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Paolo Manfredi2, Student Member, IEEE, Flavio Canavero2, Fellow, IEEE

Abstract—In this paper, a stochastic modeling method is
presented for the analysis of variability effects, induced by the
manufacturing process, on interconnect structures terminated by
general nonlinear loads. The technique is based on the solution of
the pertinent stochastic Telegrapher’s equations in time domain
by means of the well-established stochastic Galerkin method,
but now allows, for the first time in literature, the inclusion
of loads with arbitrary I-V-characteristics at the terminals of

the lines. The transient solution is obtained by combining the
stochastic Galerkin method with a finite-difference time-domain
scheme. The proposed technique is validated and illustrated with
a meaningful application example, demonstrating its accuracy
and efficiency.

Index Terms—Multiconductor transmission line, nonlinear,
stochastic Galerkin method, polynomial chaos, finite-difference
time-domain, variability analysis, uncertainty

I. INTRODUCTION

The design of electronic systems is becoming increasingly

hard because of ever more stringent design specifications,

expressed in terms of speed, bandwidth, crosstalk, etc. More-

over, large-scale integration and miniaturization leads to an

important impact of the manufacturing process on the sys-

tem performance, as this causes uncertainty of the circuit

parameters. Therefore, there is a huge need for accurate and

efficient stochastic modeling techniques that allow assessing

the variability, induced by the manufacturing, during the early

design phase [1]–[3].

On the one hand, the traditional brute-force Monte Carlo

(MC) technique can be considered as a robust and reliable

stochastic modeling technique. However, for complex systems,

the approach is not tractable, as it is known that the conver-

gence of the MC method is slow [4]. Improved techniques,

such as quasi-MC techniques [5], have been proposed as well,

but unfortunately, their applicability is limited. On the other

hand, a class of so-called generalized Polynomial Chaos (gPC)

techniques has been developed [6], [7] to efficiently deal with

stochastic systems. These techniques turned out to be very

useful for the stochastic modeling of electronic circuits and

systems [8]–[12].

The authors of the present paper have especially focussed on

stochastic modeling of interconnect structures that are affected

by uncertainties in their geometric or material properties [13]–

[15]. Thanks to the application of gPC, a modeling strategy
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was devised that largely outperformed traditional MC analysis.

Unfortunately, as the technique developed in [13]–[15] is

in essence a frequency-domain method, only linear loads,

connected to the terminals of the interconnects, could be taken

into account. In [10], lumped circuits with nonlinear elements

were modeled as well. However, no transmission-line effects

were studied, and more importantly, the nonlinearities were

described by small-signal analysis or by applying a Taylor

expansion around a certain bias point. Hence, all nonlinearities

were of a polynomial nature, making the application of gPC

again rather straightforward.

In this paper, we focus on the variability analysis of in-

terconnects that are terminated by general nonlinear loads.

The goal is to efficiently and accurately solve the gov-

erning stochastic Telegrapher’s equations for multiconduc-

tor transmission lines (MTLs) and, for this purpose, the

well-established Stochastic Galerkin Method (SGM) for

MTLs [13]–[15] is combined with a standard finite-difference

time-domain (FDTD) scheme [16]. The approach presented

in this paper, however, allows for the first time in literature,

and in contrast to [13]–[15], the termination of the MTLs by

loads that are described by arbitrary I-V-characteristics. It will

be shown that these I-V-characteristics can be of a very general

nature, even non-smooth, non-polynomial functions can be

dealt with. Via numerical integration, an FDTD-update scheme

is obtained that requires the solution of a set of nonlinear

equations, which can be solved efficiently by providing it with

a clever and convenient choice of a seed.

This paper is organized as follows. In Section II, the

proposed formalism is explained starting from the stochastic

Telegrapher’s equations. The SGM framework is constructed

and special attention is devoted to the description of nonlinear

loads and to their FDTD implementation. In Section III, the

formalism is validated and illustrated by applying it to the

variability analysis of a pair of coupled microstrip lines,

terminated by a diode, described by a nonlinear, non-smooth

I-V-characteristic. Conclusions are summarized in Section IV.

II. STOCHASTIC MODELING FORMALISM AND

IMPLEMENTATION

A. Stochastic Telegrapher’s Equations

Consider a uniform multiconductor transmission line (MTL)

where the axis of invariance is the z-axis. In general, the MTL

consists of N signal conductors and a reference conductor. An

example of such a line is given in Fig. 1 (Section III), where

N = 2. An MTL’s behavior is described by the well-known
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Telegrapher’s equations [17]. Often, due to manufacturing,

one or more geometrical and/or material parameters are not

known in a deterministic way. They have to be treated as

stochastic random variables (RVs), characterized by a prob-

ability density function (PDF), rendering the Telegrapher’s

equations nondeterministic. For ease of notation, but without

loss of generality, in this section, we consider a single lossless

dispersion-free line (N = 1), affected by a single stochastic

parameter. (In Section III, an example is given for N = 2 and

two stochastic parameters.) We can then write the pertinent

stochastic Telegrapher’s equations as follows:

∂

∂z

[

v(z, t, β)
i(z, t, β)

]

= −
[

0 L(β)
C(β) 0

]

· ∂

∂t

[

v(z, t, β)
i(z, t, β)

]

,

(1)

where v and i are the voltage and current along the line,

and with L and C the per-unit-of-length (p.u.l.) transmission

line parameters, i.e. the p.u.l. inductance and capacitance

respectively. Next to the position z along the line and the

time t, we have also explicitly written down the dependence

on a stochastic parameter β, of which only the PDF is known,

prohibiting a straightforward solution of (1). From here on,

we denote this PDF of β by Wβ(β), which is defined on a

support Γ ⊆ R.

B. Stochastic Galerkin Method (SGM)

To solve the stochastic Telegrapher’s equations (1), we rely

on the so-called Stochastic Galerkin Method (SGM). For a

detailed description of this method, applied to transmission

lines in the frequency domain, we refer to [13]–[15]. Here,

we repeat the gist of it in the time domain. This will allow us

to demonstrate in Section II-C how the method can be adapted

and leveraged to include general nonlinear terminations.

The first step of the SGM is to apply a Polynomial Chaos

(PC) expansion, by rewriting the voltage, current and p.u.l.

parameters as follows:

v(z, t, β) =

K
∑

k=0

vk(z, t)φk(β), L(β) =

K
∑

k=0

Lkφk(β),

i(z, t, β) =
K
∑

k=0

ik(z, t)φk(β), C(β) =
K
∑

k=0

Ckφk(β), (2)

where each function φk(β), k = 0, . . . ,K , represents a

polynomial of degree k. For an efficient expansion, leading to

an adequate solution of the stochastic Telegrapher’s equations,

these polynomials are chosen according to the Wiener-Askey

scheme [18], meaning that they are orthogonal w.r.t. to the

following inner product:

<φk(β), φl(β)> =

∫

Γ

φk(β)φl(β)Wβ(β) dβ = ckδkl. (3)

In the above equation (3), the weighting function Wβ(β)
coincides with the PDF of β, and δkl is the Kronecker delta.

The scalar number ck simply depends on the scaling of

the polynomials, e.g., if the polynomials are chosen to be

orthonormal, then ck = 1, ∀k = 0, . . . ,K [19]. Thanks to

the orthogonality, upon knowledge of the p.u.l. parameters L

and C as a function of β, the expansion coefficients Lk

and Ck, k = 0, . . . ,K , are readily computed. The voltage

and current expansion coefficients, i.e. vk and ik resp., k =
0, . . . ,K , are yet unknown.

In the second step of the SGM, the expansions (2) are sub-

stituted into (1) and the result is subjected to a Galerkin testing

procedure [20], meaning that the equations are weighted with

the same set of polynomials using the inner product (3). This

leads to the following set of equations:

∂

∂z

[

ṽ(z, t)

ĩ(z, t)

]

= −
[

0 L̃

C̃ 0

]

· ∂

∂t

[

ṽ(z, t)

ĩ(z, t)

]

, (4)

where ṽ and ĩ are (K + 1)-vectors containing the voltage

and current expansion coefficients vk and ik, and where L̃

and C̃ are (K + 1) × (K + 1) matrices, with matrix el-

ements L̃ml =
∑K

k=0 Lkαklm and C̃ml =
∑K

k=0 Ckαklm

where αklm =<φk(β)φl(β), φm(β)>/cm (l,m = 0, . . . ,K).

In summary, thanks to the SGM, we have gone from a

set of two stochastic equations (1) to an augmented set of

2(K + 1) deterministic equations (4). Indeed, in (4), the

dependency on β has vanished at the cost of an increased

number of unknowns, being the voltage and currents expansion

coefficients vk and ik. Additionally, it is worth mentioning that

the augmented equations (4) have exactly the same shape as a

classical set of Telegrapher’s equations for K+1 lines, and it

has been proven in [19] and [21] that reciprocity and passivity

of these “augmented lines” are preserved.

C. Boundary Conditions (BCs): General Nonlinear Loads

From the above, it can be concluded that upon knowledge

of the 2(K + 1) unknown expansion coefficients vk and ik,

k = 0, . . . ,K , the stochastic problem is fully determined.

To find these unknowns, the set of 2(K + 1) augmented

equations (4) needs to be solved using standard mathematical

methods, and hence, a proper set of 2(K + 1) boundary

conditions (BCs) is required. These BCs evolve from the

generators and loads attached to the terminals of the original

stochastic line (1). It has been explained in [15] that linear

loads can easily be dealt with. In this paper, however, we

focus on the inclusion of general nonlinear loads, described by

arbitrary I-V-characteristics, within the well-established SGM

framework. This opens up a much wider range of applications.

Consider again the single stochastic line, described by (1),

with a finite length L. We assume that a nonlinear load is

attached to the far-end terminal, i.e. at z = L:

i(L, t, β) = F (v(L, t, β)), (5)

where F (·) represents a general nonlinear function. To

construct the pertinent BCs, allowing to solve the aug-

mented equations (4), we proceed as follows. First, the PC-

expansions (2) of the voltage and the current at the load are

inserted into (5):

K
∑

k=0

ik(L, t)φk(β) = F

(

K
∑

k=0

vk(L, t)φk(β)

)

. (6)
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Second, (6) is Galerkin tested, yielding:

∀m = 0, . . . ,K :

im(L, t) = 1

cm
<F

(

K
∑

k=0

vk(L, t)φk(β)

)

, φm(β)> . (7)

Note that for linear loads [15] and for loads described by

a polynomial function F (·) [10], the inner product in the

rhs of (7) can be calculated analytically, leading to a simple

set of (K + 1) BCs for the equations (4). Such a set of

augmented BCs represents a linear or polynomial relationship

between the voltage and current expansion coefficients at the

terminal z = L. In contrast, for arbitrary, nonlinear F (·),
such an approach is not possible, and therefore, we will now

construct an approximate analytical relationship between the

current and voltage expansion coefficients at the terminals.

Thereto, the integral pertaining to the inner product, is solved

numerically, as follows:

<F

(

K
∑

k=0

vk(L, t)φk(β)

)

, φm(β)>

=

∫

Γ

F

(

K
∑

k=0

vk(L, t)φk(β)

)

φm(β)Wβ(β) dβ

≈
N
∑

n=1

wn Gn,m(v0(L, t), . . . , vK(L, t), βn), (8)

with

Gn,m(v0(L, t), . . . , vK(L, t), βn)

= F

(

K
∑

k=0

vk(L, t)φk(βn)

)

φm(βn). (9)

In (8), any kind of numerical integration technique can be

used, ranging from the classical trapezoidal rule, over Gaussian

quadrature rules, to highly adaptive integration schemes [22].

In all these cases, and depending on the desired accuracy,

the integration comes down to selecting N nodes βn in

the domain Γ and a corresponding set of N weights wn.

(Obviously, it is hard to exactly predict the number of nodes

that is strictly required for all kinds of nonlinearities that one

can encounter. Nonetheless, an illustrative example is given in

Section III.) Finally, a set of (K + 1) BCs is found, being a

set of K +1 coupled, nonlinear relations between the voltage

and current expansion coefficients at the terminals z = L of

the augmented lines (4), as follows:

∀m = 0, . . . ,K : im(L, t) ≈ F̃m(v0(L, t), . . . , vK(L, t)),
(10)

or in vector form

ĩ(L, t) ≈ F̃ [ṽ(L, t)] , (11)

where, after omitting the argument, the nonlinear func-

tions F̃m, m = 0, . . . ,K , contained in the vector of func-

tions F̃, are given by

F̃m =
1

cm

N
∑

n=1

wn Gn,m. (12)

Note that in the above expressions the ≈-sign was used

explicitly to stress that no analytically correct calculation

can be obtained, this in contrast to the case where linear or

polynomial loads are used. Nevertheless, still a very good

accuracy is obtained, as shown in Section III. Obviously, a

similar technique can be used at the other terminal z = 0,

leading to a second set of K + 1 BCs, allowing to solve the

2(K + 1) equations (4).

D. Implementation via the Finite-Difference Time-Domain
(FDTD) Method

To solve the augmented set of equations (4) in conjunction

with a set of nonlinear BCs such as (11), in this paper we

adopt a finite-difference time-domain (FDTD) technique for

transmission lines [17]. Of course, as the above formulation

to handle nonlinearities is in fact independent from the time-

domain solution technique, other methods, such as, e.g., wave-

form relaxation techniques [23] could be used as well. We now

briefly recapitulate the FDTD method for transmission lines.

We opt not to dwell on the inclusion of frequency-dependent

losses, but rather focus on the implementation of the nonlinear

terminations (11). For a detailed explanation on FDTD we

refer the reader to [16], [17].

The line of length L is divided into Nz equal sections of

length ∆z. In a similar fashion, the total simulation time is

divided into Nt time segments of length ∆t. The voltage

waveforms vk(z, t) along the line are assessed in Nz + 1
discrete nodes zp = p∆z, p = 0, . . . , Nz , and at times q∆t,
q = 0, . . . , Nt. The current waveforms ik(z, t) are assessed in

Nz discrete nodes zp = (p+ 1
2 )∆z, p = 0, . . . , Nz − 1, and at

times (q+ 1
2 )∆t, q = 0, . . . , Nt−1. This interlacing guarantees

an accurate FDTD-scheme. The voltage and current variables,

discretized in space and time according to this scheme, are

contained in (K+1)-vectors ṽq
p and ĩ

q+ 1

2

p+ 1

2

. After discretization

of the Telegrapher’s equations (4), i.e. after approximating

the derivatives ∂
∂z and ∂

∂t by finite differences and neglect-

ing second-order terms, the following typical FDTD-leapfrog

scheme is obtained:

ṽ
q+1
p = ṽ

q
p −

∆t

∆z
C̃

−1

·
(

ĩ
q+ 1

2

p+ 1

2

− ĩ
q+ 1

2

p− 1

2

)

, (13)

ĩ
q+ 3

2

p+ 1

2

= ĩ
q+ 1

2

p+ 1

2

− ∆t

∆z
L̃
−1

·
(

ṽ
q+1
p+1 − ṽ

q+1
p

)

. (14)

The voltages and currents are solved by iterating p for a fixed

time (recursively solving first (13) and second (14)), and then

iterating time. All voltage and current variables are treated in

this way, except for the voltages at the terminals z = 0 (p = 0)

and z = L (p = Nz), for which special update functions need

to be constructed. It is readily proven [17] that these are given

by:

ṽ
q+1
0 = ṽ

q
0 −

2∆t

∆z
C̃

−1
·
(

ĩ
q+ 1

2

0 − ĩ
q+ 1

2

ne

)

, (15)

ṽ
q+1
Nz

= ṽ
q
Nz

− 2∆t

∆z
C̃

−1

·
(

ĩ
q+ 1

2

fe − ĩ
q+ 1

2

Nz−1

)

, (16)

where the vectors ĩ
q+ 1

2

ne and ĩ
q+ 1

2

fe contain the (K + 1) cur-

rents flowing through the terminals at the near-end z = 0
and the far-end z = L respectively. Consider now nonlinear
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loads at the far-end, described by general nonlinear I-V-

characteristics (11), here repeated in discretized form:

ĩ
q+ 1

2

fe ≈ F̃

[

ṽ
q+ 1

2

Nz

]

≈ F̃

[

1

2

(

ṽ
q
Nz

+ ṽ
q+1
Nz

)

]

. (17)

To update the value of the voltage variables at the terminal,

(17) is inserted into (16) as follows,

ṽ
q+1
Nz

= ṽ
q
Nz

− 2∆t

∆z
C̃

−1
·
(

F̃

[

1

2

(

ṽ
q
Nz

+ ṽ
q+1
Nz

)

]

− ĩ
q+ 1

2

Nz−1

)

,

(18)

and this equation should be solved for ṽ
q+1
Nz

. At the near-

end z = 0, a similar procedure can be applied, solving

for ṽ
q+1
0 . For general nonlinear functions F̃[·], often, (18) is

a transcendental equation. In our work, the FDTD scheme

is implemented in Matlab, and the update function (18) is

handled by making use of the fsolve.m routine, which

allows to find the roots of a set of coupled nonlinear equa-

tions. It is interesting to mention that, thanks to the FDTD

scheme, we can assure a fast converge of the iterative so-

lution provided by this fsolve-routine. Indeed, to find the

update value for ṽ
q+1
Nz

, we seed the solver with the previous

voltage ṽ
q
Nz

, which turns out to be an excellent initial value.

The discretization step ∆z is chosen sufficiently small to

properly resolve all wave dynamics. By respecting the Courant

condition ∆t ≤ ∆z
vmax

, with vmax the speed of the fastest

fundamental eigenmode pertaining to the K + 1 lines, the

actual waveform can be reproduced with very good accuracy.

III. NUMERICAL RESULTS

In this section, the above outlined technique is validated

and illustrated by applying it to the variability analysis of a

pair of coupled PEC microstrip lines (N = 2). The cross-

section of the lines is given in Fig. 1(a), where w = 100 µm,

h = 500 µm and t = 35 µm. The gap G between the lines and

the relative permittivity ǫr of the substrate are considered to

be two Gaussian RVs with means µG = 80 µm and µǫr = 4
respectively, and with normalized standard deviations σG =
5% and σǫr = 5%. As shown in Fig. 1(b), the lines are given

a length of L = 5 cm. One line, called the active line, is

excited by means of a voltage source vs(t) that produces a

ramped step, going from 0 V to 1 V in a risetime of 100 ps.

The generator impedance is Rg1 = 50 Ω. This active line is

terminated by means of a forward biased diode. The diode’s

I-V-characteristic is given by:

i = F (v) =







0 , v < v1
v−v1
R1

, v1 ≤ v < v2
v−v2
R2

+ v2−v1
R1

, v ≥ v2

, (19)

where v1 = 0.67 V, v2 = 0.73, R1 = 1 Ω, and R2 = 0.1 Ω.

This is a three-line piecewise linear model [24], as shown in

Fig. 2. This kind of model is chosen for three reasons. First,

such a model is often preferred because of the presence of the

current-limiting resistor R2, this in contrast to the well-known

Shockley-model i = Is

(

e
v

ηVt − 1
)

with an exponentially

increasing current. Second, it allows to show that even non-

smooth, complex I-V-characteristics can be treated with great

accuracy and efficiency with our technique, which is rather

challenging. (For comparison, the smooth Shockley model’s

I-V-characteristic is also shown on Fig. 2, where the typical

parameters are Is = 5 · 10−14 A, η = 1, and Vt = 25.85 mV.)

Third, the nonlinearity induced by this I-V-characteristic will

lead to a clipping of the voltage across the load. Hence, this

can be considered as a “hard nonlinearity”, in contrast to, e.g.,

the rather mild distortion introduced by amplifiers working

in small-signal regime or by I/O buffers with a very high

input impedance. The second line, called the victim line, is

terminated at the near-end by means of a 50 Ω load Rg2. At

the far-end, a 1 pF ideal capacitor CL is connected. We are

interested in the voltage waveforms vin at the input of the

active line, vout at the diode, the near-end crosstalk vNX and

the far-end crosstalk vFX, all indicated on Fig. 1.

w wG

h

t
ǫr

(a) Cross-section AA′ of the source-line-load configura-
tion (Fig. 1(b)), where w = 100 µm, h = 500 µm and
t = 35 µm. The gap G between the lines and the relative
permittivity ǫr of the substrate are stochastic parameters.

LA

A′

Rg1

Rg2

CL

vin vout

vNX vFX

vs(t)

(b) Source-line-load configuration, using cross-section AA′

(Fig. 1(a)), where L = 5 cm, vs(t) is a ramped voltage step,
Rg1 = Rg2 = 50 Ω, CL = 1 pF, and the diode’s I-V-characteristic
is given by (19).

Fig. 1: Pair of coupled microstrip lines under study.
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Fig. 2: Three-line piecewise linear (PWL) diode model ac-

cording to (19). (For comparison, the Shockley model i =

Is

(

e
v

ηVt − 1
)

, with Is = 5 · 10−14 A, η = 1, and Vt =

25.85 mV, is plotted as well.)

To obtain a reference result, first, a Monte Carlo (MC)

simulation was performed using 10000 samples of G and ǫr,

drawn according to their respective Gaussian distribution.
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Fig. 3: Voltage waveforms vin(t), vout(t), vNX(t), and vFX(t), at the four terminals of the coupled microstrip lines of Fig. 1.

Full black lines: means µv computed using the SGM-FDTD technique; Dashed black line: ±3σv-variations computed using

the SGM-FDTD technique; Circles (◦): means µv computed using the MC technique; Crosses (×): ±3σv-variations computed

using the MC technique; Gray lines: 100 MC samples.

These 10000 FDTD simulations were performed using the

following settings: ∆t = 0.792 ps and ∆z = 0.192 mm.

Next, the proposed SGM for nonlinear loads was used. A set

of K + 1 = 10 orthonormal Hermite polynomials [18] was

adopted to model the variability and the numerical integration

was performed using 100 cubature points. The FDTD settings

were the following: ∆t = 0.842 ps and ∆z = 0.198 mm.

These SGM-FDTD settings differ slightly from the MC-

FDTD settings, because with SGM, actually, an augmented

set of N (K + 1) = 20 lines was modeled. This augmented

MTL clearly exhibits a different eigenmode behavior than the

original set of two lines, used during the MC run, hence a

different discretization is needed. In Fig. 3 the result is pre-

sented. The full black lines indicate the means µv of the four

voltage waveforms vin(t), vout(t), vNX(t), and vFX(t), at the

four terminals of the coupled microstrip lines of Fig. 1, and the

dashed lines show the ±3σv deviations from these means µv,

all computed using the SGM-FDTD technique. Thanks to

the gPC-representation, the mean and standard deviation of a

voltage waveform v(z, t, G, ǫr) are very efficiently calculated

as follows [7]:

µv(z,t,G,ǫr) = v0(z, t), (20)

σv(z,t,G,ǫr) =

√

√

√

√

K
∑

k=1

(vk(z, t))2, (21)

where vk, k = 0, . . . ,K , are the voltage expansion coef-

ficients, obtained by means of the SGM-FDTD. The gray

lines on Fig. 3 correspond to 100 samples of the MC run;

the circles (◦) and crosses (×) indicate the mean µv and the

±3σv deviations, resp., computed using the 10000 samples of

the MC run. Apart from the hard nonlinearity induced by the

diode, an excellent correspondence between the SGM results

and the MC results is observed. Moreover, such graphs can

be computed in a very efficient way now. Indeed, whereas

he total run time for this MC analysis was 53582 s, the

SGM simulation only took 75 s. So, an impressive speed-

up factor of 714 is obtained by means of the newly proposed

technique. All computations have been performed on a Dell

Precision M4500 laptop with an Intel(R) Core(TM) i7 X940

CPU running at 2.13 GHz and 8 GB of RAM.

At this point, it is instructive to comment on the convergence

of the MC method. One might argue that 10000 samples

seems a lot for this kind of example, but in fact, it is not. In

Fig. 4 the relative error on the computed mean and variance

of the maximum of the far-end crosstalk maxt≥0|vFX(t)|
is shown as a function of NMC, i.e. the number of MC

samples used. The mean and variance of maxt≥0|vFX(t)|,
obtained by using all 10000 samples, are 0.10759 V and

1.2552 ·10−5 V2 respectively. These values are used as the

reference result to compute the relative errors, shown in Fig. 4.

As expected, a 1/
√
NMC-convergence rate is obtained. It is

also observed that although using 1000 or 2000 samples might

be sufficient to obtain a good estimate of the mean, it is not

sufficient to get a an accurate result for the variance. The

relative error just drops below 1% when 10000 samples are

used. In the signal integrity applications we have in mind,

it is not sufficient to know the mean value of the crosstalk.

Typically, one is interested in the maximum value. To obtain

higher-order stochastic moments with sufficient accuracy or to

reconstruct the cumulative distribution function (see below), a

large number of MC samples is needed. In this perspective,
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the speed-up factor presented above is not exaggerated and

it is safe to state that also for larger examples (with more

RVs), still a considerable speed-up w.r.t. MC simulations will

be obtained.
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Fig. 4: Convergence of the MC simulation: relative error on

the computed mean and variance of the maximum far-end

crosstalk, as a function of the number of MC samples used.

As stated above, a designer is typically interested in the

maximum amount of crosstalk he/she can expect. Therefore, in

a post-processing step, we compute the cumulative distribution

function (CDF) of the maximum of the near-end and far-

end crosstalk, i.e. we compute the CDFs of maxt≥0|vNX(t)|
and maxt≥0|vFX(t)|, using standard analytical or numerical

techniques [25]. The results are shown in Figs. 5 and 6.

Although the number of MC samples was still not extremely

high, again a good agreement between MC and the SGM-

FDTD technique is obtained. From these figures, it is easy to

estimate the maximum crosstalk levels that one can expect, or

alternatively, it is now readily seen that, e.g., there is an 80%

chance that the crosstalk will take a value less than or equal

to 131 mV at the near-end terminal and 110 mV at the far-end

terminal.
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Fig. 5: Cumulative distribution function (CDF) of the maxi-

mum of the near-end crosstalk as presented in Fig. 3.

To obtain the above results, we opted to use a Gauss-

Hermite cubature integration scheme [26] to compute the inner

products (8). This is a logical choice for this integral, since
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Fig. 6: Cumulative distribution function (CDF) of the maxi-

mum of the far-end crosstalk as presented in Fig. 3.

the weighting function in the integrand represents a probability

density function pertaining to the two independent Gaussian

RVs G and ǫr. The influence of the number of cubature

points, used in the two-dimensional domain Γ, is indicated in

Table I. In this table, we present the mean and the variance of

maxt≥0|vFX(t)|, computed by the 10000 MC samples on the

one hand and by the SGM-FDTD method on the other. When

the number of cubature points increases to about 10 × 10,

the relative error of SGM-FDTD, compared to MC, drops

to the levels that we can expect from Fig. 4, i.e. two digits

of accuracy on the variance and four digits of accuracy on

the mean. All results presented above were obtained with this

10× 10 cubature scheme.

Technique maxt≥0|vFX(t)| Relative error [%]

(# cubature points) mean [V] variance [V2] mean variance

MC (104 samples) 0.10759 1.2552·10−5 0 0
SGM (1× 1) 0.13496 1.8519·10−2 25.4 > 106

SGM (2× 2) 0.10853 6.5588·10−5 0.871 423
SGM (5× 5) 0.10764 1.3088·10−5 0.0438 4.27

SGM (10× 10) 0.10761 1.2473·10−5 0.0179 0.634

TABLE I: Influence of the number of cubature points (in-

dicated between brackets) in the two-dimensional domain Γ,

used in the computation of the inner products (8), on the mean

and the variance of the maximum of the far-end crosstalk. The

relative accuracy w.r.t. the MC run with 10000 samples is also

indicated.

IV. CONCLUSIONS

Due to very stringent design specifications, the design of

interconnects has become a challenging task. Moreover, the

manufacturing process causes geometrical and material param-

eter uncertainties, necessitating the development of stochastic

modeling tools that allow assessing the variability effects.

In recent literature, polynomial chaos (PC) based techniques

have been developed for lumped circuits and distributed in-

terconnects, proving their ability for accurate and efficient

variability analysis. However, so far, stochastic interconnect

structures could only be terminated by linear loads and

PC-based techniques for stochastic lumped circuits could

only take mild nonlinearities, described by polynomial I-

V-characteristics, into account. Therefore, in this paper, we
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solve the stochastic Telegrapher’s equations for multiconductor

transmission lines (MTLs), by combining the well-established

stochastic Galerkin method (SGM) with a finite-difference

time-domain (FDTD) scheme. The novelty of this paper lies in

the fact that the SGM-FDTD framework is adapted and lever-

aged for the first time to also include general nonlinear loads,

described by arbitrary I-V-characteristics, at the terminals of

the MTL. This opens up a much wider range of applications

that can now be tackled. The technique was validated and

illustrated by means of an application example, consisting of

a pair of coupled microstrip lines exhibiting variability of

its geometrical and material parameters, and terminated by

a diode with a non-smooth I-V-characteristic. Compared to

a standard, robust Monte Carlo analysis, the method shows

excellent agreement and far superior efficiency.

Future research, as also pointed out by the reviewers, will

focus on the inclusion of (behavioral models of) dynamic
nonlinear terminations [27], as well as on the extension of the

application examples to I/O bus structures with many random

variables. With respect to the latter extension, the scalability

of the SGM becomes an important issue. This has also already

been adressed in [13], [14]. Also, a comparison with a non-

intrusive stochastic modeling technique, such as the stochastic

collocation method (SCM) [28], might be useful, as the SCM

is more parallelizable than the SGM.
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