
Variability and Complexity in Software Design –
Towards a Research Agenda

Matthias Galster
University of Canterbury

Christchurch, New Zealand

mgalster@ieee.org

Uwe Zdun
University of Vienna

Austria, Vienna

uwe.zdun@univie.ac.at

Danny Weyns
KU Leuven, Belgium

Linnaeus University, Sweden

danny.weyns@kuleuven.be

Rick Rabiser
Johannes Kepler University Linz

Linz, Austria

rick.rabiser@jku.at

Bo Zhang
Fraunhofer IESE

Kaiserslautern, Germany

bo.zhang@iese.fraunhofer.de

Michael Goedicke
University of Duisburg-Essen

Essen, Germany

michael.goedicke@s3.uni-due.de

Gilles Perrouin
University of Namur

Namur, Belgium

gilles.perrouin@unamur.be

ABSTRACT
Many of today’s software systems accommodate different usage and
deployment scenarios. Intentional and unintentional variability in
functionality or quality attributes (e.g., performance) of software
significantly increases the complexity of the problem and design space of
those systems. The complexity caused by variability becomes
increasingly difficult to handle due to the increasing size of software
systems, new and emerging application domains, dynamic operating
conditions under which software systems have to operate, fast moving
and highly competitive markets, and more powerful and versatile
hardware. This paper reports results of the first International Workshop
on Variability and Complexity in Software Design that brought together
researchers and engineers interested in the topic of complexity and
variability. It also outlines directions the field might move in the future.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures

General Terms
Management, Documentation, Design.

Keywords
Variability, complexity, software design.

1. INTRODUCTION
Today’s software users expect flexibility from software in many
dimensions, e.g., features, location and resource awareness, fault
tolerance, energy consumption, etc. Therefore, many of today’s software
systems must accommodate different deployment and usage scenarios
(e.g., product lines and families, self-adaptive systems, configurable or
customizable single systems, open platforms, context-aware mobile apps,
plug-ins of web browsers, service-based and cloud-based systems,
Internet of Things, cyber-physical systems). These systems can range
from small-scale embedded systems to large-scale enterprise software
systems to ultra-large systems of systems. Variability can be intentional
or unintentional and driven by many forces, for example, variations in
users and user needs, dynamics in the availability of resources or external
services, market segments, customer profiles, different emphases in
different phases of the software development process, or variation in

hardware resources. Therefore, variability needs to be addressed in a
broader software engineering context and is not limited to “traditional”
software product lines, the field in which variability has been discussed
the most so far.

Intentional and unintentional variability in functionality and/or quality
attributes of software significantly contributes to the complexity of the
problem and design space of those systems. A design space comprises
the set of possible design options and design parameters that could
potentially meet a specific software system’s requirements. Given the
increasing size and heterogeneity of software systems (e.g., software
ecosystems, cyber-physical systems, systems of systems, ultra-large scale
systems), new and emerging application domains (e.g., unmanned aerial
vehicles, smart health applications, large-scale surveillance systems,
software-defined networking, social networking apps), dynamic
operating conditions (e.g., availability of resources, variations in service
availability, changing goals), fast moving and highly competitive markets
(e.g., gaming, mobile apps), and increasingly powerful and versatile
hardware (e.g., Raspberry Pi), the complexity caused by variability
becomes more difficult to handle.

In some consumer domains of critical systems, e.g., autonomous and
unmanned aerial vehicles (UAV), research is only slowly catching up
with industry trends and needs [2]. Such systems can soon become an
integral part of many industries, including construction, agriculture,
emergency responder support, etc. Once this happens, practices need to
be in place to help software engineers develop such systems. A
particularly complex aspect of the engineering of such systems is the
provision of quality assurances with sufficient confidence. Furthermore,
successful companies are innovative companies that target new market
opportunities, independent of solutions or ideas that currently exist. On
the other hand, the time to market can make the difference between
product success and failure. This highlights the need for “light-weight”
approaches to variability-intensive systems, which balance the need for
innovation but also consider reducing development effort, even for
innovative products. New development models for variability-intensive
systems could help manage system growth over time and offer
opportunities for innovation throughout development. Also, there is a
need-supply gap in engineering capability (processes, practices, skills

DOI: 10.1145/3011286.3011291
http://doi.acm.org/10.1145/3011286.3011291

ACM SIGSOFT Software Engineering Notes Page 27 November 2016 Volume 41 Number 6

and workforce). Variability-intensive systems development differs from
conventional software engineering in that conventional engineering does
not address specifics of these systems, e.g., highly diverse stakeholders,
extremely large design spaces, consistency checking amongst
configurations/design options, etc. As mentioned in an ICSE Future of
Software Engineering talk in 2014 [10], a trend/challenge in the next
decade will be managing variability in a non-product line context and
under open-world assumptions.

2. VACE WORKSHOP
2.1 History
The first edition of the International Workshop on Variability and
Complexity in Software Design (VACE) was collocated with the
International Conference on Software Engineering (ICSE 2016) in
Austin, Texas. The workshop website can be found at http://vaquita-
workshop.org/vace/. VACE is an evolution of the VARSA workshop
series (International Workshop on Variability in Software Architecture)
held at WICSA in 2011 [5], 2012 [7], and 2014 [6], and VAQUITA
(Workshop on Variability for Qualities in Software Architecture) held at
ECSA 2015. Evolving these two workshops into one ICSE workshop
broadened the community beyond software architecture to reach an
audience with a much broader and diverse background and expertise.

2.2 Overview
Variability has previously been targeted by various, separate software
engineering sub-communities (e.g., requirements engineering, software
architecture, product lines/families, service-orientation, self-adaptation),
which should cooperate closer [8, 10]. Therefore, one of the key goals of
this workshop was to provide one venue for researchers, practitioners and
educators from different areas of software engineering to jointly discuss
experiences, synergies, forge new collaborations, and explore innovative
solutions that address the challenges of engineering for variability in
high-quality software.

Designing for, implementing and maintaining variability in software
systems not only affects characteristics of the software product and
variability in functionality and quality (i.e., what do we build), e.g.,
systems with support for “continuous configuration management” from
compile time and deployment time to runtime. It also affects the
development process (i.e., how we build it), e.g., systematic quality
assurance and validation despite a potentially large and highly complex
design and solution space. Therefore, topics of interest for VACE
included topics about product and process and how these interline with
current trends in software development. This included software
engineering issues related to requirements, design, implementation,
evaluation, deployment, runtime adaptation, and maintenance of
variability-intensive systems.

The workshop accepted different types of paper submissions (full papers,
position and vision papers, industrial and empirical papers, education and
training papers). Each submission was peer reviewed by three members
of the program committee. Accepted papers were presented at the
workshop and included in the proceedings (published by ACM). Around
20 participants attended the workshop. The workshop started with a
keynote delivered by Christian Kästner from Carnegie Mellon University
on quality assurance for highly-configurable software systems. Paper
presentations focused on timely aspects of variability and complexity in
software design and were organized in several sessions: variability at
runtime; variability in practice; and domain-specific variability.

2.3 Keynote
Highly configurable systems can be tailored to specific use cases. When
planned as software product lines, they can achieve orders of magnitude
improvements in development costs, speed and quality compared to
developing products one by one. At the same time, configuration options
challenge quality assurance. Traditional analysis techniques, including
type checking, static analysis and testing can analyze only one specific
configuration at a time in an exponentially exploding configuration

space. Dr. Christian Kästner provided an overview of work on variability-
aware analysis that aims at analyzing all configurations of a configurable
system in a single run, while exploiting the similarities between the
configurations. In large design spaces, it is simply not possible to check
each and every individual configuration. Analyzing configuration spaces
as discussed in the talk goes beyond the context of software product lines
since it applies to different types of variability-intensive systems, where
analysis takes place at code level and includes compile-time variability.
If features are defined in terms of #ifdef statements, then Linux for
example has around 10,000 different features. Christian gave an
overview of the TypeChef infrastructure that is able to parse and type-
check C code with #ifdef variability, targeted at finding bugs in highly
configurable systems such as the Linux kernel. Interestingly, there is
almost no code in Linux that is shared by all configurations. In the second
part of the talk, Christian went beyond ifdef’s and discussed analyzing
features at runtime (e.g., in Android, all code would be included for all
possible configurations). Feature interactions at runtime could help to
identify patterns and anti-patterns of interactions, thus identifying
problematic code. Such information is useful when debugging and during
code reviews. Christian also discussed the Varex infrastructure that
pushes the idea of analyzing configurations toward testing.

3. OPEN RESEARCH TOPICS
Several open research topics were discussed during the workshop. In the
long term we should try to organize these topics in a “whitelist” and a
“blacklist”: The whitelist contains topics that should be the focus of
future research efforts. The blacklist on the other hand contains topics
that a) have been addressed sufficiently in previous research or b)
describe problems that will never be solved and therefore researchers and
practitioners have to accept to live with them (unless there are strong
arguments to (re-)open a debate). The following topics are discussed in
more detail below:

• Lean processes and agile practices

• Continuous delivery/deployment and DevOps

• Impact of technology advances

• Variability in context

• Value-based variability

• Correctness of configurations

• Functional and quality variability

• Variability realization mechanisms

• Training and tools

3.1 Lean Processes and Agile Practices
Complex design spaces are particularly challenging for agile and lean
processes. Flexible and lightweight approaches are needed to support
variability in problem and solution space and to develop large-scale
variability-intensive software. Industrial practice tends towards flexible
and lightweight approaches [9]. On the other hand, variability requires
anticipating design solutions for different usage and deployment
scenarios. We need to understand whether there is a conflict between
flexibility (agile/lean) and the need for bigger up-front design and design
space exploration. This also includes challenges to balance business
value and effort spent on anticipating variability.

3.2 Continuous Delivery/Deployment and DevOps
Today’s systems are complex and often data-driven and organizations
need to transform to support rapid continuous software production and
delivery [4]. Therefore, we need design solutions to enable continuous
delivery of variability-intensive systems. Furthermore, DevOps is
becoming a trend in large systems development and deployment. We
need to understand how DevOps could be implemented for development,

ACM SIGSOFT Software Engineering Notes Page 28 November 2016 Volume 41 Number 6

http://vaquita-workshop.org/vace/
http://vaquita-workshop.org/vace/

verification, deployment and maintenance of variability-intensive
systems.

3.3 Impact of Technology Advances
New development technologies and frameworks are constantly appearing
and evolving. Modern architectural approaches and technologies (e.g.,
microservices, containerization, nanoservices and “serverless”
architectures, edge-cloud computing) may help us handle variability.
However, new technologies also lead to new challenges for variability
modelling. Particularly, modern architectures often follow a dynamic
approach that supports the dynamic re-configuration and adaptation of
systems during operation, e.g., as in cloud-based systems and cyber-
physical systems. New variants might be introduced in such architectures
at any time requiring support for the runtime co-evolution of variability
models and systems. Consequently, variability models increasingly have
to become “living entities” in such a context as frequently discussed in
work on dynamic software product lines [11] and continuous
deployment. Furthermore, technologies such as cloud computing and
microservices might be drivers for trends like continuous
deployment/delivery and DevOps (see previous section).

3.4 Variability in Context
Context describes circumstances that form the setting for an event,
statement, or idea. We investigate context of variability in terms of (a)
intentional and unintentional variability, and (b) emerging and maturing
application and technology domains:

(a) Intentional versus unintentional variability: Intentional variability
can be due to different customer profiles or usage scenarios, i.e.,
when variability offers an advantage. Therefore, intentional
variability can also be a business strategy. Unintentional variability
can be due to the effects of intentional variability or due to the
effects of choosing different design solutions, i.e., when variability
is not a goal but a side effect of other forces. We need approaches to
limit unintentional variability, and ways to better scope intentional
variability to manage complexity.

(b) Emerging and maturing application and technology domains:
Variability in emerging and maturing domains, and in particular in
end-user domains, e.g., big data, UAV and software-defined
networking (SDN) impose new challenges due to potentially highly
diverse application and uncertain deployment scenarios and thus
more possible variability. Also, emerging domains include domains
that are subject to regulations and legal aspects, e.g., regulated
domains such as aviation. These not only affect the software part of
critical systems but also hardware (e.g., sensors, actuators and
controllers in wearable computing applications in the medical
domain), which makes the exploration of design spaces of
variability-intensive systems and their verification and validation
even more challenging. This is particularly the case when
uncertainties (e.g., the actual deployment conditions) may only be
resolvable at runtime.

3.5 Value-based Variability
Today’s highly customizable variability-intensive systems offer an
extremely high degree of technical variability, intentionally as well as
unintentionally. However, not all technically possible variants of a
system are also relevant and meaningful for system users. While product
line scoping approaches offer some guidance, in practice modelers still
struggle to find the right balance between what variability could be
modeled and what variability should be modeled.
Linking business issues with technology issues has received increased
attention in software engineering. For example, the field of value-based
software engineering (VBSE) aims to overcome the traditional value-
neutral approach in software engineering that treats all artifacts as equally
important. Value-based variability modeling and management [12]
considers the business value and the associated risks of variability during
modeling, and not only when defining the scope of a product line.

Furthermore, VBSE suggests that variability management must not be
seen as a pure modeling problem. Extracting tacit variability knowledge
from diverse heterogeneous stakeholders is a collaborative process that
relies on involving software engineers that have been designing and
developing the reusable assets as well as people marketing and selling
these assets.

3.6 Correctness of Configurations
The ability of variability-aware software to produce correct solutions will
ultimately determine its success. The impact of incorrect configurations
can range from the display of a wrong price while buying goods using an
online configurator to OS kernels that cannot be compiled. Given the
combinatorial explosion of the number of configurations induced by
variability, guaranteeing correctness is a challenging task.

Two kinds of strategies can be thought of:

• At the domain engineering level, compact notations such as featured
transition systems [3]enable verification of the whole configuration
space, ensuring that abstract configurations cannot violate a given set
of properties. This nevertheless requires a fully identifiable
configuration space and a relatively abstract way of handling
configurations behavior to keep the analysis traceable.

• The second kind of strategies takes advantage of the application
engineering process to perform analyses while the configuration is
under construction. These strategies may be able to cope with an
unknown configuration space (e.g. self-adaptive architectures, where
analysis may be partially performed at runtime [13]) and perform more
fine-grained analysis at the product level. However, product-by-
product verification limits reuse opportunities.

A combination of these two strategies can be fruitful to leverage their
mutual benefits and to mitigate their drawbacks. This combination will
rely on flexible software architectures that allow different kinds of
reasoning to co-operate efficiently and reduce overall complexity.

3.7 Functional and Quality Variability
In order to meet functional and quality requirements of variability-
intensive systems, we may need specific design practices. For example,
what are suitable models and mechanisms to handle variability, from
inception to operation? Related topics include modeling of variability
across different life-cycle stages of software systems; patterns, styles and
tactics; practices for requirements engineering, architecting, design,
implementation, testing and maintenance of variability-intensive
systems, methods for quality assurance, process and product metrics for
variability-intensive systems; and reference models, reference
architectures, patterns and frameworks to reuse design knowledge when
engineering with variability in mind.

3.8 Variability Realization Mechanisms
In the phases of variability design and realization, one of the most critical
decisions is the selection of variability realization mechanisms, such as
Cloning, Conditional Compilation, Conditional Execution,
Polymorphism, Module Replacement, Runtime Reconfiguration, etc.
Practical experiences show that there is not a single variability
mechanism that is appropriate in every situation, but each of the
mechanisms has its own pros and cons. Therefore, it is crucial, but often
difficult, to decide which mechanism should be used in which situation
(e.g., depending on code granularity, change frequency, binding time,
etc.). To this end, a practical guideline including some cost-benefit
estimation support for each mechanism would be very helpful.

Moreover, as a variability-aware system evolves over time, the context
factors of an existing mechanism in use might become inappropriate,
typically making the variability code overly complex and hard to
maintain. It would be necessary to refactor the variability realizations
with another mechanism. However, it is difficult to make decisions like
when to conduct such refactoring using which new mechanism. Further
research with empirical evidences remains to be done in this direction.

ACM SIGSOFT Software Engineering Notes Page 29 November 2016 Volume 41 Number 6

3.9 Training and Tools
Training refers to how to educate students and practitioners in the skills
required when coping with issues discussed under the topics above.
Teaching variability (modeling) skills is challenging as recently
discussed based on the results of a survey [1]. For instance, not only the
complexity of the subject – software engineering is already a complex
subject, even without considering variability – and required background
knowledge complicates teaching, there is also a lack of well-documented
real-world examples and case studies suitable for teaching (as opposed to
existing case studies for research).

Furthermore, supporting issues raised under the topics above should be
seamlessly integrated with development processes. Therefore, we need
tools that help analyze, design for, implement and maintain systems with
variability in mind.

4. CONCLUSIONS
We summarized the outcome of the first International Workshop on
Variability and Complexity in Software Design. We gave an overview of
the event, summarized discussions and offered an outlook on themes that
emerged from the discussions at the workshop and which might be
subject to future work.

In addition to the research topics outlined above, we believe that it is
important to focus on quality forums for researchers and practitioners to
grow the community and keep it active and to foster cross-pollination
between events. There are several community events related to
variability, e.g., SPLC, VaMoS, ICSR, SEAMS, ICSME. Also, as
discussed throughout this report, different software engineering areas and
topics “grow together” and variability is a cross-cutting concern.
Therefore, variability can also be a subject at other events, e.g., on topics
related to fast-paced and continuous delivery/development in context and
highly flexible environments, such as the RCoSE workshop series.

5. ACKNOWLEDGMENTS
The VACE workshop is a collective endeavor. The organizers would like
to thank all workshop authors, presenters and submitters. We also thank
the ICSE 2016 organizers and in particular the workshop chairs. Finally,
we are grateful to the members of the program committee.

6. REFERENCES
[1] Acher, M., Lopez-Herrejon, R. E., and Rabiser, R., "A Survey

on Teaching of Software Product Lines," in 8th International
Workshop on Variablity Modelling of Software-intensive
Systems (VaMoS) Nice, France: ACM, 2014, pp. 3-10.

[2] Backstory 2015. Boom Times for the New Camera Boom.
IEEE Spectrum 52, 7 (2015), 3.

[3] Classen, A., Cordy, M., Schobbens, P.-Y., Heymans, P., Legay,
A., and Raskin, J. F. 2013. Featured Transition Systems:
Foundations for Verifying Variability-Intensive Systems and
Their Application to LTL Model Checking. IEEE Transactions
on Software Engineering 39, 8 (2013), 1069-1089.

[4] Fitzgerald, B. and Stol, K.-J. 2015. Continous Software
Engineering - a Roadmap and Agenda. Journal of Systems and
Software in press, (2015),

[5] Galster, M., Avgeriou, P., Weyns, D., and Mannisto, T. 2011.
Variability in Software Architecture: Current Practices and
Challenges. ACM SIGSOFT Software Engineering Notes 36, 5
(2011), 30-32.

[6] Galster, M., Mannisto, T., Weyns, D., and Avgeriou, P. 2014.
Variability in Software Architecture: The Road Ahead. ACM
SIGSOFT Software Engineering Notes 39, 4 (2014), 33-34.

[7] Galster, M., Weyns, D., Avgeriou, P., and Becker, M. 2013.
Variability in Software Architecture: Views and Beyond. ACM
SIGSOFT Software Engineering Notes 38, 1 (2013), 46-49.

[8] Galster, M., Weyns, D., Tofan, D., Michalik, B., and Avgeriou,
P. 2014. Variability in Software Systems - A Systematic
Literature Review. IEEE Transactions on Software
Engineering 40, 3 (2014), 282-306.

[9] Keeling, M. 2015. Lightweight and Flexible - Emerging Trends
in Software Architecture from the SATURN Conferences.
IEEE Software 32, 3 (2015), 7-11.

[10] Metzger, A. and Pohl, K., "Software Product Line Engineering
and Variability Management: Achievements and Challenges,"
in Future of Software Engineering Hyderabad, India: ACM,
2014, pp. 70-84.

[11] Quinton, C., Rabiser, R., Vierhauser, M., Gruenbacher, P., and
Baresi, L., "Evolution in Dynamic Software Product Lines:
Challenges and Perspectives," in 19th International
Conference on Software Product Lines Nashville, TN: ACM,
2015, pp. 126-130.

[12] Rabiser, R., Dhungana, D., Gruenbacher, P., and Burgstaller,
B., "Value-based Elicitation of Product Line Variability: An
Experience Report," in 2nd International Workshop on
Variability Modelling of Software-intensive Systems (VaMoS)
Essen, Germany: ICB Research, 2008, pp. 73-79.

[13] Weyns, D., Bencomo, N., Calinescu, R., Camara, J., Ghezzi,
C., Grassi, V., Grunske, L., Inverardi, P., Jezequel, J.-M.,
Malek, S., Mirandola, R., Mori, M., and Tamburrelli, G. 2016
Perpetual Assurances for Self-Adaptive Systems. In Software
Engineering of Self-adaptive Systems, R. de Lemos, D. Garlan,
C. Ghezzi, and H. Giese, Eds. Springer, Berlin/Heidelberg.

ACM SIGSOFT Software Engineering Notes Page 30 November 2016 Volume 41 Number 6

