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Vapour-liquid equilibria of Stockmayer fluids 

Computer simulations and perturbation theory 

By M. E. VAN LEEUWEN, B. SMIT and E. M. HENDRIKS 

Koninklijke/Shell-Laboratorium, Amsterdam, P.O. Box 3003, 
1003 AA Amsterdam, The Netherlands 

(Received 16 April 1992; accepted 1 July 1992) 

Gibbs ensemble simulation data for Stockmayer fluids with #.2 = 3.0 and 
#.2 = 4.0 in the reduced temperature range of 0-77 (resp. 0.80)-0"98 and pre- 
sented and compared with predictions based on the perturbation theories of 
Stell, G., Rasaiah, J. C., and Narang, H., 1972, Molec. Phys., 23, 393; 1974, 
27, 1393. The description of the reference fluid is improved by applying the mod- 
ified Benedict-Webb-Rubin equation of state instead of the Verlet-Weis imple- 
mentation of the Weeks-Chandler-Andersen perturbation scheme. Second 
virial coefficients predicted by perturbation theory to order #4 agree for Stock- 
mayer fluids with #,2 < 4 very well with exact values. Perturbation theory is 
capable of describing the low-density region of Stockmayer fluids with rather 
strong dipole moments. For these high values of the dipole moment, the Pad6 
approximation of perturbation theory deviates significantly from the simulated 
coexistence curves in density and pressure. Compared with perturbation theory 
to order #4, however, it is a far better approximation of the Stockmayer fluid 
coexistence curve. The behaviour of the Pad6 approximation in the critical 
region is not satisfactory. 

1. Introduction 

Electrostatic interactions affect thermodynamic behaviour. For relatively simple 
polar model fluids several theories have been developed [1-3]. A convenient model 
for a polar fluid is a 'soft-core' dipolar molecule, represented by the Stockmayer 
potential (Lennard-Jones potential with an embedded point dipole). The two most 
important molecular theories for model polar fluids are integral equation theories 
and (Pople-Stell) perturbation theories. 

If  the Ornstein-Zernike equation is supplemented with an approximate closure 
relation, an integral equation is obtained for the direct correlation function and the 
radial distribution function [2]. For polar fluids this involves expansions of angular- 
dependent functions. Starting from the well known hypernetted-chain equation Patey 
and others [4-6] considered linear expressions (LHNC) and quadratic expressions 
(QHNC), and obtained a numerically tractable scheme. Fries and Patey [7] devel- 
oped a general method for fluids with anisotropic interactions, the reference 
hypernetted-chain (RHNC) theory. Lee et al. [8] applied this approximation to 
Stockmayer fluids, and found that the dielectric constant predicted with the full 
RHNC theory agrees better with computer simulation results than those predicted 
with the LHNC and QHNC theories. 

Another approach to describe the behaviour of  simple polar model fluids is the 
use of perturbation theories, as pioneered by Pople and further developed by Stell 
et al. [9-13]. In these theories, the free Helmholtz energy is expressed as the sum of a 
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reference term and perturbation terms. For the Stockmayer fluid, it is convenient to 
use the Lennard-Jones fluid as a reference fluid and to make an expansion in terms of 
the dipole moment #. Perturbation theories have practical advantages: they are 
easier to apply than integral theories and they provide a tool for understanding 
the influence of a perturbation on thermodynamic behaviour. For thermodynamic 
purposes, the accuracy of the Pad6 approximation proposed by Stell et al. [12] has 
been found to be surprisingly high, considering the small number of terms used 
[14-17]. 

Molecular theories can be validated with 'exact' results from simulation exper- 
iments. For pure Stockmayer fluids, computer simulations of thermodynamic single- 
phase data were reported in references [17-21]. Static dielectric constants derived 
from computer simulations have been reported in references [22-26]. These results 
have been reviewed by de Leeuw et al. [27]. Since the availability of the Gibbs 
ensemble (Monte Carlo) simulation technique, introduced by Panagiotopoulos 
[28], some preliminary results concerning coexistence curves for Stockmayer fluids 
with low reduced dipole moment [29] have been reported. Mixtures of polar/non 
polar fluids have been investigated by de Leeuw et al. [30-32]. Mixtures of polar and 
polarizable Lennard-Jones fluids have been investigated by Mooij et al. [33]. 

Most computer simulations have been performed for lower values of the dipole 
moment. Because we are interested in the description of fluids with a realistic range 
of dipole moments, we wish to investigate for which value of the dipole moment the 
theories are valid. Smit et al. [29] have reported vapour-liquid equilibria calculations 
for Stockmayer fluids with reduced dipole moments #,2 ___ 1-0 and #,2 = 2.0 (the 
reduced dipole moment #* is defined as x~2/ea 3, where e and cr are the Lennard- 
Jones parameters). Here we present simulation results for Stockmayer fluids with 
# ,2=  3-0 and #,2 = 4.0 for the reduced temperature range of 0.77 (resp. 0.80) to 
0-98. In addition to these simulation results, we offer an extensive comparison with 
the thermodynamic results predicted by the perturbation theory of Stell et al. 
[11,121. 

2. Theory 

In this section we review the essential aspects of the perturbation theory of Stell 
et al. [11, 12]. In our calculations, we have followed Stell's approach, except for the 
description of the reference fluid. We compare exact results for second virial coef- 
ficients with predictions from perturbation theory. 

2.1. Pople -S te l l  perturbation theory 

The central idea of perturbation theory is to use a reference fluid with well known 
thermodynamic properties and to consider the potential of the 'actual' fluid as a 
(small) perturbation on a reference potential. This gives for the free energy f of a 
dipolar fluid: 

f = fo + #2fl. + #4f2g 6 u + #'if  + o(uS). (1) 

For the Stockmayer potential, the term fl  u vanishes by integration over angular 
coordinates (due to axial symmetry properties of the dipole field) [9], so that #4f2~ 
is the first non vanishing correction term. The superscript # indicates that only 
dipole-dipole interactions are taken into account. 
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For  small values of  #, it can be expected that only the #4 term gives a significant 
contribution to the free energy: 

fo (u  ~) = f u  + u4f2#. (2) 

Superscript LJ refers to the Lennard-Jones (reference) system. Stell et al. [11] give as 
expression for the perturbation term: 

#.4 
~3#4f2u = 24T* (4/3uU - AzU)'  (3) 

where/3 = 1/knT,  T* = knT/e ,  u is the internal energy, and Az(= 13pip - l) is the 
excess compressibility factor. 

For  #* > 1 we cannot expect this expansion to converge. This is a range of  #* 
relevant to many real fluids [15-17]. In order to make a 'practical' estimate of  these 
higher order terms, Stell et at. [12] use a (0, 1) Pad6 approximation: 

f e ~  = f L J  +/z  - - , (4) 
1 _ ~_Y_s .'f? / 

where #6f3u represents the second correct term (0(#6)), which involves the three- 
particle distribution function g123. To estimate this term, Stell et al. used a par- 
ametrization of  the hard-sphere data of Barker et al. [34]: 

fl.3#,6p.2 "2"70797 + 1 "68918x -- 0"31570X 2] 
/3#6f3u = 9c 3 ] 7 0~90---~-xx ~ ~ ' 2 ~  ] '  (5) 

where x = p*c 3 and c = a/cr, a being the hard-sphere diameter. We have used the 
same procedure as Stell et al. to obtain the hard-sphere diameter, taken from Verlet 
and Weis [35]. 

2.2. The reference term 

In expressions (2-4) it is assumed that the free energy of  the Lennard-Jones fluid 
is known accurately. The thermodynamics of  a Lennard-Jones fluid determines fLJ 
and, through equation (3), #4f2u. For the Lennard-Jones fluid, Stell et al. based their 
calculations on the Verlet-Weis implementation [35] of the WCA perturbation 
theory given by Weeks, Chandler and Anderson [36]; some of  their calculations 
were based on early computer simulation results. 

Later, Nicolas et al. [37] published an analytical equation of  state, the 33- 
parameter modified Benedic t -Webb-Rubin  (MBWR) equation of  state, that repro- 
duces Lennard-Jones computer simulation results (known until then). We have used 
this equation of  state for the description of the reference fluid in the perturbation 
theory, in order to calculate coexistence properties and second virial coefficients of  
Stockmayer fluids. 

2.3. Second virial coefficients 

The second virial coefficient can be calculated to any desired accuracy via a 
converging series expansion of  the classical statistical mechanical expression 
(equation (2.1) of  reference [38]). Therefore, we can compare these exact results 
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with predictions from perturbation theory even before we perform any computer 
simulations. This comparison will indicate if we can expect reasonable results from 
perturbation theory in the low-density region. 

In the low-density limit of the second virial coefficient, the second correction 
term (of order #6) vanishes for dipolar molecules [39]. The second virial coefficient 
via the (0, 1) Pad6 approximation therefore reduces to that of first-order perturbation 
theory. The reduced second virial coefficient is calculated with 

B.O(#4 ) -~ B *LJ #,4 ( 0B.LJ'~ 
24T* B*LJ + 4 T * ~ /  o r  ,]' (6) 

where B* = B/bo with b0 = 27rNaa 3. B *LJ is given by equation (5) of reference [37], 
NA is Avogadro's number. (We use the asterisk (,) to indicate reduction of quantities 
by means of the simplest combinations of e and a, and the star (,) to indicate 
reduction with respect to combinations of e and a which make use of hard-sphere 
values. The reduced second virial coefficients are related via B* = 27rB*,) 

For various values of #*, we compare in figure 1 B *~ with the second virial 
coefficients calculated via the classical statistical mechanical expression for the 
Stockmayer potential. For #.2 < 4, perturbation theory predicts second virial coef- 
ficients very close to their exact values. With increasing #* deviations become 
increasingly apparent at low T*, which is in agreement with data of Pople [40]. 

The description of the second virial coefficient of the Lennard-Jones fluid in 
equation (6) is accurate, as the exact expression for B *LJ has been taken explicitly 
into account in the fitting procedure to obtain the MBWR equation of state. 
Apparently, the next term in the series expansion (of order #8) is small. 

This observation leads to the following conclusion: perturbation theory is capable 
of describing the low-density region of Stockmayer fluids with #.2 < 4. 

0 ' / / / / / /  
I 1 1 1 

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 
T" 

Figure 1. Second virial coefficients of a Stockmayer fluid with #,2 ranging from 1 to 6. The 
solid curves ar~,exact; the data points are predicted values from perturbation theory: 
�9 = 1; [], = 2; zX, #'2 = 3; ~, #'2 = 4; V, #'2 = 5; + ,#*2=6.  
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3. Computer simulations 

Using the Gibbs ensemble [28], one can obtain data on coexisting vapour and 
liquid phases from a single simulation. Two phases are simulated in two separate 
subvolumes, to each of which periodic boundary conditions are applied. By choosing 
appropriate acceptance criteria in the Monte Carlo steps, one ensures that the two 
phases have the same temperature, pressure and chemical potential. These conditions 
are necessary and sufficient for thermodynamic equilibrium. The Gibbs ensemble 
is particularly suited for the calculation of two-phase equilibria. To impose the 
conditions of internal and mutual equilibrium on the two phases, one has to 
perform the following Monte Carlo steps: particle displacements, volume changes, 
and particle interchanges. A detailed description of this simulation technique can be 
found elsewhere [28,41,42]. It has been applied to many pure model fluids [28], 
[42-49]. For mixtures of various model fluids, vapour-liquid equilibria have been 
reported in [30-33], [42, 50, 51], and liquid-liquid equilibria in [50-54]. 

In our simulations, the Lennard-Jones potential was truncated at half the box 
size and the standard long-tail corrections were added [55]. The long-range dipolar 
interactions were handled with the Ewald summation technique using 'tinfoil' 
boundaries [27]. We used the same simulation procedure as reported in [29], except 
for the order of the Monte Carlo steps in the simulation cycle. Previously, trial 
configurations were generated according to a prescribed order: successive particle 
displacements, one volume change, successive particle exchanges. This scheme does 
not ensure microscopic reversibility. In the work presented here, at each Monte 
Carlo step the type of change is chosen at random. One cycle consists of (on average) 
Ndisp attempts to displace a random particle in one of the randomly chosen boxes, 
Nvol attempts to change the volume of the subsystems, and Nt~y attempts to exchange 
particles between the boxes. By applying this algorithm (explained in detail in 
reference [48]), the condition of detailed balance is fulfilled and there is no ambi- 
guity about the point of the cycle at which the ensemble should be sampled (i.e., after 
which Monte Carlo step the relevant data are collected with which the statistical 
averages are obtained). Furthermore, with respect to the scheme used earlier [29], 
the chance that the system becomes trapped in a metastable region is lowered 
[41], and the standard deviation in the chemical potential is significantly smaller 
[56]. 

In each run, Naisp was equal to the total number of molecules, and Nvol was 
always set to 1. Ntry was set to 200 for the lowest temperatures and was lowered 
to 50 for the highest temperatures. Per run, the total number of successful inter- 
changes always exceeded 5000. Error estimates were obtained by dividing the total 
simulation into 10 blocks, and calculating the standard deviations from block 
averages. 

4. Results 

4.1 Simulation results 

The results of the Gibbs ensemble simulations are given in tables 1 and 2; the 
coexistence curves are shown in figures 2-5. The critical temperature and density are 
estimated from fitting the simulation results to the (mean-field approximation of the) 
law of rectilinear diameters and to a scaling law for the density [46] with critical 
exponent/3 = 0.32 [57]. These values are given in table 3, together with reported 
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Figure 2. Coexistence curve for the Stockmayer fluid with/~,2 = 1. The results from Monte 
Carlo simulations in the Gibbs ensemble are taken from [29] (O, coexistence data points; 
O, averaged densities), the solid line connecting them results from the estimation of the 
critical temperature and density. For the perturbation theory results presented in this 
report, the calculations for the reference (Lennard-Jones) fluid are based on the MBWR 
equation of state of Nicolas et aL [37]. The dashed line represents results of perturbation 
theory to order /~4 (equation (2)), the dotted line results of the Pad6 approximation 
(equation (4)). Stell et al. based their calculations for the reference fluid on the Verlet- 
Weis perturbation scheme; their data points are represented as: x, 0(#4); and A, Pad6 
approximation. 

values for #,2 = 0 (Lennard-Jones fluid) [56], #,2 = 1, and #,2 = 2 [29]. In figure 6 
the simulated coexistence (vapour) pressures are shown. 

4.2. Perturbation theory results 

We have calculated coexistence curves for various dipolar strengths with the 
perturbation theory of  Stell et al. The results (for both the first-order theory and 
the Pad6 approximation) are presented in figures 2 -5  together with the simulation 
results. For  comparison, we also included in figure 2 the original results of  Stell et al., 
based on the Verlet-Weis implementation of  WCA perturbation theory. In figure 6 
the simulated coexistence (vapour) pressures are compared with the predictions 
based on the Pad6 approximation. 

5. Discussion 

5.1. First-order perturbation theory 

First-order perturbation theory or, to be more exact, perturbation theory to 
order #4, treats the polar interactions as a one-term perturbation on interactions 
of  the Lennard-Jones reference fluid (equation (2)). As may be expected for higher 
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Figure 3. Coexistence curve for the Stockmayer fluid with #,2 = 2. The results from Monte 
Carlo simulations in the Gibbs ensemble are taken from [29]. Presentation as for 
figure 2. 

values of #*, the assumption that the perturbation is small compared with the 
reference behaviour is no longer valid. The theoretical results deviate increasingly 
from the simulated coexistence properties (figure 2-4, 6); in figure 5 the coexistence 
curve predicted by O(# 4) theory is left out because of the large deviations. In figure 7 
we summarize the critical temperatures that result from perturbation calculations 
and from simulations. I f  we use the critical temperature as a rough indication of  the 
localization of the coexistence curve, it is evident that only for #.2 < 1 do the results 
from perturbation theory to order #4 approximate the Stockmayer fluid coexistence 
curve well. 

5.2. Pad~ approximation 

For #.2 = 1 (figure 2), of all theories, the Pad6 approximation in combination 
with the MBWR equation of state describing the reference fluid approximates the 
simulated coexistence curve best. In particular, the prediction of  the liquid densities 
is much better than that based on first-order perturbation theory. With increasing 
dipolar strength the agreement between the Pad6 approximation and simulation 
results diminishes. For #,2 = 2 (figure 3) the discrepancy between simulated and 
calculated liquid densities starts to show up at high reduced temperatures, and is 
significant for #,2 _> 3 (figures 4 and 5) over the whole temperature range of  the 
simulations. 

Noteworthy is the peculiar behaviour of the Pad6 approximation in the critical 
region. For #,2 _> 2, the shape of the curve changes such that the law of rectilinear 
diameters does not appear to hold. Although at lower temperatures a straight line of 
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Figure 4. Coexistence curve for the Stockmayer fluid with , 2  = 3. The results from Monte 
Carlo simulations in the Gibbs ensemble are given in table 1. Presentation as for 
figure 2. 

averaged densities (= (Pa + pL)/2) is observed, in the critical region this slope 
changes quite drastically. This phenomenon is not observed in coexistence curves 
predicted by first-order perturbation theory. For any value of/z .2 a curved line of 
averaged densities is found. As the MBWR equation of state is used for both 
approximations, any irregularity in the critical region caused by the use of this 
equation should show in both approximations. Therefore, the observed asymmetry 
in the coexistence curve apparently originates from the introduction of the Pad6 
approximation. Inaccuracies introduced by applying equation (5) as the second- 
order correction term may possibly lead to unexpected behaviour in the critical 
region. 

Regarding the coexistence pressures (figure 6), the Pad6 approximation results 
show similar deviations: with increasing dipole moment, perturbation theory predic- 
tions deviate more and more from the simulation results. Pressures are generally 
underpredicted. For quadrupolar systems, qualitatively the same observations have 
been made [45]. 

5.3. I m p r o v e d  reference term 

The application of the MBWR equation of state for the reference fluid, instead of 
using the Verlet-Weis perturbation scheme [12], improves the description of the 
coexistence curve, particularly in the critical region (figure 2). The critical tempera- 
ture is reduced considerably for both 0 (#  4) theory and the Pad6 approximation. 
Although the latter theory best approximates the critical point as estimated via 
Gibbs ensemble simulations, the (predicted) critical temperature is still too high. 
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Figure 5. Coexistence curve for the Stockmayer fluid with #.2 = 4. The results from Monte 
Carlo simulations in the Gibbs ensemble are given in table 2. The coexistence curve 
predicted by perturbation theory to order #4 is not plotted in the figure, because of the 
large deviations�9 Presentation as for figure 2. 

This can be assigned-at least part ly- to the overestimation of the critical temperature 
of the Lennard-Jones fluid by the MBWR equation of state. This equation was based 
upon computer simulation results from various sources. In most cases conventional 
(molecular dynamics and Monte Carlo) simulations were used to generate equilib- 
rium data. The critical temperature of the Lennard-Jones fluid estimated in the 
canonical ensemble is overestimated due to finite-size effects [58]. In the Gibbs 
ensemble finite-size effects partly cancel, and the simulations yield a better estimate 
of the critical point [41]. The MBWR equation of state is constrained to satisfy the 
critical point conditions (estimated via conventional simulations) and yields 
T c = 1 "35 whereas, from more recent Gibbs ensemble simulations [28, 56], it follows 
t h a t  T ;  LJ ~ 1.316-4-0.006. If  plenty of accurate Lennard-Jones data become avail- 
able, to which the MBWR equation of  state can be refitted, this should further 
improve the description of the Stockmayer fluid with perturbation theory. 

6. Conclusion 

We have presented Gibbs ensemble simulation data for the Stockmayer fluid with 
/z .2 = 3.0 and #,2 = 4.0, and compared these with predictions based on perturbation 
theories devised by Stell et al. [11, 12]. 

The perturbation theory second virial coefficients agree well with exact values�9 
Perturbation theory is capable of describing the low-density region of Stockmayer 
fluids with #,2 < 4. For high values of the dipole moment, the Pad6 approximation 
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Figure 6. Comparison of the simulated coexistence (vapour) pressures and predictions of the 
Pad6 approximation. The simulation results are given with error bars (�9 # , 2 =  1; 
n,  #,2 = 2; A, #,2 = 3; <>, #.2 = 4). The dashed line represents results of perturbation 
theory to order #4, the dotted line results of the Pad6 approximation. Results of 
calculations for the same dipole moment are joined by braces. 

o f  pe r tu rba t ion  theory  deviates significantly f rom the s imulated coexistence curves in 
density and  pressure.  C o m p a r e d  with 0 ( #  4) theory,  however ,  it is a far  bet ter  
a pp rox ima t ion  of  the S tockmayer  fluid coexistence curve. 

The  descript ion o f  the reference fluid is improved  by applying the M B W R  
equat ion  of  state [37] instead of  the Ver le t -Weis  implementa t ion  of  the W C A  
per tu rba t ion  scheme. The  critical poin t  o f  the reference fluid and,  with it, that  o f  
the S tockmayer  fluid, is still overest imated.  M o r e  impor t an t  is tha t  the behav iour  in 
the critical region o f  the Pad6 app rox ima t ion  is not  satisfactory.  
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Figure 7. Comparison of the critical temperature T~* as a function of the square of the 
reduced dipole moment (#,2) as estimated from Gibbs ensemble simulations (�9 and as 
calculated with perturbation theory to order/z 4 (<>) and Pad6 approximation (A). The 
line is a smoothed function through the simulation data as a guide for the eye. 
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Table 1. Results of the Monte Carlo simulations in the Gibbs ensemble for the Stockmayer 
fluid with . 2  = 3.0. N is the number of particles used in the simulation, T* denotes the 
reduced temperature (= knT/e!, p* the reduced particle density (= pa3), p* denotes the 
reduced pressure (= pa3/e), E is the reduced internal energy (= E/e), #' denotes the 
reduced residual chemical potential. Subscripts G and L refer to the gas and the liquid 
phase, respectively. The number of cycles was 5000 for all runs. 

Gas Phase Liquid Phase 

N T* pb ~ e~ ub p~ e~ E~ ~s 

216 1.40 0"0174 0"0204 -0"52 -6"22 0"731 0-023 -8"71 -61 
216 1-45 0"0243 0"0284 -0'61 -6-01 0"711 0"054 -8-41 -6"26 
216 1"50 0"0356 0"0374 -0"92 -5'82 0-6879 0"053 - 8 " 2 1  -6"07 
216 1"55 0"0446 0-0475 - 1 " 0 1  -5"81 0"661 0"054 -7"91  -5"94 
216 1"60 0 '0538  0"0566 -1.22 -5-71 0"621 0-054 -7-41 -5"94 
216 1"65 0-07 t 0-0707 -1"63 -5"71 0"602 0"072 -7"22 -5"85 
512 1"70 0"101 0"0936 -2"02 -5'61 0-571 0'103 -6"81  -5-6s 
512 1-75 0"112 0"101 -2"03 -5-618 0"512 0"113 -6"32 -5"52 
512 1"775 0"142 0.121 -2"54 -5"51 0'503 0-123 -6"22 -5'94 

Table 2. Results of the Monte Carlo simulations in the Gibbs ensemble for the Stockmayer 
fluid with #,2 = 4.0. For definition of parameters see table 1. 

Gas Phase Liquid Phase 

216 1"65 0"0195 0-0254 -0.83 -7.23 0-701 0"034 -9"91 -71 
216 1.70 0"0327 0-0375 -1.33 -6"92 0"681 0-025 -9"61 -72 
216 1-75 0"0367 0.0447 -1-33 -6"92 0"651 0"045 -9 "3 1  -6"66 
216 1"80 0"0487 0"0568 -1.73 -6"81 0'632 0-065 -9"02 -6"63 
512 1.85 0"0506 0"0625 -1"72 -6"91 0"602 0-084 -8'62 -6"87 
512 1.90 0"07010 0"0847 -2.33 -6.644 0"581 0"094 -8-31 -7'07 
512 1"925 0"08012 0"0887 -2.33 -6"71 0"561 0" 103 -8-11 -6"63 
512 1-95 0"08210 0-0948 -2.34 -6"71 0"511 0"063 -7 "6 1  -6-77 
512 1-975 0"09217 0-0968 -2-54 -6-71 0"502 0"113 -7"52 -6-74 
512 2.00 0.122 0 .1096 -3-04 -6"51 0"503 0"123 -7"43 -6"65 
512 2.025 0'121 0"122 -3"12 -6'62 0-462 0"145 -7"32 -6"46 

Table 3. Critical temperatures and densities for Stockmayer fluids of various dipolar 
strengths. The critical temperature and density were estimated from fitting the 
simulation results to the law of rectilinear diameters and to a scaling law for the 
density [46], with critical exponent j3 = 0.32 [57]. Values for the Lennard-Jones fluid 
(#,2 = O) are given as well. 

#*2 ~ p~ Reference 

0 1.3166 0"3046 [56] 
1 1"411 0"301 [29] 
2 1"601 0-31j [29] 
3 1"821 0-3129 this work 
4 2"061 0.289 s this work 
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It is a known fact that perturbation theory is not as good with respect to 
predictions of structure [13, 59-61]. According to Goldman [62] the thermodynamic 
predictions are subject to a partial error cancellation. Since we now have simulation 
results for higher dipole moments than Goldman refers to, we find that his obser- 
vation is limited up to values of #,2 <_ 2. We agree with the remarks of Verlet and 
Weis [15] concerning the agreement with computer results for single-phase data: 'it 
should be realized that the Pad6 approximant is used to tame a wildly diverging 
series: the agreement obtained is therefore a great success'. Here, we have shown that 
the discrepancy between perturbation theory and computer simulations at higher 
dipole moment is indeed 'real'. 

Since the RHNC approximation [8] yields better predictions of the static 
dielectric constant, it would be worthwhile comparing the simulation results with 
integral theory predictions of coexistence properties for such high dipole moments. 

After completion of this work, we received a preprint of work done by J. K. 
Johnson, J. A. Zollweg, and K. E. Gubbins (submitted to Molec. Phys., 1992). They 
report a new set of parameters for the modified Benedict-Webb-Rubin equation of 
state, based on more accurate simulation results for the Lennard-Jones fluid. 

In section 5 we suggest that this will improve the description of the Stockmayer 
fluid with perturbation theory. As expected, the critical temperature indeed reduces 
slightly: for #.2 = 4 it reduces from Tc* ---- 2-238 (old parameter set) to 2-214 (new 
parameter set). Compared with the critical temperature estimated from computer 
simulation results (T~* = 2.06), however, it is seen that the discrepancy between 
theory and simulation results remains of the same order of magnitude. In the critical 
region, the deviation of the straight line of averaged densities is still found, although 
the deviation is less abrupt. 
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