UCRL-10886 UC-4 Chemistry TID-4500 (19th Ed.)

UNIVERSITY OF CALIFORNIA

Lawrence Radiation Laboratory Berkeley, California

Contract No. W-7405-eng-48

VAPOR-LIQUID EQUILIBRIA FOR AQUEOUS SULFURIC ACID

John Irving Gmitro and Theodore Vermeulen June 24, 1963

VAPOR-LIQUID EQUILIBRIA FOR AQUEOUS SULFURIC ACID

Contents

Abstract		v
I. Introduction		1
II. Derivation of Equations		
A. Partial-Pressure Equation		3
B. Dissociation Constant of $H_2SO_4(g)$		5
III. Thermodynamic Data		
A. Pure-Component Properties		7
1. H_{298}^{0} for $H_2SO_4(g)$		7
2. C_p° for $H_2SO_4(g)$		9
3. Constants in Equations		11
B. Partial Molal Properties		12
IV. Calculation of Partial Pressures	· ·	15
A. Trial Calculations		16
B. Adjustment of High-Temperature Partial Molal		
Heat Capacities		21
1. Sulfuric Acid Azeotrope		21
2. Adjustment of Alpha, 10 to 98.5%w		24
3. 98.5- and 100-% Region	: .	25
C. Results.		31
V. Discussion and Conclusions		35
Acknowledgment		39
Notation	- ·	40
Appendix	• •	42
References		81

VAPOR-LIQUID EQUILIBRIA FOR AQUEOUS SULFURIC ACID

John Irving Gmitro and Theodore Vermeulen

Lawrence Radiation Laboratory and Department of Chemical Engineering University of California, Berkeley, California

June 24, 1963

ABSTRACT

The composition of the vapor phase over sulfuric acid has not been measured experimentally because of the low volatility of H_2SO_4 . A method is described for calculating the partial pressures of H_2O , H_2SO_4 , and SO_3 based upon liquid-phase partial-molal thermodynamic quantities. Tables and graphs are provided which give the above partial pressures from -50 to 400°C at thirty-six compositions between 10 and 100 weight-percent acid.

I. INTRODUCTION

The vapor phase over sulfuric acid solutions is composed of water and sulfuric acid, together with sulfur trioxide from the dissociation of the acid:

$$H_2SO_4(g) = H_2O(g) + SO_3(g)$$
 (1)

In principle, the distribution of these three components at various temperatures and acid concentrations can be determined by either (a) experimental partial-pressure measurements, or (b) calculation of partial pressures from liquid-phase thermodynamic data.

Method (a), although more direct, is not fully applicable to the sulfuric acid system because of the low volatility of H_2SO_4 . An idea of the problems involved may be had from the following table (derived from the present study), which gives order-of-magnitude values for the various partial pressures:

Concentration	Temperature	Partial p	oressure (mm Hg)
(%w)	(°C)	H ₂ O	H ₂ SO ₄	so3
10	25	20	10-15	10-23
	100	7×10 ²	10-10	10^{-16}
	300	6×10^{4}	2×10 ⁻³	10-6
50	25	8	10-10	10-17
	100	3×10 ²	10-6	10-11
	300	4×10^{4}	5×10 ⁻¹	10 ⁻³
90	25	5×10 ⁻³	10-4	10-8
	100	2	6×10 ⁻²	10- ⁵
	300	1.8×10^{3}	1,2×10 ²	4

Experimental difficulties notwithstanding, the <u>total</u> vapor pressure of sulfuric acid, which in most cases is due entirely to the partial pressure of H_2O , was the subject of numerous investigations between 1845 and 1923. Greenewalt, ¹ who in 1925 assembled the available data, reviewed 19 separate vapor-pressure determinations. His final result, based essentially on the measurements of Burt² and of Daudt, ³ is the accepted standard that appears in today's reference works.

-1-

Method (b), the calculational approach to partial pressures, requires two types of thermodynamic data:

(1) pure-component data for two liquids and three gases

 $(H_{298}^{o}, S_{298}^{o}, and C_{p}^{o}), and$

(2) partial molal data for binary solutions $(\overline{H}_{298}, \overline{S}_{298})$ or \overline{F}_{298} , and \overline{C}_{p}).

This type of approach was first used by Abel⁴ in 1946, based in part on work by Bodenstein and Katayama⁵ who had measured K_p for Eq. (1) at 300 to 500°C with 85 to 100 % wacid. The calorimetric data available at that time were incomplete, necessitating cross-correlations from various sources in order to determine partial molal quantities. More important, values of C_p^0 , H_{298}^0 , and S_{298}^0 for $H_2SO_4(g)$ were not available. This lack necessitated the use of K_p for Eq. (1) in the calculation of $P_{H_2SO_4}$, which in turn required an extrapolation of Bodenstein and Katayama's high-temperature equilibrium measurements down to 25°C.

Since 1946, additional data have become available which make the calculation of partial pressures via method (b) considerably more reliable. Extremely complete tables of partial molal quantities at 25°C, tested for internal consistency, have been published by Giauque et al.,⁶ who give free energies, enthalpies, entropies, and heat capacities at 109 different sulfuric acid concentrations from 8.93 to 100%w. In addition, Giguère⁷ has obtained C_p^o , S^o , $(F^o - H_0^o)/T$, and $(H^o - H_0^o)/T$ for $H_2SO_4(g)$ from spectroscopic data. The later data, when coupled with Bodenstein and Katayama's K_p data, provide a third-law H_{298}^o for $H_2SO_4(g)$ and an equation giving the temperature dependence of K_p from 25 to 500°C.

Based upon these new data, this paper presents a method for calculating the partial pressures of H_2O , H_2SO_4 , and SO_3 as functions of temperature and acid concentration. Partial molal heat-capacity values have had to be estimated by smoothing techniques, so that some inaccuracy still remains. Because of this, no correction has been made for nonideal-gas behavior, and 10000 mm is viewed as the upper limit of applicability of the results.

II. DERIVATION OF EQUATIONS

A. Partial-Pressure Equation

For any component in a multicomponent mixture at equilibrium, the partial molal free energy of the vapor is equal to the partial molal free energy of the liquid:

$$\overline{F}(g) = \overline{F}(\ell) \tag{2}$$

If the pressure is low enough so that the vapor acts as a perfect gas, we obtain

$$F^{O}(g) + RT \ln p = F^{O}(\ell) + RT \ln a,$$
 (3)

$$\ln p = \frac{F^{O}(\ell) - F^{O}(g)}{RT} + \ln a , \qquad (3a)$$

 $\mathbf{o} \mathbf{r}$

$$\ln p = \frac{-\Delta F^{0}}{RT} + \ln a , \qquad (3b)$$

Equation (3b) holds at any temperature and composition. The partial pressure under consideration is given by the sum of two terms: a pure-component term, $-\Delta F^{0}/RT$, a function of temperature only; and an activity term, ln a, a function of both temperature and composition. In order to evaluate the pressure, each term must be related to its standard-state value.

The pure-component term is evaluated as follows:

$$\frac{\mathrm{d}}{\mathrm{dT}} \left(\frac{\Delta F^{\mathrm{o}}}{\mathrm{T}} \right) = -\frac{\Delta H^{\mathrm{c}}}{\mathrm{T}^{2}} \qquad (4)$$

$$= \frac{-1}{\mathrm{T}^{2}} \left\{ \Delta H^{\mathrm{o}}_{298} + \int_{298}^{\mathrm{T}} \left[C^{\mathrm{o}}_{\mathrm{p}}(\mathrm{g}) - C^{\mathrm{o}}_{\mathrm{p}}(\ell) \right] \mathrm{dT} \right\} \qquad (4a)^{2}$$

This integrates to give

$$\frac{\Delta F^{o}}{RT} = -\left(\frac{\Delta H^{o} - T\Delta S^{o}}{RT}\right)_{298} + \frac{\Delta H^{o}_{298}}{R} \left(\frac{1}{298} - \frac{1}{T}\right) + \frac{1}{R} \int_{298}^{T} \frac{1}{T^{2}} \left\{\int_{298}^{T} \left[C_{p}^{o}(g) - C_{p}^{o}(\ell)\right] dT\right\} dT.$$
(5)

^{*}Any coefficient or subscript shown as 298 is actually computed as 298.15°K (25°C).

The activity term is evaluated in a similar manner:

$$\ln a = \frac{\overline{F} - F^{0}}{RT} , \qquad (6)$$

$$\frac{d}{dT}\left(\frac{\overline{F} - F^{0}}{T}\right) = -\frac{\overline{L}}{T^{2}}$$
(6a)

$$= \frac{-1}{T^{2}} \left\{ \overline{L}_{298} + \int_{298}^{T} [\overline{C}_{p} - C_{p}^{o}(\ell)] dT \right\}, \qquad (6b)$$

$$\ln a = \left(\frac{\overline{F} - F^{o}}{RT}\right)_{298} - \frac{\overline{L}_{298}}{R} \left(\frac{1}{298} - \frac{1}{T}\right) - \frac{1}{R} \int_{298}^{T} \frac{1}{T^{2}} \left\{ \int_{298}^{T} \left[\overline{C}_{p} - C_{p}^{o}(\ell) \right] dT \right\} dT.$$
(7)

Combining Eqs. (3b), (5), and (7), we obtain

$$\ln p = G_1 + G_2 / T + G_3 (T) , \qquad (8)$$

where

$$G_{1} = \frac{(F-F')_{298} - L_{298} + 298 \Delta S_{298}^{\circ}}{298R},$$

$$G_{2} = \frac{\overline{L}_{298} - \Delta H_{298}^{\circ}}{R},$$

$$G_{3}(T) = \frac{1}{R} \int_{298}^{T} \frac{1}{T^{2}} \left\{ \int_{298}^{T} [C_{p}^{\circ}(g) - \overline{C}_{p}] dT \right\} dT.$$

The evaluation of $G_3(T)$ may be made by using heat-capacity functions in a form given in the literature. For the gas, we have

$$C_{p}^{0}(g) = a + bT + cT^{2}$$
, (9)

and for the liquid

$$\overline{C}_{p} = (\overline{C}_{p})_{298} + a (T - 298) .$$
 (10)

This gives, upon combining G_1, G_2 , and $G_3(T)$:

$$\ln p = A \ln \frac{298}{T} + \frac{B}{T} + C + DT + ET^{2}, \qquad (11)$$

where

$$A = \frac{1}{R} (-a + \overline{C}_{p, 298} - 298a),$$

$$B = \frac{1}{R} \left(-\Delta H_{298}^{0} + 298 a + \frac{298^{2}}{2} b + \frac{298^{3}}{3} c + \overline{L}_{298} - 298 \overline{C}_{p, 298} + \frac{298^{2}}{2} a \right),$$

$$C = \frac{1}{R} \left(\Delta S_{298}^{0} - a - 298 b - \frac{298^{2}}{2} c + C_{p, 298} + \left[(\overline{F} - F^{0})_{298} - \overline{L}_{298} \right] \frac{1}{298} \right),$$

$$D = \frac{1}{2R} (b - a) ,$$

$$E = \frac{1}{6R} c .$$

For the sulfuric acid system, partial molal quantities are available for H_2O and for H_2SO_4 . Equation (11) was therefore used to calculate p_{H_2O} and $p_{H_2SO_4}$, and the partial pressure of SO_3 was calculated from

$$P_{SO_3} = K_p P_{H_2SO_4} / P_{H_2O}$$
 (12)

B. Dissociation Constant of $H_2SO_4(g)$

The equilibrium constant for the dissociation of $H_2SO_4(g)$, K_p , may be determined as a function of temperature, as follows.

The equilibrium for Eq. (1) is given by

$$\ln K_{\rm p} = -\Delta F_{\rm (1)}^{\rm o} / RT . \qquad (13)$$

The temperature dependence of K_p is obtained by expressing $\Delta F_{(1)}^{O}$ as a function of temperature:

$$\frac{d}{dT} \left[\frac{\Delta F_{(1)}^{o}}{T} \right] = -\frac{\Delta H_{(1)}^{o}}{T^{2}} = -\frac{1}{T^{2}} \left\{ \left[\Delta H_{(1)}^{o} \right]_{298} + \int_{298}^{T} \Delta C_{p(1)}^{o} dT \right\}.$$
(14a)

The standard free-energy charge for the reaction is therefore given by

$$\frac{\Delta F_{(1)}^{o}}{T} = \left[\frac{\Delta H_{(1)}^{o} - T\Delta S_{(1)}^{o}}{T}\right]_{298} - \left[\Delta H_{(1)}^{o}\right]_{298} \left(\frac{1}{298} - \frac{1}{T}\right) - \int_{298}^{T} \frac{1}{T^{2}} \left[\int_{298}^{T} \Delta C_{p(1)}^{o} dT\right] dT , \qquad (15)$$

and the equilibrium constant by

$$\ln K_{p} = \frac{\left[\Delta S_{(1)}^{o} \right]_{298}}{R} - \frac{\left[\Delta H_{(1)}^{o} \right]_{298}}{RT} + \frac{1}{R} \int_{298}^{T} \frac{1}{T^{2}} \left[\int_{298}^{T} \Delta C_{p(1)}^{o} dT \right] dT.$$
(16)

Heat-capacity data available in the literature give the following function for $\ \Delta C^o_{p(1)}$:

$$\Delta C_{p(1)}^{o} = a' + b'T + c'T^{2} + d'T^{-2}.$$
 (17)

Use of this to evaluate the heat-capacity integral in Eq. (16) results in the following equation for K_p :

$$\ln K_{p} = J \ln(298/T) + K/T^{2} + L/T + M + NT + QT^{2}, \qquad (18)$$
re

$$J = -a'/R,$$

$$K = d'/2R,$$

$$L = \frac{1}{R} \left[-(\Delta H^{0}_{(1)})_{298} + 298 a' + \frac{298^{2}}{2} b' + \frac{298^{3}}{3} c' - \frac{d'}{298} \right],$$

$$M = \frac{1}{R} \left[(\Delta S^{0}_{(1)})_{298} - a' - 298 b' - \frac{298^{2}}{2} c' + \frac{1}{2} d'/298^{2} \right],$$

$$N = b'/2R,$$

$$Q = c'/6R$$

III. THERMODYNAMIC DATA

A. Pure-Component Properties

The pure-component data required in Eqs. (11) and (18) are listed in Table I.

1. H_{298}^{o} for $H_2SO_4(g)$

The value of H_{298}^{o} listed in Table I for $H_2SO_4(g)$ was calculated as follows: Kelley⁹ has tabulated values of $(H^{o}-H_{298}^{o})$ and $(S^{o}-S_{298}^{o})$ at 100°C intervals for $H_2O(g)$ and $SO_3(g)$. These were used to calculate the free-energy function:

$$\frac{F^{o}-H^{o}_{298}}{T} = \frac{H^{o}-H^{o}_{298}}{T} - (S^{o}-S^{o}_{298}) - S^{o}_{298}.$$
(19)

Giguère's tables⁷ of $(F^{\circ}-H_0^{\circ})/T$ and $(H^{\circ}-H_0^{\circ})/T$ for $H_2SO_4(g)$ were also converted to the same form:

$$\frac{F^{o} - H^{o}_{298}}{T} = \frac{F^{o} - H^{o}_{0}}{T} - \frac{298.15}{T} \left(\frac{H^{o} - H^{o}_{0}}{T}\right)_{298}.$$
 (20)

This procedure gave the following results:

	(F ^o -H ^o ₂₉₈)/T	י
H ₂ O(g)	$H_2SO_4(g)$	SO ₃ (g)
46.03	74.32	62,73
46.72	76.22	63.93
47.41	78,17	65.19
48.10	80.11	66.46
	H ₂ O(g) 46.03 46.72 47.41 48.10	$ \frac{-(F^{0} - H_{298}^{0})/T}{H_{2}O(g)} + \frac{H_{2}SO_{4}(g)}{1} $ 46.03 74.32 46.72 76.22 47.41 78.17 48.10 80.11

These values allow the calculation of $\Delta(F^{o}-H^{o}_{298})/T$ for the dissociation of $H_2SO_4(g)$, Eq. (1). In addition, each of Bodenstein and Katayama's K_p determinations⁵ represents an individual measurement of $\Delta F^{o}_{(1)}/T$, since

$$\Delta \mathbf{F}_{(1)}^{\mathbf{o}} = -\mathbf{R} \mathbf{T} \ln \mathbf{K}_{\mathbf{p}}$$
(21)

Component	Property	State	e Value	Units	Reference
SO ₃	Ho	g	- 94.45	kcal/mole	(8)
. •	so	g	61.24	cal/mole-deg	(8)
	C ^{o(a)} p	g	a=13.90 b=6.10×10-3 d=-3.22×10 ⁵	cal/mole-deg cal/mole-deg cal-deg/mole	2 ⁽⁹⁾
H ₂ O	H^{O}	l g	-68.32 -57.80	kcal/mole kcal/mole	(8) (8)
	S ^o	l g	16.72 45.11	cal/mole-deg cal/mole-deg	(8) (8)
Vaporization	$\begin{array}{c} C_{p}^{o^{(a)}} \\ \Delta H^{o} \\ \Delta S^{o} \end{array}$	g	$a=7.30b=2.46\times10^{-3}10.5228.39$	cal/mole-deg cal/mole-deg kcal/mole cal/mole-deg	(9) 2
H ₂ SO ₄	н ^о	l g	-193.91 -175.01	kcal/mole kcal/mole	(8) See text
	so	£ g	37.50 71.93	cal/mole-deg cal/mole-deg	(6) (7)
	C ^{ota} .	g	a= 7.86 b= 46.15 \times 10 ⁻³ c= - 2.612 \times 10 ⁻⁵	cal/mole-deg cal/mole-deg cal/mole-deg	See text 2 3
Vaporization	ΔH^{O} ΔS^{O}		18.90 34,43	kcal/mole cal/mole-deg	From H ^O (<i>l</i> , g) From S ^O (<i>l</i> , g)
Dissociation	$\Delta H^{o}(1)$ $\Delta S^{o}(1)$ $\Delta C^{o}_{p(1)}$		22.76 34.42 a=13.34 $b=-37.59\times10^{-3}$ $c=2.612\times10^{-5}$ $d=-3.22\times10^{5}$	kcal/mole cal/mole-deg cal/mole-deg cal/mole-deg cal/mole-deg cal-deg/mole	See text See text See text 3
$^{(a)}C_{p}^{o} = a + bT +$	$cT^2 + dT$	-2			

Table I. Values of thermodynamic properties at 298,15 °K.

-8-

By use of Eq. (22), therefore, a value of $\left[\Delta H_{(1)}^{O}\right]_{298}$ for Eq. (1) can be calculated from each K_{D} data point:

$$\left[\Delta H_{(1)}^{0}\right]_{298} = \frac{1}{T} \left[\frac{\Delta F_{(1)}^{0}}{T} - \Delta \left(\frac{F - H_{298}}{T}\right)\right].$$
(22)

Then H_{298}^{o} for $H_2SO_4(g)$ can be calculated from $[\Delta H_{(1)}^{o}]_{298}^{o}$, since H_{298}^{o} values are known for both $H_2O(g)$ and $SO_3(g)$.

Bodenstein and Katayama measured concentrations rather than partial pressures, and presented their results as log K_c vs temperature. Table II lists values of $\Delta F_{(1)}^0/T$ calculated from their data, by use of the conversion relation

$$\Delta F_{(1)}^{0} / T = - R \ln K_{p}, \qquad (23)$$

= - 2.303 R log(K RT). (23a)

Application of Eq. (22) at each of these data points gave an average value of 22760 cal/mole for $\left[\Delta H_{(1)}^{0}\right]_{298}$; the sample standard deviation was 285 cal/mole. As shown in Table I, this procedure gives for $H_2SO_4(g)$:

$$H_{298}^{o} = -57.80 - 94.45 - 22.76$$

= -175.01 kcal/mole.

2. C_p^o for $H_2SO_4(g)$

The C_p^0 equation for $H_2SO_4(g)$ listed in Table I was selected as an empirical fit to the C_p^0 data given in tabular form by Giguère.⁷ The match to the data over the region of interest is shown below:

Т (°К)	$C_p^o, ref. 7$	C ^o , Table I
298.15	19.29	19.29
300	19,35	19.39
400	22.19	22,14
500	24,40	24.40
600	26.08	26.14
700	27.36	27.36

-9-

Run No.	Т (°К)	$\Delta F_{(1)}^{0}/T$ (cal/mole)	Run No.	Т (°К)	$\Delta F_{(1)}^{0}/T$ (cal/mole)	Run No.	Т (°К)	$\Delta F_{(1)}^{0}/T$ (cal/mole)
1	741	-3.75	4	598	3.34	6	633	0.85
	725	-3,27		622	1.98		653	0.75
	682	-1.01		635	0.99		688	-0.66
	653	0.36		668	-0.68		711	-1.78
	621	2.09		701	-2,47		750	-3.12
				717	-3,32		711	-1.78
				682	-1.85		657	0,70
2	646	1,17		5 96	3.13		629	1.98
	660	0.30						·
	664	0.00						
	693	-1.12	5	610	2.87	7	611	3,24
	708	-2.22		635	1.06		629	2.08
	731	-3.35		653	0.20		647	1.12
	756	-4.24		655	0.09		660	0.54
				680	-1.09		689	-1.03
				707	-2.37		714	-1.88
3	613	2.60		710	-2.48		689	-1.03
	627	1,52		747	-4.47		658	0.50
	639	0.99					637	1.55
	652	0,31						
	693	-1.85				•		
	729	-3,68						
	660	-0.32						
	643	0.68						
a	Refere	ence 5.						

Table II. Bodenstein and Katayama equilibrium data for $H_2SO_4(g) = H_2O(g) + SO_3(g)$.^a

The values of C_p^0 , S^0 , and free-energy functions given by Giguère were calculated from spectroscopic data. Because of an uncertainty in accounting for the torsional oscillations of the sulfuric acid OH groups, properties were tabulated in reference 7 both with and without the torsional mode included. We have used the values which include the contribution of the torsional oscillations; this gives a probable uncertainty in the $H_2SO_4(g)$ functions of 0.25 cal/mole-deg.

3. Constants in Equations

It is desirable for calculational purposes to separate out the pure-component terms in Eq. (11), since they are constant for all acid compositions. Upon evaluating these terms from the data in Table I, the following equation is obtained for calculating P_{H_2O} and $P_{H_2SO_4}$.

$$\ln p = A \ln(298/T) + B/T + C + DT + ET^{2}, \qquad (24)$$

where

$$\begin{split} \mathbf{A} &= \mathbf{A}^{*} + \frac{1}{\mathbf{R}} \left(\overline{\mathbf{C}}_{\mathbf{p}, 298}^{-} 298a \right) \\ \mathbf{B} &= \mathbf{B}^{*} + \frac{1}{\mathbf{R}} \left(\overline{\mathbf{L}}_{298}^{-} 298 \,\overline{\mathbf{C}}_{\mathbf{p}, 298}^{-} + \frac{298^{2}}{2} a \right) , \\ \mathbf{C} &= \mathbf{C}^{*} + \frac{1}{\mathbf{R}} \left\{ \overline{\mathbf{C}}_{\mathbf{p}, 298}^{-} + \left[\left(\overline{\mathbf{F}} - \mathbf{F}^{0} \right)_{298}^{-} - \overline{\mathbf{L}}_{298} \right] \frac{1}{298} \right\} , \\ \mathbf{D} &= \mathbf{D}^{*} - a/2\mathbf{R} , \end{split}$$

$$E = constant.$$

Term	Units	H ₂ O value	H ₂ SO ₄ value
A۲	Dimensionless	-3.67340	-3.95519
Вľ	°к	-4143.5	-7413,3
C۴	Dimensionless	10,24353	7.03045
\mathbf{D}^{i}	$(^{\circ}K)^{-1}$	0.618943×10 ³	11.61146×10 ⁻³
E	(°K) ⁻¹	0	2.19062×10−6

The constants in the K_p equation, Eq. (18), may be evaluated immediately, since they are all pure-component terms. Upon substitution of the data in Table I, we obtain the following K_p equation for the calculation of P_{SO_2}

$$\ln K_{p} = J \ln(298/T) + K/T^{2} + L/T + M + NT + QT^{2}, \qquad (25)$$

where

J = -6.71464, $K = -8.10161 \times 10^{4},$ L = -9643.04, M = 14.74965, $N = -9.4577 \times 10^{-3},$ $Q = 2.19062 \times 10^{-6}.$

The fit of this equation to Bodenstein and Katayama's data is shown in Fig. 1. The constants shown for Eqs. (24) and (25) give pressures in units of atmospheres; for results in mm Hg, ln 760 is added to C' and to M. A value of 1.98726 cal/mole-deg was used for R, and 298.15 was used wherever 298 is indicated in Eqs. (11) and (18).

B. Partial Molal Properties

The partial molal properties required in Eq. (24) for the calculation of p_{H_2O} and $p_{H_2SO_4}$ are listed in Table III. These values are from the data of Giauque et al.,⁶ who have carried out an extensive research on the thermodynamic properties of aqueous sulfuric acid. Reference 6 represents the final correlation of the available data and gives tables of partial molal properties; the values in Table III were interpolated directly from these results.

Referring to Table III, we see that data are lacking for a below 25% w and for the partial molal heat capacity of water in anhydrous acid. Estimated values of these variables are given in Sec. IV, following evaluation of the bulk of the data.

MU-31441

	20	<u>a.</u>	Wator				Sulfurio	⇒oid	
н_2			Waler						
(% w)	% m	$(\overline{F}_1 - F_1^{O})$	Ľ.	С _{р, 1}	a 1	$(\overline{\mathbf{F}}_2 - \mathbf{F}_2^0)$	Ľz	ट _{p, 2}	a ₂
10	2.00	- 26,44	- 6.28	17,871		-15624	-17078	22.18	
20	4.39	- 75.10	- 34.0	17.775		-14115	-16279	25,65	
25	5,77	- 114.9	- 71.8	17,780		-13373	-15580	25,70	
30	7.30	- 168,8	- 136.0	18,114	0.0186	-12600	-14659	20,97	-0.0268
35	9.00	-241.4	~ 228.6	18.555	0.0178	-11782	-13618	15.93	-0.0156
40	10.91	- 338,2	- 349.0	18.662	0.0165	-10906	-12527	14,90	-0.0041
45	13.06	- 462.2	- 494.2	18,518	0.0249	-9995	-11457	15.92	-0.0633
50	15.52	- 620,6	- 662.9	17.731	0.0232	-9045	-10445	20.62	-0.0557
55	18.33	- 821.5	- 867.3	16.963	0.0153	-8054	-9437	24.44	-0.0159
60	21.60	-1075.3	-1125.0	16.335	0.0116	-7036	-8405	26.95	-0.0011
65	24.44	-1406.3	-1459	15,173	0.0006	-5962	-7320	30.69	0.0340
70	30,00	-1836	-1903	13.398	-0.0207	-4838	-6158	35.34	0.0895
72	32,08	-2038	-2127	12.570	+0.0296	-4387	-5664	37,17	0.1095
74	34,33	-2261	-2382	11.762	-0.0358	-3940	-5144	38,80	0,1220
76	36.78	-2508	-2683	11.01	-0.0330	-3492	-4601	40.17	0.1171
78	39.44	-2783	-3039	10.33	-0.0182	- 3046	-4025	41.27	0.0935
80	42.35	-3090	-3475	9.77	0.0114	-2600	-3394	42,08	0.0509
82	45,56	-3427	-4015	10.36	0,0568	-2170	-2705	41.37	-0,0069
84	49.09	-3789	-4656	13,78	0,1233	-1766	-1994	37.57	-0.0830
86	53,01	-4167	-5319	18.96	0.0666	-1404	-1354	32.65	-0.0270
88	57.39	-4557	-5938	22.13	-0.0120	-1086	-851	29.99	0,0361
90	62.31	-4960	-6419	22,76	-0.0346	-816	-524	29.54	0.0511
91	65.00	-5165	-6627	22.30	-0.0398	-699	-405	Z9.81	0.0541
9Z	67.87	-5375	-6816	Z1.48	-0.0427	-592.8	-309	30,22	0,0557
93	70.93	- 5595	-6983	20.44	-0.0436	-495.2	-235,4	30.67	0,0562
94	74,21	-5830	-7139	19.32	-0.0428	-408.5	-176.3	31.10	0.0558
95	77.73	-6090	-7286	18.06	-0.0405	-323.5	-129.6	31.50	0.0551
96	81.51	-6390	-7433	16.64	-0.0368	-248.4	- 92.1	31.86	0.0543
97	85.59	-6741	-7574	15.05	-0.0314	-178.3	- 64.5	32,17	0,0531
98	90.00	-7204	-7712	13.25	-0.024	-114.3	- 44.6	32.43	0.0520
98.48	92.25	-7521	-7777	12,25	-0.019	- 85.3	- 38.9	32,52	0.0516
99	94.79	-7963	~7845	11.03	-0.014	- 54.6	- 33.8	32,61	0.0514
99.5	97,34	-8692	-7919	7.0	-0.008	- 26.00	- 30.6	32.76	0.0509
99.8	98.92	-9624	-8337	- 4.1	-0.003	- 9.32	- 24,2	32,95	0.0509
99.9	99.46	-10342	-9355	-15.3	-0.001	- 3,50	- 16.7	33.04	0.0509
100	100	-12014	-16125		0	0	0	33.ZO	0.0509

Table III. Partial molal quantities for sulfuric acid at 298.15 °K (from Giauque^a).

^aReference 6.

IV. CALCULATION OF PARTIAL PRESSURES

In the calculation of partial pressures from the equations presented in Sec. II, one depends upon room-temperature heat-capacity measurements on the solutions to predict their high-temperature properties. Inherent in the method is the assumption that the extrapolation of the data will not generate significant errors. In the present case, it has been realized that the thermodynamic properties collected in Sec. III might not give a perfect <u>a priori</u> calculation of partial pressures. Initial calculations tended to bear this out. Results to temperatures near 200°C were satisfactory, but at higher temperatures the calculated partial pressures became progressively more erratic.

To correct the observed inconsistencies, it was decided to adjust a, the temperature coefficient of the partial molal heat capacity. The choice of a as a correction term was somewhat arbitrary. In principle, either a could be changed, or additional nonlinear terms could be added to Eq. (10) to describe assumed heat-capacity-temperature behavior. Either choice, however, requires the assumptions implicit in smoothing the calculated results; after some consideration, it was decided to adjust a. In a few cases, minor adjustment of other functions was also necessary.

The effect of a upon partial pressure can be given by a simplified rearrangement of Eq. (11):

$$\log p \approx \log(p)_{\alpha=0} - \beta^{\alpha}, \qquad (26)$$

where the factor β is shown in Fig. 2 as a function of temperature. Most of the a values of Table III were originally determined between -20 and +25°C; a small number were based upon data up to 80°C. Above 200°C, where Fig. 2 indicates that a becomes a significant variable in the partial-pressure equation (Eq. (24)), the reported values of a will be seen to be inadequate. By determining a suitable average a for the range of 25 to 400°C, one can significantly alter high-temperature partial pressures without affecting the already satisfactory low-temperature values.

-15-

As explained below, a was adjusted so that partial pressures in the 200 to 400°C range were consistent with the low-temperature results and with the sulfuric acid azeotrope and boiling-point data. Cross-plots of log p vs %w, %m, and 1/T were used as guides during the calculation. Smoothed partial pressures were checked on activitycoefficient plots and examined for consistency by using the Gibbs-Duhem equation.

A. Trial Calculations

Figures 3 and 4 show trial values of P_{H_2O} and $P_{H_2SO_4}$, calculated from Eq. (24) and partial molal data listed in Table III.⁴ The double sets of curves at 200°C and above indicate results obtained by using (a) a as given in Table III (dashed curves), and (b) a = 0(solid curves). Below 200°C, results obtained by using a either as in (a) or (b) were practically equivalent. It is not necessary that the partial-pressure curves be smooth, but it is essential that their rise be monotonic; however, it appears significant that the curves at lower temperatures are indeed relatively smooth. Figure 5 shows the values of a listed in Table III. It can be seen that the erratic areas in the calculated partial pressures correspond to the "peaks" and "valleys" in the a curves. For example, following the dashed 400°C curve in Fig. 4, the high value of $p_{H_2SO_4}$ at 47 %w, decreasing pressures through 74%w, and extremely high value of p_{H_2SO} at 84%w are the respective results of a low α at 46.5% w, incréasing values of α to a maximum at 74.5%w, and an abrupt minimum in a at 84.5%w.

The variations in room-temperature a values with concentration, shown in Fig. 5, reflect the differences in heat-capacity behavior of the various hydrated forms of H_2SO_4 . Possibly the hydrate compositions are not so distinct at temperatures over 100 to 200°C.

Fig. 3. Partial pressure of water, trial calculations.

MU-31444

Fig. 4. Partial pressure of sulfuric acid, trial calculations.

MU-31445

Fig. 5. Temperature coefficient of partial molal heat capacities, measured at 25°C, from Giauque et al. 6

B. Adjustment of High-Temperature Partial Molal Heat Capacities

The values of a_{H_2O} and $a_{H_2SO_4}$ shown in Fig. 5 were adjusted so that partial pressures above 200°C were consistent with low-temperature results. Calculations were carried out so as to insure agreement with sulfuric acid azeotrope and boiling-point data.

1. Sulfuric Acid Azeotrope

Figure 6 shows the partial-pressure behavior at 25°C[calculated from Eqs. (24) and (25) with the smoothed constants eventually deduced] in the vicinity of the sulfuric acid azeotrope. An abscissa scale of -log [100-(%w)] is used in Fig. 6 in order to expand the azeotrope region. The partial-pressure behavior shown- $p_{H_2SO_4}$ nearly constant, $P_{H_{2O}}$ decreasing rapidly, and p_{SO_3} increasing rapidly-continues at higher temperatures and pressures. The concentration at which the azeotrope occurs, however, decreases as the pressure increases. This was shown by Kunzler, ¹⁰ who obtained the following data on the concentration of constant-boiling sulfuric acid at various pressures:

p (mm Hg)	H ₂ SO ₄ (%w)	p (mm Hg)	H_2SO_4 (%w)
100	98.790	700	98.495
200	98,704	750	98,482
300	98.645	800	98,469
400	98.597	850	98,457
500	98.557	900	98,446
600	98.524	950	98.436
650	98,509	1000	98,426

Interpolation of Kunzler's data gives an azeotrope concentration of 98.479 %w at 760 mm Hg, which was adopted for the present study.

Abel⁴ surveyed the available data on the temperature and concentration for the atmospheric-pressure azeotrope; the results of various experimenters are as follows:

-21-

MU.31446

Fig. 6. The sulfuric acid azeotrope at 25° C.

-22-

t(°C)	H ₂ SO ₄ (%w)	t(°C)	H ₂ SO ₄ (%w)
326	98.39	338	98.5
330	98.33	338	98.5
338	98.3	317	98.54
		331.7	

In the present calculations, it was decided to base high-temperature partial pressures on a temperature of $326 \,^{\circ}$ C for the 1.0-atm azeotrope, as was done by Abel. ^{4, 11} Although this temperature is rated as the most probable value, it is subject to an uncertainty of at least $\pm 5 \,^{\circ}$ C.

At an azeotrope the composition of the liquid is equal to the composition of the vapor (e.g., in mole-% units). Referring to w as the weight-fraction of sulfuric acid at the azeotrope, and using the subscripts 1, 2, and 3 to indicate H_2O , H_2SO_4 , and SO_3 , respectively, we obtain

$$\frac{18.016w}{98.082 - 80.066w} = \frac{p_2 + p_3}{(p_1 - p_3) + p_2 + p_3}$$
(27)

For the 1.0-atm azeotrope, we therefore obtain

$$0.92246 = \frac{P_2 + P_3}{P_1 + P_2} , \qquad (28)$$

At this azeotrope we also have

$$760 = p_1 + p_2 + p_3, \qquad (29)$$

$$K_{p} = p_{1} p_{3}/p_{2} . (30)$$

Since the value of K_p at 326°C can be determined from Eq. (25), the partial pressures at the azeotrope can be determined by combining Eqs. (28), (29), and (30). Eliminating p_2 and p_3 , and using S = 0.92246, we obtain

$$(p_1)^2 + p_1[K_p(1+S) - 760(1-S)] - 760K_p = 0.$$
 (31)

Following evaluation of p_1 from Eq. (31), p_2 can be determined by combining Eqs. (29) and (30) with the elimination of p_2 :

$$p_2 = \frac{760 - p_1}{1 + (K_p/p_1)}$$
(32)

The a values required to give the correct azeotrope p_1 and p_2 can then be calculated from Eq. (24). This procedure gave the following results for the sulfuric acid azeotrope:

Input conditions	Results
$t = 326$ °C, $K_p = 130.2 mm$	$p_1 = 233.1 \text{ mm}, a_1 = 0.0160,$
P= 760 mm	$p_2 = 338.1 \text{ mm}, a_2 = 0.1249,$
%w= 98.48	$p_3 = 188.8 \text{ mm}.$

2. Adjustment of Alpha, 10 to 98.5 %w

Figure 7 shows the values of a calculated in this paper. The method of calculation used was suggested by the property of a mentioned in Sec. IV: a change in a strongly affects high-temperature partial pressures without altering low-temperature values. The procedure used was as follows:

(a) Partial pressures from 25 to 400° C were calculated at temperature intervals of 25°C, with a = 0 at all weight-percents.

(b) Starting at 25°C, pressures were plotted on log pvs-concentration and log p-vs-1/T coordinates. At each 25°C interval, pressures at a = 0 were checked against pressures calculated from Eq. (26), by using a equal to the azeotrope value. Up to 150°C there was no appreciable difference.

(c) At 150°C the difference between the pressures calculated with a = 0 and a equal to the azeotrope value was noticeable. The effect was a parallel (downward) shift of the pressure curve; no irregularities were visible. At subsequent 25°C intervals, pressures were calculated from Eq. (26) by using the appropriate β and with a equal to the azeotrope value.

(d) By 200°C, irregularities occurred in the pressure curves at acid concentrations where a reaches a maximum or a minimum. Referring to Fig. 7, these values were 90, 82, and 40 % w for both H_2O and H_2SO_4 . Irregularities were smoothed visually and the a required to give the smoothed pressure was calculated from Eq. (26). These new a values were then used for the next temperature interval.

(e) The procedure of raising the temperature by 25° C and using the a from the previous step to predict pressures at that temperature was continued. At 400°C the pressure curves on the two coordinate systems were viewed as a whole, and any discrepancies corrected. At temperatures over 200°C the net effect on a was to fill in the portions between the maxima and minima in the a curves, Fig. 7.

The above procedure was followed for calculating both a_{H_2O} and $a_{H_2SO_4}$. For ease of interpolation, p_{H_2O} was smoothed on weight-percent coordinates, and p_{H_2O} on mole-percent coordinates.

weight-percent coordinates, and $p_{H_2SO_4}$ on mole-percent coordinates. Figure 8 shows the heat capacity of sulfuric acid at 25°C, as tabulated in reference 6; the partial molal heat capacities are derived from the slope of this curve. The a values shown in Fig. 7 indicate that at 400°C the wave between 15 and 45 %w becomes more pronounced, while the "bump" between 75 and 90 %w is slightly broadened.

3. 98.5- to 100-%w Region

In the region between the azeotrope and 100% acid a check of the activity coefficients showed that a adjustments alone would not give consistent results over the complete temperature range. This was especially true in the case of $p_{H_2SO_4}$, which changes very little in the high-weight-percent region. Furthermore, the sulfuric acid heat capacity data listed in reference 6 show a cusp at 100% H_2SO_4 , making the partial molal heat capacity of water indeterminate at that point. Figure 9 shows the portion of the heat-capacity curve (Fig. 8) between 96 and 101 %w. The data points are those of Kunzler and Giauque¹² which Giauque's smoothed values⁶ (dashed curve) do not follow very closely. The solid curve coincides with the data listed in reference 6 below 98.5 %w and near 101 %w. Results between these weight-percents were calculated as follows.

For sulfuric acid, values of $(F-F^{\circ})$ were adjusted at 99, 99.5, 99.8, and 99.9% were that $P_{H_2SO_4}$ gave Raoult-Law behavior at 25°C

-25-

Fig. 7. Average temperature coefficient of partial molal heat capacities, between 25 and 400°C.

MU-31449

Fig. 9. The heat capacity of aqueous sulfuric acid near 100% $\rm H_2SO_4.$

(based on two ions formed per molecule of H_2SO_4 added, as indicated by Young and Walrafen.¹³) Then \overline{L} , \overline{C}_p , and a were adjusted to give consistent $p_{H_2SO_4}$ behavior at high temperatures; at the same time, \overline{C}_p and a at 100% were varied to give smooth activity-coefficient behavior between 98.5 and 100%w. Referring to Fig. 9, this procedure gave a heat capacity at 100%, along with the 100% intercepts of the slopes of the heat-capacity curve taken at 99, 99.5, 99.8, and 99.9%w.

Values of P_{H_2O} between 98.5 and 100 % were then calculated by assuming various heat-capacity curves through this region. Partial molal heat capacities were calculated from the 100% intercepts determined above, and the assumed heat capacity; then P_{H_2O} was calculated by assuming values of a. New heat-capacity curves and alphas were assumed until consistent values of P_{H_2O} were obtained at 99, 99.5, 99.8, and 99.9% w. The heat-capacity curve was chosen so that these pressures, when extrapolated, gave an acceptable boiling point at 100% acid. Then \overline{C}_p and a for H_2O were fitted to the resulting 100% pressures.

This procedure resulted in the heat-capacity curve shown in Fig. 9 for the 98.5- to 99.9-%w region and for the intercept and slope at 100%. The calculated value of $(\widetilde{C}_p)_{H_2O}$ for 100% was large and positive, indicating that the peak in the heat-capacity curve occurs below 100%. The portions of the curve between 99.9 to 100%w and 100 to 101 %w were drawn by assuming a Gaussian-type variation around the 100% value.

The values of the partial molal properties for the 98.5- to 100-%w region are shown in Table IV, below. The 100% values give an anhydrous acid boiling point of $272^{\circ}C_{s}$ within the 270 to $280^{\circ}C$ range given in the literature. ¹⁴

		Ma	tter			Sulfuri	c acid	
H ₂ SO ₄ (% w)	(<u>F</u> -F ^O)	ıٿ	С Р	Ċ	(<u>F</u> -F ⁰)	¦щ	n _d	ಶ
10.0	-26.4	-6.3	17.871	-0.0300	-15624.0	-17078.0	22.180	0.1340
20.0	-75.1	-34.0	17.775	-0.0300	-14115.0	-16279.0	25.650	0.1490
25.0	-114.9	-71.8	17.780	-0.0300	-13373.0	-15580.0	25.700	0.1530
30.0	-168.8	-136.0	18.114	-0.0340	-12600.0	-14659.0	20.970	0.1930
35.0	-241.4	-228.6	18.555	-0.0370	-11782.0	-13618.0	15.930	0.2330
40.04	-338.2	-349.0	18.662	-0.0370	-10.906.0	-12527.0	14.900	0.2390
45.0	-462.2	-494.2	18.518	-0.0370	-9995.0	-11457.0	15.920	0.2340
50.0	-620.6	-662.9	17.731	-0.0315	-9045.0	-10445.0	20.620	0.2010
55.0	-821.5	-867.3	16.963	-0.0275	-8054.0	-9437.0	24*440	0.1820
60.09	-1075.3	-1125.0	16.335	-0.0230	-7036.0	-8405.0	26.950	0.1760
65.0	-1406.3	-1459.0	15.173	-0.0150	-5962.0	-7320.0	30.690	0.1610
70.0	-1836.0	-1903.0	13.398	-0.0340	-4838.0	-6158.0	35,340	0.1340
72.0	-2038.0	-2127.0	12.570	0.0020	-4387.0	-5664.0	37.170	0.1213
74.0	-2261.0	-2382.0	11.762	0.0080	-3940.0	-5144.0	38.800	01100
76.0	-2508.0	-2683.0	11.010	0.0150	-3492.0	-4601.0	40.170	0.0970
78.0	-2783.0	-3039.0	10.330	0.0230	-3046.0	-4025.0	41.270	0.0860
80.0	-3090.0	-3475.0	9.770	0.0330	-2600.0	-3394.0	42.080	0-0140
82.0	-3427.0	-4015.0	10.360	0.0360	-2170.0	-2705.0	41.370	0.0690
84.0	-3789.0	-4656.0	13.780	0.0190	-1766.0	-1994.0	37.570	0.0890
86.0	-4167.0	-5319.0	18.960	-0.0145	-1404.0	-1354.0	32.650	0.1193
88.0	-4557.0	-5938.0	22.130	-0.0320	-1086.0	-851.0	29.990	0.1330
0.06	-4960.0	-6419-0	22.760	-0.0330	-516.0	-524.0	29.540	0.1360
0.16	-5165.0	-6627.0	22,300	-0.0290	-699-0	-405-0	29.810	0.1350
92.0	-5375.0	-6816.0	21.480	-0.0230	-592.8	-309.0	30.220	0.1330
93.0	-5595°C	-6983.0	20.440	-0.0160	-495.2	-235.4	30.670	0.1310
94.0	-5830.0	-7139.0	19,320	-0.100	1408.5	-176.3	31.100	0.1290
95.0	-6090.0	-7286.0	18.060	-0.0060	-323.5	-129.6	31.500	0.1282
96.0	-6330.0	-7433.0	16.640	-0.0015	-248.4	-92.1	31.860	0.1268
0.16	-6741.0	-7574.0	15.050	0.0040	-178.3	-64.5	32.170	0.1261
98.0	-7234.0	-7712.0	13.250	0.0130	-114.3	-44.5	32.430	0.1252
98.5	-7521.0	-7777.0	12,250	0.0160	-85.3	-38.9	32.520	0.1249
0.66	-7963.0	-7845.0	10.470	0.0200	-56.6	-26.7	32.650	0.1241
99.5	-8692.0	-7919.0	5.330	0.0260	-28.0	-13.8	32.870	0.1224
99.8	-9624.0	-8337.0	-6.400	0.0774	-11.3	-7.6	33.080	0.1206
6.66	-10342.0	-9355.0	-12.680	0.1281	-5.5	-3.9	33.090	0.1205
100.0	-12014.0	-16125.0	35,000	-0.0489	•0-	•0-	33,030	0.1210

-30-

C. Results

Table IV lists the thermodynamic properties used in the calculation of p_{H_2O} and $p_{H_2SO_4}$. The values shown are identical with those given in Table III, except for the new values of a (Fig. 7) and the other changes indicated above for the 99-to 100-%w region. Partial pressures calculated from Eqs. (24) and (25), and the data in Table IV, are snown in Figs. 10, 11, and 12. Complete tables of partial pressures appear in the Appendix, together with the Fortran program used for the calculation.

MUB-1998

MUR-1999

Fig. 11. The partial pressure of H_2SO_4 over aqueous sulfuric acid.

MUB-2000

V. DISCUSSION AND CONCLUSIONS

The partial pressures presented above agree in form with those reported by Greenewalt¹ and Abel.⁴ In both cases the closest agreement occurs at low temperatures and low acid concentrations where the observable vapor pressure is predominantly due to $p_{H_{\star}O}$.

At higher temperatures Greenewalt's total-pressure correlations gave slightly higher pressures than those reported here. A complete comparison of his results was not possible, since his correlations were terminated at 1 atm.

Abel used a K_p equation and an azeotrope composition different from those used in this work. His results, while not directly comparable to those presented here, show the same trends in vaporpressure behavior as do Figs. 10, 11, and 12. At 25°C, however, his calculated pressures are not in agreement with the thermodynamic data now available.

By referring to the method just described for adjusting a, it becomes apparent that P_{H_2O} is the most accurate of the calculated vapor pressures. For this calculation we have the pure-component vapor-pressure data to aid in adjusting a in the low-%w range, with the azeotrope data for calculating a in the high-%w region. To test the reliability of $P_{H_2SO_4}$, for which we have only azeotrope data, the Gibbs-Duhem equation was applied in the form suggested by Redlich and Kister, ¹⁵ assuming that the sulfuric acid system acts as a H_2O/H_2SO_4 binary. This assumption appears satisfactory except above 99%m, where it would have a negligible effect. Figure 13 shows the result of this test at 200°C; the positive (left-hand) area is 86.5 units and the negative (right-hand) area is 87.5 units, which indicates that $P_{H_2SO_4}$ may be a trifle high in the low-weight-percent region. This uncertainty appears to lie within the accuracy of the present calculations, and has not been further adjusted.

Regardless of the calculational method used for a, pressures calculated at low temperatures (where a is not a significant variable) are as accurate as the available thermodynamic data allow. Changes

Fig. 13. Thermodynamic-consistency test at 200°C.

in a, to correct the high-temperature pressures, affected the results up to 100° C by no more than 2%.

The relative accuracy of the partial pressures calculated in different temperature and composition regions, estimated qualitatively from the foregoing considerations, is shown in Table V.

It is felt that the real utility of the results presented here depends not upon their absolute accuracy but rather upon their internal consistency and upon the versatility of the calculational method. When additional data become available, particularly in the 1.0-atm azeotrope region, they may be incorporated into the general framework of the calculation and the effect upon calculated results determined.

Temperature range	0~1	150°C	150-3	300°C	300-4	00°C
Composition range, %w	10-80	80-100	10-80	80-100	10-80	80-100
Water	± 4%	8	8	16	12	24
Sulfuric acid	±10%	4	20	8	30	12
Sulfur trioxide	±12%	9	22	18	32	27

Table V. Estimated mean uncertainty in partial-pressure values.

ACKNOWLEDGMENT

This work reported herein was carried out at the Lawrence Radiation Laboratory under the auspices of the U.S. Atomic Energy Commission. i.

NOTATION

Superscripts

- o (lower-case "oh") Refers to values at standard state
- (overscore) Refers to partial molal quantity

Subscripts

- 1 Refers to H_2O
- 2 Refers to H₂SO₄
- 3 Refers to SO₂

298 Refers to property at 298.15°K

0(zero) Refers to property at 0 °K

(1) Refers to property for Eq. (1),the dissociation of $H_2SO_4(g)$

Thermodynamic Functions

- F Free energy
- H Enthalpy
- S Entropy
- C Heat capacity
- a Activity
- γ Activity coefficient

Partial Molal Functions

$(\widetilde{F} - F^{O})$	Relative partial molal free energy
Ĺ	Partial molal enthalpy
⊆ ^b	Partial molal heat capacity
æ	Temperature coefficient of \overline{C}_{p} ,
	$a = d \overline{C}_{p}/dT$

Other Symbols

p Partial pressure

P Total pressure

t Temperature, °C

T Temperature, °K

 K_{p} Equilibrium constant for the dissociation of $H_2SO_4(g)$

R Gas constant, 1,98726 cal/mole-deg

l Refers to liquid state

g Refers to gas state

%w Weight-fraction $\times 100$

%m Mole-fraction $\times100$

APPENDIX

Tables A-I through A-III present the detailed results calculated from Eqs. (24) and (25) and the partial molal properties listed in Table IV.

Table A-I contains the low-temperature results; i.e., those results unaffected by changes in a. Partial and total pressures at 5°C intervals between -50 and +100°C are tabulated for the 36 weightpercents shown in Table IV.

Table A-II presents generalized results from 0 to 400°C. Partial pressures of H_2O , H_2SO_4 , and SO_3 plus the total pressure are shown in Subtables IIA, IIB, IIC, and IID, respectively. Tabulated pressures are rounded to four significant figures and terminated at 10^4 and 10^{-4} mm Hg.

Table A-III is included as a quick reference source and summary of results. Abbreviated lists of partial pressures are presented in Subtables IIIA, IIIB, and IIIC. Pressures are rounded to three significant figures and are terminated at 10^4 and 10^{-2} mm Hg; results are shown from -50 to 390°C.

Tables A-IV and A-V are included to aid in interpolation among the above tables. Table A-IV lists the values of the constants in Eq. (24) at the weight-percents used in Tables A-I and A-II; Table A-V shows values of K_p from -50 to 390°C.

The Fortran listing of the program used to calculate the pressures listed in Table A-II is included as Table A-VI. Similar programs were written to produce Tables A-I and A-III. VAPOR PRESSURES, MM HG, FOR LOW TEMPERATURE RANGE.

TABLE A-I.

DEG. C		10.01	WT DCT			000	4T DCT	
2	H20	H2 SD4	503	TOTAL	H20	H2S04	\$03	TOTAL
÷5.3	.45316-01	.173CL-23	.4823E-34	.4501E-01	.4090E-01	.3235E-22	.99226-33	-4090E-01
-45	.7877E-01	.1021E-22	. 5003E-33	.7877E-01	 7166E-01 	 1854E-21 	 9988E-32 	.7166E-01
-40	.1342E-00	• 5587E-22	.4712E-32	.1342E-DC	.1222E-03	.9863E-21	•9136E-31	.1222E-D(
-35	.2230E-00	.2849E-21	.4054E-31	.2230E-00	 2033E-00 	.4892E-20	.7637E-30	.2033E-0(
-30	.3619E-00	.1360E-20	.3203E-30	.3619E-D0	.3302E-00	.2273£-19	.5866E-29	.3302E+00
-25	.5746E 00	.6097E-20	•2335E-29	.5746E 00	.5248E 0C	•9923E-19	.4161E-28	.5248E 00
-20	.8938€ 00	.2578E-19	1579E-28	.8938E 00	.8171E 00	.4087E-18	.27386-27	.8171E 00
-15	.1364E 01	.10316-18	.9936E-28	.1364E 01	.1248E 01	.1593E-17	1678E-26	.1248E 01
-10	.2043C 01	.3913E-18	.5845E-27	.2043E 01	.1871E 01	.5896E-17	.96195-26	*1871E 01
ر ت	.3010E 01	.1413E-17	.3226E-26	.3010E 01	.2759E 01	.2077E-16	•5174E-25	•2759E 01
0	.4363E 01	.4869E-17	.1676E-25	.4363E 01	.4003E 01	.69856-16	.2621E-24	.4003E 01
ഗ	.6231E C1	.1604E-16	•8219E-25	.6231E 01	.5721E 01	.2248E-15	.1254E-23	-5721E 01
10	.8771E 01	.5069E-16	.3818E-24	.8771£ 01	.8060E JI	.6935E-15	•5683E-23	.8360E 01
۲ ۲	.12186 02	.1538E~15	.1684E-23	.1218E 02	.1120E 02	.2056E-14	•2447E-22	.1120E 03
20	.1670E 02	.4494E−15	 7069E-23 	.1670E 02	.1537E 02	.58706-14	.10036-21	.1537E 32
25	.2263E 02	.1266E-14	.2832E-22	.2263E 02	.2085E 32	.16166-13	.3925E-21	.2085E 02
30	.3032E 02	.3446E-14	.10856-21	•3032E D2	.2795E 02	.43026-13	.1469E-20	.2795E 02
3 5	.4018E 02	•9074E-14	.3982E-21	.4018E 02	.3707E 02	11086-12	•52736-20	.3707E 02
64	.5270E 02	.23166-13	.1404E-20	■5270E 02	4866E 02	.27666-12	.1816E-19	.4866E J2
45	.6846E 0Z	.5735E-13	.4758E-20	.6846E 02	.6325E D2	.6701E-12	.6J18E-19	.6325E 02
50	.8811E 02	.1380E-12	.1554E-19	.8811E 02	.8147E 02	.15786-11	.19236-18	.8147E 02
5 2	.1124E 03	.3231E-12	.4900E-19	.II24E 03	.1040E 03	.3617E-11	.59286-18	.1040E 03
60	.1422E 03	.7369E-12	.1493E-18	.1422E 03	.1317E 03	.80776-11	.1767E-17	*1317E D3
65	.1786E 03	.1639E-11	.44036-18	.1786E 03	.1655E 03	.17596-10	.5100E-17	.1655E 03
70	.2225E D3	 3559E-11 	.12596-17	.2225E 03	.2063E 03	.37416-10	.1427E-16	.2063E 03
75	.2752E 03	.75516-11	.3491E-17	.2752E 03	•2553E 03	.7775E-1G	.3874E-16	.2553E J3
80	.3380£ 03	.1567E-10	.9410E-17	.3380E 03	.3139E 03	.1581E-09	.1022E-15	.3139E J3
85	.4125E 03	.3184E-10	.2467E-16	.4125E 03	.3833E 03	•3147E-09	.2624E-15	.3833E 03
90	•5003E 03	.6338E-10	.6298E-16	.5003E 03	.4652E C3	.61406-09	•6561E-15	.4652E 03
95	•6032E 03	.1237E-09	 1567É-15 	.6032E 03	.5612E 03	.1175E-08	•1599E-14	+5612E 33
100	.7231E 03	.23706-09	.3805E-15	•7231E 03	.6732E 03	.2206E-08	.38336-14	.6732F 33

-43-

DEG C	HZC	25.0 H	WT PCT SO3	TOTAL	HZD	30.0 1 H2S04	AT PCT S03	TUTAL
-50	.3743E-01	.16856-21	.56476-32	.3743E-01	.3262E-01	.11986-20	.4638E-31	.3262E-51
542	.6570E-01	.9324E-21	.5479E-31	.6570E-01	.5753E-01	.6197E-20	.41586-30	.5753E-01
-40	.1122E-D0	.4797E-20	.4838E-30	.1122E-00	.98746-01	.29946-19	.34326-29	.9874E-C1
- 5° -	-1870F-00	.2305F-19	.3911F-29	.1870F-00	.16526-00	.13576-18	.26355-28	.1652E-JJ
- 30	.3043E-00	10386-18	.29096-28	.3043E-00	.26995-00	.5787E-18	.18286-27	.2699E-00
-25	-4844E-DO	.4404E-18	• 2001E-27	•48446-00	.4312E-00	.2332E-17	.11906-26	.4312E-00
-20	.75536 00	.1764E-17	 12786-26 	-7553E CC	.6746E CO	•8903E-17	.7224E-26	.6746E 00
-15	.1155E 01	.6692E-17	 7614E-26 	.11556 01	.1035E 01	.3231E-16	•4103E-25	.10356 01
-10	.1735E 01	 2413E-16 	.4246E-25	.1735E 01	.1559E C1	.1117E-15	.21386-24	.1559E 31
ŝ	.2561E 01	.8293E-16	.2225E-24	.2561E 01	.2308E 01	.3693£-15	•1100E-23	.2308E 01
4								ר ק ק ק
0	• 3/21c 01	· 2 / 2 2E-15	• T044E+ Z3	.3121E UI	. 10 J2056.	• 1109C-14	• 2222E-23	• 3302E UI
Ś	•5325E 01	.8559E-15	.5130E-23	.5325E 01	.4822E 01	.3550E-14	 23536-22 	.4822E 31
10	.7511E 01	.2582E-14	.2271E-22	.7511E 01	.6817E 01	.10376-13	.1005E-21	.6817E 01
5	.1045E 02	.74946-14	.95585-22	.1045E 02	.9506E 01	.2920E-13	.40956-21	.9506E 01
20	.14368 02	.2095E-13	.3833E-21	•I436E 02	.1309E 02	.7934E-13	.1593E-20	.13.9E C2
25	.1949E 02	.5655E-13	.1468E-20	.1949E 02	.1780£ 02	.20856-12	.59286-20	.17805 32
06	-2616F 32	14765-12	.53846-20	.26165 02	.2393E 02	.5305E-12	.2116E-19	233332
ים ה היי	34736 02	. 3730F-12	.18946-19	34735 02	-3182F C2	.13046-11	. 72536-19	- 3187F 02
	4563F 03	0143F-12	.64005-19		4188F 02	31376-11	81-12020	
) I F •								
45	.5938E 02	.2177E-11	.2082E-18	*5938E 02	•5457E 02	.7311E-11	.7610E-18	•5457E 32
05	.7656F 02	. 5039E-11	.6533E-18	.7656E 32	.7045F 02	.16596-10	.2337E-17	.7045F 32
- C - C	-9783E 02	.1136E-10	.19795-17	.97836 02	.9016E 02	.36686-10	.6936E-17	.9016E 02
0.9	.1240F 03	.24965-10	.5801E-17	.1240E 03	-]144F 03	.79146-10	.1994f-16	11445 33
5 V	.1559F 03	.53516-10	.1647E-16	.15596 03	.1440E 03	.1668E-09	.55566-16	.1440F 33
	19451	11216-09	45336-16	19456 03	17995 03	34366-09	1503E-15	17995 03
5 F	20 30070	22955-09	.12125-15	2409F 03		.6977F-09	. 39516-15	. 7731F 03
	. 2964F 03	4599F-00	-31496-15	2964F 03	.2747F 03	.13685-08	.1010F-14	.2747F 33
р С			70466-16		22416 32	00-37.74C	26136-16	
6 0		· · · · · · · · · · · · · · · · · · ·	• (400E-10	10000 100 10000 100			• 5 3 7 4 5 - 7 4 * 7 3 4 5 - 7 4	50 J1055.
96	.4379E U3	.L/3/E-U8	• 1963c-14	.4374E U5	-4U80F U3	• 20/24E-08	• 0112E-14	
95	•5311E 03	. 3279E-08	•4717E-14	•5311E 03	.4938E 03	.9361E-D8	.1449E-13	•4938E C3
100	.6375E 03	.6077E-08	.1107E-13	.6375E 03	.5932E 03	.17136-07	.3353E-13	•5932E 03

ţ

-44 -

	TAL	0E-31	46-01	3E-01	46-00	76-00				4E 01	3E 01	1E 01	BF C1	нс 1 С 1 С	3F 01	2F 01	7F 02	8F 07	ан 01-16 01-16	0F 02	1E 05	8F 33	2E 00	л 2 Б 2 С 2 2 2 2			03 03	5E 03	2E 03	9E 03	2E 03	
	C+	.214	382	- 664	C 11.		000	· · · ·			.166	• 244	352	502	705	779	.133		1.741	320	614.	. 543	669	891		141	-176	.2170	.267	325	.395	
PCT	503	865E-29	794E-28	7306-27	8216-26	1316-25	5618-25	5725-24	8316-23	8586-23	0596~22	7665-21	3166-21	891E-20	093E-19	958E-19	377E-18	604E-18	4845-17	6146-17	387E-16	034E-16	137E-15	1105-15	264E-15	1368-14	3736-14	317E-13	150E-13	357E-13	579E-12	
E C		• •	8	7.2		6 •]) რ • •	4	- -	4. 4	3 • 1	3 .7	2 .2	2	1	•	1.4	் ்		.1.	9 • 4	- 6		00	8	ю •	1.		7.7	7 .1(ŕ
4.0.2	H2504	.8301E-1	.3758E-1	.1602E-1	-6452E-1	.2463E-1	.89356-1	.3090E-1	.10216-1	-3232E-1	• 9822E-1	.2871E-1	.8086E-1	.21996-1	.5782E-1	.14726-1	.3637E-1	.8724E-1	.2035E-1	.4622E-1	 1023E-0 	.2210E-D	.4663E-D	• 9618E-D	-1941E-D	. 3836E-0	-7432E-01	.1412E-0	-2633E-0	• 4823E-0	• 8684E-0	1637610
	~	10-1	10	10-	00-	00-	00-		00		10 :	10	10	10	01	6	02	02	02	02	02	02	02	02	03	60 3	03	03	03	03	63	ĉ
	HZC	.21406	.38246	.6643E	,1124E	.18576	.29976	.47355	.73316	.11145	.1663E	.2441E	.35285	.50236	.7053E	.97726	.13375	.1808E	.24185	.32006	.4191£	. 5438E	.6992E	.8912E	.11276	.1413E	.1760E	.2176E	.2672E	•3259E	.3952E	17660
	_	-01	101	-01	00-	00+	00+	00	00	01	10	10	10	10	01	02	02	02	02	02	02	02	02	03	03	603	ю 0	03	e C	03	03	ř
	TOTA	.2705E	.4803E	•8293E	.1395E	-2292E	.368UE	.5784E	•8914E	.1348E	.2004E	•2929E	.4216E	.5979E	.8363E	.1155E	.1575E	•2122E	.2829E	.3731E	•4873E	.6305E	.80836	.1328E	•1296E	.1621E	.2014E	•2484E	•3043E	.3705€	•4482E	. 5307E
T PCT	\$03	.4598E-30	•3825E-29	•2927E-28	.2070E-27	 1359E-26 	.8321E-26	.4767E-25	.25656-24	.1300E-23	•6230E-23	•2829E-22	.1221E-21	 5020E-21 	.19706-20	.7401E-20	.2665E-19	.9220E-19	.3069E-18	.98476-18	.3050E-17	.9133E-17	.2648E-16	.7441E-16	•2030E-15	.53796-15	.1387E-14	.3482E-14	.8522E-14	.2035E-13	.4745E-13	10815-12
35.0 W	H2504	.99136-20	.4758E-19	<pre>.2144E-18</pre>	.9104E-18	.3655E-17	.l391E-16	•5038E-16	.1740E-15	.5742E-15	.1817E-14	.5518E-14	.1613E-13	.45446-13	.1236E-12	•3253E-12	.8291E-12	.20506-11	.4924E-11	.11506-10	.2616E-10	.5802E-10	<pre>.1255E-09</pre>	.2653E-09	.5482E-09	.1109E+C8	.21956-08	.4261E-08	.8114E-08	.1516E-07	.2784E-07	.50776-07
	Н20	.27056-01	.4803E-01	.8293E-01	.1395E-00	.22926-00	.3680E-30	.5784E 00	.89146 00	.1348E 01	.2004E 01	.2929E 01	.4216E 01	.5979E 01	.8363E C1	.1155E 02	.1575E 02	.2122E 02	.2829E 02	.3731E 02	.4873E 02	.6305E 02	.8083E 02	.1028£ 03	.1296E 03	.1621E 03	.2014E 03	.2484E 03	.3043E 03	.3705E 03	•4482E 03	5307F 03
DEG C		-50	-45	-40	-35	-30	-25	-20	-15	-10	ۍ ۱	0	ŝ	10	15	20	25	30	35	40	45	50	55	60	65	70	75	8 0	85	90	95	001

-45 -

DEG C	H2 0	45.0 H2S04	WT PCT SO3	TOTAL	H20	50.0 H2S04	WT PCT SD3	TUTAL
-50	.1604E-01	.6899E-18	.5395E-28	.1604E-01	.ll40E-01	.5347E-17	.5882E-27	1140E-01
-45	.28856-01	.2976E-17	•3981E-27	2885E-01	.2061E-01	.2240E−16	.4197E-26	.2064E-01
-40	.5045E-01	.12135-16	.2716E-26	.5045E-01	.3621E-01	<u>8850E-16 .</u>	.2767E-25	+3621E-01
-35	.85916-01	.4659E-16	.1721E-25	.8591E-01	.6196E-01	.3307E-15	.16945~24	.6136E+31
-30	.1427E-00	.1703E-15	.1017E-24	.1427E-00	.1035E-00	.1173E-14	.9665E-24	 1035E-00
-25	.2317E-00	.5923E-15	.5626E-24	.2317E-00	.1688E-00	.39606-14	.5163E-23	.1688E-00
+20	.36816-00	.1967E-14	.29256-23	.3681E-00	.2695E-00	.I276E-13	.2592E-22	.26956-00
-15	.5730E 00	.6248E-14	•I433E-22	.5730E 00	.4216E-00	.3933E-13	.12256-21	+4216E-00
-10	.3752E 00	.1304E-13	.6642E-22	.8752E 00	.6472E 00	.1163E−12	•5486€-21	.6472E CO
ŝ	.13138 01	.5576E-13	.2919 E -21	.1313E 01	.9758E 00	.3305E-12		.9758E 00
c	19375 01	.15736-12	.12196-20	19376 01	.1447F 01	. 90476-12	02-35950.	15 42221
) 1 1	0812F 01	42796-15	4856F-20	2812E 01		7300c-11		
							47.U0700*	4 × 4 × 4 × 4 × 4 × 4 × 4 × 4 × 4 × 4 ×
2.5	* #UZZE 01	.i.totti.		4022F 01	.30345 CI	• • • • • • • • • • • • • • • • • • •	• 1328t-18	. 20.2%T 01
۲ ۱	.5673E 01	.2363E-LI	.6729E-19	.5673E 01	.4300E JI	•1508E+10	.46745-18	.43105 01
20	.7894E 01	.7065E-11	•2351E-18	.7894E 01	.6013E 01	.3614E-10	.15795-17	+6013E 31
25	.10855 02	.1692E-10	.78965-18	•1085E 02	.8303E 01	.8410E-10	.5127E-17	.83035 31
30	.1473E 02	.3940E-10	.25536-17	.1473E 02	.1133E 02	.1903E-09	.1603E-16	.1133E 02
35 0	.1977E 02	.8929E-10	.7961E-17	.1977E 02	.1528E 02	•4193E-09	.48385-16	.1528E 32
40	.2626E 02	.1971E-09	.2398E-16	.2626E 02	.2039E 02	.90046-09	.1411E-15	.20395 32
45	.34536 02	.4246E-09	.6985E-16	.3453E 02	.2693E 02	.13876-38	.39798-15	.2693E 32
50	.4497E 02	.8930E-09	.1971E-15	.4497E C2	.3523E 02	.3361E-08	,1088E-14	.3523E 02
55 55	.5802£ 02	.18366-08	.5394E-15	.58025 02	.4565E 02	.77286-08	。2886E-14	.4565E 32
60 Ó	.7421E 02	.3691E-08	.1434E-14	.7421E 02	.5865E 02	.15136-07	.7437E-14	.5865E 02
9 9	.9414E 02	.7268E-08	 3704E-14 	.9414E D2	.7473E 02	.29036-07	.1864E-13	.7473E 02
70	.1185E 03	.1402E-07	.93136-14	.1185E 03	.9445E 02	.5461E-07	.4549E-13	<u>.9445</u> č 02
75	.1480E 03	.2654E-07	.2281E-13	.1480E 03	.1185E 03	.1008E-06	.1082E-12	.1185E 03
80	.1835E 03	• 4928E-37	•54506-13	.1835E 03	.1475E 03	.18256-06	.2511E-12	.1475E 03
85	.2260E 03	.89886-07	.1271E-12	.2260E 03	.1825E 03	•3248E-06	.5691E-12	.1825E C3
90	.2766E 03	.1611E-06	.28956-12	.2766E 03	.2242E 03	.5684E-06	.1261E-11	.2242E 03
95	.3364E 03	• 2839E-06	•6449E-12	.3364E 03	.2737E 03	.9785E-06	•2731E-11	.2737E 03
100	.4067E 03	.4924E-06	.14066-11	.4067E D3	.332E 03	.1658E-05	.57956-11	.3322F 33

-46-

m

DEG C	H20	55.0 H2SD4	WT PCT SO3	TOTAL	Н20	60.0 H2SD4	WT PCT SO3	TUTAL
+ 50	.7384E-02 .1344E-01	.4561E-16 .1848E-15	.7750E-26 .5310E-25	.7384E-02 .1344E-01	.4230E-02 .7773E-02	.4293E-15 .1668E-14	.1273E-24 .8284F-24	.4230E-02 .7773E-02
- 40	.23776-01	.7060E-15	.33636-24	.2377E-01	.13886-01	.61226-14	.4991E-23	.1368E-01
-35	.40946-01	.2552E-14	 1978E-23 	.40946-01	•2415E-01	.2128E-13	.2796E-22	-2415E-01
- 30	.6882E-01	.8759E-14	 1085E-22 	.6882E-01	.4097E-01	.70336-13	 1463E-21 	.43976-31
-25	.ll30E-00	.2862E-13	.5573E-22	.1130E-00	.6790E-01	.2213E-12	.7175E-21	.67906-01
-20	.1816E-00	.8929E-13	.2691E-21	.1816E-00	.1101E-D0	.6659E-12	.3311E-20	.1101E-00
-15	28606-00	 26666-12 	.12256-20	.2860E-00	.1749E-00	.1919E-11	•1442E-19	.1749E-DO
-10	.44195-00	.7640E-12	.52786-20	.4419E-DO	.27256-00	.5312E-11	.5951E-19	.27256-30
ŝ	6705€ 30	.2105E-11	.2157E-19	.6705E 00	.4170E-00	.14156-10	.2332E-18	.4170E-DO
0	10 €001.	.5586E-11	.83885-19	.1000E C1	.6271E 00	.36336-10	.8701E-18	.6271E 00
- 10 ⁻	14695 01	.1431E-10	.31116-18	.1469E 01	.9282E 00	.9014E-10	.3100E-17	.92826 00
10	.2124E 01	.3546E-10	.11036-17	.2124E 01	.1353E 01	.21646-09	.1056E-16	.1353E JI
15	.30285 01	.8509E-10	. 3746E-17	.3028E 01	.1944E 01	.5035E-39	.3453E-16	.1944E 01
20	.4259E 01	.1981E-09	.1222E-16	.4259E 01	.2755E CI	.11376-08	.1084E-15	.2755E CI
25	.5915E 01	•4479E-09	. 38336-16	.5915E 01	.3854E 01	.2497E-08	 3279E-15 	.3854E 01
30	.81165 01	•9853E-09	.1159E-15	.8116E 01	.5327E 01	.5336E-08	.956JE-15	.5327E 01
35	.1101E 02	2111E-08	.3380E-15	.1101E 02	.7277E 01	.1111E-07	.2692E-14	.7277E 01
40	.1477E 02	.4410E-03	• 9535E-15	.1477E 02	.9833E 01	.2258E-07	.7336E-14	.9833E 01
45	•1962E 02	.8994E-08	.2604E-14	.1962E 02	.1315E 02	.4482E-07	.1936E-13	.1315E 02
50	.2581E 02	.1792E-07	.6894E-14	.2581E 02	.1741E 02	.8698E-07	.49596-13	.1741E 32
55	.3362E 02	.34946-07	.17725-13	.3362E 02	.2283E 02	 1652E-06 	 1234E-12 	.2283E 02
60	.4342E 02	.6669E-07	.44266-13	.4342E 02	.2967E 02	.3073E-06	 2986€-12 	.2967E 32
65	.5561E 02	.1247E-06	.1076E-12	•5561E 02	.3823£ 02	.5606£-06	.7034E-12	.3823E 32
70	7064€ 02	.2288E-06	.2548E-12	.7064E 02	.4886E 02	.1003E-05	.1616E-11	.4886E 32
75	.8905E 02	.4119E-06	.5885E-12	•8905E 02	.6196E 02	.1763E-05	 3620E-11 	.6196E 02
80	.1114E 03	.7283E-06	.1326E-11	.1114E 03	.7799E 02	.3045E-05	.79246-11	.7799E 32
85	.1385E 03	 1266E-05 	.2921E-11	.1385E D3	.9747E 02	.51736-05	.1695E-10	.9747E 32
90	.1710E 03	.2164E-05	.6292E-11	.1710E 03	.1210E 03	.8639E-05	.3549E-10	.1210E 03
95	.2097E 03	.3640E-05	.1326E-10	.2097E 03	.1492E 03	.l421E-04	.7276E-10	.1492E 03
100	•2556E 03	.6030E-05	.27386-10.	.2556E 03	.1829E 03	 2303E-04 	•1462E-09	.1829E 03

DEG C	Н20	65 . 0 Н2SO4	WT PCT 503	TOTAL	H20	70.0 H2S04	WT PCT 503	TUTAL
-50	.2067 <u>-</u> 02	.4417E-14	.2681E-23	.2067E-02	.8163E-03	.5024E-13	.7721E-22	.8163E-03
-45	.3841E-02	.1653E-13	.1661E-22	.3841E-02	.1539E-02	.18116-12	.4543E-21	.1539E+02
-40	.6939E-02	.5841E-13	 9530E-22 	.6939E-02	.2819E-02	.6167E-12	-2476E-20	.2819E-02
135	.1220E-01	.1956E-12	.5087E-21	.1220E-01	.5029E-02	.19936-11	.12566-19	.50296-02
-30	.2093E-01	•6230E-12	.2537E-20	.2093E-01	.8748E-02	.61086-11	.5952E-19	.8748E-32
-25	.3507E-01	.1392E-11	.1187E-19	.3507E-01	.1486E-01	.17886-10	• 2647E-18	.1486E-01
-20	.57495-01	.5492E-11	.52296-19	.5749E-01	-2471E-01	.5004E-10	.1109E-17	.24716-01
-15	+9231E-01	.15286-10	.2176E-18	.9231E-01	.40226-01	.13436-09	.43896-17	40226-01
- 10	.14546-00	.4086E-10	.8582E-18	.14546-00	.6420E-01	.34646-09	.1647E-16	.64236-31
ŝ	.2247E-00	.1052E-09	•3216E-17	.2247E-00	.1006E-00	.8607E-09	 5878€-16 	.1006E-00
¢	00-33176	00-36196	11205					
5		• KO • KE – U3 / * * * * *	• 1 1 4 7 5 - 1 0	• 34 L 36 - U C	00-30667.	.20036-08	•ZUDDE-15	•1550E-C0
Δ	.5106E 00	• 6269E-09	• 3919E-16	•5106E 00	.2348E-00	•4783E-08	 6503E-15 	•2348E-00
10	.7517E 00	.1457E-08	.1280E-15	.7517E 00	 3562E+00 	.1074E-07	 2026E-14 	·35.2E-30
1 5	.10916 01	.3283E-08	.4013E-15	.1091E 01	.5148E 00	.2340E-07	•6059E-14	.5148E 30
20	.1561E 01	.7186E-08	.1210E-14	.1561E 01	.7462E 00	.4952E-07	.1743E-13	.7462E 00
25	.2205E 01	.1530E-07	.3512E-14	.2205E 01	.1067E 01	.1020E-06	.4835E-13	.1067E 01
30	.3076E 01	.3171E-07	.9840E-14	.3076E 01	.1508E 01	 2046E-06 	.12956-12	.1538E.01
35	.4241E 01	.6409E-07	.2665E-13	.4241E 01	.2105E 01	.4004E-06	•3354E-12	-2135F 01
40	.5782E 01	 1265E-06 	•6986E-13	.5782E 01	.2905E 01	.7653E-06	8415E-12	.29056 01
45	.7800E 01	.24386-06	.1776E-12	.7800E 01	.3966E 01	.14336-05	.2048E-11	.39666 01
¢ U								
2	• TO 47E 07	• 4598E-00	•4381t-12	.1042E 02	.5360E 01	.2615E-D5	.4843E-11	.5360E 01
55	.1378E 02	•8492E-06	.1051E-11	.1378E 02	.7173E 01	• 4685E-05	.1114E-10	.7173E 01
60	.1806E 02	.1537E-05	•2452E-11	.1806E 02	.9509E 01	.8230E-D5	 2494E-10 	.95J9E 01
65	.2347E 02	•2728E-05	.5577E-11	.2347E 02	.1249E 02	.14196-04	.5447E-10	.1249E 02
70	.3024E 02	.47546-05	.1237E-10	.3024E 02	.1628E 02	.2432E-04	.11616-09	.1628F 32
15	.3866E 02	.8139E-05	.2679E-10	.3866E 02	.2104E 02	.3996F-04	-2417F-09	21045 72
80	.4904E 02	.1370E-04	.5669E-10	+4904E 02	•2698E 02	.6539E-04	•4920E-09	.26986 02
95	.6177E 02	.22685-04	.1173E-09	.6177E 02	.3433E 02	.1053E-03	.9805E-C9	.3433E 02
06	.7726E 02	.3696E-04	.2378E-09	.7726E 02	.4339E 02	.1671E-03	.1914E-08	.4339E 32
95	.9599E 02	• 5932E-04	.4722E-09	.9599E 02	•5446E 02	.2611E-03	.3663E-08	.5446E 32
6								
100	.1185t U3	•9385E-04	•9193E-UY	.1185F D3	.6791F D2	.40246-03	. 6879F-08	- A701E 00

-48-

FUTAL	20 .3177E-03 20 .6088E-03 19 .1134E-02 18 .2054E-02 18 .3631E-02 18 .3631E-02 17 .6268E-02 16 .1749E-01 16 .1749E-01 15 .2835E-01 15 .4510E-01	14 .7049E-01 14 .1049E-00 13 .1646E-00 13 .2444E-00 12 .3593E+00 12 .5210E 00 11 .7459E 00 11 .1055E 01 11 .1055E 01 11 .1055E 01 11 .2040E 01	10 .2792E 01 10 .3782E 01 09 .5075E 01 09 .6748E 01 09 .8895E 01 08 .1163E 02 08 .1558E 02 08 .1940E 02 07 .2479E 02 07 .3144E 02
WT PCT 503	.14596- 81606- 42286- 22406- 92006- 38966- 15556- 15556- 21606- 21526-	.23248- .72228- .21518- .51588- .61588- .11588- .11588- .28798- .59366-	.36896- .17616- .17616- .37046- .152966- .152966- .57896- .10936- .10936-
74.0 H2S04	.3695E+12 .1287E-11 .4234E-11 .1321E-10 .3919E-10 .1109E-09 .3005E-09 .3005E-09 .1950E-08	.10916-07 .24526-07 .53406-07 .11296-06 .23206-06 .23206-06 .46426-06 .90526-06 .90526-06 .32036-05	.1038E+04 .1811E+04 .3100E+04 .5211E=04 .8607E=04 .8607E=04 .1398E+03 .2234E+03 .2234E+03 .5448E+03 .5448E+03
Н20	 3177E-03 6088E-03 1134E-03 2054E+02 2054E+02 3631E+02 3631E+02 1058E-01 1749E+01 1749E+01 4510E-01 	.70496-01 .10846-01 .10846-00 .16406-00 .35936-00 .35936-00 .35936-00 .14756 01 .14756 01 .16556 01 .20406 01	.2792E 01 .3782E 01 .5075E 01 .6748E 01 .8895E 01 .1163E 02 .1508E 02 .1508E 02 .1508E 02 .15479E 02
TOTAL	.5231E-03 .933E-03 .1833E-03 .3294E-02 .5771E-02 .9877E-02 .1653E-01 .2711E-01 .4358E-01	.10666-00 .16276-00 .24436-00 .36146-00 .75916 00 .75916 00 .10796 01 .15166 01 .21056 01	.3929E 01 .5289E 01 .7052E 01 .9318E 01 .1221E 02 .1586E 02 .2045E 02 .2616E 02 .3323E 02
WT PCT SO3	.32456-21 .18656-20 .99306-20 .49206-19 .22786-19 .22786-19 .9026+18 .9026+18 .97586-17 .57586-16 .57586-16	.6689E-15 .2128E-14 .6490E-14 .1901E-14 .5357E-13 .5357E-13 .3820E-12 .387E-12 .387E-12 .2387E-11	.1322E-10 .2985E-10 .6564E-10 .1428E-09 .1428E-09 .2031E-09 .2366E-08 .4543E-08 .4543E-08
72.0 H2504	.1353E-12 .4800E-12 .4800E-12 .1608E-11 .5108E-11 .1543E-10 .4444E-10 .1225E-09 .3236E-09 .3236E-09 .8219E-09	.4749E-08 .1085E-07 .2400E-07 .5153E-07 .5153E-07 .1075E-06 .2183E-06 .4319E-06 .8339E-06 .8339E-06 .8339E-06 .2900E-05	.5235E-05 .9259E-05 .1606E-04 .2734E-04 .45734E-04 .7519E-04 .1216E-03 .1235E-04 .1236E-03 .1235E-04
H20	.5231E+03 .933E+03 .933E+03 .1833E+02 .5771E-02 .9877E+02 .9877E+02 .9877E+02 .9877E+01 .4358E+01 .4358E+01	.10666400 .16276-00 .24436-00 .36146-00 .52736 00 .75916 01 .15166 01 .15166 01 .21056 01 .21056 01 .28916 01	.3929E 01 .5289E 01 .7052E 01 .9318E 01 .1521E 02 .1586E 02 .1586E 02 .33236 02 .33236 02 .33236 02 .4192E 02
0 EG C	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-49-

i

į

i

0EG C	H20	76.0 H2SD4	WT PCT \$03	TOTAL	Н20	78.0 H2S04	WT PCT SO3	TOTAL
-50	.1804E-03	.1029E-11	.71556-20 38786-19	.1804E-03 3407E-03	.9464E-04 1840E-03	.2932E-11	.3887E-19 20305-10	.9464E-04 10435-03
04	.65836-03	.1133E-10	.1948E-18	• 6583E-03	.35506-03	.30846-10	.9832E-18	.3550F-03
-35	 1206E-02 	.3465E-10	.9115E-18	1206E-02	.6594E-03	.9228E-10	.444DE-17	.6594E-03
-30	.21556-02	.1009E-09	.3990E-17	.2155E-02	.1194E-02	.2629E-09	.1877E-15	.11946-32
-25	.3758E-02	.2802E-09	.1641E-16	.3758E-02	.2109E-02	.71516-09	.7463E-16	.21096-02
-20	.6410E-02	.7450E-09	.6361E-16	.6410E-02	 3643E-02 	.1863E-08	.2799E-15	.3643E-02
-15	.1070E-01	.19006-08	.2333E-15	.10706-01	<pre>.6158E-02</pre>	•4658E-08	.9942E-15	.6158E-02
-10	.1752E-01	•4663E-08	.8124E-15	.1752E-01	.1020E-01	.1121E-07	.3354E-14	.1020E-01
1	.2815E-01	.1103E-07	.2692E-14	.2815E-01	.1658E-01	.26016-07	.10785-13	.1658E-01
0	•4442E-01	.2519E-07	.8517E-14	.4442E-D1	.2647E-01	.58316-07	.3308E-13	.2647E-01
ŝ	•6892E-01	.5568E-07	.2578E-13	•6892E-01	.41546-01	 1266E-06 	.9725E-13	.41546-01
10	.1053E-00	.1193E-06	.7486E-13	.1053E-00	.6413E-01	 2664E-06 	.2744E-12	.6413E-01
15	.1583E-00	.2481E-06	•2089E-12	 1583E-00 	.9750E-01	.5447E-06	• 7447E-12	.9750E-01
20	.2348E-D0	.50196-06	•5617E-12	2348E-00	.1461E-00	.1083E-05	.1948E-11	.1461E-00
25	.3434E-00	•9887E-06	.1457E-11	.3434E-00	.2159E-00	.20996-05	.4921E-11	.2159E-00
30	.4958E-00	.18996-05	.3655E-11	.4958E-00	.3148E-00	• 3967E-05	.1202E-10	.3148E-00
35	.7071E 00	.3560E-05	.8877E-11	.7071E 00	.45346-00	.73216-05	.2847E-10	.45346-00
40	.9967E 00	.6525E-05	.2091E-10	.9967E 00	.6451E 00	.1321E-04	•6542E-10	.6452E 00
4 10	.1389E 01	.1170E-04	.4784E-10	.1389E 01	.9076E 00	.2334E-04	.1461E-09	.9076E 00
50	.1916E 01	.20556-04	.1064E-09	.1916E 01	.1263E 01	.4039E-04	.3174E-09	.1263E 01
55	.2615E 01	.3537E-04	•2306E-09	.2615E 01	.1739E 01	.6855E-04	.6720E-09	.1739E 01
60	.3535E 01	.5976E-04	.4871E-09	.3536E 01	.2372E 01	.1142E-03	.1388E-08	.2372E 01
65	+4735E 01	.9914E-04	.1004E-08	.4735E 01	.3203E 01	.1869E-03	.2799E-08	.3203€ 01
70	.6286E 01	.1617E-03	 2023E-08 	.6286E 01	.4287E 01	.3008E-03	.5519E-08	.4288E 01
75	.8274E 01	 2593E-03 	.3987E-08	.8274E 01	.5688E 01	.4761E-03	•1065E-07	•5689E 01
80	.1080E 02	.4093E-03	.7690E-08	.1080€ 02	.7485E 01	.7422E-03	.2013E-07	.7485E J1
85	.1399E 02	.6363E-03	.1453E-07	.1399E 02	.9770E 01	 1140E-02 	.3729E-07	.9771E J1
60	.1799E 02	.9750E-03	.2694E-07	.1799E 02	.1265E 02	 1725E-02 	.6778E-07	.1266E 32
95	.2297E 02	.1473E-02	.4901E-07	.2297E 02	.1627E 02	.2577E-D2	.1210E-06	.1627E 02
100	.29126 02	.2197E-02	.8757E-07	.2912E 02	.2077E 02	•3798E-02	•2122E-06	.2078E 32

-50-

VAPOR PRESSURES, MM HG, FOR LOW TEMPERATURE RANGE. A-I, CONTINUED. TABLE

.3806E-04 .1473E-03 +2780E-03 .5113E-03 .1610E-02 ·2765E-02 000 1848E-D4 .7597E-04 .9178E-D3 .1091E-00 .1613E-30 .2355E-00 .4839E-00 00 10 555 .4653E-02 .7679E-D2 .1245E-01 .1932E-01 .3106E-01 -4791E-01 .7282E-01 .3395E-00 5 TOTAI .6819E .9509E .1312E .1794E .2429E .3259E .4336E .5721E .9727E .7488E .1823E-17 .8532E-17 .3721E-16 .1518E-15 .5824E-15 .5824E-15 .7222E-14 .2351E-13 .7290E-13 .1108E-10 .2707E-10 .6430E-10 .1467E-09 •6131E-12 .1671E-11 .7367E-09 .4381E-11 • 3265E-09 .6135E-C8 .1436E-06 .2544E-06 1276E-05 .1489E-08 .3060E-08 .1202E-07 ·2305E-07 •4428E-06 .4326E-07 .7958E-07 .7579E-06 503 PCT 1 M 82.0 .6302E-03 .9857E-03 .1518E-02 .2497E-09 .7051E-09 .1211E-07 .2883E-07 .6604E-07 .1462E-06 5209E-04 8899E-04 3448E-02 5091E-02 7421E-02 2685E-10 .8411E-10 .1903E-08 .4897E-08 .3135E-06 •6514E-06 .13156-05 .2581E-05 .4935E-05 .9206E-05 .1677E-04 .2453E-03 .3965E-03 .1491E-D3 .29875+04 .2304E-02 .1068E-01 H2S04 .7597E-04 .1473E-03 .3806E-04 .2780E-03 .5113E-03 .9178E-03 000 .1848E-04 .1610E-02 -2765E-02 +4653E-02 .7679E-02 1244E-01 .1982E-01 .3106E-01 .4791E-01 .7281E-01 .1091E-00 .1613E-D0 .2354E-00 .3394E-00 +4837E-00 000000 5 5 .9717E H20 .6817E .9505E .1312E .1793E 2427E • 3257E 5715E .7481E .4332E .6070E-03 .1090E-02 .1913E-02 .3285E-02 .8981E-04 .1745E-03 .3297E-03 5526E-02 .2766E-D0 00 44876-04 .3675E-01 .8594E-01 .1286E-00 .1898E-00 .3982E-00 8 10 5 010 5 10 02 02 .9114E-02 .1476E-01 .2348E-01 .5662E-01 5 TOTAL 5665E .7970E .1109E .1528E .2085E 3775E .5014E 8629E .1441E .2818E 6604E .1119 9856E-16 3763E-15 .2425E-18 .1211E-17 .1386E-12 .3938E-12 .1357E-14 .4641E-14 -5613E-17 .24296-16 .1509E-13 .4677E-13 .1075E-11 .1754E-10 .4160E-10 9568E-10 2137E-09 .4643E-09 .9822E-09 .2026E-08 .4080E-08 8028E-08 .1546E-07 .2913E-07 5382E-07 9755E-07 .1736E-06 .5215E-06 2824E-11 .7159E-11 3034E-06 S03 80.0 WT PCT 2816E-10 8653E-10 .2525E-09 .70186-09 1864E-08 .4745E-08 .2897E-06 5980E-06 .1199E-05 .2342E-05 .4455E-05 .2163E-03 8643E-03 8273E-05 .1501E-04 2664E-04 .7887E-04 .1318E-03 .3489E-03 .5536E-03 .1329E-02 20156-02 .6469E-02 8673E-11 .1160E-07 .1362E-06 3012E-02 .2731E-07 6202E-07 4630E-04 4442E-02 H2504 .17456-03 .3297E-03 .6070E-03 .1090E-02 .1913E-02 .3285E-02 .1286E-00 00 00 0 10 0 01 01 10 02 89816-04 .5662E-01 .18986-00 .2766E-00 .3982E-00 010 4487E-04 .5526E-02 9114E-02 .1476E-01 .2348E-01 .3675E-01 .8594E-01 .5665E H20 .7969E .1109E .1528E .2818E .5012E 8626E .1119E .1440 E .2085E ,3774E .6602E ں -45 -40 -35 -30 -25 -15 -10 20 4030220 100 -50 ŝ DEG

-51-

						ć		
2	Н20	04•0 H2SD4	503	TOTAL	Н20	86.U H2504	MI PCI 503	TOTAL
-50	.6373E-05	.8791E-10	.17316-16	.6373E-05	.2007E-05	.2660E-09	.1662E-15	.20076-05
-45	.1374E-04	.2616E-09	.7348E-16	.13746-04	.4576E-05	.7504E-09	.6331E-15	.4577E-05
-40	.2864E-04	.7403E-09	•2926E-15	.2864E-04	.10046-04	.2022£-08	•2279E-14	.1004E-34
-35	.5782E-04	.1999£-08	.1097E-14	.5783E-04	.2126E-34	.5216E-08	.7782E-14	.21276-34
-30	.11336-03	.5164E-08	.3886E-14	.1133E-03	.4354E-04	.1292E-07	.2529E-13	43556-04
-25	 2158E-03 	.1280E-07	.1305E-13	.2158E-03	.8641E-04	.30796-37	.78425-13	-3446-04
-20	.4004E-03	.3052E-07	.4172E-13	.4004E-03	.1665E-03	.7079E-07	.2327E-12	.1666E-03
-15	.7246É-03	.7015E-07	.1272E-12	.7246E-03	.31216-03	.1573E-06	.6624E-12	.3123E-33
-10	.1281E-32	.1557E-06	.3712E-12	.1281E-02	.5700E-03	.3385E-06	•1813E-11	.57036-03
5	.2214E-02	.3347E-06	.1039E-11	.2215E-02	.1016E-02	.70656-06	.4780E-11	.1016E-02
o	.3749E-02	.69736-06	.27945-11	.37495-02	-17695-02	-1433F-05	1217E-10	CL-3021.
ŝ	.6222E-02	.1411E-05	.7238E-11	.6224F-02	.30136-02	.28276-05	. 29955-10	- 30165-02
10	.1014E-01	.27786-05	.1810E-10	.1014E-01	.50296-02	54386-05	-7142F-10	.5034F-02
15	.1622E-01	.5327E-05	.4378E-10	.1623E-01	.82316-02	.1020E-04	16535-09	.8241F-02
20	.2552E-01	.9965E-05	.10266-09	.2553E-01	.13236-01	.1871E-04	.3716E-09	.1324E-01
25	.3952E-01	.1821E-04	.2332E-09	.3954E-01	.20 88E-01	.3354€-04	.8129E-09	.2092E-01
30	.6027E-01	.3252E-04	.5150E-09	.6031E-01	.3243E-01	.5888E-04	.1733E-08	.32495-01
35	.9060E-01	.5683E-04	.11076-08	•9066E-01	.4957E-01	.1013E-03	 3603E-08 	.4967E-31
40	.1343E-00	.9746E-04	.2318E-08	.1344E-D0	.7466E-01	.1710E-03	.73166-08	.7483E-01
45	.1966E-00	.1638E-03	.4734E-08	.1967E-0C	.11086-00	.2834E-03	.1452E-07	.1111E-00
50	.2840E-00	.2703E-03	•9446E-08	.2843E-00	.1624E-00	.4615E-03	.28216-07	.16285-00
55	.4055E-D0	.4382E-03	.1842E-07	.4060E-00	.2348E-00	.7393E-03	.5367E-07	.23556-30
60	.5725E 00	.6987E-03	.3517E-07	.5732E 00	.3354E-00	.1165E-02	1001E-06	.3365E-30
65	0C 34697.	.1096E-02	.65776-07	.8005E 00	.47356-00	.18086-02	.1832E-06	.4753E-CO
10	.11056 01	.1693E-02	.1206E-06	.1106E 01	.6611E 00	.2766E-D2	• 3292E-06	.6638E 00
75	1511E 01	.2578E-02	-2170E-06	.1514E 01	.91316 00	.4171E-02	-5812E-06	.9173E 00
80	.2048E 01	.3870E-02	.3835E-06	.2052E 01	.12496 01	.6208E-02	•1009E-05	.1255E 01
85	.2750E 01	.5731E-02	• 6660E-06	.2756E 01	.1691E 01	.91206-02	•1724E-05	.17036 01
60	.3661E 01	 8378E-02 	.11386-05	.3669E 01	.2268E UI	.1323E-01	.2900E-05	.2281E 01
95	•4832E 01	.1210E~01	.1913E-05	.4844E 01	.3016E 01	.1897E-01	•4836E-05	.3035E 01
100	.6327E 01	.17266-01	.3167E-05	.6344E 01	10 3976F 01	2689E-01	. 7851 6-05	16 36004

i

-52-

DEG C	н20	88.0 H2504	WT PCT \$03	TOTAL	Н20	90•0 H2S04	WT PCT SD3	TOTAL
1 1 4 0 0 0 0 0	.6722E-06 .1602E-05	.6494E-09 .1767E-08	.12126-14 .42596-14	.6728E-06 .1604E-05	.2552E-06 .6244E-06	.1248E-08 .3336E-08	.6135E-14 .2062E-13	-2565E-36 -6277E-06
-40	.3603E-U5 .8061E-05	.1150E-07	•142285-13 •45285-13	.3008c-U5 .8073E-05	.1404E+U5 .3298E-05	.8539E-U8 .2100E-07	.6604E-13 .2020E-12	.1472E-05 .3319E-05
-30	.17116-04	.2766E-07	.1378E-12	.1714E-04	.7162E-05	.4972E-07	.5917E-12	.7212E-35
-25	.3513E-04	•6414E-07	.4019E-12	-3519E-04	 1502E-04 	.1136E-06	.1664E-11	1513E-04
-20	•6987E-04	.14376-06	.1126E-11	.7001E-04	.3349E-04	.2509E-36	.4504E-11	.3074E-04
-15	.13496-03	· 3117E-06	.3037E-11	.1352E-03	.6004E-04	.537JE-06	.1175E-10	.6058E-34
24	.25336-03	. 6336E-U6	./9U2E-11	-2540E-03	• 1 149E-US	. ILLDE-UD	-2963E-10	.1160E-J3
.	.4033E-U3	•1340E-05	• 148 /E- TO	• 4040E-U3	• Z 1 3 Y E - U 3	60-31677 ·	•1231E-10	.21625-03
0	.8268E-03	.2663E-05	.48386-10	. 8294E-03	.3883E-C3	.4422E-D5	.17106-09	•3927E-03
Ś	.1441E-02	.5158E-05	.1142E-09	 1446E-02 	.6881E-03	.8470E-05	 3928E-09 	.6966E-33
10	.2458E-02	.9746E-05	.2619E-09	 2468E-02 	.1192E-02	.1583E-04	8773E-09	.1238E-32
15	.4106E-02	.1799E-04	.5840E-09	.4124E-02	.2022E-02	 2892E-04 	.1907E-08	.2051E-02
20	.6725E-02	.3247E-04	.1268E-08	.6758E-02	.3360E-02	.5169E-04	.4C42E-08	.3411E-32
25	.1081E-01	.5736E-04	.2685E-08	.1087E-01	•5477E-02	.9048E-04	.8362E-08	.5567E-02
30	.17086-01	•9932E-04	.5550E-08	.1718E-01	.8767E-02	.1552E-03	.1690E-07	.8922E-32
35	.2653E-01	.1687E-03	.1121E-07	.2670E-01	.1379E-01	.2614E-03	.3340E-07	.1406E-01
40	.4056E-01	.2812E-03	.2214E-07	•4085E-01	.2135E-01	4321E-03	.6464E-07	.2179E-01
45	.6109E-01	• 4607E-03	.4283E-07	.6156E-01	.3255E-01	.7022E-03	.1226E-06	.3325E-31
50	.9071E-01	.7421E-03	.81195-07	-9145E-01	.48886-01	.1122E-02	.2279E-06	.5000E-01
55	.1329E-00	.11766-02	.1510E-06	.1340E-00	.72386-01	.17665-02	.41595-06	.7415E-01
09	.1921E-00	 1836E-02 	.2755E-06	.19396-00	.1058E-00	.2736E-02	.7456E-06	-1085E-30
65	.2743E-00	.2824E-02	.4938E-06	.2771E-00	.1526E-00	.41796-02	.1314E-05	.1568E-00
70	.3871E-00	.4282E-02	•8701E-06	.39146-00	.21756-00	•6294E-02	.2277E-05	2238E-00
75	.5403E 00	•6405E-02	.15086-05	.5467E 00	.3064E-00	.9354E-D2	.3883E-05	-3158E-00
80	.7460E 00	.9457E-02	.2573E-05	•7555E 00	4270E-00	.1372E-01	.6523E-05	-4408E-30
85	.1020E 01	.13796-01	.4323E-05	.1033E 01	•5888E 00	.1989E-01	.1083E-94	.6087E 00
06	.1380E 01	.1987E-01	.71576-05	.1400E 01	.8038E 00	.2849E-01	.1762E-04	.8323E 00
35	.1850£ 01	.2830E-01	.1168E-04	.1879E 01	.1087E 01	.4034E-DI	.2836E-04	.1127E 01
001	-2459E 01	-39856-01	-1881E-04	-2499E 01	-1456E 01	.5651E-01	-45065-04	-1512F 01

-53-

į

!

ATURE RANGE.
TEMPER
JR LOW
HG, FC
WW *
PRESSURES
VAPOR
CONTINUED.
4 − I •
TABLE

DEG C	H20	91.0 H2SD4	WT PCT SO3	TUTAt	H2D	92•0 H2504	WT PCT	TULAI
		, , ,	•) t)	
-50	1626E-D6	.1616E-08	.1247E-13	•1642E-06	.1049E-06	.2019E-08	•2416E-13	.1069E-C6
-45	.4010E-06	.4297E-08	.41376-13	.4053E-06	.2600E-06	.5354E-08	• 7949E-13	 2654E-06
- 40	.9477E-06	.1095E-07	.13086-12	.9586E-06	.61806-06	.1360E-07	.2491E-12	•6316E-06
-35	 2152E-05 	.2680E-07	.3951E-12	2179E-05	.14116-05	.3320E-07	•7462E-12	.1445E-05
-30	.47096-05	.6318E-07	.1144E-11	.4772E-05	.3106E-05	•7801E-07	.2141E-11	.3184E-05
-25	•9949E-05	.1437E-06	.3179E-11	.10096-04	•6600E-05	.1769E-06	-5900E-11	.67776-35
-20	.2035E-04	.3162E-06	•8506E-11	.2066E-04	.1357E-04	.3881E-06	.1565E-10	•1396E-04
-15	.4034E-04	.6738E-06	.21956-10	.4102E-04	.2707E-04	.8246E−06	•4003E-10	.2790E-04
-10	.7773E-04	•1394E-05	.5474E-10	.7912E-04	 5246€−04 	.1701E-05	.9897E-10	-5416E-04
5-	.1457E-03	.2802E-C5	.13216-09	.1485E- 0 3	.9891E-04	.3409E-05	 2369E-09 	 1023E-03
c	.2663F-03	.5485F-05	, 3093E-09	. 271 AF-03	-1818E-03	.44546-05	54086-00	18865-73
) L	4750E-03	10475-04	7037E-00		27610-03	10446-02		
۰ د י							-1407T-	- 338 (E-03
10	. 8282E-03	• I 949E-04	.15556-08	•8477E-03	•5717E-03	.2351E-04	•2717E-08	.5952E-03
5	.1413E-02	 3548E-04 	.3347E-08	.1449E-02	.9808E-03	.4268E-04	.5801E-08	.1024E-32
20	 2363E-02 	.6319E-04	• 7026E-08	.2426E-02	 1649E-02 	.7581E-04	1208E-07	.1725E-02
25	.3875E-02	.1102E-03	•1440E-07	.3985E-02	.2718E-02	.1319E-03	.24556-07	.28506-02
30	6239E-02	.1885E-03	.2883E-07	.6428E-02	.4400E-02	.2249E-03	.4878E-67	.4625E-32
35	.9873E-02	 3163E-03 	.5649E-07	.10196-01	.7000E-02	.3764E-03	.94806-07	+7377E-32
40	.1537E-01	.52136-03	.1084E-06	.1589E-01	.1095E-01	.6187E-03	.1804E-06	.1157E-01
45 5	.2355E-01	. 8445E-03	•2037Ē-06	.2440E-01	.1687E-01	.99966-03	•3366E-06	.1787E-01
50	.35566-01	.1346E-02	.3756E-06	.3690E-01	.25606+01	.15896-02	-61596-06	-27196-31
55	.5293E-01	•2111E-02	.6799E-36	.5504E-01	.3830E-01	.2486F-02	-1107E-05	.4079F-01
60	.77746-01	,3261E-02	 1209E-05 	.81005-01	.5652E-01	.38316-02	.19536-05	.60365+01
65	.1127E-00	.4967E-02	.2114E-05	.1177E-00	.8235E-01	.58206-02	.3390F-05	-8817F-01
70	.1614E-00	•7459E-02	.3635E-05	•1689E-D0	.1185E-00	.8720E-02	.57896-05	.1272E-30
75	.2285E-00	.11066-01	.61556-05	.2396E-00	.1686E-00	.1289E-01	.9732F-D5	-18156-00
80	.3199E-00	.1618E-01	.1026E-04	.3361E-00	.2371E-00	.1882E-01	.1612E-04	.25596-00
85	.4432E-00	.23396-01	 1687E+04 	.46666-00	.32986-00	.2715E-01	.2631E-04	.3570E-00
90	.6077E 00	.33416-01	.27336-04	.6411E 00	.4543E-00	•3869E-01	.42346-04	.4930E-30
95	.8251E 00	.4719E-01	.4369E-04	.8724E 00	.6195E 00	.5453E-01	.6725E-04	•6741E 00
001	10 30111	6503F-01	68055-04	11765 01	8370C 00	74035-01	10545-03	
>>-		42 J1110+		- 7 T T T T T T T		+ 10V C C - V L		UU DICIY.

-54-

Ì

•

	TUTAL	•4584E-07	•1149E-06	 2760E-36 	•6375E-06	.1420E-05	.3054E-05	.6361E-05	.1285E-04	.2523E-04	•4823E-04	8985E-04	.16346-03	.2905E-03	.5056E-33	.8619E-03	.1441E-02	•2366E-02	3818E−02	6058E-02	•9463E-D2	.1456E-01	.2208E-01	3304E-01	.4878E-01	.71146-01	.1025E-00	.1460E-00	 2058E-00 	 2869E+00 	*3960E-00	.5414E 30
IT PCT	503	. 8485E-13	•2765E-12	.8582E-12	.2543E-11	.7218E-11	.19666-10	.5155E-10	.13036-09	.3182E-09	.7523E-09	.17246-08	.38386-08	.83075-08	.1751E-07	.3599E-07	.7223E-07	.1416E-06	 2718E-06 	.5107E-06	.9405E-06	.16996-05	.3015E-05	.5255E+05	.9008E-05	.1519E-04	.2523E-04	.41285-04	+6658E-04	.1059E-03	.1662E-03	.2576E-03
94.01	H2504	• 2904E-08	.7678E-08	 1945E-07 	.4731E-07	.1108E-D6	 2505E-06 	5475E-06	•1159E-05	.2382E-05	.4758E-05	.9253€-05	.1754E-04	.3246E-04	.5869E-04	.1039E-03	.18006-03	.3058E-03	.5099E-03	.8350E-03	.l344E-02	.2128E-02	.3318E-02	• 5095E-02	.7712E-02	.11516-01	 1696E-01 	.2467E-01	.3546E-01	.50376-01	.70746-01	.9828E-01
	H20	•4294E-07	.1372E-06	 2565E-06 	•5902E-06	.1309E-05	.2803E-05	5813E-05	.1169E-04	 2285E-04 	•4347E-04	.80596-04	.1459E-03	.2581E-03	•4468E-03	•7580E-03	1261E-02	.2060E-02	 3308E-02 	5223E-02	•8118E-02	•1243E-01	•1876E-01	2794E-01	•4106E-01	 5961E-01 	.8552E-01	.1213E-00	.1702E-00	 2364E-00 	.3251E-00	.4428E-00
	TOTAL	.7015E-07	.1750E-06	.4184E-06	.9619E-06	.2131E-05	.4560E-05	.9446E-05	.1898E-04	 3705E-04 	.7040E-04	.13046-03	.2358E-03	.4167E-03	.7208E-03	.12226-02	.2031E-02	.3315E-02	.5317E-02	.8388E-02	.1303E-01	.1993E-01	.30066-01	.4473E-01	.6570E-01	.9531E-01	.1366E-00	.1937E-00	.2715E-00	.3768E-00	.5177E 00	.7045E 00
WT PCT	S03	.4547E-13	 1488E-12 	.4637E-12	.1381E-11	.3937E-11	.1078E-10	.2842E-10	.7222E-10	.1774E-09	.4217E-09	.97226-09	.21776-08	.4740E-08	.10056-07	.2079E-07	.4197E-07	.8280E-07	.1598E-06	.3022E-06	•5599E-06	.10186-05	.18176-05	.31866-05	 5494E-05 	.93226-05	.1557E-04	.2563E-04	.41576-04	.6650E-04	.10506-03	•1636E-03
93.0	H2 504	.2453E-08	•6494E-08	.l647E-07	.4011E-07	.9409E-07	.2130E-06	.4662E-06	.93866-06	.2035E-05	.4070E-05	.79286-05	15056-04	.2790E-04	.50546-04	.8957E-04	.1555E-03	.2646E-03	.4419E-03	.7250E-03	.1169E-02	.18546-02	.28956-02	.4453E-02	.6751E-02	.10106-01	.1490E-01	.2171E-01	.3125E-01	.4445E-01	.6253E-01	.8701E-01
	H20	.6770E-07	.1685E-06	.4020E-06	•9218E-06	.20376-05	•4347E-05	.8980E-05	•I799E-04	.3502E-04	•6633E-04	12256-03	.22075-03	38885-03	.6702E-03	.1132E-02	.18756-02	.30506-02	•4875E-02	.7663E-02	.1186E-01	.18085-01	.2717E-01	.4028E-01	.5895E-01	.8521E-01	.1217E-00	.1719E-00	.2403E-00	.3323E-00	.4551E-00	.6173E 00
0EG C		-50	-45	-40	-35	-30	-25	-20	-15	-10	ŝ	c	م ا		2 C	02	10	06	35	40	4	50	ነ ሆ ነ ሆ	60	65	10	15	80	85	06	95	100

- 55-

1

:

DEG		95.0	T DC T				11 D.T.	
	Н20	H2504	503 503	T01AL	H20	90.0 H2SD4	503	TOTAL
-50	.2629E-07	.34086-08	.1626E-12	.2970E-07	*1511E-07	• 3916E-08	.32516-12	.1903E-37
-45	• 6578E-07	• 9004E-08	.5284E-12	.7479E-07	.3787E-07	.1034E-07	.1054E-11	.4821E-07
-40	.1578E-06	• 2279E-07	.1634E-11	 1806E-06 	.9103E-07	.2616E-07	•3253E-11	.1172E-06
-35	.3641E-06	.5538E-07	•4826E-11	.4195E-06	.2105E-06	.6354E-07	.9578E-11	.2740E-06
-30	•8098E-06	 1296E-06 	.1364E-10	•9395E-06	.4693E-06	.1486E-06	.2699E-10	.6179E-36
-25	.1740E-05	.2927E-06	.3701E-10	.2033E-05	.1011E-05	• 3353E-06	.7297E-10	.1347E-05
-20	.3621E-05	.6390E-06	.9660E-10	4260E-05	.2110E-05	•7315E-06	.1897E-09	•2842E-05
-15	•7308E-05	.1351E-05	.2431E-09	 8659E-05 	.4273E-05	.1546E-05	.4756E-09	-58196-05
-10	.1433E-04	•2774E-05	.5908E-09	.1711E-04	-8409E-05	.31716-05	.1151E-08	.1158F-04
۲ ۱	.2736E-04	•5534E-05	.1390Ĕ-08	.3290E-04	.1611E-04	.6320E-05	.2696E-08	-2243E-04
G	-5093F-04	.10755-04	31705-08	. 41 68 E-04	30005-07	13345-07	41375-78	1010000
، د	07545-04	30388-04	70105-00			+ 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		+ + V 000 + 0 +
		+ 200000 • 240000		. LICYCTUS		• 4320E-04	• 13494-07	. (810E-04
) L				.ZUZUE-US	.9787E-04	•4282E-04	• 289DE-07	•1407E-03
<u>م</u> ا	• 2858E-03	•6793E-04	 3169E-07 	•3537E-03	.1708E-03	.7727E-04	.6030E-07	.2482E-03
20	.4868E-03	•1200E-03	.6479E-07	+6069E-03	 2922E-03 	 1364E-03 	.1227E-06	.4287E-03
25	.81336-03	·2077E-03	 1293E-06 	.1021E-02	.4902E-03	.23586-03	•2435E-06	.7262E-03
30	•1334E-02	.3525E-03	.2522E-06	.1687E-02	 8075E-03 	• 3997E-03	.4724E-06	.1238E-32
ц ГЭ ГЭ	21516-02	.5870E-03	.4812E-06	.2738E-02	.1307E-02	.6649E-03	.8967E-06	.1973F-02
40	.3411E-02	 9599E-03 	•8990E-06	.4371E-02	• 2082E+02	•1086E-02	.1666E-05	31706-02
45	.5324E-02	.1543E-02	.1647E-05	.6868E-02	.3264E-02	.1744E-02	.3036E-05	-5011E-02
50	.8186E-02	.2440E-02	.2958E-05	.1063E-01	.5041E-02	.2755۴-02	. 54746-05	. 78516-03
55	.1241E-01	.3799E-02	 5219E-05 	.1621E-01	.76746-02	.4284E-02	.95176-05	11475-01
60	 1856E-01 	.5825E-02	.9047E-05	•2439E-01	.1153E-01	.6562F-02	-1641F-34	.18116-01
65	.2739E-01	.8805E-02	.1542E-04	.3621E-01	.17096-01	• 9908E-02	.2781E-04	.27035-31
70	.3994E-01	.1313E-01	 2586E-04 	.5309E-01	.2503E-01	.14756-01	.4638E-C4	.3983F-01
75	.5754E-01	.1931E-01	.42716-04	.7690E-01	.3622E-01	-2168E-01	.7617E-04	.5798F-01
80	.8197E-01	.2806E-01	.6948E-04	.1101E-00	.5182E-01	.3147E-01	•1232E-03	.8341E-01
85	.1155E-00	.4027E-01	.1114E-03	.1559E-00	.7335E-01	.4511E-01	.1966E-03	.1187E-00
90	•1611E-00	.5712E-01	.1763E-03	 2184E-00 	.1027E-00	.6391E-01	.3392E-03	.1670E-D0
95	.2225E-00	•8012E-01	.2752E-03	.3028E-00	•1425E-00	.8955E-01	.4801E-03	+2325E-00
100	.3043E-DQ	.1112E+00	.4241E-03	.4159E-00	.1958E-00	.1241E-00	•7359E-03	.3206E-00

- 56 -

രി

ഹര

J 10 10

(C) .+

			T 7 0 T 1					
נ ענפ ר	H20	91.0 H2S04	503 503	TOTAL	Н20	98.0 1 H2SO4	803 S03	TOTAL
- 50	.8033E-08 .2014E-07	.4443E-C8	.6939E-12	•1248E-07 -2187E-07	.3566E-08 .80375-08	.4973E-08	.1750E+11	.8540E-D
140	.4846E-07	.2967E-07	.6929E-11	.78136-07	.2149E-07	.33216-07	.1749E-10	-5471E-0
-35	.11226-06	.7204E-07	.2037E-10	.1843E-06	.49786-07	.80636-07	.5140E-10	+1305E-0
-30	•2506E-06	 1684E-06 	5728E-10	.4191E-06	.11136-06	.18856-06	.I444E-D9	•2999E-0
-25	.5412E-06	.3799E-06	.1545E-09	.9212E-06	.2406E-06	.4250E-06	•3888E-09	.6660E-0
-20	.il32E-05	 8284E-06 	.4005E-09	.1961E-05	.5041E-06	.9266E-06	.1006E-08	.1432E-0
-15	.2298E-05	.1750E-05	.1001E-08	.4049E-05	.1025E-05	.19576-05	.25086-08	.2984E-0
-10	.4536E-05	.35866-05	.24145-08	.8124E-05	•2029E-05	.4009E-05	.6033E-08	.6043E-0
5	.8717E-05	.7144E-05	.5632E-08	.1587E-04	.3909E-05	.7983E-05	.1403E-07	.11916-0
a	.16346-04	.13856-04	.12746-07	.3020E-04	.73485-05	.1547F-04	31635-07	.2285E-D
۰ C	40-10662°	.2619E-04	.2795F-07	.5611F-04	.1349F-04	. 2923F-04	.69176-07	42795-0
10	.5350F-04	.4831E-04	.5964E-07	.10196-03	.2422E-04	.53916-04	.14705-06	.7828F-0
12	.9373E-04	.8710E-04	.1239E-06	.1810E-03	•4258E-04	.9714E-04	-3041E-06	-1400E-D
20	•1609E-03	.1536E-03	.25086-06	.3148E-03	.7338E-04	.17136-03	.61326-06	.2453E-0
25	.2711E-03	.2654E-03	.4956E-06	.5370E-03	.I241E-D3	.2957E-03	.1206E-05	-4210E-0
30	.4483E-03	.4496E-03	.9570E-06	.8989E-03	.2060E-03	.5006E-03	.2319E-05	.7089E-0
35	.72886-03	.7472E-03	 1807E-05 	.1478E-02	.3363E-03	.8314E-03	• 4359E-05	.1172E-0
40	.1166E-02	.1220E-02	.3342E-05	•2388E-02	.5401E-03	 1356E-02 	.80226-05	.1934E-D
45	.1835E-02	.1957E-02	.6057E-05	.3798E-02	• 8539E-03	.2175E-02	.1447E-04	+3043E-0
50	.2846E-02	• 3088E-02	.1077E-04	•5945E-02	.1330E-02	.3430£-02	.25596-04	.4786E-0
55	.4352E-02	.4798E-02	.1880E-04	•9169E-02	.2043E-02	.5326E-02	•4445E-04	.7413E-3
60	.6566E-02	.7343E-02	.3223E-04	.1394E-01	.3096E-02	.8146£-02	.7584E-04	.1132E-0
65	.9777E-02	.11085-01	.5435E-04	.2091E-01	.4630E-02	.1228E-01	 1272E-03 	.1704E-0
70	.1438E-01	.1648E-01	.9018E-04	.3095E-01	.6841E-02	.1826E-01	.21306-03	.2531E-0
75	.2090E-01	.2420E-01	.1473E-03	.4525E-01	.9989E-02	.2680E-01	.34136-03	.3713E-0
80	.30046-01	.35096-01	.2371E-03	.6537E-01	.1442E-01	•3883E-01	 5465E-03 	.5379E-0
85	.4271E-01	.5026E-01	.3761E-03	.9335E-01	.2059E-01	•5557E-01	 8625E-03 	• 7703E+0
06	.6010E-01	.7115E-01	.5886E+03	.1318E-00	.2911E-01	.7862E-01	.1343E-02	.1091E-0(
95	.8372E-01	•9960E-01	.9089E-33	.1842E-00	.4073E-01	.11006-00	•2363E-02	.1528E-0
100	.11556-00	.13796-00	.1386E-02	•2548E-00	-5646E-01	•1522E-D0	.3129E-02	.2118E-D

-57-

DEG C		98.5	WT PCT			0-66	HT PCT	
	H20	H2 S04	S03	TOTAL	Н20	H2S04	\$03	TUTAL
-50	.2064E-08	.5227E-08	.3178E-11	.7294E-08	.9841E-09	.5506E-08	.7019E-11	. 6497E-0
-45	.5166E-08	 1380E-07 	.1031E-10	.1898E-07	 2455E-08 	 1454E-07 	.2286E-10	.17C2E-0
-40	.1242E-07	.3491E-07	.3181E-10	.4736E-07	.5886E-08	.3676E-07	.7070E-10	-4272E-0
-35	.2877E-07	.8477E-07	.9347E-10	.1136E-06	.1360E-07	.8926E-07	 2082E-09 	.1031E-0
-30	.6433E-07	•1981E-06	•2626E-09	.2627E-06	.3035E-07	.2086E-06	.5859E-09	.23966-0
-25	.1391E-C6	.4468E-96	• 7068E-09	.5867E-06	.6556E-07	.4703E-06	1579E-08	-5375E-0
-20	.2917E-06	.9741E-06	.1828E-38	.1268E-05	.1373E-06	.1025E-05	.40866-08	.1167E-0
-15	.5938E-06	 2057E-05 	.4552E-08	 2655E-05 	.2795E-06	2164E-05	.10186-07	-2454E-0
-10	.1176E-05	.42146-05	.1094E-07	.5400E-05	.5533E-06	• 4432E-05	 2445E-07 	-5010E-0
ŝ	 2268E-05 	•8390E-05	.2542E-07	.1068E-04	.10686-05	•8823E-05	+5679E-07	*9948E-0
C	.4269E-05	.1626E-04	.5721F-07	.2059F-04	2011F-05	.1709E-04	-1277F-06	.19736-0.
, m	.78485-05	-3072E-04	.12495-06	.3869E-04	.3700E-05	.3228F-04	.27856-06	36265-02
10	.1411E-04	.5664E-04	.26516-06	.7102E-04	.6661E-05	.5951E-04	-5901E-06	-56576F-0
15	-2485F-04	-1020F-03	.54746-06	.12745-03	.1175F-04	10725-03	-1217E-35	.1231E-0
20	.4290E-04	.1799E-03	.1102E-05	.2239E-03	.2031E-04	.18895-03	-7443E-05	21165-0
25	.7267E-04	.3105E-03	.2163E-05	•3854E-03	.34466-04	.3260E-03	.47876-05	.3652E-0
30	.1209E-03	.5256E-03	.41496-05	.6506E-03	.5745E-04	.55156-03	.9161E-05	-6181E-0
35	.1977E-03	.8728E-03	.77836-05	.1078E-02	9417E-04	.91556-03	.17145-04	.1027E-3
40	.3182E-03	.1424E-02	.1429E-04	•1756E-02	.15196-03	.14936-02	.31396-04	.1676E-0
45	.5041E-03	.22826-02	.2572E-04	.2812E-02	.2412E-03	.2392E-02	 5633E-04 	-2693E-0
50	.78696-03	.3599E-02	•4540E-04	.4431E-02	.3776E-03	.37716-02	.9913E-04	.4248E-0
55	.1211E-02	.5587E-02	•7865E-04	+6877E-02	.5827E-03	.5852E-02	.17126-03	.6606E-0
60	.1839E-02	*8544E-02	.1339E-03	.1052E-01	.8875E-03	. 8945E-02	.29056-03	.1012E-0
65	.2757E-02	.1288E-01	.2240E-03	.1586E-01	.1334E-02	.1348E-01	.4845E-03	.1530E-D
20	.4083E-02	.1915E-01	.3689E+03	.2360E-01	.1982E-02	.2003E-01	.7951E-03	.2281E-0
75	•5975E-02	.2809E-01	.5980E-03	.3466E-01	.2910E-02	.29386-01	•1284E-02	-3357E-0
80	•8647E-02	.4069E-01	.9551E-03	.50296-01	.42246-02	.4254E-01	 2044E-02 	.4881E-0
85	.1238E-01	•5823E-01	.1504E-02	.7211E-01	•6066E-02	.6085E-D1	 3206E-02 	.7012E-0
06	.1754E-01	.8236E-01	•2335E-02	.1022E-00	.8622E-02	.8604E-01	•4961E-02	.9962E-0
95	.2460E-01	.1152E-00	.3578E-02	.1434E-00	.12146-01	•1203E-00	•7573E-02	.1400E-0(
100	.3417E-01	.1594E-00	.5413E-02	.1989E-00	.1692E-01	.1664E-00	•1141E-D1	.1947E-J(

-58-

VAPOR PRESSURES, MM HG, FOR LOW TEMPERATURE RANGE. TABLE A-I, CONTINUED.

DEG C		99.5	WT PCT			90,8	ut ort	
	H20	H2 S04	S03	TOTAL	H20	H2504	. EOS	TOTAL
-50	.3120E-09	5784E-08	.2326E-10	.6120E-08	.6925E-10	.5935E-08	.1075E-09	-6112E-08
-4- 2-1	• / 662E-09	.1528E-07	•7699E-10	 1612E-07 	 1654E-09 	.1569E-07	 3662E+09 	.1622E-07
-40	.1812E-08	 3865E-07 	.2414E-09	.4070E-07	 3822E-09 	.3971E-07	.1176E-08	.4126E-07
-35	.4139E-08	.9386E-07	.7195E-09	.9872E-07	 8565E-09 	.9647E-37	.3574E-08	.1009E-06
-30	.9145E-08	.2194E-06	.2045E-08	 2306E-06 	.1865E-08	.2256E-06	.1031E-07	.2378E+06
-25	• 1959E-07	• 4947E-06	.5559E-08	.5198E-06	.3949E-08	.5088E-06	.2836E-07	.5411E-06
-20	.4073E-07	.10786-05	.1449E-07	.11336-05	.81485-08	.1109E-05	.7450E-07	.11926-35
-15	.8241E-07	.2276E-05	.3629E-07	 2394E-05 	.1640E-07	.2341E-05	1876E-06	-2545F-35
-10	 1624E-06 	.4660E-05	.8759E-07	.4910E-05	.3227E-07	•4796E-05	.4538E-06	.5282E-35
۲ ۱	.3124E-06	.9275E-05	.2041E-06	.9792E-05	.6207E-07	.9545E-05	.1057E-05	.1066E-04
c	5 B K B E + 0 K	70757071	4500E_04	10015-04	11295-05			
o u					- 1 1 0 7 C 0 0 0	• 1044C-04	+ 20/0E-00	-2048E-04
n (+0132664	• FUCHE-US	•3001C-04	• 2158E-Ub	·3491E-04	•5163E-05	•4029E-04
10	• 1940E-05	.6251E-04	.2128E-05	•6658E-04	.3909E-06	•6433E-04	.1087E-04	 7559E-04
15	.3422E-05	.1126E-03	•4385E-05	.1204E-03	.69526-06	.11586-03	.2221E-04	.1387E-D3
20	 5923E-05 	.1983E-03	. 8795E-05	.21306-03	.1215E-05	.2040E-03	.4411E-04	.2493E-03
25	.1007E-04	.3421E-03	.1719E-04	.3693E-03	.2089E-05	.3519E-03	.8527E-04	.4392E-03
30	.1633E-04	.5785E-03	.3281E-04	.6282E-03	.3534E-05	.5950E-03	.1607E-03	.75926-03
35	2766E-04	.9601E-03	.6119E-04	.1049E-02	.5890E+05	.9871E-03	•2955E-03	.12886-02
40	•4478E-04	.1565E-02	 1116E-03 	.1721E-02	• 9674E-05	.16086-02	.5311E-03	.21496-02
45	.7142E-04	 2506E-02 	.1994E-D3	.2777E-02	.1567E-04	• 2576E-02	•9338E-03	.3525E-02
50	.11236-03	.39506-02	.34916-03	.4411E-02	-2504F-04	.4058E-02	.1608E-02	56915-03
55	.17426-03	.61266-02	.59966-03	.69005-02	.39525-04	.62936-02	.27156-02	. 90475-07
60	.2667E-03	.9361E-02	.1011E-02	.10646-01	.61605-04	.96126-02	44975-02	.14175-01
65	.4034E-03	.1410E-01	.1676E-02	.1618E-01	.94896-04	.14476-01	.7316F-02	-2188F-01
70	.6029E-03	.2094E-01	.2733E-02	•2428E-01	.1445E-03	.21496-01	.1170E-01	.3334F-01
75	.8910E-03	.3070E-01	.43846-02	.3597E-01	.2177E-03	.31506-01	.1840E-01	.5012E-01
80	.1302E-02	.4443E-01	.6925E-02	.5266E-01	• 3246E-03	.4557E-01	.2850E-01	10-30447.
85	.1884E-02	.6353E-01	.1078E-01	.7620E-01	.4790E-03	.6514E-01	.4347E-01	.10916-00
96	 2697E-02 	.89796-01	.1655E-01	.1090E-00	.70006-03	.9204E-01	•6536E-01	.1581E-00
95	•3826E-02	.12556-00	.2506E-01	.1544E-00	.1013E-02	 1286E-00 	.9694E-01	.2265E-00
100	*5376E-02	.17356-00	.37466-01	.2163E-00	.I454E-02	.1777E-00	.14196-00	•3210E-00

- 59 -

			1					
טבט נ	H20	99.9 H2S04	MI PUI 503	TOTAL	Н20	100.0 H2S04	M1 PC1 S03	TOTAL
- 50 - 45	.1382E-10 .3370E-10	.6004E-08 .1587E-07	.5452E-09 .1818E-08	.6563E-08 .1772E-07	.5214E+14 .2157E-13	.6084E-08 .1607E-07	.1464E+05 .2876E-05	.1470E-05 .2892E-05
-40	.7967E-10	.4016E-07	.57066-08	.4594E-07	.8338E-13	.40666-07	•5519E-05	.5560E-05
-35	.18296-09	.9756E-07	.1693E-07	.1147E-06	.30246-12	.9873E-07	.1036E-04	.1046E-04
-30	•4081E-09	.2281E-06	•4764E-07	.2761E-06	.1033E-11	.2307E-06	.19036-04	.1926E-04
-25	.8869E-09	.5144E-06	.12766-06	.6429E-06	.3340E-11	 5202E-06 	•3428E-04	*3480E-04
-20	.1879E-08	.1121E-05	.32666-06	.1450E-05	.1024E-10	.1133E-05	-6056E-04	.6170E-04
-15	.3887E-08	•2367E-05	.8001E-06	.31716-05	.2992E-10	.2392E-05	.1051E-03	.10756-03
-10	.7860E-08	.4847E-05	.1882E-05	.6737E-05	.8345E-10	•4898E-05	.17926-03	.1841E-03
یں 1	.1555E-07	.9646E-05	.4263E-05	.1392E-04	.2228E-09	.9745E-05	.3005E-03	 3102E-03
0	.3013E-07	1868E-04	.9312E-05	.2803E-04	.5713E-09	.1887E-04	.4961E-03	.5150E-03
5	.5724E-07	.3527E-04	.1967E-04	.5499E-04	.1439E-08	 3562E-04 	•8067E-03	.8423E-03
10	.1067E-06	.6498E-04	.4023E-04	.1053E-03	.3352E-08	.6561E-04	 1293E-02 	.1358E-02
15	.19536-36	.11706-03	.79856-04	.1970E-03	•7705E-08	.1181E-03	 2043E-02 	.2162E-32
20	.3514E-06	 2060E-03 	.1540E-03	.3604E-03	.17146-07	 2080E-03 	.3187E-02	.3395E-02
25	.6217E-06	.3553E-03	.2893E-03	.6452E-03	.3699E-07	.3586E-03	•4908E-02	+5267E-02
30	.1083E-55	.6007E-03	.5296E-03	.1131E-02	•7751E-07	 6063E-03 	 7465E-02 	.8072E-02
35	.1857E-05	 9966E-03 	.9464E-03	 1945E-02 	.1580E-06	.1006E+02	•I122E-01	 1223E-01
40.	 3138E-05 	.1624E-02	.1653E-02	.3280E-D2	.31385-06	.1638E-02	 1668E-01 	.1832E-D1
45	 5228E-05 	.2600E-02	.2825E-02	.5431E-02	.6078E-06	• 2623E-02	•2452E-01	.2714E-01
50	.8594E-05	.4096E-02	.4730E-02	.8834E-02	.1150E-05	.4132E-02	• 3566E-01	.3980E-01
5.5	.1394E-04	•6351E-02	.7765E-02	.1413E-01	.2127E-05	• 6407E-02	.51356-01	.5776E-01
60	.22346-04	.9700E-02	.1251E-01	.2224E-01	.38516-05	• 9785E-02	 7322E-01 	.8301E-01
65	 3536E-04 	.1460E-01	.1981E-01	.3445E-01	+6833E-05	 1473E-01 	 1034E-00 	.1182E-00
10	 5533E-04 	 2168E-01 	.3084E-01	•5258E-01	.11896-04	 2187E-01 	1447E-00	.1666E-30
75	 8559E-04 	.3178E-01	.4723E-01	.79096-01	.2031E-04	.32056-01	 2008E-00 	.2328E-00
80	.13106-03	.4597E-01	 7125E-01 	.1174E-00	.3408E-04	.4637E-01	-2761E-00	.3225E-00
85	.1983E-03	.6571E-01	·1059E-00	.1718E-00	•5625E-04	.6628E-01	.3766E-00	.4430E-00
96	•2973E-03	.9283E-01	.1552E-00	•2484E-00	.9133E-04	.9363E-01	.5096E 00	.6033E 00
95	.44126-03	.1297E-00	.2245E-00	•3547E-CO	.I460E-03	 1308E-00 	.6842E 00	.8152E 00
100	.6488E-03	.1792E-00	.3206E-00	.5005E 00	-2301E-03	.1807E-00	-9117E 00	.1093E 01

-
ž
PRESSURE,
PARJIAL
NATER

မ္

TABLE A-IIA.

0EG C					5	JEIGHI PES	RCENT H25	14			
	10.0	26.3	25.0	30.0	35.0	40.0	45.0	50.0	55+0	0.03	65 . 0
0	4.363	4.303	3.721	3.362	2.929	2.441	1.937	1.447	1.000	C.6271	0.34
10	8.771	8.360	7.511	6.817	5.979	5.023	4.022	3.034	2.124	1.353	. 75
20	16.70	15.37	14.36	13.09	11.55	9.772	7.894	6.013	4.259	2.755	1.56
30	30.32	27.95	26.16	23.93	21.22	18.08	14.73	11.33	8.116	5.327	3.07
40	52.70	48.66	45.63	41.88	37.31	32.00	26.26	20.39	14.77	9.833	5.78
S.O.S	88.11	81.47	76.56	70.45	63.05	54.38	44.97	35.23	25.81	17.41	10.42
60	142.2	131.7	124.0	114.4	102.8	89.12	74.21	58.65	43.42	29.67	18.(6
10	222.5	206.3	194.5	179.9	162.1	141.3	118.5	34.45	70.64	48,86	30.24
80	338.0	313.9	296.4	274.7	248.4	217.6	183.5	147.5	111.4	66 22	40.04
06	500.3	465.2	439.9	408.6	370.5	325.9	276.6	224.2	171.0	121.0	77.26
100	723.1	673.2	637.5	593.2	539.2	476*4	406.7	332,2	255.6	182.9	118.5
110	1023.	953.I	903.8	842.5	767.6	680.9	584.4	480.9	373.5	270.0	177.4
120	1417.	1323.	1256.	1173.	1071.	953.3	822.5	681.8	534.0	389.9	259.7
130	1929.	1802.	1713.	1602.	1466.	1310.	1136.	948.0	748.7	551.8	372.4
140	2581.	2414.	2297.	2152.	1973.	1768.	1541.	1295.	1031.	766.7	523.9
150	3400.	3184.	3034.	2846.	2613.	2350.	2057.	1740.	1396.	1047.	724.3
160	4416.	4140.	3948.	3710.	3412.	3077.	2706.	2303.	1861.	1408.	985.
170	5660.	5312.	5071.	4772.	4396.	3975.	3511.	3006.	2447.	1865.	1319.
180	7167.	6733.	6433.	6062.	5593.	5071.	4498.	3872.	3174.	2438.	1743.
190	8972.	3437.	8069.	7615.	7036.	6395.	5695.	4930.	4067.	3147.	2272.

0.1550 .3552 .3552 .1508 2.905 5.905

SP-1-92

10.0

67.91 103.7 154.6 225.7 225.7 225.7 823.1 853.5 853.55 11144.1 1144.1 1144.1 11144.1 1974. 2547. 2547. 3248. 4100. 4100. 7787. 7787. 9481. 523.9 724-3 985-1319-1743-2272-2926. 3726. 4694. 5855. 7236. 766.7 1047. 1408. 1865. 2438. 3147. 4015. 5066. 6327. 7827. 9598. 1031. 1396. 1861. 2447. 3174. 5153. 6459. 8017. 9860. 1295 1740 2303 3306 3872 6206. 7732. 9540. 7133. 8844. 1541. 2057. 2706. 3511. 4498.

7978. 9855.

8757.

9465.

400

DEG C	72.0	74.3	76.3	(. 87	80.û	ЕІСНТ РЕК(82.0	CENT H2SD 84.0	4 86.0	38 °C	0.06	01.0	C.5
0	0.1066	0.0705	0.0444	0.0265	0.0148	0.0077	0.0037	3.0018	0.0008	+000010+	0.0003	0000-0
2	.2443	.1640	.1053	.0641	.0368	+0198	.010.	. 3050	.0025	.0012	.0008	- 0556
20	. 5273	.3593	.2348	.1461	.0859	.0479	.0255	.0132	.0067	.0034	.0024	. 0016
30	1.079	.7459	.4958	.3148	.1898	1601.	.0603	4350.	.0171	.0088	.0062	,400.
40	2.105	1.475	19967	.6451	3982	.2354	.1343	.0747	.0406	.0214	-0154	
ŝ	979.5	797.2	1.916	1.263	7969	4837	7840	1624		0440	0.256	
	10.10	141	1.525	2.27.5			2000	2254				
2 :	12+21	040.0	0.740	197*4	212.2	1.145	4C1.1	1100.	. 38 .	C/17.	.1514	• 1 4 8
08	20.45	15.08	10.80	7.485	5.012	3.257	2.048	1.249	.7460	4270	.3199	.2371
06	33+23	24.79	17.93	12.65	8.626	5.715	3.661	2.268	1.380	.8038	.6077	454
100	52.52	39.62	29.12	20.17	14.40	6.717	6.327	3.976	2.459	l.456	1.110	.8370
110	80.94	61.70	45.89	33.19	23.37	16.04	10.60	6-746	4.234	2.545	1.957	1.488
120	121.8	19.65	70.57	51.70	36.95	25.77	17.26	11-11	7-366	000-4	955	
130	179.4	139.5	106.1	78.68	57.03	40.36	27.37	17.79	11.46	7.081	5.527	4 208
140	259.0	203.3	156.2	117.2	86.06	61.75	42.34	27.76	18.09	11.32	8.900	6.923
150	367.0	290.6	225.5	C.171	127.2	92.44	64.03	42.33	27.87	17.65	13.97	10.94
160	511.1	408.1	319.6	244.9	184.3	135.6	94.78	63.13	41.97	26.88	21.41	16-89
170	700.3	563.8	445.5	344.7	262.2	195.1	137.6	92.27	61.93	46.07	32.11	25.49
180	945.3	766.9	611.1	477.3	366.8	275.7	196.0	132.3	89.54	58.54	47.19	37.69
190	1258.	1028.	826.0	650.7	504.8	383.2	274.5	186.5	127.2	83.96	68.05	54 - 67
				•	•	1						
200	1653.	1361.	1101.	874.5	684.5	524.4	378.2	258.5	177.7	118.3	96.42	77.89
210	2145.	1777.	1449. 1	.159.	915.1	707.0	513.3	353.0	244.4	164.1	134.4	109.1
220	2752.	2295.	1883. 1	518. 1	207.	940.0	696.8	475.1	331.3	224.3	184.5	150.6
230	3492.	2929.	2419. 1	.963. 1	572.]	1233.	7.906	631.1	443.0	3.2.2	249.7	204.8
240	4387.	3701.	3074. 2	511. 2	024.	1539.	132.	827.7	584.9	4.01.9	333.5	274.7
250	5459.	\$630.	3868. 3	5177. 2	576.	C 48.	1523.	1273.	763.2	528.0	439.9	36.3.0
260	6731.	5739.	4819. 3	1980. 3	245.	595.	.040.	1376.	984.7	685.7	573.5	476.2
270	8231.	7051.	5949. 4	938. 4	046. 3	3253. 2	2445.	1746.	1257	881.1	739.5	616.4
280	9983.	3591.	7281. 6	073. 4	938. 4	+038.	3051.	2194.	1590.	1121.	943.8	789.4
290		~	8840. 7	404. 6	117. 4	+965. 3	3771.	2731.	1992.	1412. 1	193. 1	.100
300				1953, 7	423. 6	6050. 4	4620.	3372.	2475.	1764. 1	.494 . İ	257.
310				æ	935.	7311. 5	5612.	4128.	3049.	2184. 1	856. 1	566.
320					Ĩ	3763. 6	5762.	5015.	3728.	2684. 2	1286. I	934.
330							3086.	6349.	4525.	3274. 2	2 .794. 2	370.
340							9598.	7246.	5455.	3965. 3	1392. 2	882.
350								8623.	6535.	4776. 4	.089. 3	.184
200									7781.	5103	.897. 4	177.
200									9212.	6779.	1831. 4	-986. 223
2005										9421. 8	1126. b	
604										G	1517. 8	156.

TABLE A-IIA, CONTINUED. WATER PARTIAL PRESSURE, MM HG.

....

-62-

ļ

:

DEG C		e c	C L C	i i	5 0 1	EIGHT PER	CENT H250	, ,	4 6 6	((
		D•+	0.00	0.00	0.44	0.04	C • 24	1 .	C • FF	. 8°55	6*66	129.3
o ç	0.000	0.0002	0.0003									
25	1000.	0000.	0002	0.0003	0.0002							
30	.0030	1200.	.0013	. 0008	40004	0.0002	1000.0					
40	.0077	.0052	.0034	.0021	.0312	.0005	.0003	0,002				
50	.0181	.0124	.0082	.0050	.0028	.0013	. 0008	4000.	0.0001			
09	.0403	.0279	.0186	.0115	.0066	1600.	.0018	6C00°	.0003			
70	.0852	.0596	.0399	.0250	.0144	.0068	.0041	.0020	.0006	0.0001		
60	.1719	.1213	.0820	.0518	.0300	.0144	.0386	.0042	.0013	.0003	0.0001	
90	.3323	.2364	.1611	.1027	.0601	.0291	.0175	.0086	.0027	10001	.0003	
001	.6173	.4428	.3043	.1958	.1155	.0565	.0342	.0169	.0054	,0015	.0006	0,0002
110	1.106	7998	. 5541	. 3596	1410.	1056	0.442	0000	0103	0000	9100	
120	1.917	1. 207	9758	6187 1	25.45		1166					
120	2.222	2.44	1.666	001	6444	20/	2052		7440			
140	7 2 4 4	40X - 7	2.763		1.124	4444				- 21 2 -		
	074.8	4.747	4.454	400 6	1 245	1000		10000	5000. 1000	7 4 4 0 4		
240		2446		2 7 A I	0100	1 5 2 2	44.90 94.90	1007			0 × 1 0 •	5 T T T T T
	10.77	14.02			4 43D		1 503			1000 ·	5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	
- 0									6107.		0100.	00000
	74 * 6 7	20.12		17°17	****		2.330	222.1	75777	• 1044	.1053	.0539
190	42-92	32.42	24.17	16.14	10 . 65	5.607	3.540	1.870	0101.	.2750	.1766	.1196
200	61.49	47.30	35.09	24.48	15.69	8.322	5.276	2.807	1.073	.4376	.2899	.2019
210	86-63	67.02	50.05	35.17	22.72	12.13	7.725	4.139	1.615	. 6833	.4660	. 3323
220	120.1	93.45	70.26	49.72	32,35	17.39	11.12	6.001	2.388	1.048	- 7345	ares.
230	164.1	128.4	97.13	69.72	45.35	74.54	15.76	8.562	3.475	1.580	1.136	7928
240	221.2	173.8	132.4	80.40	62-66	34.11	22.00			202 0		
2010	204.2	0 - C - C		228.6			20.27				0714T	
	204 4		7 726						+ c	+ u + u + u + u + u + u + u + u + u + u		
			1.001				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	074 - 4		4999
212	2.200	1001	0 • 0 • 0	220+7	192.1		C1 • CC	51.00	15.75	965 g	5.474	4.205
280	645.4	516 0	402.7	296.3	200.6	L11-6	73.09	41.07	18.40	9.800	7.798	6.029
067	1.120	-	1.110	1.700	0.002	0.641	61 °C6	11-46	C) • 47	66+67	CV.UI	4 T C = 2
300	1035.	834.3	657.5	489.4	335.2	188.4	124.2	70.68	32.93	18.52	15.16	11.86
310	1292.	1046.	828.2	619.9	427.0	241.0	159.4	91.29	43.36	25.01	20.73	16.29
320	1600.	1299.	1034.	778.2	538.9	305.3	202.7	116.8	56.53	33.41	76-72	22.11
330	1965.	1600.	1280.	968.4	674.1	383.4	255.4	148.0	73.01	44.15	37.28	29.65
340	2395.	1956.	1572.	1195.	836.3	477.4	319.0	185.9	93.46	57.74	49.11	39.32
350	2898.	2373.	1916.	1464.	1029.	589.6	395.1	231.6	118.6	74.78	63.97	51.61
360	3482.	2860.	2319.	1780.	1257.	722.5	485.6	286.3	149.3	95.95	82.42	67.37
370	4158.	3423.	2788	2150.	1525.	878.8	592.4	351.1	186.5	122.0	105.1	86.35
380	4934.	4070.	3329.	2578.	1837.	1061.	717.5	427.5	231.2	153.8	132.6	110.2
390	5822.	4812.	•1565	3073.	5199.	1273.	863.1	516.9	284.6	192.2	165.7	139.4
4								0.00				
004	6831.	5656.	4004	904T ·	-0107	1518-	1031.	0*129	348.0	Z38.5	205.2	175.1

TABLE A-IIA, CONTINUED. WATER PARTIAL PRESSURE, MM HG.

-63 -

	10.0	N 0 0 0		.2313 .3627 .5543 .8266	1.718 2.399	5.838 5.838	7.583 9.695 12.21	10. 10. 10. 10. 10. 10. 10. 10. 10. 10.	26.71	36.67 42.23	48.13
	65 . ()		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.0831 .1349 .2130 .3278	.7224 .7224 1.037	2.718	3.611 4.715 6.057	7.660 9.544	14.20	20.05 23.39	26.97
	60.0		0.050 0.000 0.000 0.002 0.002 0.002 0.002 0.002 0.002 0.077	.0306 .0513 .0837 .1329	. 4585 . 4585	.9369 1.299	1.768 2.363 3.104	4.012 5.103 4.204	7.896	9.010 11.56 13.71	16.07
E, MM HG.	55+0		0.0002 .00002 .00004 .00004 .0004 .0005	0116 02200 0336 0549	.1356 .2054 .2054	6267 • 5267	.8730 1.193 1.633	2.115	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.721 8.118	9.682
- PRESSURI	50.0		0 • 0003 • 0003 • 0013 • 0013	.0083 .0143 .0240 .0240	.0973 .0973 .1476	.3179	.4522 .6307 .8633	1.161 1.534	2.550		5.899
U PARLIAL	NT H2504 45.0		0.0003 0003 0011	.0037 .0037 .0113	.0309 .0491	.1702	.2461 .3487 .4842	.6596 .8821	1.497	2.934 2.934	3.563
FURIC ACI	GHT PERCE 40.0		0.0001 .0002 .0002	.0009 .0016 .0030 .0053	.0151 .0245	.0901	.1327 .1913 .2702	.3741 .5082 .779		1.452 1.452 1.813	2.229
SUL	35.0 WET		0.0002	.0004 .0004 .0014	.0673 .0121	.0466	.0698 .1023 .1466	.2060 .2839 .2839	E015.	• 8565 • 8565 1•083	1.349
в.	30.0			0.0002 .0003 .0006 .0011	.0033 .0033	0147	.0349 .0521 .0521	.1529	.2859	• • • • • • • • • • • • • • • • • • •	.3214
ABLE A-II	25.C			0.0003	-0016 -0026	1200.	.0176 .0267 .0396	.0578 .0827 1142	• 1607 • 1607	.2926 .3860	• 5019
-	0.05			0.0001 -0002	-0008 -0018 -0018	.0036	.0091 .0140 .0212	.0312 .0453	1060*	.1679	.2946
	0.01			·	1000.0 1000.0	.0006	.0021 .0033 .0233	.0078 .0118	1920.	.0502	•0.945
	DEG C	99990000000000000000000000000000000000	100 120 120 120 120 120 120 120 120 120	200 210 230 230	240 260 260	280	300 310 320	0.40	360	390 390	400

-64-

+6.
T.
PRESSURE,
PARTIAL
AC10
SULFURIC
CONTINUED.
A-118,
ABLE

	WEIGHT PERCENT H2SD4 82.0 84.0 86.0	88.0	0°06	0.16
	0.0001 0.0003 0.000	12 0.0003 15 0.0003	0.0302 .0004	0.0002 00005
0.0001 0.0002	102 .0034 .0307 .001 16 .0010 .0017 .002	12 0018 28 0043	.0027	.0033
.000. 4000.	13 .0023 .0039 .006	52 .0095	.0137	0162
.0010 .0017	130 .0051 .0084 .015	32 .0199	.0285	.0334
.0022 .0038	65 .0107 .0173 .026	9950. 9399	.0565	.0659
eroc. 1400.	32 .0214 .0340 .052	23 .0766	.1375	.1248
.0096 .0159	759 .6409 .0641 .091	76 .1414	•1965	2271
10107		1107 40		00404
.6633 .0990	19 .2283 .3442 .513	38 .7206	9745	1.112
•1102 •1694	56 .3782 .5642 .831	16 1.164	1.562	1.775
.1857 .2808	68 .6081 .8981 1.315	5 1.829	2.434	2.755
	20 1.4448 2.100 2.041	1 4 1 7 4	5.473	4 T T C C
.7440 I.0770	700 2.151 3.096 4.456	6.083	7.929	8,879
	101 3.123 4.462 0.391 10 6.62 6.307 8.071	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 4 4 A	72.71 72.71
	20 6.188 8.710 12.34	16.58	10.14	23.57
3.340 4.6060	70 8.459 11.82 16.67	22.28	28,34	31.33
4.611 6.2930	30 11.36 15.77 22.12	29.42	37+23	41.02
6.247 8.4450	03 15.00 20.69 28.85	38.20	48.04	52.82
8.315 11.1460	00 19.49 26.71 37.34	48-81	61.06	66.96
10.88 14.4500	100 24.95 33.97 46.84	61.44	76.46	83.63
[4.02 I8.4700	500 31.449 42.60 58.38	16.23	64.48	0.5UI
17.79 23.2600	00 39.21 52.70 71.78	93.29	115.0	125.1
22,24 28,9000	100 48.21 64.38 87.11	112.7	2.961	150.1
27.44 35.4300	100 58.57 77.70 104.4	134.4	164.1	177.8
33.42 42.9000	00 70.33 92.69 123.7	158.5	192.5	208.1
40.20 51.3300 0	100 83.55 109.4 144.8	184.7	223.4	241.0
47.79 60.7300	00 98.22 127.7 167.7	212.9	256.4	276.0
56.18 71.0900	00 114.3 147.6 192.3	242.9	291.2	312.9
65.34 82.3500	149-0 149-0 218-3	274.3	327.5	351.2
75.22 94.4703	00 ISI.4 LUXE	306.9	364.8	390.5
85.75 107.4000	JOD 150.7 191.8 245.4	340.1	402.7	430.2
96.83 120.9000	00 150.7 191.8 245.4			

-65-

			TABLE A-	IIB, CONT	INUED.	SULFURIC A	CID PARTIA	AL PRESSUR	te, MM HG.			
DEG C	93.0	94.0	95.0	96.0	97.0	WEIGHT PEK 98+0	CENT H2504 98.5	0°66	99.5	9 * 8	9 9. 9	100.0
0 0 0 5 1 0		0.0001	1000-0	1900-0	.000-0	C000 0						
30	0.0003	E000 -	4000				2000-0			0.0002	0.0002	0.0002
40	.0007	8000.	.0010	1100		4100.		00000 1000		0000 ·	9000 ·	.0006
50	e190°	1200.	.0024	0028	003	10034	4 T O O U				4700 ·	.1015
60	.0045	-0051	0058	9900.	200					7 # 0 0 *	1400.	.0041
2	1010.	0115	IELO.	0148			0000.	N 0 0 0 0 •	4600.	.0096	1600.	8600-
08	.0217	.0247	0.281	.0315				0000	5 J N C •	6120.	122.	- 5216
06	•0445	.0504	.0571	.0639	120	2 .0786	.0824	.0860.	.0898	.0920	.0928	.0464 .0936
001												
	0,80.	5860.	.1112	.1241	.137	9 41522	.1594	.1664	.1735	.1777	.1792	.1837
	.1054	.1839	.2075	.2312	.256	4 .2825	.2958	.3085	.3214	+ 3291	.3318	7466.
	. 1000	2155.	. 3126	• 4142	458	7 • 5048	.5282	.5506	.5731	.5864	.5912	5962
1 20	, 5134	5 J C .	. 6455	.7161	.7916	5 .8701	6606.	.9479	.9858	1.008	1.016	1.025
140	.8658	.9664	1.082	1.197	1.321	1.450	1.516	1.578	1.640	1.675	1.690	1.734
22	1.413	1.573	1.756	1.940	2.138	2.343	2 + 4 4 9	2,548	2.645	2.702	2-773	7.765
160	2.241	2.488	2.770	3.054	3.359	3.677	3.841	3.994	4.144	4.231		
170	3.456	3.827	4.251	4.678	5.136	5.616	5.864	6.093	6.318	6-447	494	
180	5.196	5.739	6.358	6.984	7.655	8.360	8.725	9.062	9.393	9.578	0440	141.0
661	7.624	8.400	9.284	10.18	11.14	12.15	12.68	13.16	13.62	13.89	14.00	14-11
000				•							1	* * *
	5 T C - 4 C	20.21	13.25	14.50	15.85	17.26	18.00	18.68	19.33	19.70	19.85	20.01
		00.00	14.72	20.25	10.22	24.02	25.04	25.96	26.85	27.36	27.56	27.79
20	77.77	23.10	25.36	27.66	30.12	32.74	34.12	35.37	36.56	37.24	37.51	37.82
5.5	1 1 1 1 1 1 1 1	11-12	34.07	37.10	40.34	43.81	45.63	47.28	48.85	49.75	50.10	50.52
241	31.16	41.14	44.96	48.88	53.07	57.57	59.95	62.08	64.12	65.29	65.74	56 2B
252	49.19	53.49	58+33	63.31	68.64	74,38	77.43	80.15	82.75	84.24	84.83	85.62
260	63.04	6B.43	74.46	80.69	87.36	94.57	98.42	101.8	105-1	107-0	7.7.1	208.6
270	79.56	86.20	93.60	101.3	109.5	118.4	123.2	127.4	191.5	1 3 3 . 8	134.7	
280	98.94	137.0	116.0	125.3	135.3	146.2	152.0	157.2	162.1	165.0	155 1	
290	121.3	131.0	141.7	152.9	164.8	177.9	185.0	191.2	197.2	200.7	202.1	203.7
300	146.8	158.3.	170.8	184.1	198.2	213.8	222.2	229.6	236.8	741.0	4.0.4	344
310	175.4	188.8	203.4	218.9	235.4	253.7	263.6	6.770	80.8	285.0		
320	207.0	222.5	239.3	257.3	276.3	297.5	309.0	0.01				
330	241.6	259.3	278.3	2.98.9	320.5	344.8	358.1		1.22	2.000	224 • K	8.7.7.
340	278.8	298.8	320.1	343.4	367.9	105.4	410.4		0.400	2.000	59 0. (193.1
350	318,3	340.8	364.4	390.5	417.8	8 8 7 7	465.0					451.3
360	359.7	384.7	410.7	439.6	469.8	504.3	523.2					012.0
370	402.6	430.1	458.4	490.2	573.3	561.3					2.1.2	2.67 4
380	446.5	476.4	506.9	541.6	577.5				0.4.4	051.5	535.8	640.2
390	490.7	5 2 3 1	5 C C C C C C C C C C C C C C C C C C C	F03.7		01710		0+700	085.4	696.8	701.3	706.1
2			-	7. 660	2.100	8.010	B.10/	124.2	747.1	762.1	767.0	172.1
400	534.6	569.4	603.9	644.1	685.3	733.7	7.00.7	184.9 8	6-608	826.5	8,11,8	
										1.000	0.100	2.100

-66-

	76.3			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		.7452
	65.Û			0056 0054 0054 0054 0054 0054 0054 0054	0000 0214 0214 0214 0326 0691 0691 0691 1861 1861	.3312
	6ū.0			6.0001 .0002 .0004 .0007 .0012	.0035 0035 0035 0035 0035 0035 0035 0035	.1607
KE, MM HG.	55+0			0.0001 .0003 .0005	0014 0023 0033 0033 0092 0139 00139 01399 01399 01399 05995 05995	•0816
NE PRESSUR	50.0			0,0001	0000 0011 00118 00129 0045 00445 01196 01196 01196	.0450
DE PARTIA	NT H2504 45.0			0 • 0002	0003 0015 0015 0015 0024 0024 00257 00257 00357 0124 0128	.0250
UR FRIDXI	GHT PERCE 40.0				0.0002 0003 0005 0008 0013 0013 0013 0020 0020 0020	•0148
SULF	35.0 WEI				0.0001 0001 0001 0001 0001 0001 0001 00	.0084
•	30.0				0.0001 .0003 .0003 .0009 .0009 .0019 .0015	•3049
1Lê A-11C.	25.0				0.0001 0002 0003 0003 0012 0012	.0029
ТΑ	20.0				0.0002 .0003 .0003 .0007	100.
	10.0				0.0001 .0002 .0003	.0005
	06G C	00000000000000000000000000000000000000	100 110 110 1130 1140 1150 1170 1180	200 2200 240 240 280 280 280 280 280 280 280 280 280 28	300 350 3350 3350 3350 3350 3350 3350 3	400

-67-

	92.3		6, 0002 , 0002 , 0006 , 0006 , 00025 , 00025 , 00025	8600.	.0332	.0582	.3993 1251	.2674	.4231	.6542 9013	1.4680	2.1330	3.0440	0002.4	5.8780	1. 9680		18.1200	23.1700	29.2300	36-4230	44.8200 54.5200	65.5700
	0.16		0.0002 00064 0008 0008 0017	0069	.0237	.0419	.0722	.1976	3150	. 7474	1.1150	1.6313	2.3400		4.5673	0.122.0		14.3200	18.3800	23.2600	29.0700	35.8700 43.7400	52.7200
	0.04		0.0001 0003 0003 0012 0012	.0048	.0169	.0303	• 0525 0 888	.1461	-2347	- 5682 - 5648	.8482	1.2480	1.8020 2 5530		0444.5		8-6940	11.3600	14.6300	18.5900	23.3100	28.8700	42.6800
RE, MM HG	98-0		0.0001 .0003 .0005	.0023	.0084	+0152	+ 0268 - 0460	.0769	1252	494 1.	4697	.6992	1.0210			2.0430	5.1760	6.8250	8.8690	11.3700	14.3700	22.1100	26-9400
AL PRESSU	86.0		00031 10003 0003	0011	.0041	.0076	.0135	1950.	.0654	1652	.2539	• 3822	.5640 .8146		0101.1	7.7320	3.0210	4.0293	5.2960	6.8660	8.7850	13.8500	17.0906
IDE PARTI	ENT H2504 84.0		1000°	.0010	6100·	.0035	.0064 .0113	.0193	.0321	.083C	.1291	.1968	.2941		7770.	1.2320	1.6940	2.2970	3.0730	4.0570	5.2910	0.6880 8.6880	10.9500
UR TRIDX	(GHT PERC) 82.0		0.0001	.0005	.000	.0018	.0032	·000	0168	.0445	.0700	.1079	•1632 .2423		0000 +	. 7166	.9975	1.3690	1.8540	2.4780	3.2740	5.5200	7.0540
IED. SULF	80.0 WEI			0.0001	.0005	•000•	.0018 .0032	.0056	.0096	.0263	.0419	.0655	.1501		1012	4550	.6376	.8804	1.1990	1.6100	0461 Z	3.6220	4.6390
, CONTINU	78.0			1000-0	.0003	.0005	.0010 .0018	+0032	• 0056 0006	.0159	.0257	.0406	.0629		2040	.2968	.4188	.58.17	.7958	1.0730	1 • 4 / 40	2.4330	3.1180
BLE A-11C	76.0				0.0001	.0003	.0005	,0018	.0033 0057	96JQ.	.0157	.0252	.0395		13640	.1946	.2769	.3876	-5340	.7248	00000 + -	1.6660	2.1420
ŢΑ	C.+T					0.0001	0003	1100.	.0019	- 0057	9600.	.0156	.0247 .0383	0000	1000	.1269	.1820	.2567	.3560	• • 00 00 •	• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.1310	1 4590
	72.0						0.0003	0000	1001	.0035	.0000	6600°	•0159 •0251	7060		0360.	.1248	.1776	.2486	+3422	000 0 0	.8137	1.0560
	DEG C	984884900000000000000000000000000000000	100 120 130 140	160 170	130	061	200	220	230	520	. 260	270	280 290		200	320	330	340	350	360	200	390	400

-68-

HG.
Ì
PRESSURE,
PARTIAL
TRICXIOE
SULFUR
CONTINUED.
A-11C,
TABLE

0 0 N 0

٠

100.3	000000000000000000000000000000000000000		7.084 11.12 17.07 25.67 37.84	77.73 108.5 149.0 201.4 268.2 268.2 352.0 352.0 581.8 733.7 7133.7 7133.7	L125. 1369. 1369. 16648. 1963. 1729. 1063. 106.
6*66	0.0002 0005 00017 00017 00147 00145 001457 001457 001252	-3206 -6307 1.186 2.141	3.721 6.245 10.15 16.01 24.57 24.57 36.76	5 5 5 5 5 5 5 5 5 5 5 5 5 5	20087 20087 20087 20082 20092 20000 2000 20002 20000 20000 20000 20000 200000 200000 20000 20000 20000 20000 20000 20000 20000
9 ° -66	0 • • • • • • • • • • • • • • • • • • •	•1419 •2928 •5766 1•088	1.973 3.448 5.826 9.535 1.5.15 2.3.43 2.3.43 2.3.43 2.3.43 2.3.43 2.3.43 2.3.43 2.3.43 2.3.43 2.3.43 2.3.43 2.43 2	35.31 51.95 105.3 105.3 145.5 145.5 267.3 265.3 265.3 265.3 265.3 265.3 265.3 265.3	2000 200 2000 2
66 •5	0.0001 0.0003 0.0003 0.0027 0.0027	.0375 .0806 .1658	.6180 1.127 1.985 3.987 3.604 9.016	14.12 21.58 32.20 47.01 67.20 67.20 129.6 175.1 175.1 232.7 304.4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
0*66	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.0114 .0250 .0523	-2026 -3766 -6767 -6767 1.178 1.988 1.988 3.264	5.219 8.138 12.40 18.47 26.94 38.53 38.53 54.08 74.56 101.1 101.1	22274 22224 22224 22255 22255 22255 22255 22255 22255 22255 22255 22255 22255 22255 22255 22255 2225 22255 2225 2225 2225 2225 2225 2225 2225 2225 2225 2225 25
ENT H2S04 98.5	0.0001 00004 00004 00003	.0354 .0119 .0252 .0252	.0991 .1857 .3364 .5899 .5899 1.004 1.661	2.675 4.205 6.453 6.453 9.685 1.4.23 24.23 28.98 28.93 54.93 73.77	97.57 127.22 207.22 207.22 259.55 259.69 392.44 5574.44 557.44 137.5 137.5 137.5 137.5 137.5 1
1GHT PERC 98.0	0,0002 0,0002 0,0002	.0031 .0069 .0147	.0585 .1102 .2005 .2005 .3535 .6045 1.005	1.627 2.5627 3.960 5.970 8.813 8.813 1.8.10 1.8.10 1.8.10 1.8.10 2.53 2.53 2.53 2.53 2.53 2.53 2.53 2.53	61.91 80.98 132.9 157.0 157.0 254.2 308.2 308.2 308.2 308.2 516.1
97.0	0.0002 .0005	4100. 1600. 1600.	.0270 .0513 .0942 .1676 .2892	.7918 1.260 1.958 2.974 4.422 6.443 9.207 12.92 17.81 17.81 24.16	32.25 42.41 54.97 70.28 83.97 1105.68 1105.6 199.3 237.3 237.3 279.8
96.0	00003 0.0003	.0007 .0017 .0036	.0149 .0287 .0532 .0956 .1666	.4647 .7462 1.170 1.792 2.687 3.947 5.685 8.040 8.040 11.17 15.26	20.52 27.17 35.45 35.45 72.61 89.91 110.0 1133.2 159.4 159.4
95 . G	0.0002	.0004 .0010 .0021	.0090 .0174 .0327 .0593 .0593	.2962 .4800 .7591 .7591 .774 1.774 2.626 3.813 5.434 5.434 7.606 10.47	14.17 18.89 24.81 224.81 41.05 51.05 54.48 79.35 116.2 138.3
94*0	1000.0	.0003 .0006 .0013	.0057 .0112 .0211 .0387 .0688	.1993 .3259 .5199 .5199 .8105 .845 1.845 2.701 3.879 7.586 7.586	10.35 113.89 113.89 18.37 30.80 30.80 390.80 448.98 448.98 448.98 448.98 448.98 448.98 448.98 107.5 107.5
93.0		0.0002 .0004 .0009 .0018	.0038 .0075 .0143 .0264 .0473	. 1395 . 2399 . 3697 . 3697 . 8915 . 8915 1. 975 2. 853 2. 853 4. 049 5. 645	7.739 10.44 13.88 13.88 23.47 23.47 23.47 23.47 23.47 57.35 57.35 57.35 57.35 57.35 57.35 57.35 57.35 57 57 57 57 57
DEG C	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100 110 120 130	140 150 140 190 190 190	200 2200 230 2500 2500 2500 2500 2600 2600 2600 260	300 310 320 320 330 330 330 330 400 330 340 340 340 34
	E-01	0.12 0.15			
-----------	--------------------	--	--		
	65 . 0	4 - - - - - - - - - - - - -			
	60.0	8 4 2 4 7 5 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
.9	55.0	0140 01400 0140 01400 01400 01400 01400 01400 01400 01400 0140			
URE, MM H)4 50.0	944 944 944 944 944 944 944 944			
TAL PRESS	(CENT H250 45.0	841 841 841 841 841 841 841 841			
1	4€ΙGHT ₽EP 40+3	224 224 224 224 224 224 224 224			
.10.	35 , 0	84 26 26 27 27 27 27 27 27 27 27 27 27			
TABLE A-1	30.0	112 123 123 123 123 123 123 123			
	25.0	86599211 86593211 86593211 8659321 865932 865932 865933 865933 865933 865933 865933 865933 865933 875555 865933 865933 875555 865933 8755555 8755555 875555 87555555 87555555 87555555 8755555 87555555 87555555 87555555 87555555 87555555 87555555 875555555 875555555 875555555 87555555 87555555555 87555555555 875555555555			
	20.0	本			
	10.0	842 842 842 842 842 842 842 842			
	DEG C	0000 000000000000000000000000000000000	4 88900000000000000000000000000000000000		

ł

-70-

HG.
Ň
PRESSURE.
TOTAL
CONTINUED.
A-11D.
TABLE

1	92.0	0.0032		9900	9116.	. 3272	2090-	.1272	2559	. 4930	.9131	1.631	2.819	4.723	7.693	12.20	18.93	28.60	42.38	61.58	87.85		2.021	1.0-U	251.E	309.8	409.8	935.4	691.5	883.4	• • • • •	399.	736.	136.	608.	159.	801.	541.	392.	365.	471.	723.
	C•16	0,0003	8000 ·	00.64	.0159	.0369	.0810	1689	3361	.6411	1.176	2.082	3.566	5.926	9.578	15.08	23.19	34.88	51.38	74.25	105.4		1+1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		0.017	101.4	481•7	921.4	808.1	550. 250	1 •667	624. 1	012. 1	472. 2	013• Z	647. 3	383. 3	234. 4	211. 5	328. 6	600. 7.	ŝ
	0.06	0.0004	2400	.0089	.0218	.0500	.1085	+2236	.4408	.8323	1.512	2.653	4.506	7.428	11.91	18.63	28+45	42.51	62.26	89.46	126.3	175 6		2 10 C	0.000		200	1.44.0	943.4 .25	1 7 7	1 •Koc	882. 1	327. 2	855. 2	+ ().	199. 3	G41. 4	013. 5	130. 6	406. 7	859. 8	
	88.0	0.0008	8900.	.0172	.0408	.0915	.1939	.3914	.7555	1.400	2.499	4.311	7.207	11.71	18.52	28.59	43.14	63.73	92.34	131.4	183.8	763.1	1			+ • • • • •	2.22				T + n, n	570. 1	164. 2	866. 2	004.	647 . 4	c	035. 6		80 (Б	
	0.48	0.0018	22.00	.0325	.0748	.1628	. 3365	• 6638	1.255	2,281	4.003	6.798	11.20	17.96	28.07	42.84	63,96	93.59	134.4	189.5	263.0	350.4		20102			- 40- - 40-	+	183. 1	701 · · ·	7 .141	444. 2	217. 3		- LO.	395. 5	40. 06/	¢0 (J			
ENT H2SD4	84.0	0.0037	.0255	.0603	.1344	. 2843	.5732	1.105	2.052	3.669	6.344	10.64	17.32	27.48	42.54	64.37	95.35	138.5	197.4	276.6	381.3	517. B	1 204		104	174. F.20			4 (Z			674. 3	678. 4	441. D		710. 7	Ø					
IGHT PERC	A-18	0.6077	0410	1001.	.2355	.4839	.9509	1.794	3.259	5.721	9.727	16.06	25.81	40.44	61.89	92.66	135.9	195.7	276.7	384.7	526.5	710.1	444.4						212.			0.00. 4	360. 5	9 · 778	•	6						
Эм с о	80 • 0	0.0148	0820	.1398	.3982	0161.	1.528	2.818	5.014	8.629	14.41	23.38	36.98	57.08	86.15	127.3	184.5	262.6	367.4	505.9	686.0	917.3	210.	577.			207. E	2 D.7	. Tab	141 4		453. 6	972 . 7	D								
0	0.01	0.0265	1461	.3148	.6452	1.263	2.372	4.288	7.485	12.66	20.78	33.19	51.71	78.71	117.2	171.1	245.1	345.0	477.7	651.4	875.6	141.	500.	967.			102.	••••••	1 L	1001		7 .176.	¢									
74.0	0.01	0.0444	8462.	.4958	.9967	1.916	3.536	6.286	10.80	17.99	29.12	45.89	70.58	106.1	156.2	225.5	319.7	445.7	611.4	826.5	102.	450.1		401°	+ C • 4 2 C	010 010	0, C		40 C C C C	0 C 7 C • 0	• • • • • •	æ										
0.76	0.4	0.0705	. 3593	. 7459	1.475	2.192	5.075	8,895.	15.08	24.79	39.62	61.70	93.81	139.5	203.3	290.6	408.2	563.9	767.1	329.	361. 1	778. 1	206.	071. 071.			C • C C C C			- a • • • •	o											
5	0.21	0.1066	.5273	1.079	2.105	3.929	7.052	12,21	20.45	33.23	52.53	80.94	121.8	179.4	259.0	367.0	511.1	700.4	945.4	(258. 1	1653. 1	1				1004 1771	1010 - 4 - 401 - 4			, 1974 C												
DEG C		υç	202	00	40	50	60	10	90	06	100	011	120	130	140	150	160	170	180	1 061	200	010	010	1 1 2 2 2	200	047 747			22		0.6.2	300	010	320	155	340	350	360	910	380	390	400

-71-

Ĭ
ž
PRESSURE,
TOTAL
CONTINUED.
A-11D,
LABLE

.5

0.0005 .0014 .0014 .0034 .0081 .0398 .0398 .03398 .33255 .6033 1.393 3.275 5.436 8.793 13.279 8.773 213.88 213.88 213.88 213.88 88 213.85 213.88 210.88 213.88 2103.88 213.88 213.88 213.88 210000000000000000000000 97.95 135.6 187.4 255.8 335.8 4,395.8 4,395.8 721.9 721.9 1126. 100.0 1381 1675 2010 23866 28866 37664 43064 4304 54879 5485 .5005 .9638 .1.780 5.421 5.421 14.487 22.57 34.33 34.33 50.93 0.0001 .0004 .0011 .0033 .0033 .0033 .0033 .0033 .0288 .0222 .0526 .1174 73.83 104.8 145.6 145.6 198.7 266.4 351.3 456.1 736.6 736.6 736.6 6.66 1130. 1376. 1658. 1977. 22336. 22336. 22336. 2336. 33177. 4187. 4187. 5366. .3210 .6248 1.159 2.107 2.107 3.669 3.669 10.128 10.12 10.12 10.12 10.12 37.60 0002 0008 0021 0057 0142 0142 0333 0744 55.45 80.03 80.03 80.03 80.03 813.0 813.0 813.4 813.4 813.4 813.4 813.6 9.66 969. 1190. 1443. 1443. 1732. 2613. 2813. 2813. 2813. 2813. 4230. 4769. .2163 .4124 .4124 .7581 .3581 2.319 5.303 6.303 6.303 6.303 2.315 .44 23.34 .0002 .00062 .0017 .0017 .00166 .0106 .0243 .0527 34.53 71.15 99.5 862.0 822.3 1226. 1473. 1473. 1473. 2752. 2789. 2789. 2789. 2789. 3643. .1947 .3656 .3656 .6615 1.157 1.960 3.224 5.120 8.053 8.053 112.27 112.27 .0002 .0006 .0017 .0017 .0042 .0042 .0101 .0128 .0228 .0488 26.71 38.24 53.76 74.31 74.31 101.1 135.4 135.4 135.4 135.4 135.4 135.3 232.8 232.8 299.3 9.0 477.5 593.1 729.0 887.2 1669. 1278. 1513. 1578. 1578. 2073. 2398. 2755. WEIGHT PERCENT H2SD4 98.0 98.5 0.0002 .0007 .0018 .0044 .0105 .0236 .0503 .1989 .3719 .3719 .6700 1.166 1.966 3.1218 5.1218 5.1218 5.1218 1.2.06 1.2.06 25.96 35.97 51.70 71.08 96.18 96.18 128.5 218.6 2218.6 354.6 444.C 550.2 675.1 820.8 9820.8 9820.8 1182. 11401. 1401. 1927. 2237. 2580. .2118 .3951 .3951 .7104 1.234 2.078 2.078 3.396 5.400 8.371 8.371 12.67 18.76 0.0002 .0007 .0019 .0048 .0113 .0253 .0253 27.21 38.72 54.09 74.32 100.5 133.9 173.9 228.2 228.2 228.2 222.4 2228.2 222.4 2228.2 222.4 2228.2 222.4 2228.2 464.1 575.6 707.2 861.2 1246. 1246. 11481. 1748. 2050. 2389. 2768. 0.0001 .0003 .0009 .00059 .00139 .0139 .0139 .0310 .2548 .4736 .4736 .4736 .4771 2.477 2.477 2.477 6.4035 6.4035 6.4035 6.4035 6.4035 2.27 32.33 46.05 64.43 64.43 88.67 88.67 88.67 120.2 211.5 211.5 211.5 211.5 211.5 211.5 449.6 565.7 704.8 870.1 1065. 1293. 1558. 1863. 2214. 2614. 3068. 97.0 3581. 0.00004 .0004 .0012 .0032 .0032 .0181 .0181 .0834 .3206 .5924 1.057 1.823 3.052 4.955 7.868 1.2.17 18.39 12.17 18.39 27.20 9 694.1 866.1 1071. 1313. 1597. 1597. 1597. 1597. 1927. 2310. 22750. 3253. 3253. 96 414. 0.0502 .0017 .0014 .0014 .0105 .0105 .0264 .1101 .4159 .7626 .7626 .7626 .7626 .7626 .7626 .75238 .65460 .15.156 .22.81 .33,64 0.36 842.5 1051. 1051. 1059. 1033. 1933. 2333. 3325. 33325. 33325. 5404. 0.0003 .0003 .0024 .0024 .0146 .0330 .0711 .1460 59.52 84.18 117.1 160.3 216.2 287.7 377.9 490.3 6229.0 798.3 0.46 6333, 0.0001 0002 00012 000333 00199 00199 001999 001999 001999 1933 72.57 162.2 141.6 193.2 259.8 344.7 451.6 584.6 748.4 748.4 0.66 1189. 1478. 1478. 2224. 22697. 22697. 22697. 54667. 5433. 1449. υ ⁶00 DEG

-72-

130.0 1411/2 93.5 0.06 0.00 98.5 0.01 98.0 590. 722. 879. 1060. 100000 100000 100000 100000 10000 10000 10000 10000 10000 10000 0.03 97.0 ÷ 000 1 WATER PARIIAL PRESSURE (ABRIDGED), MM 0000 96.3 94.0 2370. 2850. 3420. 4070. 0 3480. 4180. 4980. 5900. WEIGHT PERCENT H2504 80.0 85.0 90.0 92 0.92 00000 0000 0000 0000 0000 0000 0000 0000 0000 0.05 3960. 1840. 7030. 3390. 000000 00000 00000 00000 00000 00000 00000 00000 00000 00 2580. 3250. 4050. 5120. 1420. 1930. 00.05 1.222 1.22 1.222 0.02 75.0 4260. 5530. 7970. 6.02 0.05 10.0 4-[]14 6340. 7790. 9480. EABLE 60.0 0.0 1740. 2360. 3616. 3870. 6210. 7730. 9540. 0.00 3 7980. 9850. 8.92 8.95 13.55 13.5 0.03 0.10 0.27 0.67 0.0 3180. 4140. 5317. 6730. 4.36 8.77 8.77 9.0.3 9.0.3 5.22.7 8.88.1 2.222. 2.222. 2.223. 5.00. 7.60. 2.930. 2.930. 2.930. 2.94200. 2.9420. 2.94200000000000000 0.05 0.36 2.04 2.04 0.0 0EG

0.011 0.02 0.054 0.054 0.057 0.057 0.057 0.057 1.059 0.932 0.932 0.932 0.931 0.931 1.9322 1.932 5.99 00.17 10.00 10 0.02 0.04 0.04 0.16 0.91 1.52 1.52 2.45 8.86 12.73 12.73 5.66 0.02 0.04 0.08 0.02 98.0 Ĥ 97.0 0.07 SULFURIC ACID PARFIAL PRESSURE (AGRIDUED), MM 0.01 36.Ú 69.3 101.7 100.7 1 22223 22223 22223 22223 22223 22223 22223 22223 22223 22223 22223 22223 22223 22223 22223 2233 223 2233 22 1000 94.0 WE10HT PERCENT H2504 80.0 85.0 90.0 92.0 10.0 0.35 41404 51 0.12 0.642 0.642 0.642 0.642 0.642 0.255 0 0.03 0.03 0.05 0.09 75.0 10.0 70.6 222.4 26.7 26.7 26.7 26.7 ASLE A-1116 50.0 50.0 000400 M0551 00404 000700 H-0566 00444 000400 M0550 004440 41.0 0.02 30..2 0.000 2.1.0 0.01 ين• ن ين 10.00 960

-74-

100.0 5.66 0'66 98.5 98.0 Ŷ 0.03 0.03 97.0 SULFUR TAIOXIDE PARTIAL PRESSURE (ABRIDGED), MM 96.0 0.00 25-25 25-26 0.46 87.00 8.70 10000 10 WEIGHT PERCENT H2504 80.0 85.0 90.0 92.0 0.02 75.0 70.0 TABLE A-ILIC. 0.01 0.02 0.03 0.12 0.12 60.0 0.02 50.0 10% 40.0 30.05 20.0 10.0 \$\$\$<u>\$</u>\$2 966

-75-

			anotanto tor partial=	pressure equations.	
	а	····			
WT PCT	COMP"	A	В	c	
10.0	1	0.982030F 0	-0 7409836 04		D
	2	-0.1289826 0		0.258356E 02	0.816702E-02
20.0		0.1289826 0.	-U.163377E 05	0.272789E 02	-C.2210336-01
20.0	1	0.977200E 0	-0.749838E 04	0.257519E 02	0.8167026-02
	2	-C.134025E 02	-0.161207F (5	0-302233E 02	-0 3607725
25.0	1	0.977451E 01	-0.751815E 04	0 3575115 02	-0.2587736-01
	2	-0.1397756 01		0.2070116 02	0.816702E-02
30 0.	1		-0.1508/UE US	0.303210E 02	-0.268838E-01
50.0	1	0.1094278 02	-0.769003E 04	0.259365E 02	0.917343E-02
	2	-0.223589E 02	-0.136193E 05	0.2769116 02	-0 3696706-01
35.0	1	0.112147E 02	-0.786989E 04	0.2610226 02	
	2	-0.3089635 C	-0 1146475 05		J.992824E-02
40.0	1		-0.1144476 05	U.247785E 02	-0.470120E-01
40.0	1	U.112086E U2	-U.794653E 04	0.262859E 02	0.992824E-02
	2	-0.323148E 02	-0.106069E 05	0.238974E 02	-0.4852166-01
45.0	1	0,111961E 02	-0.799799E 04	0.2624926 02	0 9928246-12
	2	-0.310513E 02	-0.103334E 05	0.2414235 02	
50.0	1	0.9974906 01	-0 786170E 06		-0.4128366-01
2010	2	0.9914902 01	-0.184119E 04	0.258706E 02	0.854443E-02
	2	-0.237353E 02	-0.112673E 05	0.264027E 02	-0.389607E-01
55.0	1	0.898832E 01	-0.773996E 04	0.254900£ 02	0.753802E=02
	2	-9.1896245 02	-0.117582E 05	0.2829635 02	
60.0	ì	C 7997176 01	-0 7676775 0/		-0.3418026-01
00.0			~V+101411E U4	0.251806E 02	0.643581E-02
	~	-0.15/992E 02	-0.117496E 05	0.295357E 02	-0.326706E-01
65.0	1	0.621220E 01	-0.748958E 04	0.246009E 02	0.439298F-02
	2	-0.126668E 02	-0.121003E 05	0.313991E 02	+D. 288044E-01
70.0	1	0.3668675 01	+0 7200675 04	0 3373105 02	-0:2009000-01
	2	-0 4000010 V1	0.120007E 04	0.23/3191 02	0.162535E-02
	2	-0.627602E UI	-0.1281/IE US	0.336749E 02	-3.221033E-01
72.0	1	0.2351838 01	-0.705497E 04	0.233523E 02	0.115738E-03
	2	+0.340476E 01	-0.131338E 05	0.3452326 02	-0.188325E-01
74.0	3	0-1045068-01	-0.692787E 04	A 220000E A2	
		-0.0241045.00	0.0721012 04		-0.1393002-32
74.0	6	-0.9341986 00	-0.133627E 05	0.392202E 02	-0.160648E-01
16.0	1	-0.383569E-00	-0.680995E 04	0.227125E 02	-0.315510E-32
	2	0.170559E 01	-0.135858E 05	0.357492E 02	-0.1279405-01
78.0	1	-0.192599E 01	-0.670814E 04	0.2250706 02	-0 5167025-02
	2	0 3000445 01	-0 1370705 05	0 1/002/5 02	-0.1007926-02
	2	0.3909486 01	-0.137070E 09	0.3008346 02	~0.100264E+JI
80.0	L	-0.370810E 01	-0.661987E 04	0.224429E 02	-0.768395E-02
	2	0.6117428 01	-0.137794E 05	0.361787E 02	-0.700714E-32
82.0	1	-0.386130F 01	+0.691302E 04	0.230825E 02	-0.843875E-02
	2	0 6510306 01	-0 1343805 05	0 3638435 02	-0 5740125-02
a/ A			0.134360L VJ	0.3,30436 02	-0.3149136-02
84.0	1	0.410187E-00	-0.8128908 04	0.252743E 02	-0.4161516~02
	2	0.159751E 01	-0.120627E 05	0.329540E 02	~0.107812E-01
86.0	1	0.804282E 01	-0.998894E 04	0.2836L9E 02	0.426718E-02
	2	-0.537939E 01	-0.103316E 05	0.3000908 02	-0.183293E-)1
BR A	1	0 1076355 00	-0 1116765 05	0 3036365 02	0 8470335-03
00.0				0.0004002	0.807023E-02
	2	-0.881814e 01	-0.936625E U4	0+283583E 02	-0.2185178-01
90.0	1	0.127306E 02	-0.115263E 05	0.307922E 02	0.892183E-02
	2	-0.949468E 01	-0.906709E 04	0.280356E 02	-0.226065E-01
91.0	1	0.118990E 02	-0.114725E 05	0.305658E 02	0.791542E = 02
	-	-0 0209796 01	-0 907009E 04	0.2816915 02	-0 2235406-01
	2	-0.9200130 01			
92.0	1	0.105862E U2	-0.113104E 05	0.301178E 02	0.640581E-02
	2	-0.870240E 01	-0.912802E 04	0.283916E 02	-0.218517E-01
93.0	1	0.901261E 01	-0.110819E 05	0.295050E 02	0.4644596-02
	2	-0-817590F 01	-0-920323E 04	0.286586E 02	-0.213485E-01
04 0	2	0 7640040 01	-0 1095916 04	0.2880805 02	0-3134975-02
94.0	4	0.194869E 01	-V-106961E V9	0.2000000 02	0.000/505.02
	2	-0.765946E 01	-0.928274E 04	0.289216E 02	-0+2084536-01
95.0	1	0.631467E 01	-0.106536E 05	0.279833E 02	0.212856E-02
	2	-0.7338156 01	-0,933714E 04	0.291875E 02	-0.206440E-01
94 0	1	0 403409E 01	-0 1041306 05	0.2701055 02	0,9963475-03
90.U	L	0.4924988 01		0 20622010 02	
	2	-0.694696E 01	-0.940360E U4	U.2943218 UZ	-0.2029186-31
97.0	1	G.329972E 01	-0.101233E 05	0.258560E 02	-0.387468E-03
	2	-0.668594F 01	-0.945187F 04	0.296598E 02	-0.2011568-01
98.0	1	0 1043475 01	-0.972137E 04	0.244017E 02	-0.265189E-02
2010	1	0.1043872 01		0 2004516 02	-0 199892E-01
	2	-0.542008E 01	-0.950100E 04	0.270071C UZ	0.1700722-01
98.5	1	0.903753E-01	-0.953695E 04	0.234732E 02	-0.3406706-02
	2	-0.632978E 01	-0.951834E 04	0.299497E 02	-0.198137E-01
DO 0	1	-0.140545E 01	-0-921465F 04	0.219462E 02	-0.441311E-02
33.0	1	0.1403436 01		0 3004306 02	-0.196124E-31
	5	-J.614434E 01	-0.9949600 04	0 1006407 00	-0 6022726-01
99.5	1	-0.489211E 01	-0.834654E 04	0.182543E UZ	-0.0922130-02
	2	-0.577858E 01	-0.961414E 04	0.301802E 02	-0.1918478-01
99.9	1	-0.185063E 02	~0.564741E 04	0.114842E 02	-0.188551E-01
22.0	2	-0 5403845 01	-0.9682795 04	0.303035E 02	-0.187318E-01
	2	-U. 5402868 UI	-U+700210E V4	0 0000000 At	-0-3161166-01
99.9	l	-0.292730E 62	-U.408354E 04	V.865UJ6E UI	
	2	-0.538282E 01	-0.968466E 04	0.303121E 02	-0.18/06/E-01
100.0	1	0.212753E 02	-0.186024E 05	0.414274E 02	0.129223E-01
100.0	2	-0.5499036 01	-0,966251E 04	0.302846E 02	-0.188325E-01
	۷	-010400000 01			

Table A-IV. Constants for partial-pressure equation

 $a_1 = H_2O$, 2 = H_2SO_4 .

Table A-V. K, for the dissociation of H
Table A-V. K, for the dissociati
Table A-V. K _n for the
Table A-V. K _n fc
Table A-V.

	KP. T DEG C KP T DEG C KP	8524E-10 -23.00 0.5474E-09 -10.00 0.3053E-08	2627E-36 30.00 0.9544E-06 40.00 0.3194E-05	7868E-04 80.00 0.2030E-03 90.00 0.4971E-03	5565E-02 130.00 0.1150E-01 140.00 0.2294E-01	1511E-00 180.00 0.2680E-00 190.00 0.4638E-00	2103E 01 230.00 0.3344E 01 240.00 0.5277F 01	1801E 02 280.00 0.2641E 02 290.00 0.3820F 32	1072E 03 330.00 0.1478E 03 340.00 0.2016E 03	4826E G3 383.00 0.6340E 03 390.00 0.8260E 03
	T DEG C	-10.00	40.00	90.00	140.00	190.00	240.00	290.00	340.00	390.00
	КР	0.5474E-09	0.9544E-06	0.2030E-03	0.1150E-01	0.2680E-00	0.3344E 01	0.2641E 02	C.1478E 03	0.6340E 03
•	T DEG C	-23.00	30.03	80.00	130.00	180.00	230.00	280.00	330.00	383.00
	ΎΡ	0.8524E-10	0.2627E-36	0.7868E-04	0.5565E-02	0.1511E-00	0.21036 01	0.1801E 02	0.1072E 03	0.4826E G3
	T DEG C	-30.00	20.00	70.00	120.00	170.00	220.00	270.00	320.00	370.00
	КР	0.1132E-10	0.6606E-07	0.2882E-04	0.2594E-02	0.82976-01	0.1297E 01	0.1211E 02	0.7692E 02	0.3641E 03
	T DEG C	-40.00	10.00	60.00	110.00	160.00	210.00	260.00	310.00	360.00
	КP	0.1255E-11	0.1502E-07	0.9925E-05	0.1161E-02	0.4429E-01	0.7842E 00	0.8016E 01	0.5454E 02	0.2722E 03
	T DEG C	-50.00	•	50.00	100.00	150.00	200.00	250.00	300.00	350.00

TABLE A-VI. FORTRAN PROGRAM.

ĉ	LIMENSICK A(2,40),B(2,40),C(2,40),D(2,40),XKP(100),FT(100),W(40), PROP(5,40,5),P(4,40,100),XLNKP(100),ITT(100)
-	READ INPUT FAPE 2.5. NORDER
£	5 FORMAT (12)
-	100 READ INPUT TAPE 2,10, IPROB, IN. IL-IN. ICH. IL KT. TODA
	10 FORMAT (515, F10.2, 15, F5.0)
	WRITE CUTPUT TAPE 3,15,1PRCB,NPROBS,J1,JN,JCEL,T1,TDEL,KT
	13.3X. SHEIMAL, 13.3Y. SHOELTA, 12. YOR DIVISION NT PCT ID, 5X, 7HINITIAL,
	22,2H K,3X,5HDELTA,F7,2,3X,6HTOT NO.13/(11H INPUT OATA FX (1000)
	3,2H10,3X,6HWT PCT,4X,6H(F-F0),6X,1HL,9X,2HCP,7X,5HA(PHA)
~	GG TO (35,30), IN
6	20 = 30 MAT / 21 = 4 (30 c)
	25 FORMAT (173.12.33.13.33.66.1.2610 1 610 2 2610 61
	30 READ INPUT TAPE 2,20, I,J,(W(J)),(PROP(J,J,t)),(=1.5)
	WRITE OUTPUT TAPE 3,25,1, J, (W(J)), (PROP(I, J,L),L=1,5)
	[F (1-5) 30,35,35
	- 37 WEILE LUIPUL LAPE 3,40 - 40 EORMAT (181,408/CONSTANTS EOR DARTIAL PRESSURE FOULATIONS (171) VE SEE
	1,2X,4FCOMP.9X,1HA.15X.1HB.15X.1HC.15X.1HC.
С	
	READ INPUT TAPE 2,45,AKP,BKP,CKP,DKP,EKP,FKP
	$45 \text{ FURMAT} (4 \text{ F10} \cdot 0, 2 \text{ F15} \cdot 0)$ T = T1
	U = 105 K = 1.KT
	$TT(K) = T - 273 \cdot 15$
	XLNKP(K) = AKP*LOGF(298.15/T)+BKP/(T**2.)+CKP/T+DKP+EKP*T+FKP*(T**
	12.)
	105 T = 1 + TDEL
С	
	CO 110 J=J1,JN,JDEL
С	
	$= -A(1_{1}J) = -3_{1}6(3_{1}U+(PRUP(1_{1}J_{3})-PRUP(1_{1}J_{3}J_{4})+298_{1}J_{3})/(1_{2}98_{1}J_{3})/(1_$
	1CP(1, J, 4))/2.))/1.98726
	C(1,J) = 16.87684 + (PROP(1,J,3) + ((PROP(1,J,1) - PROP(1,J,2))/298.15))
	1/1.98726
	$U(1_{1}J) = G_{*}OOO618943^{+}(PRUP(1_{1}J_{1}A)/12_{*}1_{*}98726))$ $A(2,1) = -3.95516^{+}(PRUP(2,3,3) - PROP(2,1,4)*268.15)/1.98726$
	$\mathbb{P}[2,J] = -7413.26+(\mathbb{P}(\mathbb{P}(2,J,2)-\mathbb{P}(\mathbb{P}(2,J,3)*298.15+((298.15**2.)*(\mathbb{P}(2,J,2)-\mathbb{P}(\mathbb{P}(2,J,3)*298.15+((298.15**2.)*(\mathbb{P}(2,J,3)*298.15+((298.15**2.)*(\mathbb{P}(2,J,3)*298.15+((298.15**2.)*(\mathbb{P}(2,J,3)*298.15+((298.15)**2.)*(\mathbb{P}(2,J,3)*298.15+((298.15)**2.)*(\mathbb{P}(2,J,3)*298.15+((298.15)**2.)*(\mathbb{P}(2,J,3)*298.15+((298.15)**2.)*(\mathbb{P}(2,J,3)*298.15+((298.15)**2.)*(\mathbb{P}(2,J,3)*298.15+((298.15)**2.)*(\mathbb{P}(2,J,3)*298.15+((298.15)**2.)*(\mathbb{P}(2,J,3)*298.15+((298.15)**2.)*(\mathbb{P}(2,J,3)*298.15+((298.15)***2.)*(\mathbb{P}(2,J,3)*2.)*(\mathbb$
	10P(2, J, 4))/2.))/1.98726
	C(2,J) = 13.66376+(PROP(2,J,3)+((PROP(2,J,1)-PROP(2,J,2))/298.15)
	1)/1.98726
	WRITE CUTPUT TAPE $3+130$, $W(J) + A(1+J) + B(1+J) + C(1+J) + D(1+J) + A(2+J) + B$

TABLE A-VI. (CONT.)

```
1(2, J), C(2, J); )(2, J)
  130 FORMAT (E7.2,4%,2H 1,4E16.6/11%,2H 2,4E16.6)
С
      T = T1
      CO 120 K=1,KT
      XENP1 = A(1,J)*EOGF(298.15/T)+B(1,J)/T+C(1,J)+D(1,J)*T
      XLNP2 = A(2, J)*LCGF(298.15/T)+B(2, J)/T+C(2, J)+D(2, J)*T-2.19062E-6*
     1(T**2.)
      P(1,J,K) = EXPE(XLNP1)
      P(2, J, K) = EXPF(XLNP2)
      P(3,J,K) = XKP(K) * P(2,J,K) / P(1,J,K)
      P(4, J, K) = P(1, J, K) + P(2, J, K) + P(3, J, K)
  120 T = T+TDEL
C
  110 CONTINUE
.
      WRITE CUTPUT TAPE 3,50, AKP, BKP, CKP, DKP, EKP, FKP, (TT(K), XKP(K), K=1,
     JKT)
   50 FORMAT (1H1,43HCONSTANTS FOR LN(KP) EQUATION, AKP THRU FKP// F16.6
     1////18B VALUES OF KP=F(T)//3X, THT DEG C,6X, 2HKP, TX, THT DEG C, 6X, 2
     2F8+.7X,7HT DEG C,6X,2HKP,7X,7HT DEG C,6X,2HKP,7X,7HT DEG C,6X,2HKP
     3/5(F10.2,E12.4))
С
  360 00 360 1=1,4
      CO 340 J=J1, JN, JDEU
      CG 360 K#1,KT
      C = LOGE(P(I,J,K))/2.302585
      IF (0+4.0) 315,315,305
  305 IF (0+4.0) 310,315,315
  310 IF (G) 325,320,320
С
  315 P(1, J, K) = 0.0
      CD TO 360
C
  320 G = G + 1.0
      M = XINTE(G)
      GO TO (330,335,340,345),M
  325 H = 0.0001
      60 10 350
  330 ⊢ = 0.001
      GO TO 350
  335 H = 0.01
      GG TU 350
  340 ⊨ ≃ 0.1
      GO TO 350
  345 ⊨ = 1.0
Ć
  350 R = MOEF(P(I,J,K),H)
      P(1,J,K) = P(1,J,K) - R
      IF (R/H-0.5) 360,360,355
```

-79-

TABLE A-VI. (CONT.)

```
355 P(I_{J_{*}}K) = P(I_{J_{*}}K) + H
                                                                             ۷
  360 CONTINUE
                                                                             ٧
Ĉ
                                                                             ٧
      DO 4000 K=1,KT
      IF (TT(K)) 4001,4002,4002
 4001 TI(K) = TT(K) - C_5
      60 TO 4000
 4002 TI(K) = TT(K) + C.5
 4000 ITT(K) = TT(K)
С
      CO 3000 I=1,4
      MM = 2
      JX = J1
 6000 JY = JX + 11
      IF (JY - JN) 5000,6005,6010
 6010 \text{ JY} = \text{JN}
 6005 MM = 1
 5000 GD TO (5005,5010,5015,5020),1
 5005 WRITE GUTPUT TAPE 3,5006
 5006 FORMAT (1H1,30X,55HTABLE A-IIA, CONTINUED. WATER PARTIAL PRESSURE
     1, MM H6.)
      GO TO 7000
 5010 WRITE OUTPUT TAPE 3,5011
 5011 FORMAT (1H1,26X,63HTABLE A-IIB, CONTINUED.
                                                     SULFURIC ACID PARTIAL
     IPRESSURE, MM HG.)
      GO TO 7000
 5015 WRITE CUTPUT TAPE 3,5016
 5016 FORMAT (1H1,25X,65HTABLE A-IIC, CONTINUED.
                                                     SULFUR TRIOXIDE PARTIA
     1L PRESSURE, MM HG.)
      GO TO 7000
 5020 WRITE CUTPUT TAPE 3,5021
 5021 FORMAT (1H1,34X,47HTABLE A-11D, CONTINUED.
                                                     TOTAL PRESSURE, MM HG.
     1)
 7000 WRITE OUTPUT TAPE 3,7005, (W(J),J=JX,JY)
 7005 FORMAT (1H0,5HDEG C,46%,20HWEIGHT PERCENT H2S04/5%,12F9.1)
      MMM = 2
      K_{1} = 1
      K2 = 0
 7010 K2 = K2 + 10
      IF (K2 - KT) 7015,7020,7025
 7025 \text{ K2} = \text{KI}
 7020 \text{ MMM} = 1
 7015 WRITE CUTPUT TAPE 3,7030,(ITT(K),(P(I,J,K),J=JX,JY),K=K1,K2)
 7030 FORMAT (1H0,14,3X,12F9.4/(1X,14,3X,12F9.4))
      K1 = K2 + 1
      GO TO (7035,7010), NMM
 7035 JX = JY + 1
      GO TO (8000,6000), MM
 8000 CONTINUE
С
      IF (NPROBS-1PROB) 600,600,100
  600 CALL EXIT
      END
```

~80-

REFERENCES

- 1. C. H. Greenewalt, Ind. Eng. Chem. 17, 522 (1925).
- 2. B. C. Burt, J. Chem. Soc. 85, 1339 (1904).
- 3. W. Daudt, Z. physik. Chem. (Frankfurt) 106, 225 (1923).
- 4. E. Abel, J. Phys. Chem. 50, 260 (1946).
- 5. M. Bodenstein and M. Katayama, Z. Elektrochem. 15, 244 (1909).
- W. F. Giauque, E. W. Hornung, J. E. Kunzler, and T. R. Rubin, J. Am. Chem. Soc. <u>82</u>, 62 (1960).
- 7. P. A. Giguère and R. Savoie, J. Am. Chem. Soc. 85, 287 (1963).
- 8. National Bureau of Standards Circular 500, 1952.
- 9. K. K. Kelley, U. S. Bureau of Mines Bulletin 584, 1960.
- 10. J.E. Kunzler, Anal. Chem. 25, 93 (1953).
- 11. G. N. Lewis and M. Randall, <u>Thermodynamics and the Free</u> <u>Energy of Chemical Substances</u>, 1st ed. (McGraw-Hill Book Company, Inc., New York, 1923), p. 554.
- 12. J. E. Kunzler and W. F. Giauque, J. Am. Chem. Soc. <u>74</u>, 3472 (1952).
- T. F. Young and G. E. Walrafen, Trans. Faraday Soc. <u>57</u>, 34 (1961).
- 14. W. W. Duecker and J. R. West, <u>The Manufacture of Sulfuric Acid</u> (Reinhold Publishing Corporation, New York, 1959), p. 434.
- 15. O. Redlich and A. T. Kister, Ind. Eng. Chem. 40, 341 (1948).

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

- A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.