VAPOR-LIQUID EQUILIBRIA FOR THE NITROGEN-METHANE-CARBON DIOXIDE SYSTEM^{*}

EIJI SARASHINA, YASUHIKO ARAI AND SHOZABURO SAITO Department of Chemical Engineering, Tohoku University, Sendai, Japan

Vapor-liquid equilibrium data for the nitrogen-methane-carbon dioxide system were measured by static method at -40° C to 0° C and up to 100 atm. The applicability of the BWR equation for this ternary system was examined. A marked improvement in the equilibria was obtained by introducing correction factors determined from the data of each prediction of vapor-liquid binary system.

In a previous paper²), we showed that vaporliquid equilibrium relations for systems consisting of carbon dioxide and light hydrocarbon could not be well predicted by the BWR equation¹). In such a case, the BWR equation was sufficiently improved by introducing a correction factor, m_{cj} into the constant, A_0 . According to Stotler and Benedict⁴), the constant, A_0 , for a multicomponent system is formulated as follows^{2,3})

$$A_{0} = \sum_{i}^{N} x_{i}^{2} A_{0i} + 2 \sum_{i}^{N} \sum_{j}^{N} x_{i} x_{j} m_{ij}, \sqrt{A_{0i} A_{0j}}$$
(1)

where m_{ij} is the correction factor and has been shown to be less than unity in general^{2,3)}. The usefulness of m_{ij} is recognized for several binary systems containing carbon dioxide^{2,3,5)} and hydrogen sulfide³⁾. However, application of m_{ij} to ternary systems seems to have been slight.

The purpose of the present work is to check the usefulness of m_{ij} for the nitrogen-methane-carbon dioxide system, whose vapor-liquid equilibrium data have been determined by static method. The equilibrium cell used here was the same one described in a previous paper²). Gas chromatography was adopted to analyse equilibrium composition. The experimental results at various pressures and temperatures are listed in Table 1 and are compared with predicted K-values by the BWR equation in Table 2. The correction factors used in this calculation were determined based on the vapor-liquid equilibrium data of each binary system^{2,4)} and are presented in Table 3. As shown in Table 2, the original BWR equation predicts erroneous K-values for this ternary system. However, the modified BWR equation containing m_{ij} is shown to be successful.

Table 1 Vapor-liquid equilibrium data for the $N_2\mbox{-}CH_4\mbox{-}CO_2$ system

y _{N2}	$y_{{ m CH}_4}$	x _{N2}	x _{CH4}			
$0^{\circ}C$		60 atm				
0.229	0.046	0.037	0.013			
0.169	0.116	0.032	0.033			
0.124	0.170	0.023	0.052			
0.072	0.237	0.015	0.075			
$0^{\circ}C$		80 atm				
0.306	0.064	0.079	0.026			
0.253	0.120	0.071	0.050			
0.205	0.169	0.060	0.077			
0.182	0.196	0.057	0.091			
0.149	0.237	0.049	0.112			
0.100	0.290	0.038	0.146			
0.075	0.315	0.030	0.165			
0.061	0.334	0.024	0.179			
0.047	0.344	0.020	0.190			
$0^{\circ}\mathrm{C}$		100 atm				
0.381	0.007	0.141	0.004			
0.316	0.070	0.132	0.039			
0.247	0.123	0.126	0.082			
0.220	0.149	0.125	0.103			
0.200	0.158	0.120	0.115			
$-20^{\circ}C$		60 atm				
0.342	0.195	0.052	0.038			
0.174	0.374	0.032	0.110			
0.113	0.439	0.024	0.131			
$-20^{\circ}C$		80 atm				
0.525	0.062	0.102	0.022			
0.439	0.144	0.094	0.046			
0.372	0.210	0.086	0.072			
0.289	0.297	0.075	0.117			
0.259	0.324	0.071	0.135			
0.230	0.348	0.065	0.153			
0.169	0.409	0.054	0.206			
0.127	0.456	0.047	0.240			
0.092	0.494	0.035	0.282			
0.066	0.510	0.028	0.312			
$-20^{\circ}C$		100 atm				
0.393	0.182	0.136	0.097			
0.331	0.239	0.131	0.143			
0.301	0.259	0.127	0.163			
0.277	0.280	0.123	0.178			
		(cont	inued)			

VOL, 4 NO. 4 - 1971

(77)

Received on May 31, 1971
 Presented at the 35th Annual Meeting of the Society of Chemical Engineers, Tokyo, April, 1970

-40°C	l,	60 atm			
0.561	0.168	0.063	0.044		
0.444	0.279	0.059	0.080		
0.286	0.439	0.046	0.126		
0.205	0.521	0.034	0.174		
0.124	0.610	0.024	0.223		
$-40^{\circ}C$		80 atm			
0.682	0.060	0.104	0.023		
0.574	0.176	0.100	0.064		
0.464	0.279	0.086	0.108		
0.332	0.406	0.086	0.197		
0.285	0.449	0.083	0.228		
0.247	0.486	0.066	0.236		
0.185	0.541	0.064	0.318		
0.121	0.589	0.059	0.398		
$-40^{\circ}C$	1	100 atm			
0.486	0.244	0.144	0.127		
0.399	0.316	0.139	0.174		
0.368	0.339	0.140	0.206		
0.361	0.349	0.148	0.224		
0.345	0.357	0.156	0.246		

Table 3	Correction factor,	m, for binary systems
System	0°C and 80 atm	$-40^{\circ}\mathrm{C}$ and 60 atm
N_2 — CH_4	0.9664)	0.9664)
$CH_4 - CO_2$	0.945	0.910
N_2 — CO_2	1	1

Table 2 Comparison of predicted and experimental K-values for the N2-CH4-CO2 system

$K_{ m N_2}$			$K_{{ m CH}_4}$		$K_{\rm CO_2}$			
Exp.	Calc. 1*	Calc. 2**	Exp.	Calc. 1	Calc. 2	Exp.	Calc. 1	Calc. 2
				0°C and 80 at	m			
3.873	3.127	3.266	2.462	1.757	2.029	0.704	0.734	0.727
3.563	3.010	3.172	2.400	1.724	1.992	0.713	0.742	0.733
3.417	2.844	3.034	2.195	1.678	1.940	0.725	0.756	0.744
3.193	2.787	2.986	2.154	1.662	1.921	0.730	0.760	0.748
3.041	2.647	2.875	2.116	1.621	1.876	0.732	0.771	0.755
2.632	2.469	2.706	1.986	1.567	1.809	0.748	0.785	0.769
2.500	2.342	2.591	1.909	1.526	1.761	0.758	0.796	0.778
2.542	2.253	2.506	1.866	1.497	1.726	0.759	0.805	0.785
2.350	2.185	2.442	1.810	1.475	1.700	0.771	0.812	0.790
				-40°C and 60	atm			
8.905	6.302	7.546	3.818	2.048	3.189	0.303	0.341	0.322
7.525	5.949	7.278	3.488	2.005	3.112	0.322	0.348	0.326
6.217	5.065	6.416	3.484	1.869	2.858	0.332	0.373	0.342
6.029	4.500	5.711	2.994	1.780	2.642	0.346	0.393	0.358
5.167	4.083	5.219	2.735	1.714	2.486	0.353	0.410	0.372

** Calculated by the modified BWR equation

Nomenclature

- $A_{o_{\perp}} = \text{constant of the BWR equation}$
- i, j = component i and j
- K = K-value (y/x)
- m_{ij} = correction factor for i j pair interaction
- N= number of component
- = mole fraction of liquid phase x
- = mole fraction of vapor phase y

Literature cited

- 1) Benedict, M., G. B. Webb and L. C. Rubin: Chem.
- Benedict, MI, G. B. Webb and L.C. Rubin. Chem. Eng. Progr., 47, 419 (1951)
 Kaminishi, G., Y. Arai, S. Saito and S. Maeda: J. Chem. Eng., Japan, 1, 109 (1968)
 Orye, R. V.: I & EC, Process Design and Development, 8, 579 (1969)
- 4) Stotler, H. H. and M. Benedict: Chem. Eng. Progr.
- Symp. Ser., 49, (6), 25 (1953)
 Symp. Sorizane, M., S. Yoshimura and H. Masuoka: Kagaku Kõgaku, 30, 1093 (1966)