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1 Introduction

Since the pioneering work of Sims (1980), a large part of empirical macroeconomic

modeling is based on vector autoregressions (VARs). Despite their popularity, the

flexibility of VAR models entails the danger of over-parameterization, which can

lead to poor forecasts. This pitfall of VAR modelling was recognized early, and

in response shrinkage methods have been proposed; see for example the so-called

Minnesota prior (Doan, Litterman and Sims, 1984). Nowadays the applied econome-

tricians’ toolbox includes numerous ecient modelling tools to prevent the prolifer-

ation of parameters and eliminate parameter and model uncertainty: variable selec-

tion priors (George, Sun and Ni, 2008), steady-state priors (Villani, 2009), Bayesian

model averaging (Garratt, Koop, Mise and Vahey, 2009) and factor models (Stock

and Watson, 2006), to name but a few.

This paper develops a stochastic search algorithm for variable selection in lin-

ear and nonlinear vector autoregressions (VARs) using Markov Chain Monte Carlo

(MCMC) methods. The term “stochastic search” simply means that if the model

space is too large to assess in a deterministic manner (that is, enumerate and es-

timate all possible models, and decide on the best one using some goodness-of-fit

measure), the algorithm will visit only the most probable models in a stochastic man-

ner. In this paper, the general model form that I am studying is the reduced-form

VAR model, which can be written using the following linear regression specification

yt = c+B1yt1 +B2yt2 + ...+Bpytp + t (1)

where yt is an m 1 vector of t = 1, ..., T time series observations on the dependent
variables and the errors t are assumed to beN (0,), where is anmm covariance
matrix. The idea behind Bayesian variable selection is to introduce indicators ij
such that

Bij = 0 if ij = 0 (2)

Bij = 0 if ij = 1

where Bij is an element of the m  k coecient matrix B =

c, B1, ..., B


p


, for
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i = 1, ..,m, j = 1, ..., k and k = p+ 1.

There are various benefits of using this approach over some of the shrinkage

methods mentioned previously, such as the Minnesota prior or factor models. First,

variable selection is automatic, meaning that along with estimates of the parameters

we get associated probabilities of inclusion of each parameter in the “best” model.

In that respect, the variables ij indicate which elements of B should be included

or excluded from the final optimal model. Selection of the optimal model is im-

plemented among all possible 2n, n = mk, VAR model combinations, without the

need to estimate each and every one of these models. Second, this form of Bayesian

variable selection is independent of the prior assumptions about the coecients B.

That is, if the researcher has defined any desirable prior for the parameters of the

unrestricted model (1), adopting the variable selection restriction (2) needs no other

modification than adding one extra block in the posterior sampler that draws from

the conditional posterior of the ij’s. An indirect implication of this approach is

that, unlike other proposed stochastic search variable selection algorithms for VAR

models (George et al. 2008; Korobilis, 2008), variable selection of this form may be

adopted in VAR models which are nonlinear in the mean coecients B.

In fact, in this paper I show that variable selection is very easy to adopt in the

non-linear and richly parameterized, time-varying parameters vector autoregression

(TVP-VAR). These models are currently very popular for measuring monetary pol-

icy and have been used extensively in academic research (Canova and Gambetti,

2009; Cogley and Sargent, 2002; Cogley, Morozov and Sargent, 2005; Koop, Leon-

Gonzalez and Strachan, 2009; and Primiceri, 2005). Common feature of these papers

is that they all fix the number of autoregressive lags to 2 for parsimony. This simpli-

fication is so popular because marginal likelihoods are dicult to obtain, especially

in the presence of stochastic volatility where one has to rely on computationally

expensive particle filtering methods (Koop and Korobilis, 2009a). Even if we as-

sume that marginal likelihoods are readily available, these would allow only pairwise

comparisons and hence all 2n TVP-VAR models need to be estimated. Therefore,

automatic variable selection is a convenient and fast way to overcome the com-

putational and practical problems associated with (computationally) demanding

nonlinear VAR models as well as simple linear models.

Apart from the TVP-VAR I examine closely the performance of Bayesian variable
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selection on several VAR formulations with various prior specifications. In particular

I begin with the simple linear VAR model with ridge regression, Minnesota, and

adaptive shrinkage priors. Following this, variable selection for nonlinear models is

introduced, where in addition to the TVP-VAR I consider a multivariate extension of

the Koop and Potter (2007) structural breaks autoregressive model which allows to

forecast breaks out-of-sample. Finally, given the recent interest in forecasting with

large models (Bańbura, Giannone and Reichlin, 2010) as an alternative to dimension

reduction using principal components (Stock and Watson, 2006), a modification of

the stochastic restriction search useful for VARs of medium and large dimensions is

established.

Although the methods described in this paper can be used for structural analysis

(by providing data-based restrictions on the coecients which could enhance iden-

tifying monetary policy for instance), the aim is to show how more parsimonious

models can be selected to have a positive impact on macroeconomic forecasting.

The next section describes the mechanics behind variable selection in a general

VAR setting. In Section 3, variable selection is established for specific cases of

linear VAR models of small and larger dimensions, and nonlinear models. The

paper concludes by evaluating the out-of-sample forecasting performance of VAR

models using variable selection, for three key UK macroeconomic variables observed

over the period 1971:Q1 - 2008:Q4.

2 Variable selection in vector autoregressions

To allow for dierent equations in the VAR to have dierent explanatory variables,

rewrite equation (1) as a system of seemingly unrelated regressions (SUR)

yt = zt + t (3)

where zt = Im  xt = Im  (1, yt1, ..., ytp) is a matrix of dimensions m  n,
 = vec(B) is n1, and t  N (0,). When no parameter restrictions are present
in equation (3), this model will be referred to as the unrestricted model. Bayesian

variable selection is incorporated by defining and embedding in model (3) indicator
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variables  = (1, ..., n)
, such that j = 0 if j = 0, and j = 0 if j = 1. These

indicators  are treated as random variables by assigning a prior on them, and

allowing the data likelihood to determine their posterior values. We can explicitly

insert these indicator variables multiplicatively in the model1 using the following

form

yt = zt + t (4)

where  = . Here  is an n  n diagonal matrix with elements jj = j on its
main diagonal, for j = 1, ..., n. It is easy to verify that when j = jj = 0 then

j is restricted and is equal to jjj = 0, while for j = jj = 1 it holds that

j = jjj = j, so that all possible 2
n VAR specifications can be explored and

variable selection in this case is equivalent to model selection.

2.1 A generic VAR case

The restricted VAR specification (4) may serve as a generic formulation for the rest

of the models. All we have to do is make sure that we can write the linear/nonlinear

VAR models in SUR form. For instance, in the next section I show that when using

nonlinear models we can arrive in a SUR form similar to equation (4), but in this

case it will hold that  = g (). Here g () is any class of nonlinear functions of

the VAR parameters , with a prior density F (·), that is

p (g ())  F (a,G0) (5)

In this paper I focus on specifications of interest to macroeconomists who usually

assume that g () is a piecewise linear function (as it is the case with the class

of structural breaks, Markov Switching and threshold autoregressive specifications,

among others) but generalizations to other nonlinear or nonparametric functions is

almost as straightforward.

Derivations are simplified if the indicators j are a priori independent of each

other for j = 1, ..., n, i.e. p () =
n
j=1 p


j

=
n
j=1 p


j|\j


, where \j indexes

all the elements of a vector but the j  th. Additionally, we can remove the eect
of the covariance matrix by integrating this parameter using an a scale invariant

1See for example the formulation of variable selection in Kuo and Mallick (1997).
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improper Jerey’s prior. Hence we have

j|\j  Bernoulli (0j) (6)

  ||(m+1)/2 (7)

where 0j is the prior probability of the Bernoulli density, implying prior belief that

coecient j is restricted.

The following pseudo-algorithm demonstrates that the algorithm for the re-

stricted model (4) actually adds only one block (which samples the restriction in-

dicators ) over the standard algorithm of the unrestricted VAR model (3). In the

rest of the paper I define y = (y1, ..., yT )
 and z = (z1, ..., zT )

.

Bayesian Variable Selection Pseudo-Algorithm

1. Sample g () from the conditional posterior (assuming it exists)2 of the form

g () |, y, z,  L (y, z; g () |,) F (a,G0)

where L (y, z; g () |,) is the conditional likelihood (i.e. conditional on ,
being known). Here zt is the restricted data matrix with z


t = zt

2. Sample each j conditional on \j, g (),  and the data from

j|\j, g () ,, y, z  Bernoulli (0j) (8)

preferably in random order j, j = 1, ..., n, where j = l0j
l0j+l1j

, with

l0j = p

y|j,, \j, j = 1


0j (9)

l1j = p

y|j,, \j, j = 0


(1 0j) (10)

3. Sample  as in the unrestricted VAR in (3), where now the mean equation

2For all the popular nonlinear models I consider, the posterior conditionals exist, so that a
Metropolis step within the Gibbs sampler is not needed to sample from g ().
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parameters are  = g ().

1|, , y, z  Wishart

, S1


(11)

where  = T and S =
T

t=1 (yt+h  zt)
 (yt+h  zt)


.

In this type of model selection, what we care about is which of the parameters 

are equal to zero, so that identifiability of g () and  plays no role. In a Bayesian

setting identifiability is still possible, since if the likelihood does not provide infor-

mation about a parameter, its prior does. When for a specific j = 1, .., n we sample

a g

j

= 0 then j is identified by drawing from its prior: notice that in this case

in equations (9) - (10) it holds that p

y|j, \j, j = 1


= p


y|j, \j, j = 0


, so

that the posterior probability of the Bernoulli density, j, will be equal to the prior
probability 0j. Similarly, when j = 0 then g


j

is identified from its prior: the

j-th column of zt = zt will be zero, i.e. the likelihood provides no information

about g

j

, and sampling from the posterior of g


j

collapses to getting a draw

from its prior. Nevertheless, in both of the above cases the result of interest is that

the j-th parameter should be restricted since j = 0.

Posterior computation is based on Gibbs sampler with complete blocking. If the

support of  is finite (see also the discussion of priors on  in the next section),

then we can use the argument of Tierney (1991) to show that the Markov Chain

is geometrically ergodic and that a Central Limit Theorem on this Markov Chain

is available. Thus, convergence of the Gibbs sampler is expected to be quite rapid,

and selection of the correct restrictions quite accurate. A simulation study in the

working paper version of this article confirms that this is the case for both linear

and nonlinear VAR models in small samples.

3 VAR formulations and priors

This section describes in detail some popular VAR specifications and various prior

distributions on them that are considered in the empirical application of this paper.

The main idea is to compare all linear and nonlinear VAR formulations using some

popular priors routinely used in business and academia, with and without variable
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selection. First, I show how each of these popular VAR models admit a SUR form.

Then the model with variable selection is the one where the j’s are sampled from

(8), and the corresponding unrestricted model is the one where we simply impose

j = 1 j without sampling from the posterior (as it will be clear in Section 4, this

model is also equivalent to imposing the tight prior 0j = 1 j on the restricted
model). Some of the priors described here already provide some shrinkage (i.e. they

provide data-based rules to restrict irrelevant VAR coecients). This fact implies

that we can examine how variable selection competes with traditional shrinkage (for

instance the Minnesota prior), but also if combining variable selection and shrinkage

priors in the same VAR model could help improve forecasting even further.

In order to do such a comparison, the intercepts are left unrestricted (j = 1

if j is an intercept) and flat priors are placed on them in all instances. Similarly

the covariance matrix is integrated out with the improper scale invariant (Jerey’s)

prior in equation (7). Finally, the hyperparameters 0j found in equation (6) are

set to 0j = 0.8 implying that 80% of the predictors should be included in the

final model. This assumption is reasonable for small trivariate VARs, since the

“noninformative” choice 0j = 0.5 implies that probably too many (i.e. 50%) VAR

coecients should be restricted. In subsection 3.4 I introduce variable selection

specifically for large VARs. There I relax this assumption and propose setting the

values of 0j in the spirit of the Minnesota prior (i.e. penalize heavily more distant

lags using the variable selection algorithm) which can assist in solving the curse of

dimensionality problem in these models. Full Bayes and Empirical Bayes priors can

also be used on 0j and the reader can seek more information in Chipman, George

and McCulloch (2001).

3.1 Linear VAR

The traditional VAR process with variable selection is fully described by equation

(4), where  (and hence  = ) enters the model linearly. Typical prior distribu-

tions for linear VAR models are based on the Normal density, i.e.

  Nn (b, V )
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In this paper I examine three types of eliciting prior hyperparameters based on

the Normal distribution, all of which provide some form of shrinkage in the VAR

coecients (but no exact zero restrictions like variable selection does).

Ridge regression prior This is probably the most widely used prior in autore-

gressive models. The assumption is that b = 0n1 and V = In. The posterior

mean/mode of the Bayes estimator is equal to the penalized least squares estimator

which writes
 =


zz + 1In

1
zy

which is equivalent to unrestricted LS for   . The reader should also note
that for the case    (in practical situations this translates to  = 100 and

above) variable selection cannot be performed. An intuitive explanation for this

eect is that marginal likelihoods for model selection cannot be calculated with

uninformative priors. Kuo and Mallick (1997) give a more detailed explanation

about this issue and propose to use values of   [0.25, 25]. Consequently, in the
absence of prior information about the model coecients, one can use a locally

uninformative prior by setting  = 100 (diuse prior) on the intercepts and  = 9

for autoregressive coecients. In near-covariance stationary VAR processes the

autoregressive coecients are expected to be roughly less than one in absolute value,

so a higher value of  for these parameters is basically redundant.

Minnesota (Litterman) prior The Minnesota prior is very popular and is as

old as the VAR literature in economics. This prior is due to the works of Bob

Litterman and colleagues at Minnesota University and the Minneapolis Fed; see for

instance Litterman (1986) and Doan, Litterman and Sims (1984). This Empirical

Bayes formulation assumes the prior mean vector b is set equal to 1 for parameters

on the first own lag of each variable (random walk prior) and zero otherwise, and

V is a diagonal matrix with diagonal element the variance on lag r of variable j in

equation i of the form

V rij =






100s2i if intercept

1/r2 if i = j


s2i
r2s2l

if i = j
(12)
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for r = 1, ..., p, i = 1, ...,m,and j = 1, ..., k with k = p + 1. Here s2i is the residual

variance from the unrestricted p-lag univariate autoregression for variable i. The

degree of shrinkage depends on a single hyperparameter 3, where again if   
we end up with unrestricted estimates similar to LS. Litterman (1986) originally

introduced a hyperparameter for own lags as well, i.e. he used V rij = /r
2 if i = j in

equation (12). For small and medium VAR models it is the choice of  that matters.

I set  = 1 which provides a “realistic” prior variance for own lag coecients. In

covariance-stationary VARs we do not expect these coecients to be much larger

than 1 especially for higher order lags, so 1/r2 should (and does) work fine. Selection

of  in contrast is dependent on the specific dataset and application considered.

Selection of the shrinkage factor  of the Minnesota prior is discussed in subsection

4.1.

Hierarchical Bayes Shrinkage prior Shrinkage priors based on Empirical Bayes

methods, like the Minnesota prior, suer from the fact that they are subjective con-

structs and might not appeal to the objective researcher. The formal Bayesian way

to shrinkage in regressions is to use hierarchical priors on the regression coecients

so that the shrinkage parameter  is chosen objectively by the data. In Korobilis

(2011) I show that using hierarchical Normal-Gamma priors, we can recover many

popular shrinkage estimators for sparse signals, like the least absolute shrinkage and

selection operator (LASSO) of Tibshirani (1996) and its variants (Fused LASSO,

Group LASSO, Elastic Net). Here I use a special case of adaptive shrinkage Normal-

Gamma priors which is the hierarchical Normal-Jerey’s prior of Hobert and Casela

(1993) of the form

  Nn (0, V ) , V jj = j, j = 1, ..., n

j 


100

1/j

if j is an intercept coecient

otherwise

(13)

3Litterman (1986) originally introduced a hyperparameter for own lags as well, i.e. he used
V rij = /r2 if i = j in equation (12). For small and medium VAR models it is the choice of 
that matters. I set  = 1 which provides a “realistic” variance for own lag coecients (we do not
expect these coecients to be much larger than 1).
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In simple words, by placing a scale invariant Jereys’ distribution on j, its pos-

terior value is determined solely by the data (hence  is not a prior choice for the

researcher). This is the simplest form of adaptive shrinkage, and can easily be used

in VAR models. In Korobilis (2011) I show that LASSO-based Bayesian shrink-

age (specifically the hierarchical version of the Elastic Net algorithm of Zou and

Hastie, 2005) perform even better in forecasting than simple Normal-Jereys priors.

However as explained in Park and Casela (2008) for LASSO-type priors we need to

condition j on the model error variance, something not straightforward to do in a

VAR model, unless we make simplifying assumptions like setting  to be diagonal.

3.2 Time-varying parameters VAR

Modern macroeconomic applications increasingly involve the use of VARs with mean

regression coecients and covariance matrices which drift every month/quarter.

Nonetheless, forecasting with time-varying parameters VARs is not a new topic in

economics. During the “Minnesota revolution” ecient approximation methods of

forecasting with TVP-VARs were developed, with most notable contributions the

ones by Doan, Litterman and Sims (1984) and Sims (1989); for a large-scale ap-

plication in an 11-variable VAR see also Canova (1993). Using modern posterior

simulator methods (Markov Chain Monte Carlo), TVP-VARs have been used re-

cently very extensively for structural analysis (Primiceri, 2005; Cogley and Sargent,

2002) and forecasting (D’Agostino et al., 2009; Cogley et al., 2005), while Groen,

Paap and Ravazzolo (2009) and Koop and Korobilis (2009b) are focusing on uni-

variate predictions with the use of a large set of exogenous variables.

As mentioned in the Introduction, marginal likelihood calculations in this model

are hard to implement. When specifically stochastic volatility is present, computa-

tionally expensive particle filtering methods are needed only to obtain a measure of

fit for a single model. Estimation using Bayesian variable selection is not aected

by specific modelling assumptions (like the inclusion or not of stochastic volatility)

and can accommodate all possible model combinations eciently in a single run of

the Gibbs sampler.

A time-varying parameters VAR with constant covariance matrix (Homoskedas-
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tic TVP-VAR) takes the form

yt = ct +B1,tyt1 + ...+Bp,tytp + t (14)

where as before t  N (0,) with  an mm covariance matrix. This model can

easily be written in the variable selection SUR form (4), by defining t to be the n1
vector


ct, vec


B1,t


, ..., vec


Bp,t


of parameters and zt = Im (1, yt1, ..., ytp)

 is

an m n matrix. In that case we have

yt = ztt + t (15)

t = t1 + t (16)

where t = t and  is the n  n matrix defined in (4). Equation (16) defines a
random walk evolution of the nonlinear VAR coecients4, for which it holds that

t  N (0, Q) with Q an n n covariance matrix.
Note that variable selection in this case implies that a VAR coecient either

enters or exits the “true” model in all time periods t = 1, ..., T . In contrast, to-

day there are methods in univariate regressions which allow dierent coecients to

be selected at dierent points in time. Most notably, Chan, Koop, Leon-Gonzalez

and Strachan (2010) use such a flexible specification, however estimation relies on

computationally intensive MCMC procedures which only allow them to consider a

handful of variables. The ecient approximations we describe in Koop and Koro-

bilis (2009b) allow dynamic model averaging (DMA) and selection (DMS) with up

to around 20 predictors (i.e. to average or select among 220 models at each period

t). Nonetheless, the smallest typical VAR used in macroeconomics has three quar-

terly variables and four lags and an intercept (39 mean coecients), which makes

application of DMA computationally intensive.

While the priors for (,) are the same as in the previous cases (Jerey’s-

Bernoulli), it can be shown that conjugate priors for the remaining parameters of

4An autoregressive model of order one could be defined, but early empirical experience with
these models (see Sims, 1989) suggests that the AR(1) coecient is practically very close to 1.
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the TVP-VAR model (Cogley and Sargent, 2002) are of the form

0  Nn (b, V )

Q1  Wishart

, R1



with 0 being practically the initial condition of t. Note that a prior on each

t, t = 1, ..., T , need not be specified since this is implicitly defined recursively as

t  Nn

t1, Q


. An important thing to underline is that the model allows the

VAR coecients t to evolve as random walks for T periods, so that shrinkage/tight

priors must be used especially forQ (a detailed explanation why is given in Primiceri,

2005, Section 4.4). Cogley and Sargent (2005) and Primiceri (2005) use the OLS

estimates of a simple VAR estimated on a training sample to inform their prior

hyperparameters, and set their shrinkage coecient (what was denoted as  in the

linear VAR priors) at a very small value. This approach is standard in Bayesian

analysis, especially when marginal likelihoods are not readily available, but it results

in discarding valuable information in the training sample.

In contrast the standard Minnesota prior can be used to inform the initial con-

dition 0 of the TVP-VAR coecients, combined with a tight prior on Q. Subse-

quently, we can set b and V as in equation (12), while setting  = 2 (n+ 1) and

R = kRIn
5, where n is the number of coecients in t and kR is a scaling factor

which we have to choose. Following Cogley and Sargent’s (2002) “business as usual”

prior, i.e. the belief that the TVP-VAR coecients should vary smoothly and not

change abruptly each time period, I set kR = 0.0001. This is the standard value used

by Primiceri after implementing a sensitivity analysis, see Primiceri (2005, Section

4.4.1). Consequently, as in the linear VAR models, we only need to worry about

the value of the shrinkage coecient , a choice which is discussed in the empirical

section.
5To replicate Primiceri’s (2005) training sample prior, we can use R = kRV where as before

V is the Minnesota prior covariance matrix. However this assumption does not alter any of the
forecasting results for the UK dataset used in the empirical section.
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3.3 Structural breaks VAR

In theory and in practice, a VAR with structural breaks lies between the linear

VARs (zero breaks) and the TVP-VAR (breaks in every period, i.e. T breaks) and

should have been presented earlier. However one of all the possible formulations of

structural breaks in the VAR coecients, which is due to Koop and Potter (2007),

is to write the model as a special case of the TVP-(V)AR presented above. Subse-

quently, following equations (15) and (16) we can write the structural breaks VAR

using the form

yt = ztst + t (17)

st = st1 + st . (18)

Here st = st, t  N (0, Q), and st  [1, ..., K + 1] is a first order Markov process

with block-diagonal transition matrix of the form

P =





p11 p12 0 · · · 0

0 p22 p23
. . .

...
...

. . . . . . . . . 0

0 pKK pK,K+1

0 · · · 0 0 pK+1





which makes the structural breaks model a restricted form of a Markov switching

VAR, since we can only move from one regime to the next, and never return to a

previous regime. In this case we have a breaks between time period t and t+1 i st =
st+1. Uncertainty about the number of regimes is easily incorporated in a Bayesian

context by setting a maximum number of breaks, say Kmax, and allowing the data

to determine the “true” number of estimated breaks K, where 1  K  Kmax.

In Bauwens, Koop, Korobilis and Rombouts (2011) we give exact implementation

details on forecasting with a univariate version of this model, which I follow closely

in this multivariate extension. Estimation details are provided in the Appendix.

The hyperparameters on the initial condition, 0  Nn (b, V ), and the state
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covariance matrix, Q1  Wishart (, R1), are based on Sims’s version of the

Minnesota prior explained in the previous subsection. The additional parameters

on this model are the transition probabilities pij = Pr [st = i|st1 = j], for which I
use the typical Beta prior for the diagonal elements pii  Beta (1, 2), i = 1, ..., K.
For 1 = 2 = 1 this density becomes uniform and noninformative. The parameters

st are estimated as in Chib (1996).

3.4 Extension to large VARs and comparison with other

models

The fact that automatic Bayesian variable selection is stochastic and simulation is

needed (Gibbs sampler) implies that it’s use is in general prohibitive in VARs with

hundreds of dependent variables as in Bańbura, Giannone and Reichlin (2010).

Moreover, the disadvantage of variable selection is that in order to allow dierent

variables to enter dierent equations, the SUR form of the VAR is needed which relies

on inverting large matrices (since the RHS data matrix is zt = Imxt instead of just
xt in the reduced-form VAR). Even so, this subsection discusses some modifications

to variable selection that would make its usage in medium-sized VARs possible.

Consider the linear VAR6 model (1) written compactly as

yt = Bxt + t

where xt = (1, yt1, ..., ytp) and B =

c, B1, ..., B


p


is m k. Instead of restricting

individually each of the n = mk elements of B, when m is “large” we might want

to consider restricting only the k columns of B. This simplification implies that a

specific RHS variable yi,tj, i  [1,m], j  [1, p] either enters simultaneously in all
m VAR equations or none. While this results in a loss of modelling flexibility, the

implication is that when we model, say, m = 15 variables in a VAR with p = 4 lags

we only need to average across 260 models as opposed to the 2900 models available

6Obviously treating large nonlinear VARs is not dierent. However this is not discussed, since
large time-varying parameters and structural breaks VARs are computationally intensive. In Ko-
robilis (2011b) I derive ecient computational methods to forecast with VARs of very large di-
mensions (whether T or m are in the order of thousands) in seconds of computer time.
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otherwise. More importantly, we do not need the computationally expensive SUR

form to estimate the VAR model, since we can now write the large VAR + model

selection model as

yt = xt + t

where  = B with  the k  k diagonal matrix with the restriction indices  on
its diagonal.

It would be of benefit to relax the assumption that the prior on the indices j is

Bernoulli with “uninformative” hyperparameter 0j = 0.5. It is feasible to impose

many restrictions a priori by setting 0 < 0j  0.57. For instance 0j = 0.1 means

that our expectation is that 90% of the coecients should be restricted. However,

we need not impose these restrictions linearly on all parameters. Following the

Minnesota tradition we can use a prior which restricts a priori coecients on more

distant lags

0j =


0.5, for own lags

1/(r + 1), otherwise

where r = 1, .., p.

The idea to restrict the VAR regression coecients can also be extended to

finding restrictions in the covariance matrix of a VAR. In fact, Smith and Kohn

(2002) andWong, Carter and Kohn. (2003), take the Cholesky decomposition 1 =

AA of an mm covariance matrix, and impose restrictions on the matrix A using

indicator variables, say . In this decomposition  is a diagonal matrix and A is a

lower triangular matrix with 1’s on the diagonal. Hence model selection proceeds

by setting

i = 0 if i = 0

i = 0 if i = 0

7The alternative 0j > 0.5 imposes the prior belief that not many restrictions are expected in
the VAR coecients. If the researcher is uncertain about these beliefs, a Beta prior can always be
placed on 0j which makes this hyperparameter an unknown random variable to be updated from
the data.

15



where i is each of them (m 1) /2 non-zero and non-one elements of A. Therefore,
similarly to the case of variable selection in the mean equation coecients, their

approach can be easily generalized to a covariance matrix which is stochastic as

for example in the popular Heteroskedastic TVP-VARs of Primiceri (2005), Canova

and Gambetti (2009) and Cogley and Sargent (2002). Considering covariance matrix

selection and assuming dierent functional forms for the covariance matrix (say time-

varying, or structural breaks) will aect forecasts to some extent and would not

allow to evaluate the performance of variable selection in the mean VAR equation,

which is of prime interest since it has much larger number of coecients. For that

reason, it is better to integrate out the (constant) covariance matrix, as well as the

intercepts, using uninformative priors as is the standard practice in the Bayesian

Statistics literature when evaluating model selection or shrinkage priors (see among

others Park and Casella, 2008; Villani, 2009; and Liang, Paulo, Molina, Clyde and

Berger, 2008).

There are several other approaches to automatic Bayesian model selection and

shrinkage for univariate regression models which can be generalized to VAR models.

The formal “full-Bayes” procedure as it is called, is based on hierarchical Normal

priors of the form

|  Nn (0n1, V )
  F (a, b, c)

(19)

where V is a prior covariance matrix and F (·) denotes a density function with
parameters a, b, c. In this case, if the prior distribution of , F (a, b, c), is the

Bernoulli () then  takes only the values 0 and 1 and we have model selection

identical to the one described above (if  = 1 the prior is (| = 1)  Nn (0, V ),

if  = 0 the prior is (| = 0)  Nn (0n1, 0nn), i.e. a Dirac  point mass at

zero). This is the case of the stochastic search variable selection (SSVS) prior used

in George, Sun and Ni (2008), Korobilis (2008) and Jochmann, Koop and Strachan

(2010). As discussed in subsection 3.1 if we assume V = In and we assign a prior

for  of the form   Gamma (1,2) then we can have shrinkage of  dependent
on whether the   0 or   0. Additionally, the shrinkage priors have the de-

sirable property that they become variable/model selection priors in models with

more predictors than observations; see Korobilis (2011).
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From a practitioner’s point of view, it must be noted that the SSVS prior as

well as adaptive shrinkage priors of this hierarchical form are computationally much

faster than variable selection considered in this paper. The main issue with Hi-

erarchical Gaussian priors is that they cannot be used in nonlinear VARs like the

TVP-VAR, which are of special interest to academics and practitioners in Central

Banks. A hierachical prior like (19) can be potentially applied to the initial con-

dition of the TVP-VAR, which would take the form 0|  Nn (0, V ). We can

immediately observe that for the subsequent time periods, the prior on the time-

varying coecients becomes t  Nn

t1, Q


so that dependence on the shrinkage

properties of  is lost, and the prior mean becomes t1 which in general will be esti-

mated from the likelihood to be other than zero. To the best of my knowledge there

are no formal Bayesian model selection or shrinkage estimators for these nonlinear

VARs and the focus of this paper is to fill this gap using the methods described so

far.

4 Macroeconomic forecasting with VARs

The variable selection techniques described previously are used to provide forecasts

of three major U.K. macroeconomic series. These series are: the unemployment rate

ut (Unemployment rate: All aged 16 and over, Seasonally adjusted); the inflation

rate t (RPI:Percentage change over 12 months: All items); and the interest rate rt
(Treasury bills: average discount rate). The data are obtained from the Oce for

National Statistics (ONS) website: http://www.statistics.gov.uk/. The available

sample runs from 1971Q1 to 2008Q4. All variables are measured originally on a

monthly basis, and quarterly series are calculated by the ONS by taking averages

over the quarter (for inflation), the value at the mid-month of the quarter (for

unemployment), and the value at the last-month of the quarter (for the interest

rate), respectively.

Unemployment ut is specified as a gap from its trend ut, where the trend is
estimated using the one-sided low pass filter ut = ut1 + 0.2 (ut  ut1). This is an
approximation to an exponentially weighted moving average filter which is an easy

but eective way to estimate the trend in economic time series; see also the discussion
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in Cogley, Morozov and Sargent (2005) and references therein. Henceforth, whenever

“unemployment” is mentioned, this will be the unemployment gap variable ut  ut.

4.1 Forecasting models

Here I provide a summary of all the models presented in the previous section. The

models compared in this article are the linear Bayesian VAR with ridge regression

(VAR Ridge), Minnesota (VAR Min) and adaptive shrinkage prior (VAR Shrink).

The two nonlinear models estimated for the UK data are the time-varying para-

meters VAR (TVP-VAR) and the structural breaks VAR (SB-VAR), both with a

Minnesota prior on the mean coecients8. Additionally a 13-variable linear VAR

with Minnesota prior is estimated (Large-VAR). The variables in this model are the

ones used in the trivariate VARs above plus 10 major variables for the UK economy

including GDP, total employment, £/$ exchange rate and money stock M4 . These

models are summarized in Table 1. This gives forecasts from six models with and

without variable selection, i.e. a total of 12 model forecasts to assess. All models

have an intercept and 4 lags of the dependent variables.

Moreover, we have to decide on selection of the shrinkage coecient  for the

Minnesota prior. This can be done subjectively as in Litterman (1986), but also

searching over a grid of values in a training sample as in Bańbura, Giannone and

Reichlin (2010). A value of  = 0.1 is used for the trivariate linear and nonlin-

ear VARs. This choice is the one which optimizes the forecasting performance of

the TVP-VAR model in particular, compared to competing values of  in the grid

{1, 0.5, 0.1, 0.01, 0.01}. Note that this “sensitivity analysis” approach is done be-
cause the main purpose of this section is to evaluate the performance of variable

selection and not which of the various VARs performs the best. It turns out that

for the whole grid of values for , the conclusions about whether including variable

selection improves forecasting or not are qualitatively similar. Following the same

procedure, and based on the arguments of Bańbura, Giannone and Reichlin (2010),

8A “less tight” ridge regression prior can also be used in the initial condition of the mean coef-
ficients of these two models, say 0  Nn (0, 9I). In that case, variable selection indeed performs
much better than no variable selection. In practical situations though, one would realistically use
a data-based shrinkage prior in these models (like the Minnesota or the Primiceri, 2005, prior) to
reduce the nonlinear parameter space.
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who compare VARs of large dimensions, the shrinkage factor on the large linear

VAR model is set to a tighter value, i.e.  = 0.01.

Table 1: Definition of VAR models for the UK macro series
Model Description
VAR Ridge VAR with ridge regression prior,  = 9
VAR Min VAR with Minnesota prior,  = 0.1
VAR Shrink VAR with Normal-Jereys prior, p ()  1/
TVP-VAR Time-varying VAR with Minnesota prior,  = 0.1
SB-VAR Structural Breaks VAR with Minnesota prior,  = 0.1
Large-VAR Large VAR with Minnesota prior,  = 0.01

4.2 Forecast implementation

The initial estimation period is 1971Q1 to 1989Q4 and forecasts are computed iter-

atively for h quarters ahead, h = 1, 2, 3, 4. Then one data point is added at the end

of the sample (1990Q1) and forecasting is implemented again for h quarters ahead.

This procedure is followed until the sample is exhausted. Estimation is based on

30.000 samples from the posterior after an initial convergence (burn-in) period of

2.000 iterations. Convergence of the Gibbs sampler is excellent in all instances.

Standard results for forecasting with VAR models apply whether or not variable

selection is present. The companion form of the standard VAR model is

yt = c+Byt1 + t

where yt =

yt, ..., y


tp+1


, t = (t, 0, ..., 0)

, c = (c, 0, ..., 0) and

B =


B1...Bp1 Bp

Im(p1) 0m(p1)m


.

Iterated h-step ahead forecasts can be computed using the formulas

E (yt+h) =
h1

i=0
Bic+Bhyt1

var (yt+h) =
h1

i=0
Bi (Bi)


(20)
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Two points have to be clarified here. First, in the case of variable selection, the

parameter matrices B1, ..., Bp are going to be replaced by the respective elements of

the restricted parameter vector  = . Second, in the case of the two models with

drifting coecients, predictive simulation can be implemented to forecast breaks

in the coecients out-of-sample. This would mean that we should use the random

walk evolution of the mean coecients in the time-varying parameters and structural

breaks VARs and simulate their future path using Monte Carlo; see Bauwens, Koop,

Korobilis and Rombouts (2011) for more details. I follow D’Agostino, Gambetti and

Giannone (2010) and relax this assumption. In that case, I use the formula (20)

where I plug-in the last known values of the coecients in sample, i.e. T and sT
respectively for the two nonlinear models.

Using MCMC implies that we sample from the full posterior density of the VAR

coecients, so that instead of a single point forecast E (yt+h) we end up having

samples from the full Bayesian predictive density. This also implies that there are

two ways to implement the variable selection forecasts. The one is to estimate

a specific VAR model using the Gibbs sampler, save the sequence of S = 30.000

posterior draws s, s = 1, ..., S, and obtain the mean/median . Then the “best”

model is the one for which j is unrestricted (restricted) if   0.5 ( < 0.5), so

that we can estimate and forecast only with this best model at a second step. The

second way is simply to implement one run of the MCMC and forecast using the

current estimates s = ss for s = 1, ..., S MCMC samples. That way if we sample

j = 1 10% of the time (3.000 samples from the posterior) and j = 0 for the

remaining samples, this means that we also use j to produce the final forecasts

only 10% of the time. The former case provides absolute variable selection of a

single optimal model, which is what Barbieri and Berger (2004) call the “median

probability model”. The second method provides relative variable selection which

is equivalent to Bayesian Model Averaging. In previous research (Korobilis, 2008;

Koop and Korobilis, 2009) I find that there is no clear dominance of one method

over the other in forecasting. In face of this result, I use the second method for

forecasting which takes explicitly into account uncertainty about the true model

(by giving relative, instead of absolute, weights to each VAR coecient).
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4.3 Forecast evaluation

All models are evaluated using various measures of out-of-sample performance and

forecast accuracy. Precision of mean forecasts is evaluated using averages of the

Mean Absolute Forecast Error (MAFE) and the Root Mean Squared Forecast Error

(RMSFE) over the whole pseudo out-of-sample evaluation period. In particular, for

each of the three variables yi,t (i =inflation, unemployment, interest rate) of the

vector yt, and conditional on the forecast horizon h and the time period t, these

three measures are calculated as


MAFE

h
i
=

1

 1  h  0 + 1

1h

t=0

yi,t+h|t  yoi,t+h



RMSFE

h
i
=

 1

 1  h  0 + 1

1h

t=0


yi,t+h|t  yoi,t+h

2

where yi,t+h|t is the time t+ h prediction of variable i, made using data available up
to time t, and yoi,t+h is the observed out-of-sample value (realization) of variable i at

time t + h. In the recursive forecasting exercise, averages over the full forecasting

period 1990:Q1 - 2008:Q4 are presented using these formulas where  0 is 1989:Q4

and  1 is 2008:Q4.

These two measures can help provide a ranking of all the VAR models and give

an idea of which model and prior specification performs the best. An interesting

question to answer is whether the inclusion of variable selection results in overall im-

provement of forecasts. A simple measure is to compute the time series of dierences

between the squared losses of the two models, i.e.

dt+h =

Rt+h

2 

Ut+h

2
, (21)

where

Rt
2
are the squared forecast errors from the restricted model (with variable

selection), and

Ut+h

2
are the squared forecast errors from the unrestricted model

(without variable selection). The subscript t runs only for the pseudo out-of-sample

period  1  h  0 + 1. Diebold and Mariano (1995) provide a simple test statistic
when the null is that of equal predictive ability, i.e. E (dt+h) = 0. From a Bayesian

21



point of view, since we have 30.000 samples from the predictive density of our data

yt+h, it is easy to construct through equation (21) an equal number of samples from

the finite sample density of dt+h. Hence this Bayesian procedure is equivalent, but

not identical, to bootstrapping dt under the assumption of Gaussianity (instead of

having to rely on the asymptotic distribution of dt in the presence of small samples).

Subsequently, it is straightforward to get a pairwise measure of overall predictive

ability by using the whole posterior density Pr (dt+h), i.e. we can evaluate the

following “Bayesian Diebold-Mariano” (BDM) statistic

BDM =
1

 1  h  0 + 1

1h

t=0

Pr (dt+h > 0) , (22)

see also Garratt, Koop, Mise and Vahey (2009). This statistic implies that if

BDM > 0.5, the unrestricted model performs better than the restricted model,

and vice versa.

4.4 In-sample variable selection results

Before proceeding to the forecast evaluation of variable selection, it would be inter-

esting first to obtain a picture of what is the output of variable selection. Since the

Gibbs sampler provides a sequence of 0-1 draws from the posterior of , once we take

an average of these draws we can end up with an average “probability of inclusion

in the true model” for the respective VAR coecients . Table 2 does exactly that

for the six models described earlier. The table is split in three blocks pertaining to

each of the three VAR equations (unemployment ut, inflation t and interest rate

rt). Each row corresponds to the lags of the three variables as they appear in each

equation. Numerical entries in this table are the averages of the posterior of  using

the full sample 1971:Q1 - 2008:Q4. The prior on  for the five trivariate VARs is the

Bernoulli(0.8) discussed earlier, whilst for the Large VAR model the tighter prior

discussed in subsection 3.4 applies.

Variable selection indicates that some variables should always be included, irre-

spective of the model specification or the priors used. These are the first own lags

of each dependent variable, but also the first lag of the interest rate in the inflation

equation. Moreover, inflation and interest rates two periods ago seem to aect the
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Table 2: Posterior means of the restriction variables j using the full sample
VAR Ridge VAR Min VAR Shrink SB-VAR TVP-VAR Large-VAR

VAR equation: ut
ut1 1.00 1.00 1.00 1.00 1.00 1.00
t1 0.34 0.26 0.72 0.00 1.00 1.00
rt1 0.01 0.23 0.63 0.23 1.00 1.00
ut2 0.23 0.32 0.72 0.29 0.43 0.17
t2 0.03 0.47 0.58 0.07 0.00 1.00
rt2 0.08 0.53 0.59 0.00 0.03 1.00
ut3 1.00 0.99 1.00 1.00 0.98 0.08
t3 0.00 0.46 0.65 0.00 0.00 0.00
rt3 0.14 0.45 0.74 0.00 1.00 0.00
ut4 0.10 0.23 0.64 0.17 0.56 0.00
t4 0.02 0.53 0.66 0.00 0.00 0.00
rt4 0.17 0.39 0.61 0.00 0.00 0.00

VAR equation: t
ut1 0.36 0.12 0.64 0.59 0.80 1.00
t1 1.00 1.00 1.00 1.00 1.00 1.00
rt1 1.00 1.00 1.00 0.98 1.00 1.00
ut2 0.43 0.18 0.65 0.56 0.79 0.17
t2 0.93 0.98 1.00 0.88 1.00 1.00
rt2 0.68 0.85 0.82 0.90 0.97 1.00
ut3 0.42 0.21 0.71 0.60 0.80 0.08
t3 0.29 0.39 0.69 0.38 0.84 0.00
rt3 0.33 0.57 0.70 0.29 0.87 0.00
ut4 0.33 0.23 0.73 0.46 0.80 0.00
t4 0.21 0.38 0.61 0.21 0.71 0.00
rt4 0.21 0.71 0.82 0.21 0.85 0.00

VAR equation: rt
ut1 0.62 0.32 0.75 0.68 0.81 1.00
t1 0.12 0.13 0.63 0.09 0.41 1.00
rt1 1.00 1.00 1.00 0.95 1.00 1.00
ut2 0.60 0.42 0.68 0.59 0.78 0.17
t2 0.11 0.29 0.67 0.14 0.66 1.00
rt2 0.21 0.23 0.66 0.10 0.65 1.00
ut3 0.62 0.39 0.71 0.69 0.79 0.08
t3 0.32 0.53 0.62 0.14 0.84 0.00
rt3 0.16 0.32 0.67 0.17 0.71 0.00
ut4 0.45 0.30 0.69 0.59 0.81 0.00
t4 0.12 0.39 0.65 0.18 0.79 0.00
rt4 0.07 0.30 0.66 0.17 0.66 0.00
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current level of inflation, as well as the third lag of unemployment aects the cur-

rent level of unemployment (but only in the small, trivariate VAR models). Lastly,

unemployment in the previous quarter is more likely to aect the current level of

the interest rate than past inflation.

Other than these few regularities, the posterior probabilities of inclusion of each

predictor variable varies a lot between specifications. For the linear VAR model, the

relatively uninformative ridge regression prior invites more restrictions from the vari-

able selection algorithm than when the Minnesota and Normal-Jerey’s priors are

present. This is because the last two priors already provide shrinkage of coecients

towards zero. Subsequently it is the case that shrinkage will force more (compared

to an uninformative prior) the posterior of the j’s to move towards the region of

zero, so that the respective j’s are not identified and they will be drawn randomly

from their Bernoulli(0.8) prior. As discussed earlier, this is not a failure of variable

selection since what we care about is the combined coecient j = jj to be zero,

whether it is because j = 0 or j = 0. An example where this eect happens is for

variable t2 in the unemployment equation, which has only a probability of 8% of

inclusion when using the VAR Ridge model, but this probability increases to circa

50% when using the VAR Min and VAR Shrink models. Nevertheless, in these two

latter models, the posterior mean of j for j = t2 is around 0.002, so that it finally

holds that j = jj  0.
For the rest of the VAR models mixed results are present which depend on the

nature of each model. Even among the two nonlinear models many dierences exist.

For instance, t1 has 0% probability of appearing in the unemployment equation of

the structural breaks VAR but 100% probability of appearing in the same equation

in the time-varying VAR model. Finally, notice that more restrictions are present in

the Large-VARmodel since a more restricted form of the prior on  is used, compared

to the one used in the small models. In this Large-VAR setting the right-hand side

(RHS) variables have exactly the same probability of appearing in each of the three

VAR equations of interest. This is due to the simplifying assumption described in

subsection 3.4 which allows computational tractability when the dimensions of the

VAR grow large.
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4.5 Out-of-sample iterated forecasts

In this subsection the restricted and unrestricted VAR models are evaluated out-of-

sample. Tables 3 and 4 present the MAFE and RMSFE statistics over the forecast

sample 1990:Q1-2008:Q4. The first column of each table shows the three variables in

the vector of interest yt+h, for horizons h = 1, ..., 4. The second column of both tables

presents the absolute value of the MAFE and RMSFE, respectively, for the driftless

random walk model. Consequently the remaining columns present the MAFE and

RMSFE statistics from the six Bayesian four-lag VARs with and without variable

selection, as a proportion of the respective MAFE and RMSFE of the random walk.

For comparison the third column in each table gives the respective statistics from a

parsimonious VAR(1) specification estimated with OLS.

The results suggest that all small four-lag VAR models perform better the naïve

model in short-term forecasting of unemployment and inflation. The very flexi-

ble TVP-VAR provides the lowest mean prediction error (the gains are especially

visible during the financial crisis sample 2007-2008), while the Large VAR being

quite heavily parametrized gives only the best VAR forecasts for the interest rate.

Nevertheless, none of the VAR models can beat the random walk in interest rate

forecasting.

In terms evaluating variable selection, the unrestricted VAR(4) model with ridge

regression prior (which in this paper is defined to be uninformative, as if using a

VAR(4) estimated with least squares) is better at all horizons than the unrestricted,

more parsimonious VAR(1) in forecasting unemployment and inflation. In that

respect, good performance of the variable selection is translated into expecting sub-

stantial restrictions of the VAR(4) Ridge model coecients only in the interest rate

equation since from the VAR(1) it is obvious that using one lag in this equation

is always better. At the same time less restrictions are expected in the coecients

in the unemployment and interest rate equation, since the VAR(4) is already doing

much better than the VAR(1) for these two equations. Table 2 provided an idea of

the restrictions that actually hold in each model, however notice that in a recur-

sive forecasting exercise the posterior probabilities are estimated in real-time as new

data become available, so they will not be constant during the forecast evaluation

sample.
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In fact, variable selection in the VAR(4) Ridge model does improve forecasts of

all three variables, especially at longer horizons. For the VAR(4) Min and VAR(4)

Shrink (these two models already have shrinkage priors) variable selection only im-

proves the interest rate forecast while there is usually a ±1% gain/loss in MAFE or
RMSFE, but this is so small that might also be attributed to sampling and rounding

error. The main result is that none of the three unrestricted linear VARs with four

lags is forecasting interest rates as the VAR(1) estimated with OLS does, something

that is consistently accounted for when adding variable selection9.

The gains from variable selection for forecasting all three variables of interest

are more clear as the model size increases. As forecasting results for the 13-variable

Large VAR suggest, when the model dimensions increase, variable selection really

helps to prevent overfitting. Although the Minnesota shrinkage parameter is not set

optimally, this improvement when using variable selection is robust for a large grid

of values of  (see the discussion in subsection 4.1).

The story behind the structural breaks model SB-VAR(4) is dierent. There,

the gains are quite impressive for longer horizons, but closer examination shows that

these are linked only indirectly to variable selection. Estimation of the unrestricted

SB-VAR(4) model with maximum number of possible breaks equal to 3, indicates

that there are actually no breaks10. When the SB-VAR(4) model is estimated with

variable selection, a break is found (using the full sample) in 2004Q1. This is actually

the exact reason why variable selection does much better in mean prediction with

the structural breaks model. By restricting the parameter space, a structural break

is found that is not otherwise identified when all 39 mean VAR coecients are

unrestricted.

In the TVP-VAR model with Minnesota prior, which is the best performing

among all VAR models, variable selection helps improve the MAFE of the interest

9Here we can observe that although variable selection improves forecasts of interest rate from
the linear VAR(4), these are never as good as the VAR(1)-OLS forecasts. This is due to the fact
that our prior expection is that 20% of the parameters should be restricted (0j = 0 = 0.8).
Subsequently there might be benefit from setting 0j << 0.8 but only if j is a coecient in the
interest rate equation; see also the discussion in the next subsection.
10Notice that although no breaks are estimated, the SB-VAR(4) forecasts are not the same

as the VAR(4) Min forecasts (these two models have identical Minnesota priors). The reason is
computational, but explaining why is beyond the scope of this paper. The reader is advised to
consult Bauwens, Koop, Korobilis and Rombouts (2011).
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rate in longer horizons. Nevertheless, in this case variable selection increases the

absolute and squared forecast error of unemployment and inflation at horizons two

to four quarters. Subsequently, the shrinkage prior in this case is sucient to guar-

antee optimal mean forecasts, and variable selection is not necessary. Although this

observation might be correct for the expected risk of mean forecasts, the Bayesian

Diebold-Mariano (BDM) statistic given in equation (22) reveals that there is the

case that variable selection provides overall superior predictive ability.

The BDM statistic, which is based on the time series of dierences between the

squared forecast errors of the restricted and the unrestricted models, is presented in

Table 5. A value less than 0.5 shows the probability that the restricted model has

better forecasting ability overall compared to the unrestricted model. Table 5 reveals

that this is the case for all models apart from the structural breaks VAR. That is

because in this model we saw that variable selection indicates one break, while in the

unrestricted model no break is found. Thus forecasts from the restricted model with

one break have larger variance because all the VAR coecients in the second regime

are estimated using only 19 observations (the break date is 2004Q1). Since the

BDM statistic is based on all simulated draws from the posterior predictive densities,

parameter uncertainty is included in the evaluation of the quantity Pr (dt+h > 0).

Thus, this fact explains why the unrestricted no-break model does better overall

than the restricted model with one break, despite the fact that the MAFE and

RMSFE results suggest otherwise. Finally, in Table 5 we can observe again that as

the forecast horizon increases the gains from using variable selection also increase.
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Table 5: Bayesian Diebold-Mariano statistic, 1T

Pr (dt+h > 0).

VAR Ridge VAR Min VAR Shrink SB-VAR TVP-VAR Large-VAR

ut+1 0.481 0.486 0.491 0.535 0.485 0.433

t+1 0.467 0.467 0.505 0.622 0.495 0.476

rt+1 0.477 0.486 0.473 0.619 0.498 0.441

ut+2 0.470 0.480 0.472 0.522 0.491 0.421

t+2 0.473 0.472 0.501 0.625 0.489 0.470

rt+2 0.470 0.474 0.456 0.587 0.486 0.473

ut+3 0.458 0.468 0.464 0.525 0.488 0.380

t+3 0.463 0.460 0.487 0.618 0.481 0.442

rt+3 0.448 0.453 0.444 0.562 0.476 0.483

ut+4 0.463 0.466 0.457 0.528 0.486 0.345

t+4 0.453 0.449 0.473 0.597 0.472 0.436

rt+4 0.447 0.449 0.433 0.546 0.471 0.485

Note: The Table shows the average values of the statistic Pr(d t+h>0) where d t+h are the tim e series of d i erences b etween

the squared forecast errors from the restricted and unrestricted models; see also equation (22) in the text.

4.6 Sensitivity analysis: Direct forecasts, and expected num-

ber of restrictions

In many cases, iterated, multi-step ahead VAR forecasts might not be satisfactory.

This is particularly true when the model is misspecified (Marcellino, Stock and Wat-

son, 2006), in which case econometricians estimate a direct VAR using information

up to time t to directly predict yt+h, i.e. the model

yt+h = Bxt + t.

Using the above VAR equation, the researcher can use directly the available infor-

mation xT to forecast yT+h. This is, additionally, a particularly useful approach

when xt contains exogenous predictors for which forecasts are not available to the

econometrician (and hence iterating the VAR h-steps ahead is not possible).

This case is examined analytically in Korobilis (2008) using the SSVS algorithm

in large linear VARs with hundreds of predictors. Here I provide results for 4-steps

ahead forecasting using the TVP-VAR(4) in the context of a “sensitivity analysis”
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with varying degree of prior expected number of restrictions. Restrictions in the

VAR models with variable selection can be imposed through the prior hyperpara-

meter 0j of the Bernoulli density in equation (6). Table 6 presents the RMSFE

from the unrestricted TVP-VAR(4) in the second column, and the RMSFE of the

restricted TVP-VAR(4) with 0j = 0 for all j = 1, ..., n, relative to that of the

unrestricted model. The case 0 = 0.8 is the one examined previously in the small

VARs (but it was relaxed in the Large VAR model) and implies the expectation

that 20% of the coecients should be restricted a priori. Other values shown in

this Table can be interpreted in a similar way. The optimal forecasts from the re-

stricted model are obtained when 0 is 0.7, where gains of up to 8% in forecasting

inflation are attained. When more and more restrictions are imposed, the RMSFE

are monotonically increasing, suggesting that there is a risk attached to imposing

strong prior beliefs in such a small model. For 0 > 0.7 the RMSFE also increases,

where the limit 0 = 1 implies the unrestricted model (where all relative RMSFEs

are equal to 1.00).

Table 6: RMSFE of 4-quarter ahead direct forecasts from a TVP-VAR(4)

TVP-VAR(4) TVP-VAR(4) with VS

no VS 0 = .3 0 = .4 0 = .5 0 = .6 0 = .7 0 = .8

ut+4 0.3569 1.05 1.01 1.00 0.97 0.96 0.97

t+4 1.7546 0.93 0.94 0.92 0.92 0.92 0.93

rt+4 1.9521 1.03 1.03 1.02 1.01 0.99 0.99

Note: The second column presents the RMSFE of the unrestricted TVP-VAR(4) model. The next columns present the RMSFEs

of the restricted model (relative to that of the unrestricted TVP-VAR(4)) for d i erent prior exp ected number of restrictions on  .

Although for other direct VAR models and forecast horizons results are mixed as

to whether variable selection improves forecasting over the unrestricted model, it is

always the case that for small VAR models the RSMFE is a quadratic function of 0.

Consequently, choice of 0 should not pose a challenge for the applied researcher as

soon as the choice of expected restrictions is chosen reasonably, i.e. it is tied to the

dimension of the VARmodel considered. For instance, in subsection 3.4 an empirical

method for tuning the prior expected number of restrictions as the dimension of the

VAR increases was introduced. Moreover, if there are actually practical diculties
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in selecting a value for 0, full Bayes methods can also be used. That means that

a hyperpior distribution is placed on 0 (or even 0j for j = 1, ..., n), so that this

hyperparameter is estimated from the data and hence it will also vary with the

sample size considered.

5 Concluding remarks

Vector autoregressive models have been used extensively over the past for the pur-

pose of macroeconomic forecasting, since they have the ability to fit the observed

data better than competing theoretical and large-scale structural macroeconometric

models. This paper shows that Bayesian variable selection methods can be used

to find restrictions based on the evidence in the data with positive implications in

preserving parsimony. It was argued that these types of restrictions are important

for long-horizon forecasts as well as forecasts from large VAR systems. Specifically,

variable selection i) dominates forecast from VAR models with uninformative priors;

ii) competes favourably to shrinkage estimation; and iii) provides more benefits in

forecasting as the model size increases.
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Bańbura, M., Giannone, D. and Reichlin, L. (2010). Large Bayesian vector auto

regressions. Journal of Applied Econometrics, 25, 71-92.

Barbieri, M. M., and J. O. Berger. (2004). Optimal predictive model selection.

The Annals of Statistics, 32, 870-897.

Bauwens, L., Koop, G., Korobilis, D., and J. Rombouts. (2011). A compari-

son of forecasting procedures for macroeconomic series: The contribution of

structural break models. CIRANO Working Papers 2011s-13, CIRANO.

Canova, F. (1993). Modelling and forecasting exchange rates using a Bayesian time

varying coecient model. Journal of Economic Dynamics and Control,17, 233-

262.

31



Canova, F., and L. Gambetti. (2009). Structural changes in the US economy: Is

there a role for monetary policy? Journal of Economic Dynamics and Control,

33, 477-490.

Carter, C., and R. Kohn (1994). On Gibbs sampling for state space models. Bio-

metrika, 81, 541-553.

Chan, J. C. C., Koop, G., Leon-Gonzalez, R., and Strachan, R. W. (2010). Time-

varying dimension models. ANU School of Economics Working Papers 2010-

523.

Chib, S. (1996). Calculating posterior distributions and modal estimates in Markov

mixture models. Journal of Econometrics, 75, 79-98.

Chipman, H., George, E. I., and R.E. McCulloch. (2001). The practical imple-

mentation of Bayesian model selection. In P. Lahiri (Ed.), Model Selection,

(pp. 67-116). IMS Lecture Notes — Monograph Series, vol. 38.

Cogley, T., Morozov, S., and T. Sargent. (2005). Bayesian fan charts for U.K. infla-

tion: Forecasting and sources of uncertainty in an evolving monetary system.

Journal of Economic Dynamics and Control, 29, 1893-1925.

Cogley, T., and T. Sargent. (2002). Evolving post-World War II inflation dynam-

ics. NBER Macroeconomics Annual, 16, 331-388.

Clark, T. E., and M. W. McCracken. (2010). Averaging forecasts from VARs with

uncertain instabilities. Journal of Applied Econometrics, 25, 5-29.

D’Agostino, A., Gambetti, L., and D. Giannone. (2009). Macroeconomic forecast-

ing and structural change. ECARES Working Paper 2009-020.

Diebold, F. X. and R. S. Mariano. (1995). Comparing predictive accuracy. Journal

of Business and Economic Statistics, 13, 253-263.

Doan, T., R. Litterman, and C. A. Sims. (1984). Forecasting and conditional

projection using realistic prior distributions. Econometric Reviews, 3, 1-100.

32



Garratt, A., Koop, G., Mise, E. & S. P. Vahey (2009). Real-time prediction with

U.K. monetary aggregates in the presence of model uncertainty. Journal of

Business and Economic Statistics, 27, 480-491.

George, E. I., Sun, D. and S. Ni. (2008). Bayesian stochastic search for VAR model

restrictions. Journal of Econometrics, 142, 553-580.

Groen, J., Paap, R., and F. Ravazzolo. (2009). Real-time inflation forecasting in

a changing world. Unpublished manuscript.

Jochmann, M., Koop, G., and R.W. Strachan. (2010). Bayesian forecasting using

stochastic search variable selection in a VAR subject to breaks. International

Journal of Forecasting, 26, 326-347.

Kohn, R., Smith, M., and D. Chan. (2001). Nonparametric regression using linear

combinations of basis functions. Statistics and Computing, 11, 313-322.

Koop, G., and D. Korobilis. (2009a). Bayesian Multivariate time series methods

for empirical macroeconomics. Foundations and Trends in Econometrics, 3,

267-358.

Koop, G., and D. Korobilis. (2009b). Forecasting inflation using dynamic model

averaging. RCEA Working Paper 34-09.

Koop, G., Leon-Gonzalez, R., and R. Strachan. (2009). On the evolution of the

monetary policy transmission mechanism. Journal of Economic Dynamics and

Control, 33, 997-1017.

Koop, G., and S. M. Potter. (2007). Estimation and forecasting in models with

multiple breaks. The Review of Economics and Statistics, 74, 763-789.

Korobilis, D. (2008). Forecasting in vector autoregressions with many predictors.

Advances in Econometrics, 23, 403-431.

Korobilis, D. (2011). Hierarchical shrinkage priors for dynamic regressions with

many predictors. Unpublished manuscript.

33



Kuo, L., and B. Mallick. (1997). Variable selection for regression models. Shankya:

The Indian Journal of Statistics, 60 (Series B), 65-81.

Liang, F., Paulo, R., Molina, G., Clyde, M. A. and Berger, J. O. (2008). Mixtures

of g-priors for Bayesian Variable Selection. Journal of the American Statistical

Association, 103, 410-423.

Litterman, R. (1986). Forecasting with Bayesian vector autoregressions - 5 years

of experience. Journal of Business and Economic Statistics, 4, 25-38.

Marcellino, M., Stock, J. H. and M. W. Watson. (2006). A comparison of direct

and iterated multistep AR methods for forecasting macroeconomic time series.

Journal of Econometrics, 135, 499-526.

Park, T. and Casella, G. (2008). The Bayesian Lasso. Journal of the American

Statistical Association, 103, 681-686.

Primiceri, G. (2005). Time varying structural vector autoregressions and monetary

policy. Review of Economic Studies, 72, 821-852.

Sims, C. (1980). Macroeconomics and reality. Econometrica 48, 1-80.

Smith, M., and R. Kohn. (2002). Parsimonious covariance matrix estimation for

longitudinal data. Journal of the American Statistical Association, 97, 1141-

1153.

Stock, J. H., and M.W. Watson. (2006). Forecasting with Many Predictors."

In G Elliott, CWJ Granger, A Timmermann (eds.), Handbook of Economic

Forecasting, volume 1, chapter 10, pp. 515-658. Elsevier, Amsterdam.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of

the Royal Statistical Society, Series B, 58, 267-288.

Tierney, L. (1991). Markov Chains for Exploring Posterior Distributions. Univer-

sity of Minnesota School of Statistics Technical Report No. 560.

Villani, M. (2009). Steady-state priors for vector autoregressions. Journal of Ap-

plied Econometrics, 24, 630-650.

34



Wong, F., Carter, C. K., and R. Kohn. (2003). Ecient estimation of covariance

selection models. Biometrika, 90, 809-830.

Zou, H. and Hastie, T. (2005). Regularization and Variable Selection via the Elastic

Net. Journal of the Royal Statistical Society, Series B 67, 301-320.

35



Technical Appendix

A Posterior inference in the linear VARwith vari-

able selection

In this section I provide exact details on the conditional densities of the restricted

VAR model. For simplicity rewrite the priors, which are

  Nn (b, V ) (A.1)

j |\j  Bernoulli (0j) (A.2)

  ||(m+1)/2 (A.3)

A.1 Algorithm 1

Given the prior hyperparameters (b, V , 0,,) and an initial value for , , sam-

pling from the conditional distributions proceeds as follows

1. Sample  from the density

|,, y, z  Nn

b, V


(A.4)

where V =

V 1 +

T
t=1 z


t 

1zt

1
and b = V


V 1b+

T
t=1 z


t 

1yt+h


,

and zt = zt.

2. Sample j, j = 1, ..., n, from the density

j|\j, ,, y, z  Bernoulli (j) (A.5)
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preferably in random order j, where j = l0j
l0j+l1j

, and

l0j = p

y|j, \j, j = 1


0j (A.6)

l1j = p

y|j, \j, j = 0


(1 0j) (A.7)

The expressions p

y|j, \j, j = 1


and p


y|j, \j, j = 0


are conditional

likelihood expressions. Define  to be equal to  but with its j  th element
j = j (i.e. when j = 1). Similarly, define  to be equal to  but with

the j  th element j = 0 (i.e. when j = 0). Then in the case of the VAR
likelihood of model (4), we can write l0j, l1j analytically as

l0j = exp



1

2

T

t=1

(yt  zt)
1 (yt  zt)


0j

l1j = exp



1

2

T

t=1

(yt  zt)
1 (yt  zt)


(1 0j) .

3. Sample 1 from the density

1|, , y, z  Wishart

T, S1


(A.8)

where S =
T

t=1 (yt  zt)
 (yt  zt).

A.2 Algorithm 2

In modern matrix programming languages it is more ecient to replace "for" loops

with matrix multiplications (what is called "vectorizing loops"). This section pro-

vides a reformulation of the VAR, so that the summations in the Gibbs sampler

algorithm (A.4) - (A.8) are replaced by matrix multiplications. For example, com-

puting l0j and l1j requires to evaluate
T

t=1 (yt  zt
)1 (yt  zt) for t = 1, ..., T .

In practice, it is more ecient to use the matrix form of the VAR likelihood:
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Begin from formulation (1), and let y = (y1, ...., y

T ), x = (x1, ..., x


T ) and  =

(1, ..., 

T ). A dierent SUR formulation of the VAR takes the form

vec (y) = (Im  x) + vec () (A.9)

Y = W + e (A.10)

where Y = vec (y) is a (Tn)  1 column vector, W = Im  x is a block diagonal
matrix of dimensions (Tn)m with the matrix x replicatedm times on its diagonal,
 =  is a m  1 vector,  = vec(B) and e = vec ()  N (0, IT ). To
clarify notation, vec () is the operator that stacks the columns of a matrix and
 is the Kronecker product. In this formulation, W = Im  x is not equal to
z = (z1, ..., z


T ) =


(Im  x1)

 , ..., (Im  xT )
 which was defined in (4). Additionally,

note that while  and  are both n  1 vectors, they are not equal. It holds that
 = vec(B) and  = vec(B).

The priors are exactly the same as the ones described in the main text. The

conditional posteriors of this formulation are given by

1. Sample  from the density

|,, Y,W  Nn

b, V


(A.11)

where V = V 1 +W  (1  IT )W  and b = V

V 1b+W  (1  IT )Y


,

and W  = W.

2. Sample j, j = 1, ..., n, from the density

j|\j, 
,, Y,W  Bernoulli (j) (A.12)

preferably in random order j, where j = l0j
l0j+l1j

, and

l0j = exp



1

2
(Y W)


1  IT


(Y W)


0j

l1j = exp



1

2
(Y W)


1  IT


(Y W)


(1 0j) .
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3. Sample 1 from the density

1|, , Y, x  Wishart

T, S1



where S = (y  x) (y  x), with  the k  m matrix obtained from the

vector  = , which has elements (ij) = (j1)k+i, for i = 1, ..., k and

j = 1, ...,m.

This sampler has slight modifications compared to the one above because of

the dierent specification of the likelihood function, but the two SUR specifications

are equivalent and produce the same results. Posterior inference in the TVP-VAR

model is just a simple generalization of the VAR case and it is described in the next

section.

A.3 Sampling from a VAR with Normal-Jereys’ prior

The previous results hold for the linear VAR models when the prior covariance

matrix V is known. If instead a Jereys’ prior is placed on the diagonal elements

j, j = 1, ..., n, of V as in the case of the prior in (13) one needs to sample these

elements using the following step which is added to previous VAR model algorithms

4. Sample 1j for each j = 1, ..., n from the density

1

j
|, ,, y, z  Gamma


1

2
,
2j
2



Then sampling of  proceeds conditional on all sampled j’s, i.e. whenever V

shows up in the posterior of  in step 1, we use the matrix V = diag {1, ...,n}.

B Posterior inference in the TVP-VAR with vari-

able selection

The homoskedastic TVP-VAR with variable selection is of the form
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yt = ztt + t (B.1)

t = t1 + t (B.2)

where t = t, and t  N (0,) and t  N (0, Q) which are uncorrelated with

each other at all leads and lags. The priors for this model are:

0  Nn (b, V )

j|\j  Bernoulli (0j)

Q1  Wishart

, R1



  ||(m+1)/2

Estimating these parameters means sampling sequentially from the following condi-

tional densities

1. Sample t for all t, conditioning on data z

t = zt with  = diag {1, ..., n},

using the Carter and Kohn (1994) filter and smoother for state-space models

(see below)

2. Sample j, j = 1, ..., n, from the density

j|\j, , Q,, y, z  Bernoulli (j) (B.3)

preferably in random order j, where j = l0j
l0j+l1j

, and

l0j = p

y|1:Tj , \j, j = 1


0j (B.4)

l1j = p

y|1:Tj , \j, j = 0


(1 0j) (B.5)

The expressions p

y|1:Tj , \j, j = 1


and p


y|1:Tj , \j, j = 0


are condi-

tional likelihood expressions, where 1:Tj = [1,j, ..., t,j, ..., T,j]
. Define t to

be equal to t but with its j  th element t,j = t,j (i.e. when j = 1).

Similarly, define t to be equal to t but with the j  th element t,j = 0 (i.e.
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when j = 0), for all t = 1, ..., T . Then in the case of the TVP-VAR likelihood

of model (B.1), we can write l0j, l1j analytically as

l0j = exp



1

2

T

t=1

(yt  ztt )
1 (yt  ztt )


0j

l1j = exp



1

2

T

t=1

(yt  ztt )
1 (yt  ztt )


(1 0j) .

3. Sample Q1 from the density

Q1|, ,, y, z  Wishart

, R1


(B.6)

where  = T +  and R1 =

R +

T
t=1


t  t1

 
t  t1

1
.

4. Sample 1 from the density

1|, Q, , y, z  Wishart

T, S1


(B.7)

where S =
T

t=1 (yt  ztt)
 (yt  ztt).

B.1 Carter and Kohn (1994) algorithm:

Consider a general state-space model of the following form

yt = ztat + ut (B.8a)

at = at1 + vt (B.8b)

ut  N (0, R) , vt  N (0,W )

where (B.8a) is the measurement equation and (B.8b) is the state equation, with

observed data yt and unobserved state at. If the errors ut, vt are iid and uncorrelated

with each other, we can use the Carter and Kohn (1994) algorithm to obtain a draw

from the posterior of the unobserved states.

41



Let at|s denote the expected value of at and Pt|s its corresponding variance, using

data up to time s. Given starting values a0|0 and P0|0, the Kalman filter recursions

provide us with initial filtered estimates:

at|t1 = at1|t1

Pt|t1 = Pt1|t1 +W

Kt = Pt|t1z

t


ztPt|t1zt +R

1
(B.9)

at|t = at|t1 +Kt


yt  ztat|t1



Pt|t = Pt|t1 KtztPt|t1

The last elements of the recursion are aT |T and PT |T for which are used to obtain a

single draw of aT . However for periods T 1, ..., 1 we can smooth our initial Kalman
filter estimates by using information from subsequent periods. That is, we run the

backward recursions for t = T  1, ..., 1 and obtain the smooth estimates at|t+1 and
Pt|t+1 given by the backward recursion:

at|t+1 = at|t + Pt|tP

t+1|t


at+1  at|t



Pt|t+1 = Pt|t  Pt|tP t+1|tPt|t

Then we can draw from the posterior of at by simply drawing from a Normal density

with mean at|t+1 and variance Pt|t+1 (for t = T we use aT |T and PT |T ).

C Posterior inference in the structural breaks VAR

with variable selection

Having described the TVP-VAR with variable selection, the structural breaks VAR

is a special case of this model and takes the form

yt = ztst + t (C.1)

st = st1 + st (C.2)
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The full set of prior distributions for this model are

0  Nn (b, V )

j|\j  Bernoulli (0j)

pii  Beta (1, 2)

Q1  Wishart

, R1



  ||(m+1)/2

where j = 1, ..., n and i = 1, ..., K.

Estimating these parameters means sampling sequentially from the following

conditional densities

1. Sample st for all t, conditioning on data z

t = zt with  = diag {1, ..., n},

using the modified Carter and Kohn (1994) filter and smoother for state-space

models (see below)

2. Sample j, j = 1, ..., n, from the density

j|\j, , Q, P,, y, z  Bernoulli (j) (C.3)

preferably in random order j, where j = l0j
l0j+l1j

, and

l0j = p

y|j, \j, j = 1


0j (C.4)

l1j = p

y|j, \j, j = 0


(1 0j) (C.5)

The expressions p

y|1:sTj , \j, j = 1


and p


y|1:sTj , \j, j = 0


are condi-

tional likelihood expressions, where 1:sTj = [s1,j, ..., st,j, ..., sT ,j]
. Define st

to be equal to st but with its j  th element fixed to st,j = st,j (i.e. when
j = 1). Similarly, define 


st to be equal to st but with the j  th element

set to st,j = 0 (i.e. when j = 0), for all t = 1, ..., T . Then in the case of the
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TVP-VAR likelihood of model (B.1), we can write l0j, l1j analytically as

l0j = exp



1

2

T

t=1


yt  ztst


1


yt  ztst



0j

l1j = exp



1

2

T

t=1


yt  ztst


1


yt  ztst



(1 0j) .

3. Sample Q1 from the density

Q1|, , P,, y, z  Wishart

, R1


(C.6)

where  = T +  and R1 =

R +

T
t=1


st  st1

 
st  st1

1
.

4. Sample 1 from the density

1|, Q, P, , y, z  Wishart

T, S1


(C.7)

where S =
T

t=1 (yt  ztst)
 (yt  ztst).

5. Sample st using Chib’s (1996) algorithm.

6. Sample pii from the density

pii|, Q,, , y, z  Beta (1 + Ti, 2 + 1)

where Ti are the number of observations in regime i (i.e. number of time

periods for which st = i), i = 1, ..., K.
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C.1 Modified Carter and Kohn (1994) algorithm for struc-

tural breaks VAR:

Consider the following special state-space form

yt = ztast + ut (C.8a)

ast = ast1 + vst (C.8b)

ut  N (0, R) , vt  N (0,W )

When structural breaks indicators st are present, the Kalman filter and smoother

have to be modified. The main idea is that in the standard Kalman filter we have

a break in each period, so that st = t and at the end of the sample sT = T .

Subsequently, when st < t (a few breaks model) we run the Kalman filter for t =

1, ..., T , with the exception that the second filtering equation in (B.9) takes the form

Pt|t1 =


Pt1|t1 +W, if st = st1
Pt1|t1, otherwise

In order to get the smoothed estimates of aj for j = 1, ..., sT we run the backward

recursions

at|t+1 =


at|t + Pt|tP


t+1|t


at+1  at|t


, if st = st1

at|t, otherwise

Pt|t+1 =


Pt|t  Pt|tP t+1|tPt|t, if st = st1
Pt|t, otherwise

for t = T  1, ..., 1 and draw ast  N

at|t+1, Pt|t+1


, iff st = st1.
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D Ecient sampling of the variable selection in-

dicators

In order to sample all the j we need n evaluations of the conditional likelihood

functions p

y|..., j = 1


and p


y|..., j = 0


which can be quite inecient for large

n. Kohn, Smith and Chan (2001) replace step 2 of the algorithms above with step

2* below. For notational convenience denote S to be the total number of Gibbs

draws, and let the (current) value of j at iteration s of the Gibbs sampler to be

denoted by sj, and the (candidate) draw of j at iteration s + 1 to be denoted by

s+1j . An ecient accept/reject step for generating j is:

2* a) Draw a random number g from the continuous Uniform distribution U (0, 1).

b) - If sj = 1 and g > 0j, set 
s+1
j = 1.

- If sj = 0 and g > 1 0j, set 
s+1
j = 0.

- If sj = 1 and g < 0j or 
s
j = 0 and g < 1 0j, then generate 

s+1
j from

the Bernoulli density j|\j, b, y, z  Bernoulli (j), where j =
l0j

l0j+l1j
and

l0j, l1j are given in equations (A.6)-(A.7) and (B.4)-(B.5), for the VAR and

TVP-VAR models respectively.
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