of this paper is to elaborate on this connection to geometry, in 

particular to arrangements of (oriented) hyperplanes. We succeed in characterizing 

those range spaces--called pseudogeometric range spaces--which come from 

hyperplanes, but we have to respect the usual frontiers of such combinatorial 

characterizations (pseudolines [Le], [Gr2], [GP2], [Rin], circular sequences 

[Per], [GP1], and oriented matroids [BL], [FL], [EM], [BLS+]): we cannot 

distinguish between stretchable and nonstretchable pseudoline (or pseudohyper- 

plane) arrangements, so our analogy is actually to simple pseudohyperplane 

arrangements. 

Intuitively speaking, arrangements of pseudohyperplanes consist of "topologi- 

cal" hyperplanes with the same intersection properties as straight hyperplanes, so 

they differ from the usual arrangements only with respect to the geometric notion 

of straightness that is not "recognized" by combinatorial structures like range 

spaces. 

A key concept in our approach is to exploit the structure of range spaces 

induced by maximality conditions on the number of ranges; an interesting new 

insight we have to offer in this context is the fact that in order to tell whether a 

range space (X, ~) is pseudogeometric, it suffices to count the number of ranges 

R ~ ~ for which the complement X - R is in ~;  this characterization presumes 

that (X, ~) is maximum, i.e., I~l is maximum for the VC-dimension of (X, ~). This 

is also the basis of another characterization where we show that it suffices to 

consider "small" subspaces to decide upon the pseudogeometric nature of the 

range space. 

We also consider range spaces where J~l is maximum under the additional 

restriction that ~ is closed, i.e., R e ~ implies X - R e ~. On the one hand, this 

class has a close relation to pseudogeometric range spaces and, on the other hand, 

is already powerful enough to encode uniform oriented matroids. These combina- 

torial objects are known to have topological representations as arrangements of 

pseudohyperplanes in projective space. They form the "bridge" between pseudo- 

geometric range spaces and the affine arrangements of pseudohyperplanes. 

We want to avoid introducing arrangements of pseudohyperplanes formally in 

this paper. However, this raises the problem of properly defining pseudogeometric 

range spaces. Our approach is to extract just one intuitive property that these 

arrangements are "expected" to have, and use it for the definition. Only at the 

end of the paper do we justify this process by relating the range spaces obtained 

in this way to oriented matroids. This has the advantage that the paper presents 
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itself at a completely combinatorial level. The correspondence between oriented 

matroids and actual arrangements is not dealt with here, but can be found 

elsewhere [BLS+], [EM], [FL]. 

The reader familiar with oriented-matroid terminology will discover coinci- 

dences in concepts and statements. However, we avoid referring to this terminology 

until the end of the paper. The starting point of this research was the investigation 

of range spaces, and we feel that the corresponding language is appealing for a 

first encounter with the subject. A section that shows how our results are related 

to known facts and imply new statements in the world of oriented matroids follows 

our presentation. 

In the rest of this section we formally introduce the crucial concepts and state 

our results. Proofs and the introduction of further (mainly technical) tools are 

postponed to the rest of the paper. 

Range Spaces, VC-Dimension, and the Fundamental Lemma 

We start by reviewing the basic definitions and facts about VC-dimension. We 

use the term "range space," rather than "set system" or "hypergraph," because of 

the motivating examples and in order to distinguish them from graphs when we 

use them as tools. 

Definition 1. A range space is a pair 5 p = (X, ~), with X a set and R _ 2 x. The 

elements in X are called elements of 55, and the sets in ~ are called ranges. 5e is 

called finite if X is finite. 

For Y _~ X, the restriction of re to Y is defined by 5air = (Y, ~lr) ,  

~]r:--- { R n  Y]R~.~}. 

We say that Y is shattered by Yt if ~ l r  = 2Y. 

The VC-dimension of ~ denoted by dim(re), is the maximum cardinality of a 

set Y ___ X shattered by ~ ;  if ~ is empty, then we define the VC-dimension 

to be - 1. 

For example, if X is the set of real numbers, and the set ~ of ranges is 

determined by intersecting X with intervals, then no three-element set is shattered: 

we can never "cut out" the smallest and largest out of three numbers by an interval. 

Since any two-number set can be shattered, the VC-dimension of this range space 

is two. Many more examples can be obtained via geometric ranges, some of which 

we will meet shortly. 

Obviously, the number of intervals defined on n real numbers is quadratic in 

n. The following lemma shows that this--as an upper bound--a l ready follows 

from the fact that the range space has VC-dimension two. The lemma can be seen 

as the fundamental lemma and the starting point of investigations of VC- 

dimension, and it was proved independently (and with different motivations) by 
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Shelah [Sh], Sauer [Sa] (answering a question of Erd6s), and Vapnik and 

Chervonenkis [VC]. Although this lemma (and some notions we use in what 

follows) can be formulated for infinite range spaces as well, we restrict our attention 

to the finite case, which is the one occurring in our application. Therefore, in all 

subsequent considerations any range space is assumed to be finite. 

In the following we use the integer function 

(") , t ,~(n)  , =  = = O ( n  ~) 

<d  i=0 

for d > - 1  and n > 0. �9 is additive in the following sense: 

Fact 2. 

�9 ~ ( n ) = O n ( n - 1 ) + O n _ x ( n - - 1 )  for d>_0, n >  1. 

Lemma 3. Let (X, ~ )  be a range space of VC-dimension d. Then [~[ _< Od(lX[). 

To see that the bound is tight, let X be a finite set of at least d elements and 

let ~ be the set of all subsets of X with at most d elements. Clearly, the resulting 

range space has VC-dimension d, and indeed I~1 attains the upper bound of the 

lemma. The above example with intervals is another example for VC-dimension 

two where the upper bound in Lemma 3 is attained. An interesting implication is 

that, for fixed d, [~l can only be polynomial rather than exponential. 

Maximum Range Spaces and Range Spaces from Half-Spaces 

This paper concentrates on range spaces for which the upper bound in Lemma 3 

is attained with equality: 

Definition 4. A range space (X, ~ )  of VC-dimension d is called maximum if I~1 

equals Od(lX I). 

An interesting instance of a maximum space can be derived from an arrange- 

ment of hyperplanes. Let X be a set of n hyperplanes in affme d-space and let 

~t(X) denote the arrangement formed by the hyperplanes. We assume X to be in 

general position, i.e., n ~ d, any d hyperplanes meet in a unique vertex, and any 

d + 1 have empty intersection (this also excludes parallelities among the hyper- 

planes). Suppose that for every hyperplane one of the two half-spaces is dis- 

tinguished as positive. Then each cell (or d-face) c of ~t(X) can be labeled with a 

subset of X, namely, the set of hyperplanes which have c in its positive half-space 

(Fig. 1). If ~ denotes the set of all cell labels, then 5g = (X, ~ )  is called the 
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{1,2,4} 

{ 1,2,3,4] 

11,4) \ 14} 

11,2,3} 

12,3} 

Fig. 1. Description of cells of an oriented hyperplane arrangement. 

description of cells of sO(X) [As], [Dul l  and is maximum of VC-dimension d. This 

follows from the well-known fact that the number of cells of ~r is exactly ~d(n) 

[Grl],  [Za], [Ed]. 

A range space which stems from a set of oriented hyperplanes (or, equivalently, 

from an arrangement of half-spaces) in this way is called geometric, and in what 

follows we assume any arrangement to be simple, i.e., in general position. 

Pseudogeometric Range Spaces 

A key step in many inductive proofs for arrangements of hyperplanes is to consider: 

(i) The arrangement obtained by removing one of the hyperplanes. 

(ii) The arrangement (of one dimension smaller) obtained as the intersection 

of one of the hyperplanes with the remaining hyperplanes. 

We want corresponding operations for our range spaces. For a geometric range 

space, removing a hyperplane just means removing its label from every range. For 

the other operation, observe that every (d - 1)-face on a hyperplane x corresponds 

to two adjacent cells whose label sets differ exactly by x. That is, in the 

corresponding range space those adjacent cells give rise to pairs of ranges 

(R, R u {x}). This motivates the following definition for a general range space. 
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Definition 5. For  a range space 6: = (X, ~ )  and x e X, we define 

~ \ { x }  = (X - {x}, ~\{x}), where ~ \{x}  := (R - { x } lRe~}  

and 

SP/{x} = (X  - {x}, ~/{x}), where ~ / ( x }  := (R e ~ l x  ~ R, R w (x} e ~}. 

Since the pairs of ranges which differ in exactly one element seem to be crucial 

for the structure of a range space, we look at the collection of such pairs which 

yields a graph on the ranges. (We denote by A A B the symmetric difference of 

sets A and B.) 

Definition 6. For  a range space 6: = (X, ~), the distance-l-graph DI(S#) o f  ~e is 

the undirected graph on vertex set ~ with edge set 

E :=  { ( R , R ' }  ~_ ~IIRAR'I = 1), 

where edge {R, R') is labeled with the unique element in R A R'. 

Let us consider a range space obtained from a one-dimensional arrangement 

of hyperplanes, i.e., a set of points on a line. Then the resulting VC-dimension is 

one, and it is easy to see that the distance-l-graph is simply a path (connecting 

the cells in the order as they appear on the line). In general, we get the following 

nice property, proved, e.g., in I-Du3] and [AHW-J (for the sake of completeness, 

we provide a proof in this paper). 

Lemma 7. I f  6: = (X, ~ )  is a maximum range space of  VC-dimension one, then 

Dl(6 e) is a tree, and each x ~ X occurs exactly once as an edge label of  Dl(ra). 

If the edges are directed (each edge pointing toward the respective larger set), 

any such directed tree determines a maximum range space. Hence, there is a 

natural one-to-one correspondence between directed trees and maximum range 

spaces of VC-dimension one. It is quite easy to see that whenever the distance-l- 

graph is a path, then the range space is geometric (and vice versa). Consequently, 

geometric range spaces of VC-dimension one are completely characterized. 

In order to carry this characterization to higher VC-dimension, we should at 

least require that in a geometric range space (X, #~) the subspace #t/{x} (coming 

from the subarrangement on the hyperplane x) is geometric for all x e X, and 

apply this property recursively until we reach the just settled one-dimensional case. 

This should also make sense if the arrangement in question actually consists of 

pseudohyperplanes (which coincide with hyperplanes in the one-dimensional case); 

based on this property we define pseudogeometric range spaces. As mentioned 

above, the question whether the following definition really describes the range 
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spaces coming from arrangements of pseudohyperplanes, becomes an issue only 

in the last section. For  the time being it suffices to have a formal definition we 

can work with, along with the intuition that it describes arrangements. 

Definit ion 8. A range space 6 a = (X, ~ )  of VC-dimension d is called pseudogeo- 

metric if it is maximum and either 

(i) d < 0, or 

(ii) d = 1 and DI(A ~ is a path, or 

(iii) d > 2 and 6~/{x} is pseudogeometric for all x e X. 

It is interesting to observe that the first example of a maximum range space 

we had (take as ranges all sets of  up to d elements) is as nongeometr ic  as possible. 

For  example, for d = 1 this gives a range space where the dis tance-l-graph is 

a star. 

We now proceed by exhibiting (probably easier to grasp) equivalent conditions 

for a maximum range space to be pseudogeometric. While the necessity of these 

conditions is quite obvious (from the geometric intuition), it is somewhat surprising 

that they are already sufficient. 

Duality and Characterization via Small Subspaces 

Definit ion 9. For  a range space 6 e = (X, ~ )  the (complementary) dual ~ 6~* of 6 ~ 

is defined as 

~ *  = (X, ~*), where ~ *  := 2 x - ~ .  

We prove that the dual of  a maximum range space of VC-dimension d with n 

elements is again maximum of VC-dimension n - d - 1. Similarly, we get for 

pseudogeometric range spaces: 

Theorem 10. A range space is pseudogeometric if and only if its complementary 

dual is pseudogeometric. 

In particular, this implies that if ~ = (X, ~ )  is pseudogeometric of VC- 

dimension d, and ]Xb -- d + 2, then ~,~* is pseudogeometric of  VC-dimension one 

and so its structure is completely determined, which--vice  versa--implies that the 

structure of  ~ is completely determined (we are more specific about  this later). 

This is in analogy to the fact tha t - -wi th  respect to combinatorial  type- - there  is 

only one simple d-dimensional arrangement of  d + 2 (pseudo-)hyperplanes. 

We can also prove that, for determining whether a maximum range space of 

This notion of duality is different from the "standard" one frequently used in computational 
geometry, where one associates with (X, ~) the dual (~, ~r) with ~r := {.~x[ x ~ X}, ~x = {R e ~[x ~ R}. 



406 B. G~irtner and E. Welzl 

VC-dimension d is pseudogeometric, it suffices to look at all the (d + 2)-element 

subspaces. 

Theorem 11. Let 6P = (X, ~ )  be maximum of VC-dimension d. The following 

statements are equivalent: 

(i) 6~ is pseudogeometric. 

(ii) ~ l r  is pseudogeometricfor all Y ~ X, I YI = d + 2. 

(iii) 6elr is geometric for all Y ~_ X, I YI = d + 2. 

Characterization via Cardinality of Boundary 

The number of unbounded cells in a simple hyperplane arrangement of n 

hyperplanes in d-space is 20a_ ~(n-  1). This can easily be seen by choosing one 

of the hyperplanes, call it h, and considering two hyperplanes parallel to h on 

either side, sufficiently far away so that all unbounded (and only unbounded) cells 

are intersected. In terms of the corresponding range space, the labels associated 

with these unbounded cells are those where the complementary label also appears. 

Definition 12. For a range space 6e = (X, ~ )  the (complementary) boundary is 

defined as 

dS,r = (X, 8~), where d ~ ' . = { R e ~ I I X - - R ~ } .  

Similarly as in Lemma 3 we can prove an upper bound for IdOl, namely, 

I~1  -< 2~d-l(n - 1) for a range space (X ,~ )  with IXI = n and dim(X,~)  = d. 

Again simple hyperplane arrangements give rise to range spaces which attain this 

bound, and actually we get: 

Theorem 13. A maximum range space (X, ~) of VC-dimension d >_ 0 is pseudogeo- 

metric if and only/flO~l = 2 O u - l ( I X I -  1). 

Correspondence to Oriented Matroids 

In order to relate pseudogeometric range spaces to simple arrangements of 

oriented pseudohyperplanes we exploit the representation theorem of Folkman 

and Lawrence [FL]  that relates such arrangements to oriented matroids. To this 

end we need to introduce a new class of range spaces, called pseudohemispherical 

range spaces. This is due to the fact that pseudogeometric spaces come from 

arrangements in a~ine space while oriented matroids correspond to arrangements 

in projective space. The pseudohemispherical property is the "projective version" 

of the pscudogeometric one: 
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Defini t ion 14. Let ~;a = (X, ~ )  be a range space. The (complementary) closure of 

SP is the range space 

g = (X, ~-), where ~ ' . = ~ t ~ { X - R I R e ~ } .  

6e is called closed if 6 ~ = 

Defini t ion 15. Let D a = (X, ~ )  be a range space of VC-dimension d > 1. ~ is 

called pseudohemispherical if a pseudogeometr ic  space ~7- # S~ with 6e = ~ exists. 

.~- is called an underlying space of ~. 

In order to get an intuitive idea what  this definition means, recall that  the 

d-dimensional projective space can be visualized as the sphere S ~ with hyperplanes 

being great (d - 1)-spheres, and we can get from an affine hyperplane ar rangement  

to its corresponding projective one as follows. Think of E t as the tangential  

hyperplane touching S t c E t+ 1 in the nor th  pole. E d can be mapped  bijectively 

to the open northern hemisphere of S d using central projection (with the center of 

the sphere as the center of projection). This t ransformat ion takes a hyperplane h 

of E a to a relatively open great half-sphere of dimension d - 1. This half-sphere 

can be continued to a full great ( d -  1)-sphere in S t, so an ar rangement  of 

hyperplanes  in E d induces an ar rangement  of great spheres in S t. This is a projective 

a r rangement  and the equator  plays the role of the "line at infinity" (Fig. 2). 

Moreover ,  if we have positive and negative half-spaces associated with the 

/ 

Fig. 2. From half-spaces to hemispheres. 
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hyperplanes, this information in an obvious way determines positive and negative 

hemispheres associated with the great spheres, so that we obtain an arrangement 

of hemispheres in S d. Since an antipodal cell has been generated for every cell in 

the underlying hyperplane arrangement, the corresponding description of cells 

(defined in the obvious way as for half-space arrangements) is the closure of a 

geometric range space and is called a hemispherical range space. Consequently, 

we call the closure of a pseudogeometric range space pseudohemispherical. 

Under the closure operation we lose information, since different pseudogeo- 

metric range spaces can have the same closure. This corresponds to the fact that 

depending on where the equator  is chosen in an arrangement of hemispheres, the 

underlying affine arrangement changes. However, note that by "fixing" the equator 

we get a one-to-one correspondence. 

Definition 16. For a range space 5 ~ = (X, ~ )  and e a distinguished element not 

in X, the range space 

f f = ( X u { e } , ~  ~) with ~ ' . = ~ l u { ( X u { e } ) - - R l R e Y l }  

is called the extended closure of ~. 

It is not surprising from the intuition that the extended closure of a pseudogeo- 

metric range space is pseudohemispherical as well. 

Theorem 17. The mapping 5~ F-, 5~ forms a bijection between the pseudogeometric 

range spaces on X and the pseudohemispherical range spaces on X u {e}. 

It turns out that a pseudohemispherical space 5g = (X, ~ )  of VC-dimension d 

with IXI = n has I ~ l  = 2(I'd-l(n - 1) ranges. This is the maximum number of 

ranges that a closed range space of this VC-dimension can have (the bound of 

Theorem 13). Moreover, the pseudohemispherical spaces are already characterized 

by this property, a fact that is not apparent from their rather clumsy definition. 

As a consequence we obtain a new and simple characterization of uniform oriented 

matroids. This will finally give us the relation to a r r a n g e m e n t s ~ e t a i l s  are given 

in the last section. 

Theorem 18. For a set X of  cordinality n a natural (one-to-one) correspondence 

between the uniform oriented matroids of rank n - d >_ 0 on X and the closed range 

spaces (X, ~ )  of VC-dimension d with I ~ l  = 2o~_  x(n - 1) exists. 

2. Basics and Maximum Range Spaces 

This section will make the reader familiar with the necessary range-space terminol- 

ogy and it presents basic properties of maximum range spaces. In particular, we 

introduce minors (or subspaces) of range spaces and prove the fundamental lemma 
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of VC-dimension theory as well as the related bound on the number of ranges in 

the boundary of a range space. We give equivalent characterizations of maximum 

range spaces and discuss the structure of their distance-l-graph. 

Basics on Range Spaces 

Definition 19. For a range space 6: = (X, :~), Y ~_ X, we define 

9 ~  ( X- -  Y, ~\Y) ,  where ~ \ Y : =  {R -- YIRe/~}, 

Y ' / Y  = (X  -- Y,~I/Y), where ~t/Y:= { R e ~ I R  c~ Y =  ~ , R  w Y' 6~I, VY'  ~_ Y}. 

~ \  Y and 67/Y are the minors of 6: with respect to Y. 6,~\ Y is said to arise from 

6 a by deletion of Y, while ~ / Y  arises by contraction of Y. In a natural way 6 : \Y  

and 6 : / Y  generalize 6e\{x} and ~ / { x } ,  as introduced in Definition 5. If :T is 

geometric, ~ \ Y  is obtained by deleting the hyperplanes in Y from the generating 

arrangement, while S: /Y  corresponds to the subarrangement induced by the 

remaining hyperplanes in the flat ~h~r h. 

If Y is nonempty and Yl . . . . .  Yk is an arbitrary ordering of the elements of Y, 

then clearly 6 : \ Y =  6 ~ \ { y , } \ ' " \ { y k } .  Via an easy induction part (i) of the 

following lemma also implies 6e / Y = 6:/{ Y l } / " " / { Yk }" 

Lemma 20. Let S, ~ = (X, ~)  be a range space, x, y e X,  Y ~_ X.  

(i) ~/Y/{x} = ~ / ( r , _ ,  {x}) for x r y. 

(ii) I~1 = l~\{x}l + I~/{x}l. 

(iii) ~ \ Y  = ~ l x - r .  

(iv) :~/{x} \{y}  ~_ ~l \{y} /{x} .  

(v) dim(6:) = d >_ 0 implies dim(a"\{x}) _< d, dim(9~/{x}) _< d - 1. 

The proof requires only elementary set manipulations and is omitted for the 

sake of brevity. Now we are able to show the fundamental lemma of VC-dimension 

theory that establishes the bound I~/[ < ~d(n) for any range space (X ,~ )  of 

VC-dimension d with f X] = n elements. 

Proof  o f  Lemma 3. We proceed by induction on d and n. The assertion is easily 

seen to be true for d < 0 and for n = d > 0, since in this case 

o n, 
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Now assume d > O, n > d. By hypothesis, the bound holds for 5g\{x} and 

5t'/{x}, x e X. Using the preceding lemma this immediately yields 

[~\{x}[ < q~d(n -- 1) and [~/{x}[ < ~d_l(n - i), 

SO 

I~1 : I ~ K { x } l  + I ~ / { x } l  ~ ~a(n - 1) + ~ d -  l(n - 1) = ~n(n) 

by Fact 2. []  

5~ = (X, ~ )  is maximal if dim(X, ~ w {R}) > dim(X, ~)  for all R e 2 x -- ~ .  By 

the fundamental lemma every maximum space is maximal, but the converse is not 

true. As a counterexample consider the range space (X, ~)  with 

X = {1, 2, 3, 4}, 

= {{1}, {2}, {4}, {1, 4}, {2, 4}, {3, 4}, (1, 2, 3}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}}. 

It is straightforward to check that b" is maximal of VC-dimension two but not 

maximum, since I~[ = 10 < ~2(4) = 11. 

The fundamental lemma helps to prove another bound on the maximum 

number of ranges in the boundary of a range space (Definition 12). We obtain 

Theorem 21. Let (X, ~)  be a range space of VC-dimension d >_ O. Then 

[0~l < 2~a-l([X[ - 1). 

Proof. For  d = 0 the bound is obvious. If d > 0 fix x e X and define ~ '  ..= 

{ReO~[xeR} .  It is easily seen that if Y ~ _ X - { x }  is shattered by ~' ,  then 

Y u {x} is shattered by 0~;  so dim(X - {x}, ~ ' )  _< d - 1, which by the funda- 

mental lemma implies I~ ' l  < ~ d -  l ( IXl  - 1). Finally, observe that [ 0~[ = 21~ ' l .  
[]  

Characterizing Maximum Range Spaces 

The extremal property defining maximum range spaces (Definition 4) does not 

give immediate insights into the structure of these range spaces, so it seems 

appropriate to look for equivalent characterizations that reveal more of it. For  

example, it can be shown that the maximum property is inherited by the minors, 

a fact that is the basis of many subsequent inductive proofs. Another useful 

property is that the maximum property is maintained under duality (Definition 

9). Before we give a list of equivalent statements most of which characterize 

maximum range spaces via certain properties of minors, let us briefly discuss the 
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relation between the two minor  operations of deleting and contracting elements 

(Definition 19). The point we want to stress is that al though they look like very 

different operations at first glance, they are not. On the contrary,  they should be 

considered as having equal rights with respect to all concepts in this paper. The 

reason is that  deletion and contract ion change their roles under duality: 

Observation 22. Let 6 e = (X, ~ )  be a range space, Y ~_ X .  Then 

(i) (~ \Y)*  = ~t*/Y. 

(ii) (#UY)* = ~I*\  Y. 

As it turns out, we are only concerned with classes of range spaces that  are 

closed under duality, so in any context referring to the structure of a range space 

the minor  operations appear  in a completely symmetric way; if one of them is 

preferred in an argument,  this is merely due to technical convenience. The 

symmetry already appears in the next theorem which is the major  tool to handle 

and manipulate maximum range spaces. 

Theorem 23. Let  6e = (X, ~ )  be a range space, and let d >__ 0 be a natural number 

with I XI  = n > d. The following statements are equivalent: 

(viii) 

(i) 6f is maximum o f  VC-dimension d. 

(ii) 6a\{x} and 6e/{x} are maximum of  VC-dimension d and d - 1, respectively, 

f o r  all x ~ X.  

(iii) dim(6e) = d, and 6~\{x} and ~ / ( x }  are maximum o f  VC-dimension d and 

d - 1, respectively, for  some x e X .  

(iv) dim(6 e) = d and 6e/{x} is maximum o f  VC-dimension d - 1, for  all x ~ X.  

(v) dim(6 a) = d and I~/al = 1, for  all A ~_ X ,  I At = d. 

(vi) 6~* is maximum o f  VC-dimension n - d - 1. 

(vii) dim(6e*) = n - d - 1 and 6a\{x} is maximum o f  VC-dimension d, for  all 

x ~ X .  

dim(S~*) = n - d - 1 and I~IAI = 2 a+l - 1, for all A ~_ X ,  Ia[ = d + 1. 

To see that the additional dimension requirements in some of the statements 

are necessary in order to guarantee equivalence with (i), consider X = {1, 2, 3} and 

= ( ~ ,  {1), {2}, {1, 2, 3}} with x = 1 for (iii), 

= { ~ ,  {1}, {2}, {3}, {1, 2, 3}} for (iv), (v), and 

= {{1, 2}, {1, 3}, {2, 3}} for (vii), (viii). 

Such examples exist for arbi trary [XI and d. 



412 B. G/irtner and E. Welzl 

Proof. We proceed by showing first the equivalence of statements (i)--(v), then we 

prove (i) r (vi). Together, this yields the missing equivalences. 

(i) =~ (ii) Let Y be maximum of VC-dimension d, x e X. Then 

Ca(n) = I~1 = I~r + I~/{x)l  ~ Cd(n -- 1) + (I)d_ l(n - -  1) = Ca(n). 

This yields [~ \{x}[  = Cd(n - 1) and [~/{x}l = Ca- l (n  - 1), so Yk{x} and Y / { x }  

are maximum of VC-dimension d and d - 1, respectively, for all x e X. 

(ii) ~ (iii), (iv) We only need to show that dim(Y) = d. Let d' >_ d denote dim(Y), 

and let A with [A [ = d' be shattered by :~. If  IX[ > d', then there is y e X - A, and 

A is shattered also by ~ \ { y } .  Since Y \ { y }  is of VC-dimension d we get [A] = d. 

If  [A[ = IX[ = d', then ~ = 2 4 which implies ~/{x}  = 2 A-tx~ for all x e X ,  so 

d - 1 = dim(Y/{x}) = [A[ - 1. 

(iv) =~ (i) We proceed by induction on n. If n = d + 1, let Y be a set of cardinality 

d shattered by ~ .  Then ~ \ { x }  = ~ l r  = 2r for x the unique element in X - Y, and 

observing that  2 d = ~a(n - 1) we obtain 

I~1 = I~ \{x} l  + I~/{x}l = 2 a + C d - , ( n  - 1) = Ca(n) .  

Thus Y is maximum. 

N o w  assume n > d + 1 and choose x e X .  Y\{x}/{y}  is of  VC-dimension at 

most  d - 1 for all y ~ x, and applying Lemma 20(iv) we get 

r - 2) _> [~2\{x}/{y}l >_ I~/{y} \{x} l  = Ca-,(n - 2), 

which holds because Y / { y } \ { x }  is maximum of VC-dimension d - 1 by implica- 

tion (i)=~ (ii). However,  then Y \ { x } / { y }  = Y/{y}\{x} ,  so Yk{x}/{y} is maximum 

of VC-dimension d - 1. Since this holds for all y, Yk{x} is maximum of dimension 

d by the inductive hypothesis. Finally we get 

[,~[ = [~\{x}]  + [~/{x}[ = ~a(n -- 1) + ~a_t(n -- 1) = ~a(n), 

which means that  Y is maximum. The last equation also yields implication 

(iii) =~ (i). 

(i)r To see that " ~ "  holds, iterate implication ( i ) ~  (iv) d times, starting 

from ~.  This shows that Y / A  is maximum of VC-dimension zero for all [A[ = d, 

which implies I~/AI = r  -- 1. On  the other  hand, if [~/A[ = 1, then Y / A  is 

maximum of VC-dimension zero, for all ]A[ = d. Using the fact that  dim(Y) = d 

and Lemma 20(v) we get dim(Y/B) = d - k for [B[ = k. Iterative application of  

(iv) =~ (i) then shows that Y is maximum. 

( i )~(v i )  Because of  symmetry it suffices to show ":*-"; we have 2 n - ca(n) = 

~n -~ -  l(n), so it remains to show that  Y *  is of  VC-dimension at most  n - d - 1. 

Assume on the contrary  that  there is Y _ X, [ Y[ = n - d, shattered by ~* .  Then 

IX - Y[ = d, and from (i) ~ (v) we get that  there is a unique range R e ~ / ( X  - Y). 

Since R _ Y, there is R'  e ~ * ,  such that Y n R'  = R. This implies R '  _ R and 
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R' - R contains no element of Y. However, then R' is of the form R' = R u Z, 

Z _ X - Y, which is a contradiction, since R e ~ / ( X  - Y) implies that all the 

ranges of this form are contained in ~.  

(vi),~(vii)~-(viii) These equivalences are obtained by applying the "dual" 

equivalences (i),~ ( i v )~  (v) to 5e*, together with Observation 22. [] 

Corollary 24. Let 6e = (X, ~1) be maximum o f  VC-dimension d, I XI : n. Then, for 

all x, y e X,  

s e / { x } \ { y }  = 

Proof  For d < 0 the statement is obvious, and for n = d we have ~l / {x} \ {y}  = 

~i \ {y} /{x}  = 2 x-lx'rl. In any other case the theorem implies 

I~ / {x} \ {y}[  : [s~\{y}/{x}[ : ~a_ ~(n - 2). 

Together with Lemma 20(iv) the claim follows. [] 

The D&tance-l-Graph 

We introduce the notion of"swapping" as a tool to simplify subsequent considera- 

tions. In the case of geometric range spaces, this operation corresponds to the 

reorientation of hyperplanes in the generating arrangement. 

Definition 25. For 6g = (X, ~)  and D ~_ X ,  5 a swapped D is the range space 

5 e A D = ( X , ~ I A D )  with ~ I A D : = { R A D I R ~ t } .  

Lemma 26. For any range space 5,~ = (X, ~), D ~ X,  we have: 

(i) I ~ A D I  = I~1. 
(ii) dim(6 e A D) = dim(SZ). 

We have already indicated that the distance-l-graph (Definition 6) captures 

crucial properties of a range space. In particular, pseudogeometric spaces are 

defined via a certain property of it (Definition 8). We conclude this section by 

exhibiting a basic feature of the Dl-graph in the case of maximum range spaces, 

and we use the fact that swapping does not change the Dl-graph (strictly speaking, 

Dl(Se) and D~(S~ A D) are isomorphic with corresponding edges having the same 

labels). For geometric spaces this reflects the fact that reorienting some hyperplanes 

does not change the combinatorial structure of the arrangement. So whenever we 

consider some structural property of D1(5 e) (isomorphism type, connectivity, etc.) 

we are free to replace 5e with some swapped version ~ A D, and an appropriate 

choice of D may result in shorter and more elegant formulations. 
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The key result on the D ~-graph of a maximum range space is that it is connected. 

Actually, a stronger property holds: any two ranges are joined by a path of the 

shortest possible length which equals the cardinality of their symmetric difference 

(for a characterization of such graphs see [Dj]). First we need a lemma: 

Lemma 27. Let A a = (X, ~ )  be maximum of VC-dimension d > 1 and assume 

X ~ ~.  Then, for all R ~ ~1, R # X,  there is x e X such that R u {x} e ~ .  

Proof. We proceed by induction on n.'= IXI. For n = d, any subset of X is a 

range so the lemma holds in this case. Now assume n > d and consider R e ~ ,  

R # X. Choose y e X with y ~ R. If R = X - {y}, then R w {y} e ~ .  Otherwise the 

inductive hypothesis applies to R e ~ \ { y } ,  so z e X - {y} with R E ~ \{y} / { z}  = 

~t/{z}\{y} exists (Corollary 24). This is equivalent to R ~ ~/{z} or R u {y} e ~l/{z}, 

which implies R w {z} ~ or R u {y} e ~ .  []  

Theorem 28. Let ~ = (X, ~ )  be maximum of VC-dimension d >_ 1. For any two 

ran#es R, R' ~ ~1 there is a path of length 6(R, R'):= [R A R'I joinin# R and R' in 

Dl(re). 

Proof. By swapping assume R' = X and iterate the lemma. []  

In the case of dim(re) = 1, D1(6 p) is a tree on ~ with every element of X 

occurring exactly once as an edge label. This has been stated in Lemma 7, and 

now it is easy to prove. 

Proof of  Lemma 7. From the previous theorem we get that D1(6 e) is connected. 

To see that it is acyclic note that x e X  occurs exactly I~/{x}l = 1 times as an 

edge lebel. On the other hand, it is an easy observation that if x e X occurs as a 

label in a cycle of edges, then it has to occur at least twice in this cycle. It follows 

that there can be no cycle. []  

3. Pseudogeometric Range Spaces 

In this section we basically prove the characterizations of pseudogeometric spaces 

via duality (Theorem 10), small subspaces (Theorem 11), and cardinality of 

boundary (Theorem 13). The latter is based on a version of Levi's Enlargement 

Lemma for pseudogeometric spaces. Before this we present a characterization 

theorem similar to Theorem 23 for maximum spaces. 

Let us review the definition of pseudogeometric spaces; the following is just 

the nonrecursive version of Definition 8. 

Lemma 29. A maximum ranae space 6 a = (X, ~i) of VC-dimension d is pseudo#eo- 

metric if either d < 0 or d > 0 and DI(re/Y) is a path for any Y with I YI = d - 1. 
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Observe that,  for I XI ~ d + 1, any m a x i m u m  space is pseudogeometric.  As in 

the m a x i m u m  case, we can come up with a list of equivalent s tatements  characteriz- 

ing the pseudogeometr ic  proper ty:  

Theorem 30. Let 6: = (X, ~?) be a range space, and let d >_ 2 be a natural number 

with IXI = n > d + 2. The following statements are equivalent: 

(i) 6/' is pseudogeometric of VC-dimension d. 

(ii) 6e\{x} and S#/{x} are pseudogeometric of VC-dimension d and d -  1, 

respectively, for all x ~ X. 

(iii) dim(re) = d and 6el{x} is pseudogeometric of VC-dimension d - 1, for all 

x e X .  

(iv) dim(6:) = d and 6:/A is pseudogeometric of VC-dimension 1, for all A ~ X, 

I A I - - d - 1 .  

(v) 6:* is pseudogeometric of VC-dimension n - d - 1. 

(vi) dim(6:*) = n - d - 1 and ~ \ { x }  is pseudogeometric of VC-dimension d, 

for all x e X. 

(vii) dim(6 a*) = n - d - 1 and ~ t~  is pseudogeometric of VC-dimension d, for 

all A ~_X, IAl = d  + 2. 

Note  that  the equivalence of (i) and (v) yields Theorem I0. 

C o m p a r e d  with the corresponding Theorem 23 for m a x i m u m  range spaces, we 

lose the characterizat ions via the minors 6:/A for I a l  = d and 6:IA for I AI = 

d + 1 - - they  can be pseudogeometr ic  even if 6 # is not. However ,  if we consider 

minors  on one element more,  i.e., Se/A for ]AI = d - 1 and S:IA for IA] = d + 2, 

then we can already recognize the pseudogeometr ic  property.  

An analogue of s ta tement  (iii) in Theorem 23 cannot  be added here. There are 

cases where 6: \{x} and 6e/{x} are pseudogeometr ic  of  VC-dimension d and d - 1, 

respectively, for some x, but 6e itself is not  pseudogeometric.  To  get such an 

example, let 6 e' = (X, ~ ' )  be a pseudogeometr ic  range space, fix x e X, and define 

= (X, ~ )  by ~ : =  ~l'/{x} u {R u { x } l R e ~ '  - ~ ' /{x}},  i.e., ~ arises f rom ~ '  

by adding x to every range not in ~l/{x} (this is known as "shif t ing" [Hau l ,  [St]). 

We get ~ \ { x }  = ~t'\{x} and ~i/{x} = ~t'/{x}, so these minors  of ~ will be 

pseudogeometric.  On the other hand, it is not hard to show that  6:  is again 

maximum,  but  since for A _ X - {x} we have 

~ / A  = ~'/(A u {x}) u {R u {x}lR ~ ~ ' /A  - ~I'/(A u {x})}, 

by choosing x e X and I AI = d - 1 such that  ~I/A ~ ~ ' /A  (which we can do for 

I XI > d) we see that  Se/A is not  pseudogeometric.  Thus 5 e cannot  be pseudogeo-  

metric by definition. 

Observe that  we need d > 2---otherwise s tatement  (iii) only implies that  6 :  is 

max imum;  the same holds for the requirement IXI > d + 2 in connect ion with 

s tatement  (vi). 
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Proof The equivalence of (i), (iii), and (iv) just repeats Definition 8 and Lemma 

29. Furthermore, (ii) immediately implies (iii). Implication (i)=~ (ii) follows by 

observing that if DI(S/Y) is a path, this also holds for DI(S/{x}/Y), arising from 

DI(S/Y) by contracting the edge labeled with x. Equivalence (v) c:, (vi) c~ (vii) is 

dual to (i) r (iii) ~ (iv). 

We are left to prove equivalence (i),=,(v), where because of symmetry one 

implication suffices. Assume ~ is pseudogeometric of VC-dimension d. By Theo- 

rem 23 the range space re* is already maximum of VC-dimension n - d - 1, so 

by Theorem 13 (which we prove shortly) if suffices to show that I~(~*)1 = 

2~,-d-2(n - 1), which by an easy computation follows from 

I O ( ~ e * ) l  = I ~ * 1  - I~e  - d ~ e l .  [] 

The characterization of the pseudogeometric property via small subspaces 

(Theorem 11) is now an immediate consequence of the theorem. The require- 

ment "dim(N*) = n - d - 1" can be omitted since it is already imposed by the 

maximum property of ~ and the fact that for [ YI = d + 2 any pseudogeometric 

range space ~ [ r  is actually geometric follows by considering the dual range space 

(6alr) * = 6e*/(X - Y) which is pseudogeometric of VC-dimension one. Its D 1- 

graph is a path connecting all the ranges, so any two pseudogeometric range spaces 

of VC-dimension one on Y are isomorphic, i.e., equal up to swapping and renaming 

of elements. Of course, this carries over to the primal setting, so any arrangement 

of d + 2 hyperplanes in d-space has to generate an isomorphic copy of 6e It, which 

means that this range space has to be geometric. 

We have just mentioned the swap operation (Definition 25) in connection with 

pseudogeometric spaces, and it is quite clear that swapping does not affect the 

pseudogeometric property. 

Lemma 31. 6 a = (X, .~) is pseudogeometric if and only if 6 a A D is pseudooeo- 

metric, D ~_ X. 

Levi's Enlargement Lemma 

We are approaching the proof of Theorem 13 (the characterization of pseudogeo- 

metric range spaces via the number of ranges in the boundary). It is based on a 

variant of Levi's Enlargement Lemma (Levi's lemma for short) for pseudogeometric 

range spaces. The original version states that a pseudoline arrangement in the 

plane can be enlarged by a new pseudoline containing any two given points (which 

do not already lie on a common pseudoline). Although this fact is not very hard 

to prove, it should not be considered trivial: in three dimensions, it is not true 

that every pseudoplane arrangement can be enlarged by a pseudoplane containing 

three given points [GP3] (recently, Richter-Gebert [RIG] has shown that there 

are arrangements that do not even allow a new pseudoplane containing two certain 

points). However, it is true in all dimensions that any two points can be connected 



Vapnik-Chervonenkis Dimension and (Pseudo-)Hyperplane Arrangements 417 

by a pseudoline, i.e., a curve in space which intersects (and crosses) every 

pseudohyperplane exactly once. In the following we define the range-space 

analogue of such a curve: 

Definition 32. Let 6 a = (X, ~ )  be a range space. A segment in 6 p is a set of ranges 

which can be enumerated as {Ro . . . . .  Rk} such that, for 1 < i < k, Ri -  z/X R i = 

{xi}, x l  . . . . .  Xk distinct elements from X. The segment is said to join R o and 

Rk. ~1' =_ ~! admits a segment if a segment containing N" exists. The segment is a 

line if it joins complementary ranges R, X - R. 

Equivalently we could say that a line is a pseudogeometric subspace (X, .W), 

___ ~ ,  of VC-dimension one. Note that Theorem 28 states that in a maximum 

range space any two ranges admit a segment. Using this fact we obtain 

Lemma 33. For 6 a = (X, ~ )  maximum, ranges R and R' admit a line i f  and only 

i f  there are ranges T, X - T ~ ~t such that R - R' =_ T and R' - R =_ X - T. 

Theorem 34 (Levi's Lemma). I f  ~ : (g ,  ~ )  is pseudogeometric o f  VC-dimension 

d > 1, then any two ranges R, R' ~ ~ admit a line. 

Proof. We proceed by induction on d and 6(R, R') = I R A R ' I .  

The assertion is true for d = 1, since in this case ~ itself is a line. Furthermore,  

if 6(R, R') = 0, i.e., R = R', then the preceding lemma shows that it is sufficient to 

find one pair of complementary ranges T, X -  T. Such a pair always exists, as 

follows by easy induction on d. 

Now let 6 a = (X, ~)  be pseudogeometric of VC-dimension d > 1, let R, R'  s 

with distance A := 6(R, R') > 0, and assume the theorem holds for any pseudogeo- 

metric range space of VC-dimension less than d and any pair of  ranges with 

distance less than A in 

Consider a segment joining R and R' and let U be the range adjacent to R' on 

this segment. After swapping, if necessary, we may assume R'  = U w {x} for some 

x e X. Since 6(R, U) = A - 1, R and U admit a line ~ by hypothesis, so there are 

ranges T, X -- T with 

R - U ~ Z  U - R ~ X - T  

If  x e X -- T, then we obtain 

R - R ' c _ T ,  R ' - R = _ X - T ,  

so we are done. Otherwise x e T, and since x ~ R, by traversing .W from R to T 

we encounter  a range S ~ ~ / { x } .  6a/{x} is pseudogeometric, so by hypothesis there 

is a line in ~t/{x} containing S and U, so we have T', X - {x} - T'  ~ N / { x }  with 

S - U = _ T ' ,  U - S = _ X - { x } - T ' ,  
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S - - R ' ~ _ T ' ,  R ' - S ~ _ X - T ' .  

N o w  observe that  R -- R'  ~_ S -- R', R'  -- R ~_ R'  - S, which follows from the fact 

that S, R, and U = R ' - { x }  appear  on the original line f f  in this order. 

Consequently,  we get 

R - R ' ~ _ T ' ,  R ' - R ~ _ X - T ' ,  

and together with the fact that  X - T'  is a range in ~ ,  this shows that  R and R' 

admit  a line in ~. [ ]  

For  any d > 2, there are max imum range spaces of  VC-dimension d which are 

not  pseudogeometric,  with the proper ty  that any two ranges admit  a line (let 

d + 2 <_ IXI <- 2d and ~ = _.d )" Fo r  d = 2, however, the largest such example 

has four elements (see Theorem 37 below). The question whether this generalizes 

to higher VC-dimension is an interesting open problem. 

Problem 35. Given d > 2, does a constant  C(d) exist such that for ~ = (X, ~),  

maximum of VC-dimension d with I XI > C(d), Levi's lemma holds in ~ if and 

only if ~ is pseudogeometr ic? If  the answer is yes, is C(d) = 2d? 

Here is a characterization that  is useful: 

[ ,emma 36. Let A a = (X, ~t) be maximum; Levi's lemma holds in ~ if and only if 

(0~.)\ Y = O(~t\ Y) 

for all subsets Y of X. 

Proof. Observe that, for any range space, (t~g~)\Y _ a ( ~ \ Y )  holds for aHY. So 

it suffices to show the equivalence between Levi's lemma and t~(~\ Y) ~_ (tg#~)\ Y. 

Consider first g e t~(#~\ Y), and we want  to show that g e (tgR)\ Y already follows 

from Levi's lemma. We get that  (by definition) X - Y - g ~ t~(~\ Y), and so R, R'  

in #~ with g = R - Y and X - Y - g = R'  - Y must  exist. Levi's lemma, which 

we assume to hold in (X, ~),  gives us ranges T, X - T in ~ (and so in ~ )  with 

R - R ' ~ _ T ,  R ' - R ~ _ X - T .  
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Note  that  this yields 

R = ( R - R ' ) - Y ~ _ T - Y ,  X - Y - ~ = ( R ' - R ) - Y ~ _ ( X - T ) - Y .  

This shows t ha t /~  = T -  Y, and  so i~ e (OR)\ E 

N o w  assume 0 ( ~ \  Y) __q ( 0 ~ ) \  Y for all Y __q X. Consider  ranges R, R' e ~ and 

assume by swapping that  R = ~ .  Then we have 

= R e O(~ \ (X  -- R')) ~_ (OR)\(X -- R'), 

which means  that  0 ~  conta ins  ranges T __q X - R'  and  X - T ___ R'. This  yields 

= R - R'  _ T and R'  = R'  - R ___ X --  T, so Levi 's l emma holds. [ ]  

We conclude by sett l ing the two-dimensional  case: 

Theorem 37. Let 5 e = (X, ~ )  be maximum of  VC-dimension two, IXl ~ 5. ~ is 

pseudogeometric if  and only if  Levi's lemma holds in 5~. 

Proof. Consider  first the case [XI = 5, and  assume Levi 's lemma holds.  F r o m  

( 0 ~ ) \  Y = 3 ( ~ \  Y) it follows that  0 ~  shat ters  any two-element  subset of X. Wi th  

an easy case analysis  it can be checked that  this implies [0~J = 2r = 10, so 

is pseudogeometr ic  by Theorem 13. F o r  IXl > 5 observe that  if Levi's lemma 

holds  in ~ then it also holds  in 6elf for any I YI = 5. Consequently,  5~lr is 

pseudogeomet r ic  and  from Theorem 30 we obta in  that  6 e itself has  to be 

pseudogeometr ic .  [ ]  

Characterization via Cardinality o f  Boundary 

Proo f  o f  Theorem 13. This theorem states that  a m a x i m u m  range space 5 a = 

(X, ~ )  of VC-dimens ion  d > 0 and I Xl- -n  is pseudogeomet r ic  if and  only if 

I~1 -- 2 ~ -  1( n - 1). This  holds for d = 0, so assume d > 0. 

Fi rs t  suppose  that  ~ is pseudogeometr ic .  If d = 1, ~ is a line jo in ing  the 

only two complemen ta ry  ranges of ~ ,  so 10~1 = 2 = 2~o(n - 1). If  n = d, then 

1O~l = I~1 = ~d(n) = 2c~a-l(n - 1). 

N o w  let d > 1, n > d and induct ively assume that  O(~\{x}) and a(~/{x})  have 

the fight cardinal i t ies  for some x e X. Levi 's  l emma holds in ~ so we can apply  

Lemma 36 and obta in  

I0~1 = I(O~)\{x}l-4-I(O~)/{x}l 

= IO(~\{x})l + IO(~/{x})l 

= 2c~a_,(n - 2) + 2~a-2(n  - 2) 

= 2 ~ a -  l(n --  1). 
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N o w  assume 10~l = 2 ~ d - l ( n -  1). We use induction on d to show that  b ~ is 

pseudogeometric.  If  d = 1, by Theorem 28 the ranges in t3~- - there  are 2 = 

2~o(n - 1) of  t h e m - - a r e  joined by a pa th  of length n in DI(5:). Since D1(5 :)  itself 

has only n edges it coincides with this pa th  and so 5: is pseudogeometric .  

Using Theorem 21 we get, for d > 1 and x e X, 

2 ~ a - x ( n -  1) = ]O~l 

= l (O~) \ {x} l  + I (0~) / {x} l  

< l~(~\{x})l  + IO(r 

-< 2Od-l(n -- 2) + 2 ~  d_ 2 ( n  - -  2) 

= 2(I) d_ l(n -- 1), 

which, in particular,  shows 10(~/{x})l = 2 ~ d - 2 ( n -  2), SO 5:/{x} is pseudogeo-  

metric by hypothesis. Since this holds for all x e X, 5" is pseudogeometr ic  (by 

definition). [ ]  

4. Pseudohemispherical  Range  Spaces  

We have already introduced pseudohemispherical  range spaces (Definition 15) 

which arise as the closure of  pseudogeometr ic  range spaces, and the intuition 

behind this definition was to have a class of range spaces generated by projective 

rather  than affine arrangements .  Theorem 17 states that  both  classes are in 

one- to-one correspondence provided we introduce a distinguished " e q u a t o r "  

element. This section develops the basic propert ies of  pseudohemispherical  range 

spaces; the main  s ta tement  is a characterizat ion via the number  of ranges. 

Let us start  by showing that  a l though the pseudogeometr ic  space underlying 

a pseudohemispherical  space is not unique, all underlying spaces have the same 

VC-dimension.  

L e m m a  38. Let 6: be pseudohemispherical of VC-dimension d >_ 1 with underlying 

space J ' .  Then Y is of l/C-dimension d - 1. 

Proof. Equivalently we show that  if 5" = (X, ~ )  with Y-- ~ 9 = is pseudogeometr ic  

of  VC-dimension d - 1 > 0, then dim(~ = d. 

If  ~-  ~ ~ ,  then IXl > d, so ~lY is again pseudogeometr ic  of VC-dimension 

d - 1 for I YI > d. We obtain 

I~[rl = 21~lrl - 10(~lr)l = 2~d-x(I YI) -- 2~a-2(I  Yt - 1) = 2~a-x(I  YI - 1). 

Any range space satisfies ~ l r  = ~ l r ,  so 

I~lYI = 2~d-x(] YI - 1). 
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For  I YI = d this number  equals 2 a, so Y is shattered by ~ ,  while for I YI >-- d + 1 

the value is strictly smaller than 2 Irl, which implies that  d i m ( J  ~) = d. [ ]  

F rom the lemma it follows that  a pseudohemispherical  space of VC-dimension 

d has 2 ~ a - x ( I S l  - 1) ranges, and from Theorem 21 we know that  this number  is 

m a x i m u m  for closed range spaces (Definition 14). In analogy to the m a x i m u m  

spaces that  attain the bound  of L e m m a  3 we define the concept of c-maximum 

spaces C c "  stands for "closed"). 

Definition 39. S e = (X, ~ )  closed of VC-dimension d _> 1 with IX k = n is called 

c-maximum if I~I  = 2Od- l(n - 1). 

Corresponding to Theorem 23 for m a x i m u m  spaces we obtain similar character-  

izations also for c -max imum spaces (where only some numbers  have to be 

adjusted): 

Theorem 40. Let 6e = (X, ~ )  be a closed range space, and let d > 2 be a natural 

number with IXI = n > d. Then the following statements are equivalent: 

(i) 6 a is c-maximum o f  VC-dimension d. 

(ii) 6a\{x)  and 6a/{x} are c-maximum o f  VC-dimension d and d - 1, respec- 

tively, for  all x ~ X .  

(iii) dim(6 e) = d, and b~ and 6a/{x) are c-maximum o f  VC-dimension d and 

d - 1, respectively, for  some x ~ X.  

(iv) dim(6 a) = d and Sf  /{x} is c-maximum of  VC-dimension d - 1, for  all x ~ X.  

(v) d im(~ )  = d and l~t/AI = 2, for  all A ~_ X ,  ]AL = d - 1. 

(vi) 6 a* is c-maximum o f  VC-dimension n - d. 

(vii) dim(6 a*) = n -  d and Sa\ (x)  is c-maximum of  VC-dimension d, for  all 

x e X .  

(viii) d im(~* )  = n - d and I~la l  = 2 a+l - 2, for  all A c_ X ,  IAI = d + 1. 

The p roof  is completely similar to the one of Theorem 23, so we do not  repeat  

the arguments.  

We also get 

Theorem 41. Let 6 e = (X, ~ )  be c-maximum o f  VC-dimension d > 2. For any two 

ranges R, R'  E ~1 there is a path o f  length 6(R, R') = [R /~ R'I joining R and R' in 

DI (~ ) .  

Again the p roof  is a lmost  literally the same as that  of Theorem 28. 

Pseudohemispherical  spaces are c-maximum.  The surprising fact is that  the 

converse is also true: 

Theorem 42. Let S~ = (X, ~ )  be closed o f  VC-dimension d > 1, I XI = n. 6p is 

pseudohemispherical i f  and only i f  6e is c-maximum. 
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Proof We need to show that  if 50 is a c -max imum space, then 5e is pseudohemi-  

spherical, and we proceed by  induction on d. If  ow is of VC-dimension one with 

I~1 = 2 = 2~o(n - 1), then 5~ = (X, {R, X - R)), R _ X. N o w  ~J = (X, {R}) is of 

VC-dimension zero and hence pseudogeometr ic  with 5e = ~ .  

N o w  suppose d > 1, x ~ X. 5el{x} is c -maximum,  so Sf/{x} is pseudohemi-  

spherical of  VC-dimension d - 1 by hypothesis. Let  6 r  (X - {x}, ~ ' )  be a 

pseudogeometr ic  space (of VC-dimension d - 2) underlying 6el{x} and consider 

the range space 

e r  = (x ,  ~ '  u ~") ,  

where ~ " : =  { R ~ l l x ~ R  }. Obviously  S~ = ~,, so to see that  6 r is pseudohemi-  

spherical it remains to show that  J is pseudogeometr ic  of VC-dimension d - 1. 

The  number  of ranges of oj- is 

I~'1 + I~"1 = f Y ~ d - 2 (  n - 1) q- f ~ d _ l ( n  - -  1) = ~ d _ l ( n ) .  

Fur thermore ,  ~-  has 21~'1 = 2~d-2(n - 1) ranges in the boundary.  If we can show 

that  J "  is of  VC-dimension at  most  d -  1, then ~ is m a x i m u m  and therefore 

pseudogeometr ic  by Theorem 13. To  this end consider A ___ X, such that  A is 

shat tered by ~ '  u ~ " ;  we show that  this implies [AI < d - 1. There  are two cases: 

(a) x r A: For  R e ~ '  we have R u {x} ~ ~" ,  and since A n R = A c~ (R u {x}) 

we k n o w  that  A is a l ready shattered by ~" .  This implies that  A u {x} is 

shattered by ~ ,  so IA u {x}l < d, i.e., Ihl  < d - 1. 

(b) x ~ A: By intersecting A with the ranges in ~ "  we only get subsets of  A that  

contain x. This means  A - {x} is shattered by ~ ' .  We get IA - {x}l < d - 2, 

so IAI < d -  1. [ ]  

Proof of Theorem 17. This theorem states that  the pseudogeometr ic  spaces on 

X and the pseudohemispher ical  spaces on X u {e}, e CX, are in one-to-one 

correspondence  via the extended closure that  takes a range space 5 a = (X, ~ )  to 

g = (X u {e}, ~ )  with 

~ : =  ~ u {(X u {e}) - RIRe~I}. 

We show tha t  5 p is pseudogeometr ic  if and only if 5e is pseudohemispherical .  

First, let 5 a be pseudogeometr ic  of VC-dimension d. Then [~l  = 21~1 = 

2~d(lXI). Fur thermore ,  dim(oW) = d + 1. To  see this consider A shattered by ~ .  

If  e ~ A, then A - {e} is shattered by ~ ,  so I AI < d + 1. Otherwise A is shattered 

a l ready by ~"~{e} = ~ ,  and we have tAI < d + 1 also in this case by L e m m a  38. 

It  follows that  o@ is c -max imum and hence pseudohemispher ical  by Theorem 42. 

If  6 ) is pseudohemispher ical  (and hence c -maximum)  of VC-dimension d + 1, 

then [~1 = 1~1/2 = ~dtXI  (Theorem 40), and 5 e is of  VC-dimension at mos t  d. 

F r o m  this it follows tha t  5e is maximum.  Fur thermore ,  8 ~  = ~/{e},  so 18~1 = 

2~d-  l(IXI - 1) (again by Theorem 40), and 5t  is pseudogeometr ic  by Theorem 13. 
[ ]  
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5. The Correspondence to Oriented Matroids 

The characterizations of pseudohemispherical range spaces developed in the 

previous section form the basis of our proof that these spaces correspond to 

oriented matroids. These combinatorial objects have been independently in- 

troduced by Bland and Las Vergnas [BL] and Folkman and Lawrence [FL]. A 

comprehensive treatment of the known theory can be found in I-BLS+]. 

It was first shown in [FL]  that oriented matroids have natural representations 

as arrangements of pseudohemispheres, and vice versa. The oriented-matroid 

approach can handle arbitrary arrangements, while we are only talking about 

simple arrangements in this paper; so we restrict our attention to uniform oriented 

matroids. 

As in the case of ordinary matroids, several equivalent axiomatizations of 

oriented matroids exist, most of which are abstractions of intuitive properties 

observed by studying objects like directed graphs or hyperplane arrangements. 

We choose the axiomatization in terms of covectors, which turns out to be most 

suitable for our purposes. Chapter 3 of [BLS +] discusses the different axiomatiza- 

tions and proves their equivalence; the terminology and "background facts" are 

taken from this source. 

Let X be a finite set. A signed vector on X is a mapping F: X ~---, { + ,  - ,  0} (this 

is also written as F e { + ,  - ,  Off). The image of x ~ X under F is denoted by Fx. 

The support of F is defined as the set F : =  {xEXIFx  ~ 0}. Denote by F ~ the set 

{ x e X I F x  = i}, for i e { + ,  - , 0 } .  F ~ is the zero set of F and F + and F -  are the 

positive and neoative sets, respectively. 

0 is the vector satisfying 0x = 0 for all x e X. - F is defined by ( -  F)~:= - (Fx). 

The restriction of F to Y _ X is denoted by Fir .  

We say that x ~ X separates F and G if F~ = - Gx 4 0. 

A partial order < is defined on signed vectors as follows: 

F < G  .~ V x e X : F  x = 0 o r F  x = G x ,  

i.e., F can be obtained from G by switching some entries to zero. 

The composition of signed vectors is defined by 

(FloF2o'"oFk)x:={~ i)x if i = min{j[(Fi) x ~ 0} exists, 

otherwise. 

Definition 43. Let X be a finite set, and let ~ be a set of signed vectors on X. 

The pair ~ = (X, ~ )  is called an oriented matroid if: 

(V0) 0 ~ ~. 

(Vl) L# = - ~ (symmetry). 

(V2) For all F, G e A" we have F o G ~ ~ (composition). 

(V3) For all F, G e .LP and x separating them there is H e L# with H x = 0 and 

Hr = (F o G)y = (G o F)y for all y not separating F and G (elimination). 
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is the set of  covectors of the oriented matroid.  The covector  H in (V3) is said 

to eliminate x between F and G. 

The  set c~ ~ Z~o of  nonzero covectors  which are minimal with respect to the 

part ial  order < are called cocircuits or vertices of J / ,  and they already determine 

the oriented matroid:  F is a covector  if and only if it is the composi t ion of 

cocircuits. Therefore ~ is also referred to as the cocircuit span of .Xr 

Definition 44. ./r = (X, LP) is called uniform of rank r if exactly all subsets of X 

with r + 1 elements occur as suppor t  sets of  cocircuits. (If Z~' = {0}, the rank is 

defined to be I XI . )  

The set ~7- ~ ~ of  covectors which are maximal with respect to < are called 

topes of .// .  As in the case of cocircuits, the topes already determine the oriented 

matro id :  F is a covector  if and only if its composi t ion with any tope is a tope. 

Minors 

Let ~r = (X, .~e) be an oriented matroid,  Y ___ X. The  pairs 

J , g \ y : = ( X -  Y,.~e\Y) with Za\Y:={FIx_rlFeAg, Fr=Ofora l l  y e Y  } 

and 

..r162 (X - Y, Ae/y) with .~/Y:= {FIx_rIFe Z~'} 

are the minors of ./r with respect to Y. dC\Y arises by deletion of Y, while JC/Y 

is obtained by contraction of Y. The  minors  of a (uniform) oriented mat ro id  are 

(uniform) oriented mat ro ids  again, and in the uniform case their ranks  easily follow 

f rom the above  definition; we get 

Fact 45. Let  vr162 be an oriented mat ro id  on X, uniform of rank r > 0, 

Y _  X. Then .Ag\Y and JC/Y are oriented matroids,  uniform of rank r (for 

I YI < IXl  - r - 1) and r - I YI (for I YI < r), respectively. 

The Main Correspondence 

N o w  we are prepared  to prove the correspondence between pseudohemispherical  

spaces and uniform oriented matroids.  Let W be the canonical bijection between 

2 x and  { + ,  - }x, i.e., 

~ (R)x :=  {_+ if x e R ,  

otherwise. 



Vapnik-Chervonenkis Dimension and (Pseudo-)Hyperplane Arrangements 425 

Theorem 46. Let .At' = (X, Z,f') be an oriented matroid, uniform of  rank r with set 

of topes J .  Then 6: = (X, ~l) with 9t = W- t(9--) is a pseudohemispherical range 

space of  VC-dimension I XI - r 

Proof. We start by showing 

dim(6:) < I Xl - r. 

To this end consider Y ~ X, I YI = IXI - r + 1. It is clear that ~ [ r  corresponds 

to the topes of J t l / ( X -  Y); by Fact 45 this minor  has rank 1, and its tope set 

cannot equal { + ,  - } r ,  because then every vector in { + ,  - ,  0} r would have to be 

a covector of dC/(X - Y), implying rank 0. Consequently, ~ [ r  # 2r, so Y is not 

shattered by ~ .  

On the other hand, it is not  hard to see that in the uniform case ~ / Y  

corresponds to the topes of J / \  Y, and again by Fact  45 this minor  has rank r for 

I Y[ = IXl - r - 1 and is in particular nontrivial, so 

I~/YI  > 2 for any Y of  cardinality IXI - r - 1. 

Both properties together imply dim(6:) = IXl - r and I~/Y[ = 2, which via 

Theorem 40 proves the claim. []  

Theorem 47. Let 6:  = (X, ~ )  be a pseudohemispherical range space of VC- 

dimension d. Then 5 = W(~) is ttre set of topes of a uniform oriented matroid of 

rank n - d. 

Proof. We explicitly construct the oriented matroid by obtaining its covectors 

from the faces of ~ which is the set ~- of all the pairs (R, A) with R, A ___ X and 

R e ~ /A.  Let F be the canonical bijection between pairs of  disjoint subsets of X 

and { + ,  - ,  0} x, i.e., 

O if x E A ,  

F(R, A)x:= if x e R ,  

otherwise. 

We show that ~ = {0} w F(~-) is the set of covectors of an oriented matroid 

on X. It will then be uniform of rank n -  d, because Theorem 40 implies 

that for every A with I A] = d - 1 there are two cocircuits with zero set A, hence 

support  set X - A  of size n - - d  + 1. Furthermore,  its set of topes will be 

F({R, ~ ) [ R  ~ ~})  = ~(~) ,  as required. 

(V0) is satisfied by definition and (V1) follows from the fact that 6~/A is closed 

for any A ~_ X. To establish (V2) we observe that the following stronger property 

holds (and this is due to the uniform case): 

(V2') For  all F e ~ ,  F # 0, we have F o U ~ L# for any U ~ { + ,  - ,  0} x. 
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To see this consider some F = F(R, A) and any signed vector U. Then 

F o U = F(R w U+, A n U~ 

where R e ~I/A by definition of range-space contract ion implies 

R w U + e ~ / ( A  -- U +) ~_ ~ / (A  n U~ 

so F o U is the image of  a face of 6 :  under F. 

To show (V3), choose F, G e ~ ,  separated by x ~ X, and construct a covector 

H eliminating x between F and G as follows: we may assume F ~ = G O by replacing 

F and G with F o G and G o F, respectively. This means, F = F(R, A), G = F(R', A) 

for some A ~_ X,  R, R ' e ~ / A .  6e/A is pseudohemispherical,  so Theorem 41 

ensures that R and R' are joined by a shortest possible path  in Dx(~/A) (unless 

dim(ra/A) = 1 in which case R = X - A - R', F = - G, and H = 0 is the required 

covector). Since x separates R, R', on the path there must  be ranges T, T/X {x}. 

Assume x ~  T. Then T ~ / ( A  w {x}) and H. '=  F(T, A w {x}) eliminates x between 

F and G. [ ]  

Both theorems together give the main characterization, Theorem 1 8 : 6  e = 

(X, ~ )  is pseudohemispherical of  VC-dimension d if and only if ~ ( ~ )  is the set of  

topes of  an oriented matroid,  uniform of rank n - d. 

AJ~ne Oriented Matroids 

As a corollary of  the main correspondence we also obtain a one-to-one corre- 

spondence between pseudogeometric  range spaces and so-called affine uniform 

oriented matroids, which can be shown to correspond to affine arrangements of  

pseudohyperplanes [EM] .  

Definition 48. Let L#' be a set of signed vectors on X, e ~ X. The pair 

~ '  :=  ( x ,  ~e') 

is an affme (uniform) oriented matroid  on X if a (uniform) oriented matroid  

.~' = (X w {e}, ~ )  with 

exists. 

{FixlF  Fe = i }  

So there is a one-to-one correspondence between affine (uniform) oriented 

matroids  on X and (uniform) oriented matroids on X w {e} with e not  a loop 
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(i.e., F e ~ 0 for some convector). This reflects exactly the relation between pseudo- 

geometric range spaces on X and pseudohemispherical range spaces on X w {e) as 

stated in Theorem 17. Moreover, qJ(~) is the "tope set" of ~r162 if and only if W(:~) 

is the tope set of ..It', and we get 

Theorem 49. 5g = (X, ~ )  is a pseudogeometric range space if and only if ~F(~) is 

the set of topes of an affine uniform oriented matroid on X. 

6. Discussion and Relations to Oriented-Matroid Theory 

In this paper we have introduced three classes of range spaces, each of which is 

characterized by a simple extremal property. We have shown in the previous 

section that the pseudohemispherical range spaces are in one-to-one corre- 

spondence with the uniform oriented matroids (and thus the pseudogeometric 

range spaces correspond to uniform affine oriented matroids). In view of this 

correspondence we obtain a new characterization of uniform (affine) oriented 

matroids via counting arguments; on the other hand, many statements which we 

have shown to hold in the range-space environment, by our correspondence reduce 

to known facts about oriented matroids. For some of these, however, we give 

independent proofs in the uniform case which are substantially easier than the 

original proofs in the generic situation. This means, a reader particularly interested 

in the uniform case might still benefit from our techniques. Other statements 

already hold for maximum range spaces (which properly generalize affme uniform 

oriented matroids) and thus embed known facts into a broader context. In this 

concluding section we discuss the interplay between our concepts and the corre- 

sponding oriented-matroid theory. 

Range-Space Results Revisited 

Most concepts we have defined on range spaces have an obvious interpretation 

in the (affine) oriented-matroid setting when specialized to the pseudohemi- 

spherical or pseudogeometric case. These are the minor operations (Definition 19), 

swapping (Definition 25, reorientation), the distance-l-graph (Definition 6, tope 

graph), and duality (Definition 9). The defining fact that dual pairs ~ 5 r of range 

spaces have complementary sets of ranges specializes to the statement that dual 

pairs of uniform oriented matroids have complementary sets of topes, which is an 

easy characterization of duality in the uniform case and follows, e.g., from the 

well-known fact that dual tope sets are disjoint together with counting formulas 

for topes, see below. 

The characterization of pseudogeometric range spaces by small subspaces 

(Theorem 11) states that a maximum range space of VC-dimension d is pseudogeo- 

metric if and only if all restrictions to d + 2 elements are geometric (or realizable 

in the terminology of oriented matroids), i.e., a characterization in terms of local 
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realizability is obtained. A general result of similar flavor is known for oriented 

matroids, where cocircuit signatures of matroids are shown to be oriented matroids 

if and only if all contractions to rank 2 are realizable. This means, for a set of 

signed vectors with underlying structure being a matroid, the axiomatics can be 

substantially relaxed (or equivalently, the three-term Grassmann-Pliicker relations 

are sufficient to characterize oriented matroids). This has first been shown by Las 

Vergnas [LaV], see also Section 3.6 of I-BLS+]. In the case of pseudogeometric 

spaces we have maximum range spaces as underlying structure, which is somewhat 

stronger than a (uniform) matroid. 

The Uniform Case via Countin9 Arguments 

We can define the VC-dimension of a set q/_~ { +,  - }x as the cardinality of the 

largest subset Y _ X that is shattered by q/, i.e., 

~(y) :=  {FIyIF  ~ ) = {§ _ } r  

Our main new result then reads as follows: 

Theorem 50. f ~ { + ,  _ }x of VC-dimension d is the set of topes of a uniform 

oriented matroid .1[ on X if and only if ~ = -~q- and I~'-I = 2~d-x(IXl -- 1). 

The "only if" part is well known-- the  number of topes of J/r depends only on 

the matroid underlying Jr  and can be computed from it (this generalizes face- 

counting formulas for arrangements of hyperplanes). In the uniform case the 

matroid has a particularly trivial structure, and we arrive at the above number. 

To the knowledge of the authors the "if" part is new, showing that the uniform 

case has a very simple structure which can be described just by counting (and can 

therefore be understood without considering it as a specialization of the generic 

situation). 

The corresponding theorem for the affine case is similar: 

Theorem 51. j - ~  {+ ,  _}x  of VC-dimension d is the set of topes of a uni- 

form affine oriented matroid J [  on X if and only if I g-I = ~d(ISl) and 10g-I = 

2@d- l ( IXI -  1), where 

d J : =  {F ~ ~ - I - - F  ~ 9"-} 

is the set of unbounded topes. 

Again the "only if" part is a consequence of known counting results. Section 

4.6 of [BLS +] gives an overview on these results for (affine) oriented matroids. 

Note that we obtain an intrinsic characterization of affine uniform oriented 

matroids which does not depend on an ambient oriented matroid. Karlander [Ka] 

has obtained such a characterization for arbitrary affine oriented matroids. 
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Other Characterizations in Terms of Topes 

The problem of finding a nonrecursive axiomatization of oriented matroids in 

terms of topes has been solved by da Silva [Si2], generalizing a result of Lawrence 

[Law] for the uniform case; prior to this, Bienia and Cordovil [BC], da Silva 

[Sill,  and Handa [HanJ had given recursive characterizations. 

The result of Handa is particularly interesting. It is known that the tope graph 

of an oriented matroid (the distance-l-graph of the topes) is an isometric subgraph 

of the hypercube on vertex set { +,  - }x, i.e., any two topes are joined by a path 

whose length equals the number of elements separating them (for simplicity we 

assume that there are no parallel elements). By considering all the sets q~_ 

{+,  _}x,  q / =  _q/ ,  with this reorientation property we arrive at the notion of 

acycloids [To], which properly generalize tope sets of oriented matroids. By 

Theorem 41, pseudohemispherical range spaces can be regarded as acycloids in 

this sense after interpreting them as signed vector systems in the obvious way. 

Handa's theorem now states that an acycloid q/ is the tope set of an oriented 

matroid if and only if every contraction (suitably defined) is an acycloid; this is 

the case for a pseudohemispherical space, which gives an alternative proof for the 

fact that it forms the tope set of an oriented matroid. 

Note that the isometric subgraph property already holds for maximum range 

spaces (Theorem 28). The proof directly uses the fact that the operations of deleting 

and contracting single elements are interchangeable (Corollary 24, and this of 

course generalizes to arbitrary minors); the recursive axiomatizations by Bienia, 

Cordovil, and by da Silva are based on the analogous fact for oriented matroids, 

namely, that the deletion and contraction on topes (suitably defined) are inter- 

changeable, and this is already sufficient to characterize tope sets. 

Lawrence's characterization of the uniform case also has an interesting relation 

to our work. It is based on the notion of lopsided subsets of { +,  - }x and states 

that J" _ { +,  - }x is the tope set of a uniform oriented matroid if and only if for 

all x e X the set 

3"-:':= {Feoq'lF~ = +} 

is lopsided, where ~ _ { +,  - }x is called lopsided if for all Y ~ X 

�9 Y is not shattered by q/, 

�9 or X - Y is not shattered by {+,  _}x  _ q/. 

It is immediately seen that q/ is  lopsided if and only if { +,  - }x _ ~/is lopsided, 

i.e., lopsided sets are closed under (complementary) duality, a feature shared with 

all the classes of range spaces we have introduced. Moreover, from Theorem 23(vi) 

it is easy to see that lopsided sets generalize maximum range spaces (and this 

generalization is proper), so Lawrence's characterization brings together two 

concepts at different levels of generality, with maximum range spaces wedged 

between them in a certain sense. 
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