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Abstract: 

Conventional VAR estimation and forecasting ignores the fact that economic data are

often subject to revision many months or years after their initial release.  This paper

shows how VAR analysis can be modified to account for such revisions.  The proposed

approach assumes that government statistical releases are efficient with a finite lag.  It

takes no stand on whether earlier revisions are “noise” or “news.”  The technique is

illustrated using data on employment and the unemployment rate, real GDP and the

unemployment rate, and real GDP and the GDP/consumption ratio.  In each case, the

proposed procedure outperforms conventional VAR analysis and the more-restrictive

methods for handling the data-revision problem that are found in the existing literature.
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I. INTRODUCTION

The Problem.  With the exception of securities and commodity prices and surveys of

forecasts and attitudes few macroeconomic data escape revision.  Admittedly, a handful

of important series–household-survey employment and unemployment, the consumer

price index, and the Institute for Supply Management survey, for example–are revised

only as the result of changes in estimated seasonal factors, which are typically small. 

However, such important macroeconomic time series as payroll employment, industrial

production, retail sales, the monetary aggregates, and the national income and product

accounts (NIPA) are subject to large revisions spread over many months or even years. 

Revisions fall into several categories.  Routine revisions reflect the gradual arrival of

more complete source data, updates to seasonal factors, and tabulation-error corrections. 

Updates to the weights used to calculate NIPA price and quantity indexes once had large,

predictable effects, but qualify as “routine” now that weighting is chained rather than

fixed.  Most difficult to deal with are methodological revisions, which occur irregularly

and sometimes have far-reaching implications.

Conventional vector auto-regression (VAR) analysis uses current-vintage data

throughout.  Most “real-time” recursive analyses simply reproduce conventional practice

after the fact, by assuming that a forecaster would have used latest-available data to

obtain coefficient estimates at each point in time.  As the sample period is extended, old

data are thrown out, and replaced with new.

The problem with conventional practice is that it mixes apples and oranges.  Data

toward the tail end of the sample (oranges) have undergone little or no revision.  Data

early in the sample (apples) have been heavily revised.  For most series and typical

sample sizes, heavily revised data dominate VAR estimation.  Consequently, the VAR

approximates the dynamic relationship between apples and apples.  However, the data

that are substituted into the VAR equations to generate a forecast are end-of-sample

oranges (lightly revised or first-release).  Essentially, conventional practice constructs a
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cider press and then feeds oranges into it, expecting–somehow–to get cider.

Solutions.  To improve on conventional VAR estimation and forecasting, one must make

some assumption about the nature of data revisions.  An appealing starting point is the

classical measurement-error model, according to which government statistical releases

equal the truth plus white-noise error.  The Kalman filter can, in principle, be applied to

extract estimates of the truth from the noisy government releases and to construct optimal

forecasts.  In empirical practice, however, the white-noise-error assumption often appears

counterfactual.  Moreover, convergence of coefficient estimates can be difficult to

achieve if the number of unobserved state variables is large.  To get around the first of

these problems, Howrey (1978, 1984) allows measurement errors to be serially correlated. 

To get around the second, he assumes that the truth is observable with a finite lag, which

allows direct ordinary-least-squares estimation of the state and observation equations.

Sargent (1989) questions the classical measurement-error model of government

statistical releases more fundamentally, proposing an alternative model in which the

statistical agency itself applies the Kalman filter to noisy source data to produce an

efficient estimate of the truth.  (Efficient estimates make full use of available information,

so that subsequent revisions are completely unpredictable–i.e., are pure “news.”)  It is this

efficient estimate–possibly contaminated by small white-noise “typos”–that is released to

the public.  To limit complexity, Sargent rules out the arrival of new source data directly

informative about earlier states.  Still, implementation is challenging, and Sargent’s

proposed estimation and forecasting methodology has not found widespread application.

This paper generalizes Howrey’s methodology to allow for the possibility that the

government statistical agency filters source data in the manner described by Sargent. 

Alternatively, the paper generalizes Sargent by allowing both for late-arriving source data

and the possibility that early source data are not filtered by the statistical agency.  More

precisely, we assume that government statistical releases are fully efficient after a finite
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number, e, of rounds of revision, and we treat these efficient releases as “truth” for

estimation and forecasting purposes.  However, we avoid restrictive assumptions about

earlier releases.  They may be efficient estimates plus typos, as proposed by Sargent. 

They may be truth plus white noise, as in the classical measurement-error model.  Or, they

may be truth plus serially correlated measurement error, as proposed by Howrey.

Estimation and forecasting are accomplished in three steps.  First, we use OLS to

estimate a VAR in e -revision data.  The VAR coefficients determine a state equation thatth

relates apples to apples.  Second, we use OLS to estimate a collection of equations that

govern earlier revisions.  These coefficients determine an observation equation that gives

oranges as a function of apples.  Third, we apply the Kalman filter to the state and

observation equations to obtain estimates of current truth (convert current oranges into

apples) and produce forecasts of future truth.

The efficiency-in-finite-time assumption that we employ is plausible with respect

to routine revisions and, perhaps, minor methodological changes, and finds support in our

empirical examples.  However, major methodological revisions probably ought to be

treated as structural breaks, handled by other means (e.g., dummy variables).

Other Related Work.  Other recent papers concerned with estimation and forecasting

using data that may be inaccurate or subject to revision include Croushore and Evans

(2002); Morley, Nelson and Zivot (2003); and Koenig, Dolmas and Piger (2003).

Croushore and Evans develop an instrumental-variables methodology for

estimating the VAR that relates truth to lagged truth (apples to lagged apples).  They are

unconcerned with the forecasting problem (which requires converting oranges into

apples). The Croushore-Evans methodology assumes that after a sufficiently large number

of revisions, government statistical releases are consistent with the classical

measurement-error model–just the opposite of the assumption made here, that

government statistical releases are eventually fully efficient.
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Morley, Nelson and Zivot question whether the white-noise measurement-error

hypothesis is appropriate when trying to separate observed output into trend and cyclical

components.  Their analysis takes place in a uni-variate setting where the state variable

(trend output) is non-stationary and observed output is never revised.

The Koenig-Dolmas-Piger analysis deals with the apples and oranges problem

discussed here, but is limited to single-equation estimation and forecasting in an economy

where early government estimates of the forecasted variable are fully efficient. 

Outline.  We start by presenting simple first-pass tests of the efficiency of two important

government statistical releases.  The methodology we propose is unlikely to perform well

unless efficiency is a reasonable approximation after relatively few rounds of revisions. 

Otherwise, the dimensionality of the estimation problem becomes unmanageable.  In

Section III, we develop our formal model of the revision process.  Estimation and

forecasting are discussed in Section IV.  In Section V, we consider three simple empirical

examples: a model of the joint dynamics of GDP growth and the GDP/consumption ratio,

a model of payroll employment and the unemployment rate, and a model of GDP growth

and the unemployment rate.  In each case, we find that our proposed methodology

performs better, in real time, than a VAR analysis that ignores the data-revision problem. 

Our methodology also outperforms the Kalman filter when the filter is applied assuming

white-noise or Howrey-style measurement error.  Section VI concludes.

II. DATA REVISIONS: NOISE OR NEWS?

The classical measurement-error model assumes that government releases equal

the truth plus noise that is orthogonal to the truth.  However, the behavior of many series

seems more consistent with the efficiency hypothesis, according to which revisions are

unpredictable “news.” Consider, for example, two of our most important coincident



  Our empirical examples also involve the unemployment rate.  However,  revisions to1

the unemployment rate–due entirely to re-estimation of seasonal factors–are tiny.
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economic indicators: payroll-employment growth and real-GDP growth.  As a first-pass

test of the efficiency of official estimates of these variables, we regress heavily revised

jobs-growth and GDP-growth data on a constant and relatively early government

estimates of the same variables.   According to the classical model, if an early statistical1

release is unusually high, it’s probably partly because it contains positive measurement

error–error that will subsequently be revised away.  Consequently, the slope coefficient in

our regression should be significantly less than 1.  If, on the other hand, early government

releases are efficient, then revisions will be unpredictable, and the constant and slope

coefficient should not be significantly different from 0 and 1, respectively.  

Results are displayed in Table 1.  Only for first-release GDP growth is the

efficiency hypothesis rejected at the 5-percent level.  Even in this case, elimination of a

single statistical outlier (for the year 1975) is sufficient to reverse the test result.

These findings are, of course, not definitive.  In more stringent tests presented

below, we find first and second-round revisions to jobs and output growth are at least

partly predictable once the information set that is brought to bear is expanded to include a

measure of macroeconomic slack.  The point of Table 1 is simply that the realism of the

classical measurement-error model is open to serious question.

III. THE REVISIONS MODEL

Basics.  We assume that government statistical estimates become fully efficient after a

finite number of revisions, and model the revision process only up to that point.  Trying to

forecast subsequent revisions is useless–or even worse than useless, given degrees-of-

freedom constraints.  More controversially, perhaps, we assume that new estimates of

long-ago data contain negligible marginal information about the economy’s current state. 
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Some such assumption is implicit in any finite-dimension VAR.

Formally, let P(t) denote the true period-t values of an n×1 vector of variables of

interest, and let x(t, s) denote the official estimate of P(t) released in period s $ t.  We

t+eassume there exists a fixed, finite e such that x(t, t+e) = E [P(t)].  That is, an efficient

estimate of P(t) is announced (no more than) e periods after the initial statistical release. 

sThis assumption is trivially satisfied if the e  revision is final.  Since E [P(t)] =th

s t+e sE E [P(t)] = E [x(t, t+e)] for any s # t+e, forecasting x(t, t+e) amounts to forecasting P(t). 

Indeed, because P(t) equals x(t, t+e) plus unforecastable noise, the finite-sample

coefficient estimates obtained by relating x(t, t+e) to a given information set are more

precise than those obtained by relating P(t) to the same set (Koenig, Dolmas and Piger

2003).  It will be convenient to denote by x(t) the efficient estimate of P(t) that becomes

available in period t+e.

We assume that a VAR relates e  revision data to lagged e  revision data (applesth th

to apples).  In particular, 

0 0x(t) = F x(t-1) + < (t), (1)

0 0where all the roots of F  are of modulus less than 1 and where < (t) is vector white-noise

0 0 0error, so that E[< (t)] = 0 and E[< (t)< '(s)] = 0 for all s =\  t.  It may be necessary to

“stack” x to reduce its dynamics to a first-order system.

The next step in our analysis is to model the government statistical releases that

precede the e  revision.  We seek a formulation that is general enough to encompass theth

Howrey and Sargent models of how these early government statistical releases are

generated.

Howrey’s Revisions Model.  In Howrey’s revisions model, oranges are apples plus an

error:



 An appendix demonstrates that a revisions model of the Howrey form is obtained if2

source data received each period are “truth” plus white-noise measurement error, and

government statisticians pool current and past source data to obtain their public estimates.
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ŷ(t) = ẑ(t) + 0(t), (2)

 

where ŷ'(t) / [x'(t-e+1, t) x'(t-e+2, t)... x'(t, t)] is a stacked vector of first-release and

lightly revised data (oranges) and ẑ'(t) / [x'(t-e+1) x'(t-e+2)... x'(t)] is a stacked vector of

heavily revised data (apples).  The error vector, 0(t), follows a first-order auto-regressive

process with a white-noise innovation vector:2

0(t) = 70(t-1) + L(t), (3)

where the roots of 7 are all of modulus less than 1.  It follows that

ŷ(t) = ẑ(t) + 7[ŷ(t-1) - ẑ(t-1)] + L(t), (4)

and 

ŷ(t) - ẑ(t) = 7 L(t-i).  (5)i 

Note that the government’s estimation errors are completely independent of the

innovations in Equation 1.  The classical measurement-error model is the special case

where 7 = 0, so that the government’s estimation errors are pure white-noise.  

Sargent-Style Revisions.  Alternatively, in the spirit of Sargent (1989), suppose that the

government applies the Kalman filter to noisy source data as it arrives, and announces the

filtered estimates plus “typos.”  In particular, suppose that new source data received in
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period t equal the “truth” plus vector white-noise measurement error:

w(t) = z(t) + T(t) (6)

where 

z'(t) / [x'(t-e) x'(t-e+1) ... x'(t)] = [x'(t-e) ẑ'(t)],

w'(t) / [x'(t-e, t) w'(t-e+1, t) ... w'(t, t)],

e-1 e-2 1 0T'(t) / [0 T '(t) T '(t) ... T '(t) T '(t)],

and w(s, t) is the new source data related to x(s) that is released in period t $ s.  Source

data are not directly available to the outside analyst.  From the government’s perspective,

however, Equation 6 is the observation equation for a state-space model.  The state

equation is:

z(t) = Fz(t-1) + <(t), (7)

where 

|0    I    0    0  @@@    0 |

F / |0    0    I    0  @@@    0 |

| @     @     @     @  @@@    @ |

| @     @     @     @  @@@    @ |

|0    0    0    0  @@@   I |

0|0    0    0    0  @@@  F |

and

0<'(t) / [0 0 0 ... 0 < '(t)].



 See, for example, Hamilton (1994, Chap. 13).3
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If government statisticians apply the Kalman filter to Equations 6 and 7, their published

estimates will obey a standard updating formula:3

y(t) = Fy(t-1) + G [w(t) - Fy(t-1)], (8)*

where

y'(t) / [x'(t-e, t) x'(t-e+1, t) ... x'(t, t)] = [x'(t-e) ŷ'(t)]

is a stacked vector of government statistical releases,

G  = P(P + R) ,* -1

R / E[T(t)T'(t)],

Q / E[<(t)<'(t)],

and P is the solution to the matrix equation

P = F[P - P(P + R) P]F' + Q.-1

Equation 8 says that the government’s state-vector estimate, y(t), is a weighted average of

the latest source data, w(t), and an extrapolation, Fy(t-1), from last period’s state estimate. 

Since the first vector elements of y(t) and w(t) are identical to one another, the first

matrix row of G  must consist of an identity matrix followed by a string of zero matrices. *

What else can we infer about G ?  Working backward, Equation 8 implies*



10

y(t) = [(I - G )F]  y(t-e) +  [(I - G )F]  G w(t-i). (9)* *e i *

 

Direct calculation establishes that the first matrix column and row of (I - G )F consist*

entirely of zero matrices.  By recursion, the first matrix column and row of [(I - G )F]* e

also consist entirely of zero matrices.  Hence, x(t-2e, t-e)–the first element of y(t-e)–is

irrelevant for y(t) in Equation 9.  The second element of y(t-e) is x(t-2e+1, t-e), which is

an imperfect estimate of x(t-2e+1).  Since x(t-2e+1) itself is in the government’s

observation set in period t [it is included in w(t-e+1)], x(t-2e+1, t-e) must receive zero

weight in Equation 9.  The same argument applies to all of the other components of y(t-e),

up through and including the last component, x(t-e, t-e).  In other words, the G  weighting*

matrix must satisfy [(I - G )F]  = 0.  * e

We can generalize Equation 8 by allowing small errors–what Sargent calls

“typos”–to creep into the government’s calculations:

y(t) = Fy(t-1) + G [w(t) - Fy(t-1)] + >(t), (10)*

where

e-1 e-2 0 >'(t) / [0 > '(t) > '(t) ... > '(t)] 

is vector white noise.  Implicitly, at each stage the government doesn’t realize that its

previous estimate was contaminated.  Consequently, typos persist (although the weight on

past typos diminishes as new source information arrives).  

An Encompassing Model.  A state-space formulation that encompasses the Howrey and

Sargent models of the early-revision process is:
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z(t) = Fz(t-1) + <(t) (7)

y(t) = (I - G)Fy(t-1) + Gz(t) + g(t), (11)

where

| I   0    0     @@@           0 |

e-1,e e-1,e-1  e-1,e-2 e-1,0G / |G   G G  @@@          G |

e-2,e e-2,e-1 e-2,0|G   G    @     @@@      G |

| @      @      @      @@@       @ |

| @      @      @      @@@       @ |

1,e 1,e-1 1,0|G     G     @     @@@      G |

0,e 0,e-1 0,0|G     G     @     @@@      G |,

and 

e-1 e-2 0g'(t) / [0 g '(t) g '(t) ... g '(t)].  

The state-equation and observation-equation error vectors are assumed to be uncorrelated

with one another at all leads and lags, and to be serially uncorrelated.  The Sargent model

in the special case where G = G , [(I - G)F]  = 0, and g(t) = GT(t) + >(t).* e

To see that the Howrey model is also a special case, note that Equations 7 and 11

imply that 

y(t) - z(t) = (I - G)F[y(t-1) - z(t-1)] + g(t) - (I - G)<(t). (12)

The corresponding equation in the Howrey model is Equation 4.  The two formulations

are equivalent when g'(t) = [0 | L'(t)] and
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| 0    0   @ @ @   0    0 |

        G = I - |     0 |_   _   _   _   _   _   _   _

|     @ || 

| 7      @ ||

|      @ ||

|     0 |, (13)|

so that

 

|  0     0   @ @ @   0    0 |

   (I - G)F = |  0   |_ _   _   _   _   _   _   _   _

|  @       || 

       7|  @   ||

|  @        ||

|  0     |.|

As already noted, the classical model is obtained from Howrey’s model by setting 7 = 0,

in which case G = I.

Equation 12 implies that the government’s estimation errors are governed by

y(t) - z(t) = [(I - G)F] [g(t-i) - (I - G)<(t-i)]. (14)i

A key, distinguishing feature of the Howrey special case is that (I - G)<(t-i) = 0, so that

the right-hand side of Equation 14 is uncorrelated with the error in the state equation. 

Since it requires that [(I - G)F]  = 0, an important implication of the Sargent model is thate

the right-hand side of Equation 14 is a MA(e - 1) process.

Summary.  As long as one is willing to treat government estimates as “final” after a

sufficiently large number of revisions (even if the estimates are really not final), then the

dynamics of earlier revisions can be captured using a state-space model in which both the



 Admittedly, by treating partly revised data as final, one artificially restricts the size of4

the information set upon which forecasts will be conditioned.  (Revisions to data more than e

periods back are excluded.)  There’s nothing to prevent one from choosing a larger value for e,

however, if the current value is too limiting.

 When e = 1, only Equations 15 and 16e apply.5
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state-equation and observation-equation errors are vector white noise.  The state-space

specification (Equations 7 and 11) is general enough to encompass the classical white-

noise-measurement-error model, the Howrey model of serially correlated measurement

error, and the Sargent “news plus typos” model of early revisions as special cases. 

Moreover, as long as the government estimates that are being treated as final are fully

efficient, then the law of iterated projections says that forecasting these estimates is

equivalent to forecasting the truth, even if the truth is never directly observed.   Hence,4

the key to good forecasting is obtaining accurate estimates of the F and G matrices that

enter Equations 7 and 11.  It is to this problem that we now turn.

IV. ESTIMATION AND FORECASTING

Proposed Approach.  We begin by writing out the relevant portions of Equations 7 and

11 (rearranging slightly):5

0 0x(t) = F  x(t-1) + < (t) (15)

e-1,e-jx(t-e+1, t) - x(t-e+1, t-1) =  3  G [x(t-e+j) - x(t-e+j, t-1)] +e-1

j =  0

e-1,0 0 e-1G [x(t) - F x(t-1, t-1)] + g (t) (16.1)

e-2,e-jx(t-e+2, t) - x(t-e+2, t-1) =  3  G [x(t-e+j) - x(t-e+j, t-1)] +e-1

j =  0

e-2,0 0 e-2G [x(t) - F x(t-1, t-1)] + g (t) (16.2)

.

.
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1,e-jx(t-1, t) - x(t-1, t-1) =  3  G [x(t-e+j) - x(t-e+j, t-1)] +e-1

     j =  0

1,0 0 1      G [x(t) - F x(t-1, t-1)] + g (t)          (16.e-1)

0 0,e-jx(t, t) = F  x(t-1, t-1) + 3  G [x(t-e+j) - x(t-e+j, t-1)] +e-1

       j =  0

0,0 0 0     G [x(t) - F x(t-1, t-1)] + g (t). (16.e)

Because g(t) and <(t) are serially uncorrelated, and uncorrelated with one another at all

leads and lags, estimation of Equations 15 and 16 does not pose any special problems,

0apart from accounting for the cross-equation restrictions on F .  Recalling that each x

vector is n×1, there are a total of n  F-matrix coefficients and e×(e + 1)×n  G-matrix2 2

coefficients to estimate.  Obviously, degrees of freedom will suffer if e is large.  The

0,0 1,0 2,0 e-1,0Howrey model is obtained in the special case where G  = I and G  = G  = ... = G  =

0; while G = I in the classical measurement-error model (c.f. Equation 13).  These

restrictions are easily tested.  Unfortunately, the same cannot be said of the Sargent-model

restrictions, which are highly non-linear in the estimated coefficients.

The analyst more interested in forecasting than in hypothesis testing can avoid

non-linear, simultaneous estimation of Equations 15 and 16 by using a two-step

0 0procedure.  First, apply OLS to Equation 15 to obtain an estimate, +F ,, of F .  This

0amounts to estimating a VAR in e -revision data.  Second, substitute +F , into each of theth

remaining equations and apply OLS.  Despite potential correlation between disturbance

terms, SUR is unnecessary, because each equation in 16 has the same set of right-hand-

side variables.  The presence of generated regressors means that coefficient standard

errors from the second-step regressions cannot be trusted.

Suppose that estimates of F and G have been obtained from Equations 15 and 16

using data through period T.  It is then a simple matter to apply the Kalman filter to the

T state-space model defined by Equations 7 and 11 to obtain an estimate, 5 z'(T) = [x'(T-e)

T T T5  x'(T-e+1) 5  x'(T-e+2) ... 5  x'(T)], of the current state vector.  Forecasts are generated
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in the obvious way:

T T T 0 T+P(T + i), = +x(T + i), = +F ,  5  x(T) (17)i

T Tfor i = 0, 1, 2, ... , where +P(T + i), and +x(T + i), are the period-T forecasted values of

T 0P(T + i) and x(T + i), respectively, and where +F , is the estimated coefficient matrix

from Equation 15.  If desired, state-vector forecasts can be substituted back into Equation

11 to produce forecasts of future initial-release and lightly revised data.

Conventional Approach.  If available data run from t = 0 through t = T, standard

econometric procedure would be to apply OLS to estimate a VAR in vintage-T data:

0 0x(t, T) = F  x(t-1, T) + < (t) (18)

for t = 1, 2,...T.  Forecasts are prepared by substituting latest-available data into the right-

hand-side of the estimated equation:

T T 0+P(T + i), = +F ,  x(T, T) (19)i

T T 0for i = 1, 2,... , where +P(T + i), is the period-T forecasted value of P(T + i) and +F , is

the estimated coefficient matrix from Equation 18.  When they become available, the

VAR is re-estimated, and new forecasts prepared, with period-T+1-vintage data. 

Diebold-Rudebusch-style real-time analysis simply reproduces conventional practice after

the fact (Diebold and Rudebusch 1991).

As noted in the introduction, conventional practice mixes apples and oranges.  For

example, the sample used to estimate Equation 18 contains both data that have seen many

rounds of revisions (t << T) and data that are first release or only lightly revised (t . T),

even though the dynamics of the former will not generally be the same as the dynamics of



 See Blanchard and Quah (1989) and Evans (1989) for more thorough analyses of the6

joint dynamics of output and unemployment.
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the latter.  Our approach eliminates this estimation-stage inconsistency by including only

e -revision data in Equation 15.th

0In practice, heavily revised data so dominate most samples that estimates of F

obtained from Equation 18 will often not be much different from those obtained from

Equation 15.  However, heavily revised data’s dominance during estimation creates a

problem for forecasting because the data that are substituted into the estimated VAR to

generate a forecast are lightly revised or first release (c.f. Equation 19).  Our approach

eliminates this forecast-stage inconsistency by converting end-of-sample oranges into

apples before substituting them into the VAR (c.f. Equation 17).

V. EMPIRICAL EXAMPLES

The Models.  We use three simple, two-variable dynamic linear systems to demonstrate

the usefulness of our procedures.  The first bivariate model includes real GDP growth and

the output–consumption ratio.  The motivation comes from Cochrane (1994), who shows

that real output and consumption are co-integrated in the U.S. economy and that any

deviation from the long-run relationship between output and consumption has strong

predictive power for output growth.  The second model includes payroll employment

growth and the unemployment rate.  Here, the motivation comes from the observation that

deviations in the unemployment rate tend to be corrected, over time, through unusually

rapid or unusually sluggish subsequent employment growth.  Substitute real GDP growth

for employment growth in this story, and you get our third model.  6

In each case, we want to see whether our estimation and forecasting method yields

more accurate real-time forecasts than methods which either ignore the apples and



 All data are from the real-time data set compiled by the Federal Reserve Bank of7

Philadelphia.  They span the period from 1966 through 2003.  “Initial release” second-quarter

GDP and consumption data are true initial releases, published at the end of July.  The July release

typically also reflects annual revisions to the NIPA.  We use March data in our model of jobs

growth and unemployment because March is the benchmark month for payroll employment

revisions.  However, we use data for March as they appeared at the time of the benchmark

revision, which has typically had a June release date.  The consumption measure we use in

constructing the output–consumption ratio is the sum of household expenditures on non-durables

and on services.  The real-time output–consumption ratio has discontinuities in 1976, 1986 and

1992 due to changes in base years and in 1996 due to the move to chain weights.  In each case,

we shift the new data upward or downward, as necessary, to eliminate any jump in the series.
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oranges problem or which make restrictive assumptions about the revisions process.  We

also want to see how badly recursive forecasting exercises that use current-vintage data

distort the forecasting performance that is actually achievable in real time.

We use only one observation per year for each variable.  Thus, we measure real

GDP growth from Q2 to Q2,  jobs growth from March to March, and the output–

consumption ratio in Q2.  We use the Q2 average unemployment rate in our GDP–

unemployment model and the March unemployment rate in our jobs–unemployment

model.  Our “first revision” data consist of government estimates available one year after

the initial release.  Our “second revision” data consist of government estimates available

two years after the initial release.   For purposes of measuring forecast performance, our7

“truth” is 2003-vintage data (the latest data available when most of this analysis was

completed).  By using annual observations, we keep lag lengths short.  Also, official

GDP, consumption, and jobs estimates are all subject to major annual revisions, which are

easiest to model when data are sampled at an annual frequency.

Preliminaries.  Our method assumes that government statistical releases become efficient

estimates of the truth after some finite number, e, of revisions.  To test the efficiency

assumption and find a realistic value for e, we ran orthogonality tests, regressing 

P(t) - x(t, t+e) on y(t+e) for alternative values of e.  (Here, y(t) is defined as in Equation
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11, and P(t) is, in practice, 2003-vintage data.)  Results, displayed in Table 2, are

consistent across the models.  Efficiency is rejected (at the 5-percent level) for e = 1, but

not for e = 2.  Accordingly, all of our estimations assume e = 2. 

To reduce the error term in Equation 15 to vector white noise, it was necessary to

stack x(t) to include both current and one lag of the variables in each model.

 

Forecasting the Truth.  Table 3 presents results from recursive, one-step-ahead

forecasting exercises over the ten years from 1992 through 2001.  In every case, forecasts

are compared with 2003-vintage data.  The first row of results, labeled “Current Vintage,”

shows root-mean-square errors obtained from a recursive analysis in which all data used

in estimation and forecasting are the latest currently available.  Thus, 2003-vintage data

running through 1991 are used to estimate a VAR that is, in turn, used to forecast 1992. 

The sample is extended through 1992 to produce a new VAR estimate, used to forecast

1993, and so forth.  Obviously, 2003-vintage data would not actually have been available

in 1991 or 1992, so the root-mean-square errors obtained in this way are likely to be

unrealistically low.  The results are of interest only because similar forecasting exercises

are common in the empirical macroeconomics literature.

Many real-time analyses use end-of-sample vintage data for estimation.  Thus,

1992 forecasts are generated from a VAR estimated using 1991-vintage data, 1993

forecasts from a VAR estimated using 1992-vintage data, and so forth (Diebold and

Rudebusch 1991).  This approach is useful for showing how conventional estimation,

using latest-available data,  performs in real time.  In Table 3, estimation using end-of-

sample vintage data yields the recursive forecasting results labeled “Diebold-Rudebusch.” 

As expected, root-mean-square errors are uniformly larger than those in the “Current

Vintage” row, where real-time data limitations are ignored.

End-of-sample vintage data are likely to be dominated by government estimates

that have undergone many rounds of revisions.  However, the most recent observations in
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any sample will be first release, and forecasts generated by substituting first-release data

into an equation fitted to heavily revised data are not likely to be optimal.  This is the

apples-and-oranges problem that is the focus of our paper.  In principle, the Kalman filter

can be used to convert end-of-sample oranges into the apples needed for proper

forecasting.  How well the Kalman filter performs in practice, however, depends on

whether one correctly models the data-revision process.  The results in the final three

rows of Table 3 are obtained when the Kalman filter is applied to the state-space model

defined by Equations 7 and 11 under various assumptions about the G matrix in Equation

11.  Results in the row labeled “Classical” are obtained when G = I, as assumed by the

classical measurement error model.  Results in the row labeled “Howrey” are obtained

when G takes the form specified in Equation 13.  Finally, results in the row labeled

“Kishor-Koenig” are obtained when G is left entirely unrestricted, which allows for the

possibility that government estimation errors are correlated with innovations in the state-

equation VAR, as implied by Sargent’s data-revision model.  In all three cases, we use the

0simple two-step procedure described in Section IV to estimate first F , then G.

With classical measurement-error restrictions imposed, the Kalman filter fails to

consistently outperform conventional real-time estimation and forecasting.  (Compare the

root-mean-square errors reported in the second and third rows of Table 3.)  Allowing

measurement errors to be serially correlated (the Howrey model) yields improvement

relative to the classical model, but not always enough to beat out the conventional

(Diebold-Rudebusch) approach.  However, when restrictions on the observation equation

are entirely eliminated–as proposed here–the Kalman filter comes into its own, producing

superior forecasting performance across the board.  (See the results in Table 3, row 5.)

Note that proper estimation not only improves the forecasting performance of each

particular economic model, but also can change the rank ordering of alternative models. 

For forecasting GDP growth, the results in rows 1-4 of Table 3 all suggest that Model #1,

which uses the output/consumption ratio as an error-correction term, outperforms Model



 P values for the Howrey restrictions on G are 0.0035, 0.0001, and 0.0000 for Models 1,8

2, and 3, respectively. 

 Qualitatively similar results were obtained when forecasting first-revision or second-9

revision data.  Results are available on request.
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#3, which uses the unemployment rate.  (Admittedly, the performance differences are

sometimes small.)  As shown in row 5, however, this result is strongly reversed when the

models are estimated using the methodology proposed here. 

As noted above, the “Classical,” “Howrey,” and “Kishor-Koenig”estimations used

to produce Table-3 forecasting results were all accomplished using the simple two-step

procedure outlined in Section IV: The state equation (a VAR in e -revision data) wasth

estimated first; then variables generated using the state equation were substituted into the

observation equations, and these were estimated by OLS.  However, to obtain the

unbiased variance-covariance matrix needed to test the Howrey revisions model against

our own, more general model, we also did a one-off, full-sample, simultaneous estimation

of the state and observation equations.  Test results indicate that the Howrey-model

restrictions are strongly rejected.8

Forecasting First Releases.  Table 3 assumes that the analyst is interested in forecasting

the truth (or, in any event, data that have undergone many rounds of revision).  Under

some circumstances, however, it may make sense to forecast a relatively early

government statistical release.  Agents’ behaviors may be influenced by early statistical

releases, for example.  Alternatively, a sudden deterioration in one’s ability to forecast

early-release data may be the first sign of a structural shift in the economy.  Accordingly,

Table 4 looks at forecasts of the government’s initial statistical estimates.  Of course, the9

Diebold-Rudebusch methodology–used by most real-world forecasters–makes no

distinction between initial-release and heavily revised data either in estimation or in

forecasting.  So, the “Diebold-Rudebusch” forecasts that are compared with initial-release
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data in Table 4 are exactly the same as those compared with true (2003-vintage) data in

Table 3.  This statement also applies to the “Classical” forecasts in Tables 3 and 4,

because if government statistical estimates are the truth plus white noise, then the best

forecast of the truth is always also the best forecast of the initial release.

Comparing corresponding entries in Tables 3 and 4, root-mean-square errors are

lower for forecasts of initial-release GDP and initial-release jobs growth than for current-

vintage GDP and jobs growth.  For these variables, in other words, it’s easier to predict

the initial release than to predict what the data will eventually look like.  Within Table 4,

just as within Table 3, our approach (“Kishor-Koenig”) produces consistently lower

recursive root-mean-square forecast errors than estimation methods which ignore the

apples-and-oranges problem (“Diebold-Rudebusch”), or which make restrictive

assumptions about the nature of the revision process (“Classical” and “Howrey”).

VI. SUMMARY AND CONCLUSIONS

Data revisions are problematic for VAR forecasting.  Typically, the data which are

substituted into the VAR to generate a forecast have undergone little, if any, revision,

while the sample used to estimate the VAR is dominated by heavily revised data. 

Existing methods for correcting this mis-match are quite restrictive in their assumptions

about the data revision process and, in practice, do not perform consistently better than

methods that ignore the problem entirely.

The VAR estimation and forecasting methodology proposed in this paper is more

flexible than existing approaches, yet easily implemented.  It recognizes that government

statistical releases are subject to multiple rounds of revision, and it allows early revisions

to have both noise and news elements.  A key assumption is that government statistical

releases, at some point, become efficient estimates of the truth.  The methodology

dominates alternatives in empirical forecasting exercises. 
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APPENDIX: Serial Correlation of Government Estimation Errors

Serial correlation of government estimation errors arises naturally if newly arriving

source data is the truth plus white-noise measurement error, and officials pool new source data

with old.  To see this, consider, the case where e = 2, so that x(t) / x(t, t+2) is a fully efficient

estimate of P(t).  In period t, the government collects source data w(t, t) pertaining to x(t), and

source data w(t-1, t) pertaining to x(t-1).  We assume that

0w(t, t) = x(t) + T (t) (A.1)

and

1w(t-1, t) = x(t-1) + T (t) (A.1')

0 1where T (t) and T (t) are white-noise error vectors that may be contemporaneously correlated,

but which are otherwise unrelated at all leads and lags.  For its first release, the government takes

the source data at face value:

x(t, t) = w(t, t). (A.2)

But for its second statistical release, the government pools current source data with that

previously collected:

1 1x(t-1, t) = A w(t-1, t-1) + (I - A )w(t-1, t)

1 1  = A x(t-1, t-1) + (I - A )w(t-1, t), (A.2')

1where A  has roots of modulus less than 1.  With a little algebra, Equations A.1, A.1', A.2 and

A.2' imply the following formulas for period-t first-release and first-revision data: 

0x(t, t) = x(t) + T (t) (A.3)

1 1 1x(t-1, t) = x(t-1) + A [x(t-1, t-1) - x(t-1)] + (I - A )T (t). (A.3')
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It follows that 

1 0 1 1x(t-1, t) - x(t-1) = A T (t-1) + (I - A )T (t). (A.4)

While first-release data differ from x(t) by white-noise error, first-revision data differ from x(t) by

an MA(1) error.

More generally, we have 

iw(t-i, t) = x(t-i) + T (t) (A.5)

and

i ix(t-i, t) = A x(t-i, t-1) + (I - A )w(t-i, t), (A.6)

for i = 1, 2, ..., e - 1, respectively.  Equations A.3 and A.3' are replaced by

ŷ(t) = ẑ(t) + A[ŷ(t-1) - ẑ(t-1)] + L(t) (A.7)

where ŷ'(t) / [x'(t-e+1, t) x'(t-e+2, t)... x'(t, t)] is a stacked vector of first-release and lightly

revised data, ẑ'(t) / [x'(t-e+1) x'(t-e+2)... x'(t)] is a stacked vector of heavily revised data, L'(t) /

e-1 e-1 e-2 e-2 1 1 0[T '(t)(I - A )' T '(t)(I - A )'...T '(t)(I - A )' T '(t)] is vector white noise, and

e-1|0    A   0     0  @@@    0 |

e-2A / |0     0    A   0  @@@    0 |

| @      @      @      @  @@@    @ |

| @      @      @      @  @@@    @ |

1|0     0     0     0  @@@  A |

|0     0     0     0  @@@    0 |.

Equation A.7 is clearly a special case of Equation 4 in the main text.  It’s readily verified that Ae

= 0, so that the statistical agency’s estimation errors, ŷ(t) - ẑ(t), follow a MA(e-1) process.
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TABLE 1.  Univariate tests suggest that early government estimates of jobs and

output growth are approximately efficient.  Results are from a regression of the

0 1form x(t) = "  + " x (t), where x(t) is heavily revised and x (t) is relatively lightlye e

revised.  Sample: 1965-1998. 

________________________________________________________________________

0 1 0 1            e =            "                         "           Test "  = 0, "  = 1

Jobs Growth

(March/March)

          0       -0.002

      (0.118)

       1.067

      (0.042)

    P = 0.056

          1        0.064

      (0.056)

       1.001

      (0.019)

    P = 0.211

          3        0.020

      (0.019)

       0.990

      (0.006)

    P = 0.272

GDP Growth

    (Q2/Q2)

          0        0.562

      (0.183)

       0.891

      (0.049)

    P = 0.016

          0

 (excluding 1975)

       0.241

      (0.187)

       0.983

      (0.051)

    P = 0.252

          1        0.270

      (0.133)

       0.940

      (0.034)

    P = 0.134

          3        0.005

      (0.076)

       0.990

      (0.019)

    P = 0.782

Notes:

In the jobs-growth regressions:

x (t) / percent growth in non-farm jobs, as first released0

x (t) / percent growth in non-farm jobs, measured in August of year t + 11

x (t) / percent growth in non-farm jobs, measured in August of year t + 33

x(t) / percent growth in non-farm jobs, as measured in August of year t + 5.

In the GDP-growth regressions:

x (t) / percent growth in real GDP, as first released0

x (t) / percent growth in real GDP, as it appeared in August of year t + 11

x (t) / percent growth in real GDP, as it appeared in August of year t + 33

x(t) / percent growth in real GDP, as measured in August of year t + 5.
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TABLE 2.  Multivariate orthogonality tests suggest that second-release government

estimates of jobs growth, real GDP growth, and the unemployment rate are

approximately efficient.  Results from a regression of P(t) - x(t, t+e) on y(t+e).

________________________________________________________________________

                  Model                       e P Value

1. GDP growth; GDP/PCE  1   0.027

 2   0.076

2. Jobs growth; unemployment rate  1   0.019

 2   0.593

3. GDP growth; unemployment rate  1   0.000

 2   0.180

________________________________________________________________________
Note:  Sample runs from t = 1966 to t = 2001.
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TABLE 3.  Forecasting the truth.  Recursive forecasting performance of alternative*

estimation techniques, one-period-ahead root mean-square errors, 1992-2001.

_________________________________________________________________________

                          Model #1                        Model #2                       Model #3          

  Technique                   )GDP      GDP/PCE     )Jobs     Unemploy.     )GDP     Unemploy.

Current Vintage     1.413    0.0109     0.711     0.530     1.437     0.547

Diebold-Rudebusch     1.598    0.0893     0.939     0.800     1.973     0.742

Classical     1.523    0.0645     1.238     1.316     1.858     1.649

Howrey     1.507    0.0621     1.027     0.707     1.513     0.749

Kishor-Koenig     1.490    0.0493     0.903     0.596     1.328     0.716

* In every case, root-mean-square errors were obtained by comparing forecasts with 2003-vintage data.

TABLE 4.  Forecasting the government’s initial statistical release.  Recursive forecasting

performance of alternative real-time estimation techniques, one-period-ahead root mean-

square errors, 1992-2001.

______________________________________________________________________________

                          Model #1                        Model #2                       Model #3          

  Technique                   )GDP      GDP/PCE     )Jobs     Unemploy.     )GDP     Unemploy.

Diebold-Rudebusch     1.360    0.0866     0.738     0.760     1.808     0.772

Classical     1.343    0.0603     1.129     0.965     1.816     1.270

Howrey     1.255    0.0621     0.847     0.675     1.426     0.840

Kishor-Koenig     1.085    0.0366     0.492     0.535     1.262     0.729
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