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1 Introduction 

Banks regularly estimate the downside risk on their trading portfolios for the purpose 
of internal risk management and external supervision. The Delta-Gamma cum normal 
distribution approach, as advocated by e.g. the RiskMetrics product, is the industry standard 
for assessing the risks of a portfolio containing derivatives. This Taylor expansion based 
method tries to the capture the non-linear behavior of a portfolio containing derivatives by 
a quadratic approximation. This approximation is accurate in the vicinity of the current 
price of the underlying asset, which is the usual case in Value-at-Risk exercises. The 
approximation, however, can be very inaccurate when the price of the underlying asset drifts 
away from the current price. For Value-at-Risk exercises like stress testing, see the BIS 
(2000) report, large changes in the price of the underlying asset are important. We quote 
from the BIS report (2000): " ... VaR has been found of limited use in measuring firms' 
exposures to extreme market cvents ... ". There are two problems: One problem is that the 
probability by which extreme market events do occur is not well captured by the normal 
distribution. The other problem is the high curvature of a derivative portfolio with respect to 
the underlying in extreme situations. 

To overcome these problems, we present a method that uses closed form option 
pricing formulas, such as the normal distribution based Black-Scholes formula, in order to 
capture the high curvature at the edges, which may be completely missed if the quadratic 
approximation is used. In order to estimate the probability that the derivative portfolio 
will be in this area, we do however not use the assumption of normality. Instead we rely 
on a fit of the tail of the distribution of the underlying that is commensurate with the 
empirical distribution. Thus while the pricing uses standard normality based formulas, the 
transition probabilities for the underlying asset prices are different. This hybrid procedure 
may seem to fly in the face of theoretical consistency. But other research has shown that 
the Black-Scholes pricing formula is usually within the 95% confidence area, even if the 
underlying follows a non-normal stochastic process, see e.g. Mahieu and Schotman (1998). 
This may in part be due to the usage of the Black-Scholes pricing formula as the basic 
input for giving actual price quotes, modified in the tails to capture smiles and smirks. The 
transition probabilities of the underlying asset features the heavy tails found in practice. 

2 The VaR of a portfolio of options on a single underlying 
asset 

Representative for the standard way of obtaining VaR estimates is the RiskMetrics 
Group (1996) methodology. It assumes that the log-returns of the underlying stock are 
normally distributed with mean zero and a volatility that changes over time. On basis of 
this assumption and a quadratic approximation of the portfolio returns as a function of the 
returns on the underlying asset, the first four moments of the distribution of the portfolio 
returns can be estimated. Subsequently, a Johnson distribution is fitted on these moments. 
This distribution determines the VaR estimate. 



Two observations regarding this fully parametric approach can be made. First, around 
the center there is little need to approximate the distribution of the returns by a specific 
parametric model, since the empirical distribution contains sufficiently many observations 
in this area. Second, in the tail area there is ample evidence that the normal model is not 
appropriate, see e.g. Campbell et a1. (1997). Based on these two observations we propose 
instead a semi-parametric approach, as in e.g. Caserta et a1. (1998), whereby the tail part is 
modeled semi-parametrically and the linearly interpolated empirical distribution function is 
used in the center. We assume in line with empirical evidence that the distribution function 
of asset returns is heavy tailed, i.e. exhibits power decline. The class of distributions with 
this property, formally the class of regularly varying distributions (see e.g. Danielsson et aL 
(2001 », exhibits to a first order a Pareto-type tail l : 

P(X~ 

P(X? x) 

L(x), ,>0, 

L(x),1>0, (1) 

for x > 0. The estimate of the distribution function of returns thus consists of a trimmed 
empirical distribution to which we attach estimated heavy tails at both ends. 

The tail parameters are estimated by means of Hill's method. The number of observations 
used to estimate the tail parameters is determined by the bootstrap method in Danielsson 
et al. (2001). This also determines where the empirical distribution function is trimmed, 
which ensures that our estimator of the distribution function will be continuous and hence 
increasing. 

The portfolio value is determined via the (normal based) pricing formula as a function of 
the value 8 of the underlying asset. We apply the Black-Scholes formula to each option in 
the portfolio and denote the pricing function by V. If we want to cstimate the VaR at level 
1 0:, we need the value of x for which P (V (8) < x) 0:. This x can be estimated by 
solving the equation 

"'" J l[v(sl<x]dF(s) 0:, (2) 

o 
where F is the semi-parametric estimator of the distribution function of next period's asset 
price. The estimator F follows directly from the current asset price and the estimator of the 
distribution function of the returns. The estimate of the VaR then equals the current portfolio 
value minus x. The value of x can be found using a bisection method, since P(V(8) < x) 
is increasing in x. To determine the above expression for given x, we need to find the prices 
of the underlying asset for which the portfolio has a value smaller than or equal to x. These 
prices can be found efficiently by determining the local extrema ofV(8). We note that 
between two local extrema the function is monotonous and thus V(S) - x can only have 
one root. The local extrema are reached at those asset prices whcre the delta of the portfolio 
equals zero. 

1 Here L (and L) represents a slowly varying function, i.e. a function satisfying Iimx_= L(tx)/ L(x) = 1, 
t> 0, 
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3 An example 

We compare the alternative procedures for estimating the VaR for a given example 
portfolio of derivatives. Consider the hypothetical portfolio where 15,000 plain vanilla put 
options with strike price 107.50 are written (price per option: 0.090), 10,000 plain vanilla 
call options with strike 100 (price per option: 12.628) and 40,000 with strike 112.50 are 
bought (price per option: 1.437) and 40,000 call options with strike 110 are written (price 
per option: 3.061). The time to maturity is 8 trading days for all options. 

The current asset price equals 112.50, the volatility used to price the options is taken to 
be 17%. The risk-free interest rate is assumed to be 4%. The current value of the portfolio 
then equals 59,981. For estimation we use the returns of the Amsterdam AEX Index from 
January 1983 until December 1994. The 1491 data from January 1995 until November 
2000 are used for out-of-sample comparison. Figure 1 shows the value of the portfolio as a 
function of the underlying stock and its approximation by the RiskMetrics methodology. As 
can be seen directly from the figure, the quadratic approximation performs badly in the (left) 
tail area and this has a considerable influence on the VaR estimates. 
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Figure I - Portfolio value as a function of the underl~'ing asset price and RMG's approximation 

The competing VaR estimates at various confidence levels are given in Table 1. The 
quadratic approximation (Quadratic) does not capture the behavior of the portfolio for low 
values of the underlying stock price and therefore these VaR estimates are out of bound. The 
estimates based on our non-linear Black-Scholes cum heavy tail method (Hybrid tail) do 
have the right order of magnitude. 
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Confidence Level Hybrid tail Quadratic Out of sample loss 
95.0% 703 559 702 
99.0% 3,070 564 5,830 
99.5% 12,041 564 15,737 

99.75% 33,676 564 23,202 
Table 1 - VaR estimates and out of sample results for ,'arious confidence levels 

In Table 2 we give the number of exceedances of the VaR values that we counted in 
the out of sample dataset. E.g., for the 95% confidence level we should see approximately 
0.05 x 1491 ;:::: 75 exceedances. We also provide 95% confidence bounds for the number of 
exceedances, based on the binomial distribution. 

Confidence Level Hybrid tail Quadratic Expected Lower bound Upper bound 
95.0% 67 540 74.55 59 91 
99.0% 21 534 14.91 8 23 
99.5% II 534 7.46 3 13 

99.75% I 534 3.73 1 8 
Table 2 - Exceedances ofthe VaR estimates with expected ,'a lues and confidence bounds 

We see that the exceedances of our hybrid Black-Scholes cum heavy tail method 
estimates are between the bounds for all the tabulated confidence levels. The quadratic 
approximation cum normal transition probabilities method dramatically underestimates the 
frequency of high losses, leading to a large number ofVaR exceedances in the out of sample 
exercise. 

4 Portfolios on multiple underlying assets 

In this section we briefly present the case where we have a portfolio of derivatives on 
several underlying assets. The quadratic approximation again gives rise to problems at the 
edges. We consider a portfolio on two different underlying assets and we include for each 
asset the same options as in the univariate example. Both underlying assets have the same 
spot price as in the univariate example, i,e. 112.50, and the corresponding options have the 
same strike prices as reported in de univariate example. Moreover, the same volatility and 
risk-free interest rate as in the univariate example are used to price the options. The value 
of the portfolio thus amounts to 2 x 59,981 119,962. In Figure 2 we see respectively 
the value of this portfolio as a function of the underlying asset prices and its quadratic 
approximation, Clearly the situation is similar to the univariate case. 
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Figure 2 • Portfolio value as a function of the underlying asset prices (left) and RMG's approximation 

We sketch how one can implement a complete pricing fonnula for the case of multiple 
underlying assets. Since the univariate method has no natural generalization, we propose a 
simulation based method. To this end we need an estimator of the multivariate distribution 
function of the underlying asset returns. Since the estimator of a univariate distribution 
function (see Section 2) perfonns well, we use it to estimate the univariate marginals of the 
multivariate distribution function. In order to model the dependencc between the returns (as 
is observed in financial data) we make use of the multivariate nonnal copula (or dependence) 
function; see, e.g., Joe (1997) for a treatment of copulas and other dependence concepts. 
Since a copula function has unifonn-(O,I) marginals, in the bivariate case the nonnal copula 
contains only the parameter p. The p has to be estimated from the data. We simulate returns 
for the assets by generating multivariate nonnal copula random vectors and transfonn these 
component-wise using the inverse of our univariate semi-parametric heavy tail distribution 
function estimator. A similar approach is also used in Hull and White (1998). With these 
simulated returns, we detennine corresponding asset prices and the portfolio value. By 
sorting all portfolio values attained in this way we can estimate the VaR for the portfolio. 

Table 3 gives our VaR estimates and the RMG's quadratic approximation VaR estimates 
for various confidence levels for the bivariate portfolio. For estimation we used the returns 
on the ING and Philips stock from March 1991 until September 1999. We notice that the 
estimates based on Historical Simulation and the Hybrid tail method are in the same order 
of magnitude for all confidence levels, whereas the VaR estimates resulting from RMG's 
method are out of bounds for all confidence levels. This is due to the fact that RMG's 
quadratic approximation is unable to capture the behavior ofthe portfolio at the edges. 
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Confidence level 
95.0% 
99.0% 
99.5% 

99.75% 

Hybrid tail 
5,572 

63,591 
127,096 
193,509 

Quadratic 
1,050 
1,179 
1,197 
1,207 

Historical Simulation 
4,748 

67,971 
111,550 
156,959 

Table 3 - VaR estimates at different confidence levels in the multivariate example 

5 Conclusions 

In summary, a quadratic approximation in estimating the Value-at-Risk can be quite 
misleading, if the current portfolio value is trapped in a local minimum. Moreover, the 
normal based transition probabilities underestimate the tail risk. Therefore it is better to use 
a complete pricing method, with adjusted transition probabilities, to take account of market 
incompleteness and observed pricing practices as well as the actual risks in the underlying 
values. 
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