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Abstract—In this paper, a stochastic modeling method is
presented for the analysis of variability effects, induced by the
manufacturing process, on interconnect structures terminated
by polynomial nonlinear loads. The technique is based on the
solution of the pertinent stochastic Telegrapher’s equations in
time domain by means of the so-called stochastic Galerkin
method in conjunction with a finite-difference time-domain
technique, allowing the inclusion of, e.g., nonlinear capacitors
at the terminals of the lines. The proposed technique is validated
and illustrated with an example, demonstrating its accuracy and
efficiency.
Index Terms—Transmission line, nonlinear, stochastic Galerkin

method, polynomial chaos, finite-difference time-domain, vari-
ability analysis, uncertainty

I. INTRODUCTION

Nowadays, interest has grown in the development of simu-
lation techniques for the analysis of high-speed interconnects,
including the effects of possible uncertainties of the circuit
parameters [1], [2]. In fact, due to ever more stringent design
specifications, expressed in terms of speed, bandwidth, large-
scale production and miniaturization, the necessity for the
development of simulation techniques that are able to model
the effect of such uncertainties become crucial. In the past, the
authors of the present contribution have especially focussed
on the stochastic modeling of interconnect structures that
are affected by uncertainties in their geometrical or material
properties [3], [4]. Thanks to the application of Polynomial
Chaos (PC) expansions, a modeling strategy was devised
that largely outperformed traditional Monte Carlo (MC) anal-
ysis. Unfortunately, as the technique developed in [3], [4]
is in essence a frequency-domain method, only linear loads,
connected to the terminals of the interconnects, could be
taken into account. Therefore, further steps have been taken
and a technique was devised that allows including loads
with arbitrary I-V characteristics [5]. In this contribution, we
focus on the variability analysis of interconnects that are
terminated by nonlinear loads, described by polynomial I-V
characteristics, and we show that they can be dealt with via an
alternative, closed-form and exact formulation. The goal is to
more efficiently and accurately solve the governing stochastic
Telegrapher’s equations for transmission lines terminated, e.g,
by nonlinear polynomial capacitors. The proposed technique
combines the so-called Stochastic Galerkin Method (SGM) [3]
with the well-known finite-difference time-domain (FDTD)
method [6].

This contribution is organized as follows. In Section II, the
proposed formalism is explained starting from the stochastic
Telegrapher’s equations. The SGM framework is constructed
and special attention is devoted to the description of poly-
nomial nonlinear loads and to their FDTD implementation.
In Section III, the formalism is validated and illustrated by
applying it to the variability analysis of a microstrip line,
terminated by a nonlinear capacitor that is described by a
polynomial model. Conclusions are presented in Section IV.

II. THEORY

A. Stochastic Telegrapher’s Equations

Consider a single uniform transmission line, taking the z-
axis as the axis of invariance. An example of such a line
is reported in Fig. 1 (Section III). The electrical behavior
of this line in the time domain is described by the well-
known Telegrapher’s equations [7]. Often, due to manifac-
turing tolerances, one or more geometrical and/or material
parameters cannot be described in a deterministic way. Thus,
these parameters need to be treated as random variables
(RVs), described with a probability density function (PDF),
rendering the Telegrapher’s equations nondeterministic. Let us
now define the new set of stochastic Telegrapher’s equations,
and for ease of notation, we consider a lossless and dispersion-
free line, affected by a single stochastic parameter:

∂

∂z

[

v(z, t, β)
i(z, t, β)

]

= −

[

0 L(β)
C(β) 0

]

·
∂

∂t

[

v(z, t, β)
i(z, t, β)

]

, (1)

where v and i represent the voltage and current along the line,
and L and C are the per-unit-of-length (p.u.l.) transmission
line parameters, i.e. the p.u.l. inductance and capacitance,
respectively. The nondeterministic voltage and current depend
on the position z along the line and the time t, but also on a
stochastic parameter β of which only the PDF is known. From
here on, we denote this PDF of β as Wβ(β), which is defined
on a support Γ ⊆ R. Due to the presence of the RV β, (1)
cannot be solved in a straightforward way.

B. Stochastic Galerkin Method (SGM)

The solution to the stochastic Telegrapher’s equations (1)
can be obtained by relying on the well-established Stochastic
Galerkin Method (SGM). A detailed description of this method
in the frequency domain is found in [3], [4]. Here, however, the



goal is to apply the SGM to transmission lines that are termi-
nated by polynomial nonlinear terminations, and in particular
by a nonlinear capacitor (see Section II-C), necessitating a
time-domain analysis.
First, we apply the Polynomial Chaos (PC) expansion to the
above system of differential equations (2), by rewriting the
voltage, current and the p.u.l. parameters as follows:

v(z, t, β) =

K
∑

k=0

vk(z, t)φk(β), L(β) =

K
∑

k=0

Lkφk(β),

i(z, t, β) =

K
∑

k=0

ik(z, t)φk(β), C(β) =

K
∑

k=0

Ckφk(β),

(2)
where each function φk(β), k = 0, . . . , K , represents a
polynomial of degree k. To obtain an accurate expansion,
leading to an adequate solution of the stochastic Telegrapher’s
equations, the polynomial bases are chosen according to the
Wiener-Askey scheme [8], meaning that they are orthogonal
w.r.t. to the following inner product:

<φk(β), φl(β)> =

∫

Γ

φk(β)φl(β)Wβ(β) dβ = ckδkl. (3)

In the above equation, the weighting function Wβ(β) coin-
cides with the PDF of β, and δkl is the Kronecker delta.
The scalar number ck simply depends on the scaling of
the polynomials. In the remainder of this contribution, we
choose the polynomials to be orthonormal, i.e. ck = 1,
∀k = 0, . . . , K [9]. Thanks to the orthogonality, and since
the p.u.l. parameters L and C are known as functions of β,
the expansion coefficients Lk and Ck, are easily computed.
Nonetheless, the voltage and current expansion coefficients,
i.e. vk and ik resp., k = 0, . . . , K , are as yet unknown.
Second, the series (2) are substituted into (1). Then, the re-

sult is subjected to a Galerkin testing procedure, meaning that
the equations are weighted with the same set of polynomials
using the inner product (3). This leads to the following set of
equations:

∂

∂z

[

ṽ(z, t)

ĩ(z, t)

]

= −

[

0 L̃

C̃ 0

]

·
∂

∂t

[

ṽ(z, t)

ĩ(z, t)

]

, (4)

where ṽ and ĩ are (K + 1)-vectors containing the voltage
and current expansion coefficients vk and ik, and where L̃

and C̃ are (K + 1) × (K + 1)-matrices, with matrix ele-
ments L̃ml =

∑K

k=0
Lkαklm and C̃ml =

∑K

k=0
Ckαklm

where αklm =< φk(β)φl(β), φm(β) > (l,m = 0, . . . , K).
At this point, thanks to the SGM, we have transformed a
set of two stochastic equations (1) into an augmented set
of 2(K + 1) deterministic equations (4). Indeed, in (4), the
dependency on β has vanished at the cost of an increased
number of unknowns, being the voltage and currents expansion
coefficients vk and ik. Additionally, it is worth mentioning that
the augmented equations (4) have exactly the same shape as a
classical set of Telegrapher’s equations for K +1 lines. From
the above PC-representation, statistical information such as

the mean and the standard deviation of a voltage waveform
v(z, t, β) (2), as well as PDFs and cumulative distribution
functions (CDF), are readily computed [5].

C. Boundary Conditions
The (K + 1) unknown expansion coefficients vk and ik,

k = 0, . . . , K , are found from (4) by using standard mathemat-
ical methods. Nevertheless, a proper set of (K +1) boundary
conditions (BCs) needs to be constructed first. These BCs
evolve from the generators and loads attached to the terminals
of the original stochastic line (1). In this contribution, we
focus on the inclusion of nonlinear polynomial loads within
the SGM framework. An accurate, but numerical, formulation
for arbitrary nonlinearities has been proposed in [5]. Consider
a deterministic nonlinear load at the far-end z = L of the line,
described by a capacitance that is a polynomial function of
degree N of the voltage across it :

i(L, t, β) = C(v(L, t, β))
∂

∂t
v(L, t, β), (5)

with

C(v(L, t, β)) =

N
∑

n=0

Cn (v(L, t, β))n, (6)

Now, we apply the PC expansions (2) to (5):
K
∑

k=0

ik(L, t)φk(β) =

N
∑

n=0

Cn

(

K
∑

k=0

vk(L, t)φk(β)

)n

×

K
∑

j=0

∂

∂t
vj(L, t)φj(β), (7)

By using the multinomial coefficient theorem, (7) becomes:
K
∑

k=0

ik(L, t)φk(β) =

K
∑

j=0

N
∑

n=0

∑

k0+k1+...+kK=n

Cn

×

(

n

k0, k1, . . . , kK

)

∏

0≤r≤K

φr(β)
krφj(β)

×
∏

0≤r≤K

(vr(L, t))
kr

∂

∂t
vj(L, t), (8)

with the multinomial coefficient, where k0, k1, etc are integers
(

n

k0, k1, . . . , kK

)

=
n!

k0!k1! . . . kK !
(9)

Galerkin weighting of (8) finally yields the K + 1 new BCs,
∀m = 0, . . . , K:

im(L, t) =

K
∑

j=0

C̃mj(L, t, v0, . . . , vK)
∂

∂t
vj(L, t), (10)

where

C̃mj(L, t, v0, . . . , vK) =
N
∑

n=0

∑

k0+...+kK=n

Cn

(

n

k0, k1, . . . , kK

)

× <
∏

0≤r≤K

(φr(β))
krφj(β), φm(β) >

∏

0≤r≤K

(vr(L, t))
kr

(11)



It is worth noticing that the factor Cn

(

n
k0,k1,...,kK

)

×

<
∏

0≤r≤K

(φr(β))
krφj(β), φm(β) > is merely a real number.

Therefore, despite the somewhat bulky equation (11), the new
BCs are relatively simple and can be easily implemented in
the SGM framework (see further). Also, in contrast to [5], the
BCs are obtained in an analytical way, making them exact.
The derivation of the BCs for, e.g, a polynomial conductance
can be obtained in a similar way.

D. Implementation via the Finite-Difference Time-Domain
(FDTD) Method
The solution to the augmented set of equations (4) in

conjunction with the set of nonlinear BCs (11) is obtained by
adopting a finite-difference time-domain (FDTD) technique
for transmission lines [7]. For a detailed explanation of the
FDTD scheme, we refer the reader to [7], [5]. After discretiza-
tion of the Telegrapher’s equations (4), the following typical
FDTD-leapfrog scheme is obtained:

ṽ
q+1
p = ṽ

q
p −

∆t

∆z
C̃

−1

·

(

ĩ
q+ 1

2

p+ 1

2

− ĩ
q+ 1

2

p− 1

2

)

, (12)

ĩ
q+ 3

2

p+ 1

2

= ĩ
q+ 1

2

p+ 1

2

−
∆t

∆z
L̃
−1

·

(

ṽ
q+1

p+1 − ṽ
q+1
p

)

, (13)

where the vectors ṽ
q
p stem from the discretization of the

voltage waveforms vk(z, t) at discrete nodes zp = p∆z,
p = 0, . . . , Nz , and at times q∆t, q = 0, . . . , Nt. The current
waveforms ik(z, t) are assessed at nodes zp = (p + 1

2
)∆z,

p = 0, . . . , Nz − 1, and at times (q+ 1

2
)∆t, q = 0, . . . , Nt − 1.

The voltages and currents are solved by iterating p for a fixed
time (recursively solving first (12) and second (13)), and then
iterating time. All voltage and current variables are treated in
this way, except for the voltages at the terminals z = 0 (p = 0)
and z = L (p = Nz), for which special update functions need
to be constructed. It is readily proven that these are given by:

ṽ
q+1

0 = ṽ
q
0 −

2∆t

∆z
C̃

−1

·

(

ĩ
q+ 1

2

0 − ĩ
q+ 1

2

ne

)

, (14)

ṽ
q+1

Nz
= ṽ

q
Nz

−
2∆t

∆z
C̃

−1

·

(

ĩ
q+ 1

2

fe
− ĩ

q+ 1

2

Nz−1

)

, (15)

where the vectors iq+
1

2

ne and i
q+ 1

2

fe
contain the (K+1) currents

flowing through the terminals at the near-end z = 0 and the
far-end z = L respectively. For a nonlinear capacitor, attached
to the far-end of the line, the augmented BC in its discretized
form, is given by

ĩ
q+ 1

2

fe,m =

K
∑

j=0

C̃mj

ṽq+1

Nz,m
− ṽqNz,m

2∆t
(16)

where the coefficients C̃mj are given by (11). Next, the
augmented BC are handled within our FDTD scheme imple-
mented in Matlab, in particular making use of the fsolve.m rou-
tine, which allows to find the roots of a nonlinear equation. A
fast convergence of the iterative solution is assured when the
fsolve.m routine is adopted. Indeed, to find the update ṽ

q+1

Nz
,

we seed the solver with the previous voltage ṽq
Nz
, which turns

out to be an excellent initial value.

w

h

t
ǫr

(a) Cross-section of the source-line-load configuration
(Fig. 1(b)), where w = 100 µm, h = 500 µm and
t = 35 µm. The width w of the line and the relative
permittivity ǫr of the substrate are stochastic parameters.

L

Rg CNL

vin

voutvs

(b) Source-line-load configuration, where L = 5 cm, vs(t) is a finite
voltage step, Rg = 50 Ω, and with a nonlinear capacitor CNL.

Fig. 1: Microstrip line under study.

III. NUMERICAL RESULTS

In this section, the proposed approach is validated and
illustrated by applying it to the variability analysis of a single
PEC microstrip line. The results shown below have been
obtained performing a set of simulations using an Intel(R) i7
(TM) QuadCore 2600K, with a clock speed of 3.4 GHz and
16 GB of RAM. The cross-section of the analyzed structure is
presented in Fig. 1(a), while the source-line-load configuration
is reported in Fig. 1(b), where w = 100 µm, h = 500 µm
and t = 35 µm. The relative permittivity ǫr of the substrate
and the line width w are considered to be two Gaussian RVs
with mean µǫr = 4 and µw = 100 µm, respectively, and with
normalized standard deviations σǫr = 5% and σw = 5% . The
microstrip line is excited by means of a voltage source vs(t)
that produces a finite step, going from 0 V to 1 V in a
risetime of 50 ps. The generator impedance is Rg1 = 50 Ω.
The nonlinear capacitance CNL is characterized by (6) with
N = 2 and with the following polynomial coefficients:
C0 = 1 pF , C1 = −3 pF/V , C2 = 5 pF/V 2. Such a
nonlinear capacitor could, e.g., represent a MOSFET’s gate
capacitance, but of course, any polynomial model can be
handled with the proposed technique.
In order to obtain a reference result, a set of 10000 Monte

Carlo (MC) simulations was performed. The obtained results
are also compared to the ones computed using the purely
numerical approach proposed in [5], i.e. without exploiting the
polynomial behavior of the nonlinear capacitor. In Fig. 2 the
mean of the voltage at the output obtained using the two PC-
based methods (analytical and numerical) is compared with the
result of the reference MC method. For clarity of the figure, re-
sults are only shown up to 2 ns. Next, the comparison between
the standard deviation computed by means of the proposed
method, the MC reference and the numerical solution [5] is
reported in Fig. 3. We observe an excellent agreement between
all the results. Moreover, the total runtime for the MC analysis
was 41880 s, whereas the novel SGM simulation only took
45 s. By using the SGM technique presented in [5], the total
runtime was 79 s. Hence, the proposed technique provides a
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Fig. 2: Mean of the voltage waveform vout(t), at the terminal
of the microstrip line of Fig. 1 obtained with MC and PC.
Continuous line: MC technique; Crosses (+): newly proposed
PC analytical technique (PC-a); Circles (◦): numerical PC
technique (PC-n) [5]. For clarity, results are only shown up

to 2 ns.
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Fig. 3: Standard deviation of vout(t), obtained with MC and
PC. Continuous line: MC technique; Crosses (+): newly pro-
posed PC analytical technique (PC-a); Circles (◦): numerical
PC technique (PC-n) [5]. For clarity, results are only shown

up to 2 ns.

speedup of ca. 930× compared to the reference MC method,
and, by analytically exploiting the polynomial characteristic
of the load, it also outperforms the more general, but purely
numerical, technique presented in [5]. Further, we present the
cumulative distribution function (CDF) of the maximum of the
output voltage, reported in Fig. 4. Apart from the excellent
agreement between MC and the new technique, from this
figure, the maximum overshoot that one can expect, is readily
assessed.
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Fig. 4: Cumulative distribution function of max(vout(t))

IV. CONCLUSIONS

In this contribution we have presented a novel PC-based
technique for stochastic circuits dealing with nonlinear ter-
minations described by a polynomial I-V characteristic. The
technique is based on combining the SGM with FDTD. It was
validated and illustrated by means of an application example,
consisting of a microstrip line exhibiting variability of its
geometrical and material parameters, and terminated with a
nonlinear polynomial capacitance. The results have been com-
pared to a standard and robust Monte Carlo analysis, and to the
numerical method presented in [5]. This comparison shows an
excellent agreement, and as expected, an improved efficiency
in comparison to both MC and the numerical method.
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