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A. More Details on the Experimental Procedure

Setup and Image Analysis

A classical Mach-Zehnder interferometer is here used to measure the vapour cloud surrounding
an evaporating pendant drop of 3M™ Novec™ HFE-7000 deposited on a silicon wafer with a
syringe. However, in our first experiments we observed that the droplet is highly mobile on such
a perfectly flat substrate, which rendered its tracking over time impossible. To make it ’stick’ to
a single location we use photo-litography to deposit a small object which remaines always within
the droplet but still prevents the drop from moving away. This object has the shape of a disk
100 pm thick and 2 mm in diameter (noticeable in Figure Sla) made in SU-8 resin. We should
stress that this protrusion has no impact on the validity of our vapour cloud measurements as it
remains immersed in the drop for sufficiently large drops (see Figure S1b). If it has any effect, it
will be on the recirculation inside the droplet, and even that is expected to be minor. Problems
arise only for smaller drops, with a diameter approaching that of the cylindrical protrusion. As
such, we decided to limit the present study to droplets larger than 2.4 mm in diameter. On the
other hand, such a limitation to larger drops suited us well from the viewpoint of both a better
resolution of the vapour cloud and a possible comparison with boundary-layer simulations (valid
for large enough droplet sizes).

*To whom correspondence should be addressed
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As explained in the main text, a reference image is acquired before the deposition of the drop,
which is shown in Figure S1(a). Its phase is analysed for each pixel and compared to that in the
presence of the droplet (see Figure S1b). This leads to a “wrapped” phase map which is shown
in Figure S1(c). An unwrapping algorithm then gets rid of the discontinuities and sets the total
phase jump outside of the plume equal to zero. This final phase map is shown in Figure S1(d).

Finally note that the fringes are chosen to be vertical in our measurements. While any orient-
ation is in principle possible, the current configuration is preferred due to the fact that the Fourier
transform profilometry algorithm has the side-effect of a low pass filter in the direction perpen-
dicular to the sense of the fringes. As the concentration gradients along the interface normals
are predominantly vertical, a horizontal smoothing is preferred, thus leading to the use of vertical
fringes.
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Figure S1: (a) Reference image. (b) Raw image with droplet. (¢) Wrapped phase. (d) Unwrapped
phase.

Tomographic Reconstruction

Given that interferometry is a line-of-sight technique, the obtained phase-shift field still needs to
be tomographically reconstructed to yield the three dimensional field of the refractive index. If the
target is axisymmetric, an inverse Abel transform can typically be used on a single view to obtain
a meridian half-plane representation thereof®'. Applied to the present case, the refractive-index
difference field An (at a given height z) is given by
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where r is the cylindrical radial coordinate, A is the wavelength of the laser and ¢’ (1) is the
derivative of the phase-shift field extracted from the fringe images (as described in the previous
subsection). Inherent to this transform is a certain augmentation of the noise, especially near
the symmetry axis. As such, many of the algorithms proposed over the years add a certain
filtering capability to alleviate these problems.5? We have implemented three different algorithms
in order to ascertain which one could give the best results in our particular case: the three-point
Abel transform method®!, the Modified Fourier-Hankel (MFH) method®? and the Even-Power
(EP) method®. The preliminary scan of these three algorithms has shown that all methods give
essentially the same results. However, with the aim of extracting local gradients, the smooth result
from the EP-method is preferred for the present work.

Converting Refractive Index into Vapour Mole Fraction

After the Abel transform has yielded the refractive-index field, a conversion relation is still needed

to convert this into the vapour concentration field. From the Lorentz-Lorenz equation®%, it is
known that the refractive index of a mixture of gases can be expressed as
3Ptot
Nmix — QRT Z zAz 3 (1)

where n.,;y is the refractive index of the mixture, P, is the total ambient pressure, R the universal
gas constant, T" the temperature, x; is the mole fraction of the component i and A; is the molecular
polarisability of the component i. Treating the gas as a binary mixture of air and HFE-7000 vapour,
we have

3Ptot
mix 1 A 1 - air — 1 )
n RT (xAnrg) + ( x)(n )
or rather
3P,
Nmix — Nair = Wtjix (AHFE - Aair) )
or

Nmix — Nair = X (nHFE - nair) . (2)

Thus eq 2 of the main text is recovered with nypg the refractive index of pure HFE vapour at
Pt and T and n,;, is that of air. Thus, as it is experimentally the value An = n; — n.;, that
is measured in our holographic setup (due to the phase substraction of a reference image in 'pure’
air), just a proportionality constant is needed to transform the obtained refractive index profile
into the mole-fraction distribution y if the pressure and temperature are assumed constant.

To quantify this proportionality constant, only the refractive index of pure HFE-7000 vapour
is needed. However, as this is not yet known it must be measured here. With no dedicated
gas refractometer available, we simply measure the absolute refractive index of an atmosphere

S3



saturated with HFE-7000 vapour at different temperatures. To this end, a square cuvette with
internal dimensions of 5 x 5 ¢m is filled with a minimal amount of liquid HFE-7000 after which a
cover is placed on the top to prevent further evaporation. The An value is measured by starting
from the thereby attained saturated state just above the liquid interface (hence a known value of
x) and interferometrically following the changes in the optical path as the liquid is then allowed
to progressively and completely evaporate. Thus, the proportionality constant to convert An
into x is found to be 737 £ 16 (i.e. nppg = 1.00163 + 2.9 x 107°) for a wavelength of 660 nm,
atmospheric pressure and 24°C. This implies a difference in the refractive index of approximately
+8.3x107* as the relative humidity of HFE-7000 is changed from 0% to 100%. This large difference
is caused by a combined effect of a substantial difference in the refractive index of pure HFE-7000
and ambient air (estimated to be 1.36 x 107) and the fact that the saturation mole fraction at
ambient conditions is as large as 61%. In typical ambient temperatures ranging from 20°C to
25.5°C, the current calibration procedure achieves a reasonable accuracy of around 2.17% (over 7
measurement points).

As in the experiment not only the concentration but also the gas temperature is non-uniform,
it is important to assess the influence of the latter. To that end, we start from the same eq 1 but
now taking into account that the refractive-index difference measured is not the same as in eq 2,
but rather An = npix — Nair.amp With npi being at a locally varying temperature. Having this end
goal in mind, we now derive eq 1 of the main text, which is repeated here:

X = ! L1 An — (nuramy — 1) (Tamb - 1)] . (3)

NHFE,amb — Mair,amb Tamb T

From this formula we can note that there are two error sources appearing if one neglects the
temperature variation and simply uses eq 2. The first comes from the proportionality factor being
in reality temperature-dependent. Thus, a temperature difference of 10°C will lead to an error of
~ 3.4% in the estimated x. The second error source comes from the fact that we (holographically)
compare the refractive index of the mixture with the refractive index of air measured before the
start of the experiment (i.e. still at ambient temperature). The importance of this term depends
on the magnitude of An. When assuming a mole fraction of 0.6, this error is only ~ 1.2%. If the
local mole fraction is 0.4, the error increases to ~ 1.7%. Unfortunately, both errors work in the
same direction and as T' < Ty, eq 2 is biased into overestimating the mole fraction by up to 5%
if temperature differences of the order of 10°C eventually take place in our setup.

Interface Contour Extraction

For obvious reasons, it is necessary to localise the droplet interface on the interferometric image. As
the interferometric fringes render this difficult, in a first step the fringes are eliminated by taking
the amplitude of the complex intensity image generated in the Fourier transform profilometry
algorithm but disregarding its phase. This image is then thresholded and from the resulting
image, the contour of the drop is extracted. The obtained points are fitted with a fourth-order
polynomial (as this allows to account for the gravity-induced shape deformation) to yield a smooth
contour. As it is visible in Figure S2, a good fitting is obtained. The obtained shape is used to
track the droplet volume over time and thus to provide an independent measurement of the global
evaporation rate of the droplet.
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Figure S2: After removal of the fringes from the interferometric image, a satisfactory contour fit
can be found using a fourth-order polynomial.

Interfacial Temperatures

Knowing the interface location, it is straightforward to determine the normals to it. The refractive-
index difference along these lines can then be extracted from the refractive-index difference map
through bilinear interpolation. A more precise estimation of the interfacial refractive-index differ-
ence is obtained from a quadratic fit over 560 pm starting from 35 pm from the interface. There
are now two ways to obtain an estimate for the interfacial temperature from this refractive index
difference (as explained in the main text). One can simply use the proportionality relation given
by eq 2 and use this value x, inside x, = Piut(Ty)/ Pamp With Py provided by 3M™. However, as
mentioned above, local temperature non-uniformities influence the measured refractive-index field
leading to a general overestimation by a few percent of the local mole fraction when using eq 2.
A more accurate way is to use the measured interfacial refractive index inside eq 3 combined with
Xo = Paat(Ty)/ Pamp and solve for both unknowns at the same time. A comparison of the uncorrec-
ted (first method) and corrected (second method) measured interfacial temperature distributions
is shown in Figure S3. Here one can clearly see that the correction is more essential for larger
differences with the ambient temperature (24°C). This corrected interfacial temperature (or more
specifically x,) is used in the local-evaporation-rate determination (cf. eq 3 in the main text and
eq b below). However, without assuming some sort of temperature profile surrounding the drop, it
is impossible to apply a similar correction to the local-concentration-gradient determination (the
latter is realised based on eq 2 and not on eq 3). Yet, as the temperature boundary layer must be
thicker than the concentration layer (the diffusion coefficient is smaller than the thermal diffusiv-
ity), the error on the concentration gradient must be even smaller than on the absolute values (i.e.
<5%).

Finally, note that it is not the raw measurements for x, (and 7,) that are used in the numerical
simulations described below but rather the following smoothed result based on the fitting formula

Xo = a4+ (0.61 —a)eP7 "D (4)
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Figure S3: The role of correcting for temperature effects in the refractive-index conversion on
measured interfacial profiles.

which recovers the ambient temperature at the contact line (i.e. x, = 0.61) and at the same time
captures reasonably well the experimental data (cf. the solid line in Figure 4 of the main text).
The obtained fitting parameters «, [ and v are specified later on.

Local Evaporation Rate Determination

From the normal profiles, the gradient can now be extracted at the interface. However, as central
differencing gives a noisy result, a linear fit is performed over 185 pm starting from 35 pm from
the interface and its gradient is used. Applying the following formula then yields the distribution
of the local evaporation rate J; g,, along the droplet interface:

o MthotDv aX
Ty = _RT(l — Xo) On|, (5)

with M, the molar weight of the vapour (0.2 kg/mol), P, the total (atmospheric) pressure, D, the
diffusion coefficient of the vapour—air mixture (8.11 x 10~®m?/s) obtained by independent Stefan-
tube experiments, R the universal gas constant (8.31J/molK), T" the temperature, y, the mole
fraction at the interface (see above) and %’0 the normal mole-fraction gradient at the interface.
As spatial variations of the gas pressure are expected to be thermodynamically negligible, we take
Piot = Pamp- On the other hand, given that the corresponding effect is anyway not taken into
account e.g. in the refractive-index calibration away from the interface, it is consistent to set
T = Tomp in eq 5 too and to evaluate D, just at T,,;,. In this way, we recover eq 3 of the main
text.
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Global Evaporation Rates
Determination from Interfacial Gradients

Another quantity that can be extracted from the vapour interferometer is the global evaporation
rate of the drop. There are several ways in which this can be accomplished. The easiest one is
to integrate the obtained local evaporation rates J; g, over the surface of the drop. Thus, the
following integration is performed with A’ the radial derivative of the local thickness of the drop
and R, its contact radius:

Rc
Jysurf = / 21V 1+ W2 J) pepdr (6)
0

where all variables are dimensional.

Determination from Iso-Concentration Lines

As the normal gradient at the contact line is eventually infinite and because the profile fitting of
the drop is subject to some uncertainty, a second method, using the iso-concentration lines, was
also developed to avoid this source of imprecision.

The vapour mole flux j* [mol/m?2s] at any point in the gas is related to the total mole flux j*
by . . .

]: = Xj* - ngvaX7 (7)
with n, = 75;—:11 the gas mole density and the asterisk serving to distinguish the mole fluxes from
the Correspoﬁding mass ones (the latter without asterisk). At the droplet interface, neglecting air
absorption (i.e. no air flux) as well as the interface digression velocity versus the gas velocity, we
have

g

o
Pk

Ju o1 = J,/M,, (8)

[

from where eq 3 of the main text can be recovered on account of eq 7. Hereafter 77 is the external
(pointing away from the droplet) unit normal to a surface considered.
The global evaporation flux from the droplet can be calculated as

Ji= [ jr-idS= | j*-7dS, (9)

g

where the integration can be performed over any surface encompassing the droplet and ending on
the substrate. The second equality of eq 9 follows from neglecting the same factors as for eq 8 and
in addition assuming quasi-stationarity of the mole-fraction field, all which means that the amount
of air remains unchanged in the encompassed region. Note that this integral equality takes place
in spite of generally j: 1 j* - 1. Obviously, the droplet interface itself can in particular be used
in eq 9, which then coincides with eq 4 of the main text on account of eq 8 and J; = o/ M,
Otherwise, eq 9 does not seem to be very practical, as there is no way to infer jj or j* from the
measured mole-fraction field (eq 7 is not enough to this purpose) without simultaneously measuring
the velocity field, which we do not do here. However, if the integration in eq 9 is performed over
an iso-concentration surface, y = const, further progress can be made just with what we already
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have. Indeed, using eq 7 in eq 9 and taking y = const out of the integral, one can deduce

" ‘ Ix
Jr=xJ, — ngDva—n ds, (10)
x=const

which on account of n, = 757‘1—2 and J; = J,/M, yields eq 5 of the main text.
Thus, the integration over the isocontours provides yet another method for the determination
of the global evaporation rate J, just on the basis of the measured mole-fraction field. The result

is denoted as J, 50, as already mentioned in the main text.
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Figure S4: Global evaporation rate versus iso-concentration values along which it is calculated by
means of eq 10.

The advantage of this second method is clearly the fact that the global evaporation rate can be
obtained on any isocontour, which permits to average the measurement over multiple isocontours
to get a more accurate global evaporation rate, as well as to estimate what is the accuracy of the
measurement. Note that the assumption of a quasi-stationary concentration field could pose a
problem in some cases. In Figure 54, the global evaporation rate J, ;s calculated in this way is
shown versus the mole fraction y of the isocontour. This shows that it is relatively constant for x
between 0.25 and 0.35. Indeed, checking the iso-concentration lines in a treated image, contours for
lower x tend to become erratic (due to noise), whereas larger x tend not to encompass the entire
droplet interface (due to the interface cooling and the corresponding decrease of the interfacial
mole fraction). Note that the uncertainty (95% confidence interval) on the global evaporation rate
based on a single instantaneous image in this range (for y between 0.25 to 0.35) is only +6%.
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B. Performance of the Inverse Abel Transform in the Presence
of Singularities

In the case of a purely diffusion-limited evaporation regime, theory predicts that the mole frac-
tion field is non-differentiable near the contact line (but remains continuous). In order to assess
whether the inverse Abel transform is capable of correctly reconstructing such a field, a numerical
experiment was performed. From theory®%, the following analytical formula for the mole-fraction
field x can be obtained in the limit of pure diffusion for a flattened drop with a given constant
interfacial mole fraction x,:

2 | 7 \/(1—22—7"2)2—1—422—(1—22—7’2)
™ 2 2

(11)

The next step is to transform this mole-fraction field into a simulated interferometric image.
To this end, it is multiplied by nypg — n.; to convert it into the local refractive index (see eq 2)
and it is then integrated along a line of sight (in y-direction) and converted into a phase delay A¢.
Note that an artificially large but finite cut-off value y. was used as the concentration field decays
(too) slowly for the Abel transform. The choice of this cut-off value was shown to not influence
the presented results. This is obtained through the following formula:

Ye
47

Ag 7/X(nHFE_nair) dy . (12)

—Ye

The cosine of this phase field is then shown in the inset of Figure S5. This phase image is then
subjected to an inverse Abel transform treatment similar to the one used for the experimental
images. The extracted mole fraction along a vertical line starting at the contact line is compared
to the original theoretical result in Figure S5. This shows that the reconstruction is accurate over
the main portion of the field. However, close to the interface, the gradient becomes too large and
an underprediction of both the interfacial concentration and the interfacial gradient is an inevitable
result. Note that unfortunately exactly the same inversion algorithm as in the experiment could
not be used here as the EP-method does not work for the inversion of phase images that do not
drop smoothly to zero at the edge of the image. As a result, the MFH algorithm®? was used as a
model algorithm here. The effect is expected to be similar for the EP method, as both algorithms
give similar local evaporation rates and interfacial temperatures when applied to the experimental
results.

So, from the fundamental point of view, many Abel inversion algorithms (such as the ones we
have used) are not capable of returning an infinite local evaporation rate at the contact line. On
top of this there is also the additional smoothing described above, where a local fitting close to
the interface is extrapolated to obtain a smoother value of the gradient at the droplet interface.
Needless to say that this smoothing also prevents obtaining an infinite concentration gradient at
the contact line.

S9



0.60 : ! : i
: " - - MFH-reconstruction

: : -_— Original
0.55 oo OO EE —_— T

0.50f

0.40F

0.35f

0.30 i i i i ]
0.0 0.2 0.4 0.6 0.8 1.0

Figure S5: Simulated phase image and reconstructed mole-fraction profiles.

C. More Details on the Numerical Simulations

Pure-Diffusion Reference Case

To compare the measured vapour cloud shape and the measured local and global evaporation rates
to the purely-diffusive reference case, an axisymmetric numerical simulation is performed with
OpenFOAM 2.1 (more specifically LaplacianFoam) for solving V?y = 0. For the computational
domain, an arc of a circle fitted to the experimental drop contour is used as a constant-mole-fraction
boundary on which x = x, = Paat (Tsat) /Pamp = 0.61, while a circular domain 10 times larger than
the drop contact radius is used as an external boundary, on which xy = 0 is imposed (no vapour
in ambient). A linear grid refinement is applied in both the radial and vertical directions in order
to better resolve the near-contact-line region. This turns out not to be enough to properly resolve
the singularity of the local evaporation rate at the contact line though, but as this simulation is
only used for plotting the overall vapour cloud configuration, the issue is not pushed further.

Formulas found in the literature®% are rather used for plotting the local and global evaporation
rates. As no agreement is expected anyway with the pure-diffusion regime for the present exper-
iments, and as we are merely interested in contrasting the corresponding results, we shall limit
ourselves to the flattened-drop formulas. For the local evaporation rate J; p as a function of the
(dimensional) radial coordinate r, we have>

Jl,D<7n) = (13)

Here, D, is the diffusion coefficient of the vapour in air, R, is the contact radius of the drop and
Pvo = ;;—rf‘l’b +Xo 18 the vapour density at the interface, assumed constant when deriving eq 13. It
is important to stress that eq 13 is obtained under the assumption that the vapour fraction is small

and therefore the convective effect of Stefan flow can be neglected. This is also done tacitly in the
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mentioned numerical simulation as V2y = 0 is only valid when no such convective contribution is
involved. However, in our present setup, it is by no means negligible as the mole fractions are of
the order of 60%. This has not been rigorously implemented in the calculations but to nevertheless
get a feeling for the impact this could have on the evaporation rate, the following Stefan-Fuchs
correction®” to the local evaporation rate is used:

JZ,D(T)
Jz,DSF(T) 11—y, . (14)
This is believed to overestimate the evaporation rate, as the ignored convective effect of Stefan
flow will itself generally tend to decrease the mole-fraction gradients at the droplet interface. The
global evaporation rate can be obtained by integrating the local evaporation rate over the entire

droplet interface, which, for flattened drops, evaluates to

Jyp = 4DypuoR., (15)
4D'U ’UO'RC
Jg.psF I f X : (16)

Large-Grashof-number limit: boundary-layer approach
Assumptions and dimensionless numbers

As evidenced by the experimental results, solutal (density variation with the vapour concentration)
buoyancy convection in the gas phase must play an important role in the studied phenomenon,
all the more so that we are here dealing with a highly volatile liquid (HFE-7000) with a large
molecular weight (M, = 0.2kg/m?). It totally reshapes the vapour cloud as compared to the pure-
diffusion case and thus essentially affects the evaporation rates. The intensity of this convective
effect is characterised by a Grashof number Gr, which we can here define as

A 3
Gr = DP9t (17)

HairVair

where Ap, is the scale of the gas density variation, g is the gravity acceleration, . is the contact
radius of the pendant drop, p., = 1.85 x 107°Pas is the dynamic viscosity of pure air, and
Vair = 1.58 x 1075 m?/s its kinematic viscosity. Now the pure-diffusion limit (which, on account
of essential vapour mole fractions, is understood in this section as inherently incorporating the
associated Stefan flow) actually corresponds to Gr < 1, which is obviously not the case in the
present experiments. Note that the Schmidt number is here of order unity (Sc¢ = vu,/D, = 1.95
with D, = 0.811 x 107° m? /s the diffusion coefficient>®), which permits asymptotic characterisation
of the phenomenon solely in terms of Gr. Let us now estimate the values of Ap, and Gr for our
problem, and make a number of other useful developments in passing.

If x is the mole fraction of vapour in the gas phase, the gas density p, can be expressed as p, =
¢y [Maiy + (M, — M) x|, where ¢, is the mole density of the gas and M,;, = 0.029 kg/mol. In what
follows, we shall neglect the temperature dependence of all properties (the expected temperature
differences must here be much smaller than the absolute temperature) and use their values at a
temperature of ~ 25°C. This is done except for the saturation conditions, where the temperature
dependence is especially strong and essential. We shall also treat the gas as ideal. Besides, any
hydrodynamic and hydrostatic pressure variation must here be small against the absolute pressure
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value. In this way, in particular, ¢, ~ const = Pamb/RTamb, where R is the universal gas constant
and P, and T, are the ambient pressure and temperature, and p,i ~ cgM,ir is the density of
pure air under the same ambient conditions (y — 0 and p, — pa far away from the droplet).
If Pot(T) is the saturation pressure (here of HFE-7000) as a function of temperature, for which
we here use the Clausius-Clapeyron relation Pi(T) = Piay(Tp) exp [L M, (T — Ty)/RTTp] with
L being the latent heat of evaporation (in J/kg), the corresponding saturation mole fraction is
Xsat (1) = Pisat(T)/ Pamp. The maximum value of xg,¢ is attained at the contact line, where the
temperature is practically the ambient one, and decreases towards the center of the drop (Figure 4
of the main text). We shall define Ap, as the difference between the maximum value of p, (in view
of M, > M,;, attained at the contact line too) and p,;,. Thus,

P, amb
RTamb

P, sat (Tamb)
RTamb

Apg = Pg,max — Pair — (Mv - Mair) Xsat(Tamb) = (Mv - Mair) . (18)
With L = 142kJ/kg, Tomp = 297.15K, Pay(Tomp) = 62.2kPa, one obtains Ap, = 4.31kg/m?,
which is several times larger than the density of pure air, p,;, = 1.18kg/m?, at P, = 1 atm.

Then, for a drop of R. = 1.81 mm, it follows from eq 17 that Gr is as large as 852, which goes
well along with the observed concentration fields being far from the pure-diffusion case (Figure 2
of the main text). On the other hand, the estimated largeness of Gr inspires considering the limit
opposite to the pure-diffusion one, namely that of Gr — co and boundary layersS*51% which is no
doubt more pertinent to the present experiments and which we carry out here. At the same time,
one should a priori recognize that Gr ~ 852 is probably not large enough for such a calculation
to be more than an advanced estimation. Especially considering that the large parameter entering
the boundary-layer scheme (see below) is only as large as Gr'/5 ~ 3.9. Anyhow, while an exact
modelling still awaits its realisation, we shall here stick to a more accessible asymptotic analysis.
As it is typically the case, quasi-stationarity is assumed: the drop evaporates much slower than
the concentration field is established. Thus, at each instant and for each shape of the drop during
the process of evaporation, the concentration and flow fields are assumed to be stationary.

While the temperature dependence is neglected as said above, we do have to take into account

the dependence of the dynamic viscosity p, of the gas mixture on . The following semi-empirical

formula is usedS!':
b= HoX pair (1 = X)

T x+ (1 =x)Py xPo +1—x
1 M -1/2 [ 1 1/2 M. 1/47

@ - 1 v 1 v alr
mlan) Ge) ()
1 M. -1/2 T I 1/2 M 1/47

@ - 1 alr 1 alr v

s () G Ge) )

where we formally treat air as a one-component gas. For the dynamic viscosity u, of pure vapour of
HFE-7000 required in the above formula, the value given by 3M™ is used, i.e. p, = 1.09x107° Pas.
On the other hand, the diffusion coefficient D, is taken to be y-independent®'!, i.e. a constant.

Boundary-Layer Formulation

We now write down the dimensionless boundary-layer formulation for the stationary axisymmetric
buoyancy convection below a pendant-drop surface. The cylindrical radial coordinate r, the vertical
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Figure S6: The boundary-layer coordinates r and y of a point P (designated on the sketch as r,
and y,,).

coordinate z (directed downwards, with z = 0 at the solid surface) and the coordinate y (explained
below) are all made dimensionless with the contact radius R., used as the lengthscale. The drop
surface is represented as z = h(r) (for 0 < r < 1). For the coordinate along the drop surface, we
use r with the corresponding metric coefficient H,(r) = v/1 + h'2, the prime hereafter denoting
the differentiation with respect to r. In the following formulation, the coordinates of any point
P outside the droplet are given by the normal distance y to the droplet interface and the radial
coordinate r of the foot of this projection (Figure S6). The local slope of the drop surface is
given by the angle p(r) = —arctanh’ with the horizontal, the contact angle being 6 = (1).
Note that H, = 1/cos¢. The tangential and orthogonal (to the drop surface) velocity field
components v and v are made dimensionless with v,;,/R., while the pressure p (deviation from
the hydrostatic pressure distribution in the unperturbed, pure air) with jia;, 1./ R2. Following the
general principles®, the sought dimensionless boundary-layer formulation can now be written as

(further explanations below)
1 [Ou 1 ov
4z —~ =0 19
H, (8r+ru)+8y ’ (19)

20

0:—2—5+Grmcosgo, (21)

H%g_)?f + vg—; = Sc_lgiy);, (22)

U= Uy, v:—lsc__;g—;(, X = Xo at y=20, (23)
u—0, p—0, x—0 as Yy — +00, (24)

where Gr is defined according to eq 17 with eq 18, p,(x) = pg(X)/pair = 1 + (M, /My — 1)x, and
fig(X) = pg(X)/ Hair-

The problem is here more conveniently formulated in terms of the mole average velocity n
contrast with the usual, mass average (or barycentric) one. This is why the continuity equation,
eq 19, is merely in the form of the divergence of the velocity field equal to zero, in spite of strong
density variations: the mole density ¢, is here assumed constant, as discussed above. The same is
true for the species conservation equation, eq 22, which adopts a particularly simple form. In fact,

Sllj i
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within the leading-order boundary-layer approach to which the present formulation pertains, there
is no difference between the two types of velocity as far as the u component is concerned. This
is not the case for the v component though. Namely, the mass average orthogonal velocity-field
component is given by the term in parentheses on the left-hand side of the tangential momentum
equation, eq 20, and so this equation clearly adopts the usual form in terms of the mass average
velocity. Note that both tangential (eq 20) and orthogonal (eq 21) buoyancy force components are
present in the formulation (see also discussion below). Equation 24 states that three dependent
variables (but not v) fade away at the outer edge of the boundary layer.

For the interfacial boundary conditions defined in eq 23, three different variants are considered.
In all of them, the condition of the normal velocity determined by evaporation (y = 0, eq 23, second
relation) remains unchanged. On the other hand, the mole fraction distribution along the drop
surface x, (eq 23, third relation) is either taken constant and equal to the saturation mole fraction
determined by the ambient temperature or rather adopted from the experimental measurement of
the interfacial mole fraction (as explained in the main text). For the surface tangential velocity
u, (eq 23, first relation) there also are two possibilities. Either we assume it equal to zero (i.e.
neglible as compared to the velocities present in the gas) or alternatively, in light of the large
temperature drops measured experimentally, we compute the corresponding thermal Marangoni
flow inside the droplet and use the resulting u, distribution in the gas boundary-layer simulation.
These four options lead to only three reasonable cases, which are shown in the main text: constant
interfacial temperature (equal to Ty, and Xy = Ysat (Tamp)) and a stagnant droplet (u, = 0), which
is denoted by the subscript Tc in the figures; non-uniform interfacial temperature T, (r) adopted
from experiment and x, = xsat(7,), but still a stagnant droplet (u, = 0), which is denoted by
the subscript T'v; and finally, the same as the latter case but now with u, determined from the
Marangoni flow inside the droplet associated with T, (r), which is denoted by the subscript Ma.
The details of how this Marangoni flow is calculated are given in the following subsection.

Once the solution of the problem, eqs 19-24, is obtained, the local evaporation flux (mass per
unit area and per unit time) at the drop surface is finally expressed as

Parn air
> Mv V_ U(T7 Y= O) ) (25)

Jl (T) - RTamb Rc

where v is dimensionless as in eqs 19-24. These local evaporation rates are shown in Figure 5 in
the main text for the three mentioned cases as J; 7., Ji 1, and Jj pq.

We note that, well in the spirit of the boundary-layer approach, one may expect that the
variables can be rescaled with certain powers of Gr so that Gr disappears from the formulation.
However, here such a scaling-out of Gr can be achieved either in the tangential buoyancy term, or
in the orthogonal one, but not in both simultaneously. Moreover, the extraneous (with respect to
the buoyancy convection) factor of u, must be equal to zero to this purpose. For instance, to get
rid of Gr in the orthogonal buoyancy term, the following change of variables applies: u — Gr¥/°u,
v — Gr'/Pu, y — Gr Y%y, p — Gr*/°p (the other variables not being modified). This leaves a
factor of Gr'/® in front of the tangential buoyancy term (instead of Gr in eq 20). In this way
we see that, given that the present analysis is valid as Gr — oo, sufficiently small surface slopes
must be implied (such that Grilty = O(1)) to have both types of buoyancy contribution at the
same leading order. For slopes smaller than that (i.e. for sufficiently flattened pendant drops), it
is the orthogonal buoyancy that is prevailing. For larger slopes, it is the tangential buoyancy, as
it should in fact be expected.

It is clear from physical considerations that the boundary-layer flow here initiates at the contact
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line and is directed towards the symmetry axis (hence u < 0). Formally, in the framework of the
formulation given by eqs 19-24, it is the orthogonal buoyancy that always (irrespective of the
values of Gr and ) dominates over the tangential one at the initiation. This can e.g. be verified
a posteriori using the corresponding initiation solution, which is self-similar:

u=—Gr*®cos’°0 (1 —r)°U(n), v=Gr'/5cos’°0(1—r)"*°V(n),

p = Gr*° cos?/°0 (1-— r)2/5P(77) , x=X(n), n= Gr'/5 cos®0 y (1-— r)_2/5 ,

valid as  — 1 (note that H, = 1/cosf at r =1). U, V, P and X satisty the following boundary-
value problem for ordinary differential equations (prime denoting differentiation with respect to

n): ' )
U - U +V' =0,

5} )
1 2 M, /My, — 1 2 2
~ X 772 _Z o —1&){/ / :——P “ P/ ~ X N/
() |50+ (v = ot - s ML= ) 0| = 2 2k 00
X
0=-P+—"
Xsat(Tamb)

2
(V — SUU) X' =8¢ X",
St
1-X

U—-0, P—>0, X—>0 as n — 400,

U:O, V=- X/, X:Xsat(Tamb) at 77:07

which is solved numerically by a shooting method. We see that the behaviour of the solution is
here singular at the starting point (as  — 1), which is not atypical at all in the general context of
boundary layers®®. In particular, the boundary layer develops from a zero thickness, the thickness
growing as (1 — r)*°. The local evaporation flux diverges as J; oc (1 —r)72/% as r — 1 (the same
as v(r,n = 0), cf. eq 25). This is not a fundamental divergence though (unlike the one in the
pure-diffusion case), in the sense that the boundary-layer approach is not valid in a small vicinity
of the starting point anyway. The zone where it breaks down can be estimated e.g. by setting
u ~ v within the self-similar solution (in the region of validity, it must be u > v as Gr — o).
This leads to an estimation 1 —r = O(Gr~'/?) for the zone in question. We note that in the case
Ma, when u, # 0 is considered, u, behaves less singularly as » — 1 than the above self-similar
solution and thus does not interfere to leading order at the initiation: in fact, with the present
fitting of the interfacial temperature from experiment, we have u, o< (1 —7r) as r — 1 (see also the
next subsection), whereas u oc (1 —7)'/° for the self-similar solution.

The problem is discretised by finite differences. The conditions at y — oo are approximated
at some finite y = ynax deemed to be sufficiently large. The initiation solution is applied (for all
points along y) at some 7 = 1y < 1 deemed to be sufficiently close to » = 1 (the first station in
the computation scheme). Here we use 7. = 0.999. Then, the solution (for all y) is advanced
to the next chosen discrete position (station) in the decreasing sense of r, etc. This step-by-step
procedure, involving at each step two sufficiently close neighbouring stations, one at which the
solution is already known and the other where it is sought, is here realised similarly to Potter
and Riley®'°. The procedure can in principle be continued up to » = 0. Practically, however, it
has to be stopped at a small finite value r = r;, (here we go up to 7y, = 0.04) in view of the
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geometrical singularity at the symmetry axis anticipated by the present boundary-layer solution in
the form of a corresponding singular behaviour interpreted as a developing eruption precursor as r
is decreased. In the range 0 < r < rpy,, the local flux (eq 25) is then obtained by interpolation
to the point {r = 0, J; = 0} in accordance with the expected behaviour in the framework of the
leading-order boundary-layer theory®!?. We note that the boundary-layer approach actually ceases
to be valid for a certain interval of » around r = 0, whose length is inversely proportional to a
small positive power of the Grashof number®'%. In our case, with Gr ~ 852, we estimate that this
interval may be as large as 0 < r < 0.5. Given the earlier mentioned invalidity in a vicinity of
r = 1, the r range where the boundary-layer computation results can be meaningfully compared
with experiment is thus roughly limited in Figure 5 of the main text to 0.5 < r < 0.9.

Marangoni flow inside the drop

The computation is based upon the full incompressible Navier-Stokes equations with constant
material properties and the appropriate boundary conditions. The Marangoni term in the tangen-
tial stress balance at the drop interface is evaluated using the interfacial temperature distribution
measured in the experiment. Let u and w be the cylindrical radial and vertical velocity-field
components, respectively, adimensionalised with v;/R., where v, = 3.21 x 107" m?/s is the kin-
ematic viscosity of the liquid. Note that here wu is different from the previous subsection. The
hydrodynamic pressure p is made dimensionless with 1,/ R? where y; = 0.45 x 1072 Pas is the
dynamic viscosity of the liquid. As before, R, is used as the length scale throughout. The cyl-
indrical coordinates used (r and z) are the same as in the previous subsections. The continuity
and momentum equations can be written as

6u+u+8w_0

or r 0z
o oy o 10w o
or Dz  Or or2  ror r2 022’

ow ow @ 0w 18_w 0w

U——+Ww_—=— - t— + .
or 0z dz 0Or2 ror 022
The boundary conditions include the no-slip and non-penetration ones at the bottom:

u=0, w=0 at 2=0,

while the non-penetration condition at the droplet interface (the evaporation-induced velocity is
neglected versus the Marangoni one) and the tangential stress balance (neglecting the gas shear

stress) read
— d_h Qd_h a_w_@ + 11— d_h2 @_'_a_w —d_JRCdE + @2
e dr \ 0z Or dr 0z Or ) dT v dr dr

at z=h(r),

1/2

where T, [K] is the experimentally measured interfacial temperature distribution and do/dT =
—1.06 x 107*N/mK is the surface tension variation with the temperature. Note that in the
Marangoni term (the right-hand side), unlike the rest of the formulation, all the quantities are
here dimensional, except for » and h. The normal stress balance is not used as the drop shape,
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z = h(r), is considered as prescribed. The symmetry at the axis can be expressed by

u=20, g—l::o, %:0 at r=20.
The behaviour of the solution as r — 1, which can be used for formulating the corresponding
boundary conditions, is determined by the associated “corner” solution of the creeping-flow (Stokes)
equations. As T, is here fitted from experiment such as to possess a finite value of dT, /dr asr — 1,
one can establish that the velocity field decays proportionally to the distance to the contact line,
u=0(1—-r)and w = O(1 —r). In particular, we see that v — 0 and w — 0 as » — 1. On the
other hand, the pressure field diverges logarithmically. From the corner solution in question, one
can obtain

do R. dT, sin 6 sin 20 | [(1 24 2} n .
= —— ) —r z cons
p dT v, dr | sin26-26 cos 20 & ’
where § = — arctan dh/dr‘q:1 is the contact angle. Given that the absolute pressure values are

immaterial in the present incompressible formulation with a prescribed interface, one can choose
const = 0 without loss of generality.

After introducing a new variable Z = z/h(r), the problem is discretised with the help of finite
differences on a uniform rectangular grid. It is solved by the Newton-Raphson method implemented
in Wolfram Mathematica (FindRoot command). As a result of this computation, one obtains in
particular the tangential velocity u, distribution at the drop interface used in eq 23.

Simulation Settings

The above (quasi-stationary) analysis is performed for 11 different instances during the droplet
evaporation. The droplet contour and the interfacial temperature are both fitted with smooth
analytic functions and the fitting coefficients are shown in Table S1. The contour is fitted to a 4th
order polynomial (z = ar® + br? + c) with r, z expressed in pixels (1 pixel here equals 7.4pm). The
fitting coefficients used in eq 4 for the interfacial mole fractions (from where the temperature is
inferred by means of the Clausius-Clapeyron relation) are «, 8 and 7.

Table S1: Fitting coefficients used in the simulations.

R.mm|[ax107 [bx10%| ¢ | a | B | v

2.10 7.46 -2.43 150 | 0.435 | 3.54 | 2.82
2.02 6.79 -2.37 138 | 0.216 | 0.82 | 6.85
1.92 6.81 -2.23 120 | 0.232 | 0.84 | 6.79
1.87 5.68 -2.17 113 1 0.333 | 1.54 | 4.77
1.81 5.25 -2.11 106 | 0.360 | 2.22 | 3.93
1.76 5.03 -2.08 99 10.341 | 1.64 | 4.62
1.63 4.60 -1.97 84 | 0.354 | 2.12 | 3.32
1.56 5.08 -1.99 78 | 0.305 | 1.32 | 4.36
1.49 2.01 -1.85 70 | 0.396 | 2.77 | 3.03
1.41 3.73 -1.93 64 | 0.363 | 2.12 | 2.97
1.25 0.14 -1.83 51 10.361 | 2.40 | 2.71

In addition to the computation results provided in the main text, some further details are
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shown in Figures S7 and S8.
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Figure S7: Computed tangential surface velocity (adimensionalised with v,/ R,, as in eq 23) of the
Marangoni flow inside the droplet with R, = 1.81 mm. Quite a similar single-vortex Marangoni
convection has also been obtained elsewhereS!3:514,
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Figure 58: Computed tangential-velocity and mole-fraction orthogonal profiles at various radial
positions along the interface (adimensionalised as in eqs 19-24) in the case Ma for the droplet with
R. = 1.81 mm.

D. Estimation of temperature variations in the wafer

Here we provide estimations confirming our hypothesis that the temperature at the contact line is
close enough to the ambient one so as to neglect the difference. The way we proceed is two-fold.
On the one hand, we assess the global temperature drop in our silicon wafer due to evaporative
cooling. On the other hand, we estimate the temperature non-uniformity in the wafer taking into
account a particularly high evaporation flux at the contact line.

The energy required to evaporate a volume V; of the liquid is V; p; L, where p; = 1400 kg/m?
is the HFE-7000 liquid density and L = 142kJ/kg is its latent heat of evaporation. If this comes
at the expense of cooling the wafer, it must be equal to V; psc,s AT, where AT is the wafer
temperature drop, V, the volume of the wafer, p, its density and ¢, its specific heat. For silicon,
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we take p; = 2329kg/m® and c,s = 1414 J/kgK. Our wafer is circular with a radius of 2.54 cm
and a thickness d; = 0.5mm, hence V; ~ 1ml. For our pendant drops, V; ~ 5pul. This yields
AT ~ 0.3K, which is deemed to be inessential. However, in view of a finite thermal diffusivity
Ks = As/pscps Of the solid (even though relatively large here, with A\, = 149 W/mK for silicon),
the cooling does not proceed uniformly in the whole wafer, but rather involves distances of the
order of \/k4t from the droplet, where ¢ is the time. Thus, the energy lost due to the cooling
is ~ 7r(\//<;_st)2 ds ps cps AT = mds As AT't. In the beginning, the global evaporation rate is at
its maximum, of the order of J;, ~ 1ul/s (cf. Figure 6), or in mass units J, ~ 1.4 x 107%kg/s.
Somewhat overestimating, the evaporation energy up to the moment ¢ is of the order of J, Lt.
Equating the two energies, one obtains AT ~ J,L/(mAsds) ~ 0.9K, which is already more
considerable, but still below 1 K.

Estimation of temperature non-uniformity in the wafer is here somewhat complicated by the
fact that neither from experiment nor from modelling we dispose of an exact behaviour of the
evaporation flux in a close neighbourhood of the contact line, just where it attains its maximum.
To remedy this difficulty, we put to test a number of different reasonable behaviours and show
that these result in more or less the same insignificant temperature non-uniformity. Given an
estimative character of the analysis, we assume for simplicity that the evaporative heat loss at
the drop interface is directly applied/transferred to the surface of the wafer. We focus on the
near-contact-line behaviour of the temperature field in the wafer, which is then extrapolated to
a distance of the order of the drop radius to yield an estimation of an overall temperature non-
uniformity. For definiteness, concrete evaluations are made for a drop with R, = 1.81 mm, used as
the main illustration example throughout the main text. Note that the wafer thickness, 0.5 mm,
is not much smaller than the drop radius, so that the mentioned estimative extrapolation, here
made for a semi-infinite substrate, is still deemed to be reasonable. In general, the developments
are here similar to Ristenpart et al.5'2.

Contact

Ji
Line
A A A T T
=T

¢

=)
Solid Y

Figure S9: Configuration sketch used for estimation of temperature non-uniformity in the solid in
a small vicinity of the contact line.

We use a polar coordinate system (7, ) defined in the meridian cross-section of the drop
and centered at the contact line to work in a vicinity of the latter (see Figure S9). The radial

coordinate 7 is adimensionalised with R, i.e. 7 = [(r — R.)? + 22]1/2 /R.. In all test cases used,
the local evaporation flux is represented near the contact line (7 < 1) as a power law

Jy=Jo/JT7, (26)

with 0 < o < 1/2 and Jy (kg/m?s) adopted in a reasonable way from either the experiment or the
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simulations. The temperature field T, in the wafer satisfies the Laplace equation

T, 10T, 18T,

LLALINE )
o i or 7 og

Let ¢ = 0 correspond to the solid-gas surface, where we have an insulation condition due to a
poor thermal conductivity of the gas:

ITs/0p =0 at ©=0.

The solid-liquid surface corresponds to ¢ = 7, where in accordance with what is said above we
impose an evaporative heat loss:

Ag— =—LJ R, at p=m,

where Ay = 149W/mK is the thermal conductivity of the wafer (silicon in our case) and L =
142kJ /kg is the HFE-7000 latent heat of evaporation. The problem is formulated in the domain
7> 0,0 <@ < (see Figure S9).

As a first test case, we use the local evaporation rate in the form applicable to a flattened drop
evaporating in the pure diffusion regime, eq 13, even though we rewrite it here with a different
factor as follows:

Jov/2

e )
which conforms to the earlier adopted near-contact-line behaviour, eq 26, with @ = 1/2. The value
of Jp is taken such that the measured global evaporation flux J, is equal to the one obtained by the
integration of eq 27 over the flattened-drop surface, the latter being 27 fORc Jyrdr = 2v27 Jy R2.
For a HFE-7000 drop with R. = 1.81mm, we have J, =~ 0.7pul/s ~ 107%kg/s (cf. Figure 6 of
the main text) and thus Jy ~ 0.034kg/m?s. The appropriate solution of the formulated problem
(using eq 26, not eq 27) for T with o = 1/2 is

T, =Ty + —QLi)RC 7172 cos %so,
where Ty is a constant (which can in principle be found by matching with the full solution, in
the whole wafer). The solution provided is valid in a small vicinity of the contact line. However,
extrapolation to 7 ~ 1 (e.g. along ¢ = 0) yields an estimate for the spatial variation of the wafer
temperature, AT, ~ 2LJyR./\s, on the scale of the droplet radius. With all the parameter values
given above, one obtains AT, ~ 0.12 K, which is a small value indeed.

As a second test case, we assume the local evaporation rate tending to a finite maximum value
at the contact line, and thus a = 0 in eq 26. We adopt from experiment (cf. Figure 5 of the main
text) Jo ~ 0.15kg/m?s. The solution for T, with a = 0 is

LJyR,

s

Ts =Ty + (Tosinp — 7log(7/k) cos )

(k being a constant), and now we see that AT, ~ LJyR./mAs ~ 0.08 K, once again a small value.

As a last test case, we use the near-contact-line local evaporation rate given by the initiation
solution within the boundary-layer scheme (see the corresponding subsection above). In this case,
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we have a = 2/5 and Jy ~ 0.05kg/m?s. The solution for T, with a = 2/5 is

SLJoRe _sars 03,

Ts = Ts o . 5 -
0 3N sn37/5 5

and now ATy ~ 5LJyR./3\ssin 3w /5 ~ 0.15 K.

Overall, we see that the cooling of the substrate is here expected to be of the order of 1 K. This
is small relative to the temperature fall at the droplet interface (cf. Figure 4), and roughly within
the experimental error for the measurement of the interfacial temperature. Thus, we neglect it in
the present paper, considering that the substrate (and hence the contact line) are at the ambient
temperature.
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