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ABSTRACT 

Monitoring Land Surface Phenology (LSP) is important for understanding both the 

responses and feedbacks of ecosystems to the climate system, and for representing these 

accurately in terrestrial biosphere models. Moreover, by shedding light on phenological 

trends at a variety of scales, LSP has the potential to fill the gap between traditional 

phenological (field) observations and the large-scale view of global models. 

In this study, we review and evaluate the variability and evolution of satellite-derived 

Growing Season Length (GSL) globally and over the past three decades. We used the longest 

continuous record of Normalized Difference Vegetation Index (NDVI) data available to date 

at global scale to derive LSP metrics consistently over all vegetated land areas and for the 

period 1982-2012. We tested GSL, Start- and End-Of Season metrics (SOS and EOS, 

respectively) for linear trends as well as for significant trend shifts over the study period. We 

evaluated trends using global environmental stratification information in place of commonly 

used land cover maps to avoid circular findings. 

Our results confirmed an average lengthening of the growing season globally during 

1982-2012 – averaging 0.22-0.34 days/year, but with spatially heterogeneous trends. 13-19% 

of global land areas displayed significant GSL change, and over 30% of trends occurred in 

the boreal/alpine biome of the Northern Hemisphere, which showed diverging GSL evolution 

over the past 3 decades. Within this biome, the “Cold and Mesic” environmental zone 

appeared as an LSP change hotspot. We also examined the relative contribution of SOS and 

EOS to the overall changes, finding that EOS trends were generally stronger and more 

prevalent than SOS trends. These findings constitute a step towards the identification of 
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large-scale phenological drivers of vegetated land surfaces, necessary for improving 

phenological representation in terrestrial biosphere models. 

 

INTRODUCTION 

Monitoring vegetation phenology is not only important to understand the response of 

vegetation to a changing climate, but also to determine the feedback mechanisms that 

vegetation response may generate on the climate itself (Cleland et al., 2007; Morisette et al., 

2009; Peñuelas et al., 2009). For instance, the timing and duration of vegetation activity 

throughout a year are central to the understanding of the variability and distribution of the 

terrestrial carbon sink, and the recent increase in land carbon uptake has been linked to 

vegetation phenology changes, in addition to CO2 and land management effects (Schimel et 

al., 2001; Sitch et al., 2015). 

Aside from this key role vegetation phenology plays in the carbon cycle, it is also 

important for modulating the intra-annual dynamics of albedo, surface roughness and water 

fluxes (among others). Thus, vegetation phenology is recognized as a fundamental process of 

biosphere-atmosphere interactions within coupled climate models (Richardson et al., 2013). 

However, accurately representing phenology in terrestrial biosphere models remains a 

challenge (Richardson et al., 2012) for a number of reasons, amongst which are the wide 

inter-specific and spatial variations in phenological changes that exist at plant level (Ibañez et 

al., 2010), and our limited knowledge of the physical processes that initiate leaf onset and 

senescence (Arora &  Boer, 2005). Thus, there is a need to improve our understanding of the 

seasonality of vegetation activity at large scales (Richardson et al., 2012). Large-scale 

phenological data may allow us to quantify the phenological responses to climate and vice 

versa, and thus provides the potential to bridge the gap between plant-level and modelled 

phenological research (Morisette et al., 2009). 
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The existing records of satellite-derived Vegetation Indices (VIs) provide an 

opportunity to retrospectively derive information about the phenology of vegetated land 

surfaces – and have given rise to the field of Land Surface Phenology (LSP; (Reed et al., 

2003). In recent years, LSP research has increased considerably: for instance, the number of 

yearly publications on LSP increased ten-fold in 10 years (2004-2014) (Scopus, October 

2015, data not shown). Methodologies of varying complexity have been put forward to derive 

LSP descriptors such as Start-, End- and Length of the Growing Season (SOS, EOS and GSL, 

respectively) from VI time series, and commonly used approaches include threshold-based, 

derivative-based , and model-fitting methods (for a survey of methods, see (Reed et al., 1994; 

de Beurs &  Henebry, 2010). The range of methodologies used contributes to the variation in 

trends reported, and the variation in LSP indicators and remote-sensing datasets used 

constitutes a challenge to comparing different studies. 

Figure 1 presents reported estimates of long-term change (10 years or more) in SOS, 

EOS and GSL in large-scale (at least continental) latitudinal LSP studies. Generally the 

direction of large-scale LSP change is in agreement between studies: results generally point 

to a lengthening of the growing season associated with both SOS advance and EOS delay, but 

quantitative estimates related to large-scale trends vary considerably between studies (Figure 

1). In particular, there is inter-decadal variation in the trends found and several recent studies 

have revealed the important contribution of changing senescence to overall GSL trends 

(Jeong et al., 2011; Zhao et al., 2012; Zhu et al., 2012; Garonna et al., 2014). Previous large-

scale studies have also mostly considered the Northern Hemisphere (as illustrated in Figure 

1), despite contrasting indications about productivity trends in the Southern Hemisphere (SH) 

for the last decade (Zhao &  Running, 2010) and despite the most commonly used sensor 

(AVHRR) having a global reach. In sum, the spatial and temporal coverage of existing large-

scale LSP studies remains imbalanced, and the need for comprehensive global analyses of 
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long-term changes in the seasonal patterns of VIs has already been recognized (Buitenwerf et 

al., 2015).  

In this paper, we evaluate the evolution and variability of Growing Season Length 

(GSL) over the past 30 years at global scale, based on an analysis of the most extensive (both 

in time and space) VI time series available to date. Our characterization of LSP trends of the 

last 30 years adds a decade to the most extensive global study in Figure 1 (Julien &  Sobrino, 

2009) and pursues two main objectives: (1) identify specific bioclimatic zones where LSP 

change has occurred; (2) evaluate the relative contribution of Start- and End- of Season (SOS 

and EOS, respectively) to the overall changes. Taking into consideration the available 

literature on the topic, our analysis seeks to provide consistent and comprehensive estimates 

of large-scale LSP trends over the last 3 decades, suitable for global studies. 

 

MATERIAL AND METHODS 

Two common descriptors of SOS, EOS and GSL were used to extract LSP metrics on 

annual and per-pixel bases. We examined the temporal variation of these metrics through the 

period 1982-2012 and interpreted existing trends using an independent global environmental 

stratification. This methodology is based on previous work at regional scale (Garonna et al., 

2014), which was further developed as described in the following sections. 

 

Time series of vegetation activity  

The NDVI3g dataset, generated from NOAA’s Advanced Very High Resolution 

Radiometer (AVHRR) data and developed by NASA’s Global Inventory Monitoring and 

Modelling Systems (GIMMS) group, is the longest continuous time series of vegetation 

activity presently available at global scale (Tucker et al., 2005; Pinzon &  Tucker, 2014). 

Two data points per month are provided at a 0.0833 degree spatial resolution. The estimated 



A
c

c
e

p
te

d
 A

r
ti

c
le

This article is protected by copyright. All rights reserved. 

overall uncertainty is ±0.005 NDVI units throughout the AVHRR continuum (Pinzon &  

Tucker, 2014) and negligible in comparison to the minimum annual variation we imposed in 

our analysis (0.1 NDVI units). This latest version (NDVI3g) was developed with the aim of 

providing a continuous and non-stationary global data record throughout the AVHRR 

timespan, which are particularly suitable for trend analysis (Zeng et al., 2013; Pinzon &  

Tucker, 2014). NDVI3g has been recalibrated to improve data quality at Northern latitudes 

(Pinzon &  Tucker, 2014).  

Within the NDVI3g record, less than 0.01% of land pixels contain values flagged as 

‘missing data’ within their time series. Data points flagged as ‘possible snow’, very common 

at northern high latitudes, were retrieved by Pinzon & Tucker (2014) either from the average 

seasonal profile or from spline interpolation. We considered these values as part of the LSP 

seasonality of snow-affected data, and therefore did not remove them from our time series. 

To correct for cloud interference, however, we used each year of NDVI3g data (1981-2012) as 

input for the Harmonic Analysis of NDVI Time Series (HANTS) algorithm (version 1.3, Fast 

Fourier implementation (Roerink et al., 2000; Roerink et al., 2003; de Wit &  Su, 2005), 

which produces a smooth yearly curve using both Fourier analysis and an iterative flagging 

of outliers within the time series. We parameterized HANTS following (Garonna et al., 

2014). For the HANTS implementation as well as for all following steps, we considered 

calendar years (January to December) for Northern Hemisphere (NH) pixels and July-to-June 

NDVI time series for Southern Hemisphere (SH) pixels. 

 

Extraction of LSP metrics 

We used two commonly used definitions for SOS and EOS following White et al. (2009) 

and Garonna et al. (2014), which we call Midpointpixel and Max-Increase methods (MP and 

MI, respectively). The MP method uses a relative threshold to define SOS: namely, SOS is 
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the day-of-year at which the NDVI reaches half its annual amplitude in an upward direction. 

The MI method defines SOS as the day of maximum increase in NDVI in the year. For both 

MP and MI, the EOS is defined as the first day (after SOS) with an NDVI value lower or 

equal to the NDVI at SOS for that year. SOS and EOS are expressed in Day-Of-Year (DOY) 

and the GSL is the number of days between SOS and EOS within a year.  

We adopted the algorithm used in Garonna et al. (2014) and added flags in order to 

better account for irregularities in the growing season and to identify various cases that 

required special attention. Each of these flags is summarized and described in Table 1. Each 

pixel having more than 15 flagged metrics (i.e. 50% of the total available years) was 

discarded from further analysis. 

 

Analysis of temporal variability 

For each pixel, we examined trends for GSL, SOS and EOS using linear regression, and 

tested the significance of a non-zero slope using a t-test. Only statistically significant trends 

at 5% level were considered in our results. In order to shed light on multi-decadal changes in 

LSP, we analysed the variability in the trends in global average GSL using a 10-year moving 

window. In order to compare our global trend estimates with previous global studies, we 

further tested for significance and extent of significant trends over the 1982-1991 and 1982-

2003 periods. Moreover, for each GSL time series, we tested for the presence of a trend shift 

in the 31-year long time series by means of an F-test, which considers a potential single-shift 

of unknown timing in the time series (Andrews &  Ploberger, 1994; Hansen, 2002; Andrews, 

2003; Zeileis et al., 2003). This method – illustrated in Figure 2 – uses an iterative procedure 

that minimizes the residual sum of squares to estimate the optimal break position within a 

specified data window. In our case, we assigned minimum segment length of 5 years 

before/after a breakpoint (corresponding to approximately 15% of the total time period), 
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following suggestions of previous studies (Bai &  Perron, 2003; Verbesselt et al., 2010; de 

Jong et al., 2012). Although time series may contain more than one significant trend shift, the 

F-test identifies only the most relevant shift in the time series (where it exists). Where 

evidence for structural change in the regression coefficients was found, its timing was dated 

using the method of (Zeileis et al., 2003).  

 

 Environmental stratification 

We used the Global Environmental Stratification (GEnS) to stratify our results 

(Metzger et al., 2013b). This high-resolution bioclimate map of the Earth is available through 

the Group on Earth Observation (GEO) portal (http://www.geoportal.org). GEnS classifies all 

land areas in 125 strata, 18 environmental zones (GEnZ) and 7 biomes using multivariate 

statistical clustering (Metzger et al., 2013a; Metzger et al., 2013b). Its native resolution is 30 

arcsec (approximately 1km
2
 at the equator) in the Winkel Tripel projection (Metzger et al., 

2013b). We rasterized and resampled GEnS to match the NDVI3g spatial resolution using a 

maximum area criterion (Verburg et al., 2011). In other words, the class covering the largest 

area within a pixel determined the pixel class attribution. An implication of this aggregation 

method is that the overall representation of less prevalent classes is further reduced in the 

resampled data (Verburg et al., 2011).  

Examining the spatial distribution of the trends found, we considered a “hotspot” of 

LSP change any GEnS climatic zone with the highest proportion of significant GSL trends 

within it, as well as a good between-methods agreement both in terms of this proportion and 

in the average change estimates found (absolute difference < 0.1 days/year). To evaluate the 

area covered by the LSP changes found, we re-projected our results as well as the GEnS 

stratification to the equal-area MODIS Sinusoidal projection. 
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RESULTS 

  

GSL climatology for 1982-2012 

Our algorithm successfully captured SOS, EOS and GSL metrics from 71% of all land 

pixels available at GIMMS NDVI3g resolution (approximately 2 x 10
6
 pixels in total), thus 

providing annual LSP metrics for most vegetated land areas. The remaining i.e. discarded 

areas were the following: pixels presenting no distinct NDVI seasonality and/or little 

vegetation cover represented 14% of all land pixels (in white in Figure 3); and pixels flagged 

as having two or more growing seasons during a year covered 15% of land pixels (in grey in 

Figure 3). The latter covered parts of the Amazon and central African forested areas, as well 

as most of Ethiopia and Somalia, Northern India, North-Eastern China, Northern Argentina 

and central United States.  

Most of the NH presented both low Coefficient of Variation (CV) values (< 0.2) and a 

high proportion (>80%) of successful LSP metric extracted for each pixel from the 31 year-

long NDVI3g time series (Figure 3) – indicating that the LSP metrics extracted were 

consistent in these regions. This was particularly true for roughly all areas > 40°N. 

Conversely, drylands and tropical biomes generally presented a low proportion of non-

flagged observations as well as high year-to-year variability in GSL estimates (i.e. high CV 

values in Figure 3) and we considered these areas with particular caution in the interpretation 

of our results.  

 

Trends in Growing Season Length (GSL) for 1982-2012  

We found significant trends (α = 5%) in GSL over 13-19% of global land areas (as 

derived from MI and MP, respectively). The majority of areas presenting significant trends 

(63% for MP and 54% for MI) exhibited a lengthening of the growing season. Globally, our 
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results indicate an average global lengthening of 0.34-0.22 days/year (according to MP and 

MI, respectively). Table 2 presents average estimates and extent of trends over the 1981-1991 

period (following the Myneni et al. 1997 study) and over 1982-2003 period (as the Julien & 

Sobrino 2009 study), as well as over 1982-2012 (entire NDVI3g time series). We found good 

agreement between our NDVI3g-derived trends and these two global studies listed in Figure 

1. Differences in change estimate between time periods considered indicated a pattern of 

decreasing magnitude in GS lengthening with increasing timespan of the study. Conversely, 

the total area affected by GSL change approximately doubled when considering 1982-2012 

as compared to the first decade only (Table 2). 

Results from our structural change test suggested the vast majority of significant GSL 

trends are monotonic. Only 3% of all pixels with significant GSL change presented evidence 

of structural change: these were located mostly in Eastern Siberia and Northern Canada, 

where the most frequent timing of the estimated shifts in GSL were the early 2000s and the 

1990s, respectively. However, analysing the variability in the trends of global average GSL 

using a 10-year moving time window, we observe a lower and even reversed trend in the 

2000s, both using the MP and MI metrics. 

GSL trends varied greatly with environmental zone (Figures 4 and 5). GS lengthening 

was found within the “Cold and Mesic” and “Cool, Temperate and Dry” zones spanning 

across boreal Eurasian and North America, as well as in a large part of the “Extremely Hot 

and Xeric” zone, particularly in the Sudano-Sahelian region and in large parts of India 

(Figure 4). On the other hand, GS shortening was found mostly in the “Extremely Cold and 

Mesic” zone across N. America and Siberia. Finally, shortening was also found in small 

strata in central Asia as well as in Northern Argentina, Southern Australia and North-Eastern 

China. Figure 5 presents both the average change estimates found per environmental zone (as 

derived from both methods), as well as the zonal distribution of the GSL trends found. We 
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found greater disparity between methods in dry areas i.e. all zones qualified as “arid”, “xeric” 

or “dry” and “extremely hot” areas, as opposed to “wet”, “moist” and “mesic” zones which 

tended to have closer trend estimations. The MI method led to fewer significant trends 

overall, as well as higher trend averages per zone (Figure 5). 

Significant GSL trends were found in each environmental zone and biome, but there 

was large variation is the area displaying change as well as in the magnitude of the trends 

found for each zone and biome. We found the “Boreal/Alpine” zone to contain the largest 

area of change found by both methods i.e. more than 1/3 of the total area. Within this biome, 

the “Cold and Mesic” zone – covering a long latitudinal belt around Eurasia and North 

American continents – stands out for its large area of change (approximately 20% of the 

total) – regardless of the method. Also, MI and MP methods agreed again on the strong 

positive GSL trend across this zone (on average, 0.73-0.8 days/year) as well as on the large 

proportion of this zone displaying significant trends (up to 37% of this zone, Figure 5). As 

such, the “Cold and Mesic” zone appeared as a ‘hotspot’ zone of GSL change.  

Other zones displaying considerable areas of change (>10% of total) were: the 

“Extremely Cold and Mesic“ zone – which showed GS shortening of up to 0.5 days/year 

across a wide area covering Pan-Arctic lands, and was characterized by an average 

shortening of the GSL of -0.32 and -0.47 days/year (MP and MI, respectively; Figure 5); the 

“Cool, Temperate and Dry” zone, the “Extremely Hot and Xeric” and the “Extremely Hot 

and Mesic” zone. All environmental zones mentioned are illustrated in Figure S4 in the 

Supplementary Online Materials (SOM) section.  

Figure 6 illustrates the variation in mean GSL with time for the “Cold and Mesic” zone 

as well as for all land areas taken together. The MP and MI methods showed a very similar 

pattern in inter-annual GSL variation, with R-squared values of 0.82 and 0.91 for the “Cold 

and Mesic” and global times series (Figure 6). The between-method structural difference in 
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global GSL estimates was 7.29±0.73 days, but was only of the order of ~1-2 days for both the 

“Cold and Mesic” zone (Figure 6).  

 

 Inter-annual variation and trends in SOS and EOS 

Figure 7 presents the seasonal and inter-annual variation in global NDVI, SOS and 

EOS over the study period. Similarly to the overall GSL results (previous section), the year-

to-year variations in SOS and EOS at global scale were consistent between MP and MI 

methods (Figures 6), although the MP method led to consistently later SOS than the MI 

method both in each environmental zone individually and globally (Figure 7 and Figure S5 in 

SOM). We found that, when averaged globally, both SOS and EOS underwent significant 

trends over 1982-2012 (α = 5%, Figure 7). The global EOS trend was stronger than the SOS 

equivalent: the global EOS delay was +0.22 / +0.26 days/year (MI and MP estimates, 

respectively), compared to -0.02 / -0.08 days/year of SOS change (Table 2).  

The per-pixel distributions of SOS and EOS trends are presented in Figure 8. 

Regardless of the method used, we found significant advances in SOS over most of the boreal 

and continental Pan-Europe, parts of central Asia as well as central China (Figure 8a). On the 

other hand, significantly delayed SOS was found over parts of the mid-Western United States 

and in North-Eastern Argentina. Most of the Pan-Arctic showed an advanced EOS, whereas a 

delayed EOS was visible over most of the Northern boreal belt – mainly concentrated around 

the Baltic Sea, Eastern Canada and in the Sudano-Sahelian region (Figure 8b). EOS trends 

covered 13-21% of the land surface (MI and MP estimates, respectively), and were thus more 

widespread than SOS trends, which covered 9-14% of the land surface (MI and MP methods, 

respectively). 
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DISCUSSION 

 

Examining the variability in the phenology of land surfaces globally and over the last 30+ 

years (as derived from NDVI3g) reveals substantial spatial variation in GSL, SOS and EOS 

trends. Over 1/3 of areas with significant GSL change were found over the “Boreal/Alpine” 

biome. Yet within this biome are two environmental zones with contrasting GSL evolution. 

In the following discussion we examine more closely our findings and their implications, and 

highlight key areas for further research.  

 

A global GSL climatology for 1982-2012 

Numerous studies in the last decade have revealed a recent increase in carbon uptake by 

vegetated land areas (Schimel et al., 2001; Poulter et al., 2014; Sitch et al., 2015), in parallel 

with marked vegetation ‘greening’ across vast areas of the Earth’s surface (de Jong et al., 

2011). Our global study of LSP trends contributes to this field of research, in that it provides 

a recent climatology of intra-annual vegetation dynamics, consistently and at global scale. 

Indeed, the gradients of average GSL seen in Figure 3 reflect the spatial variation in the 

vegetation’s seasonal carbon uptake.  

We found both dryland and tropical biomes to have high year-to-year variability in GSL 

estimates throughout the study period (Figure 3). In tropical areas, however, the high 

variability in LSP metrics is unlikely to reflect actual land surface processes. Intense and 

persistent cloud cover together with dense canopies – where the NDVI signal saturates – are 

two characteristics of the evergreen tropics that may lead to irregular NDVI3g profiles and 

thus to the low proportion of LSP metrics successfully extracted over our 31-year-long study 

analysis (as seen in Figure 3). For drylands, however, the high GSL variability is in 

agreement with the findings of (Zhang et al., 2014), who relate this to the high year-to-year 
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variation in soil moisture as compared to temperature. Rainfall-driven systems tend to have 

much more variable phenological cycles (Hein et al., 2011), as for instance in Australia, 

where shifts in peak timing of more than 1 month may be found (Broich et al., 2014). High 

GSL inter-annual variability may thus indicate a moisture limitation of the vegetation.  

 

Shifting global LSP dynamics 

Our average GSL change estimates using NDVI3g were comparable with the two 

other global LSP studies using AVHRR data when considering the same time periods (Julien 

& Sobrino, 2009; Myneni et al., 1997; Table 2). Our GSL trend estimate for 1982-2012 

represents a slower GS lengthening than indicated by previous (shorter-spanning) studies 

(Figures 1 and S1, Table 2). The multi-decadal differences in average GSL change estimate 

(Table 2) as well as the varying rate of global change found when performing a 10-year 

moving-window regression indicate that global GS lengthening has not occurred at a regular 

pace over the past three decades. In particular, the decreasing rate found in GS lengthening 

between the 1990s and the 2000s suggests that the ‘global growing season’ has lengthened, 

but at a decreasing rate. This indication evokes the slowing-down hypothesis previously put 

forward by Jeong et al. (2011) for SOS in temperate regions of the NH, whereby average 

GSL change estimates went from +0.56 days/year for 1982-1999 to +0.39 days/year for 

2000-2008. Interestingly this appears to contrast with the results from our structural change 

tests: these qualified most GSL trends as monotonic and are in agreement with a recent study 

on shifts or abrupt changes in SOS, which also concluded that linear models were best suited 

to explain trends over most of the NH (Wang et al., 2015). Further analyses at regional scale 

are needed to ascertain this aspect in view of seemingly contrasting indications from different 

sources. However, it is likely that the few observations (31 data points) available from the 

present observational record as well as the considerable year-to-year variability found in GSL 
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estimates (Figure 3, Figure 6) are important hindrances to the statistical derivation of 

structural change in our LSP time series. 

Understanding the relative contribution of shifting SOS and EOS towards the GSL trends 

found is a key first step towards the understanding of large-scale drivers of LSP variability. 

Given varying physical processes driving SOS and EOS, leaf phenology coupled to LSP 

corresponds better to vegetation greenness during SOS, while greenness is not an optimal 

predictor for EOS. Our results indicate that the overall GS lengthening for 1982-2012 may 

increasingly be attributed to an EOS delay. Long-term trends in EOS were both more 

extensive and stronger globally than those of SOS. This highlights the importance of shifting 

autumn events in studying large-scale phenological change, despite their being relatively 

understudied as compared to spring events (Gallinat et al., 2015). The between- and within-

species asynchrony in leaf senescence, the complex mix of drivers involved and the lack of a 

precise definition for EOS are some of the challenges involved in studying leaf senescence at 

large scales (Gallinat et al., 2015; Panchen et al., 2015). Indeed, amongst the LSP studies 

reviewed in Figure 1, only two (Julien &  Sobrino, 2009; Jeong et al., 2011) highlighted the 

important contribution of senescence timing to GSL changes at large scale. At regional or 

smaller-scale, studies have increasingly put forward the study of autumn leaf phenology as 

key for better explaining variations in productivity. For instance, a study using eddy 

covariance measurements reported that changes in autumn leaf phenology better explained 

the variation in annual net ecosystem productivity at Harvard Forest over 1992-2008 than 

spring phenology (Wu et al., 2013). Following research efforts will examine attribution of 

LSP change to large-scale drivers at global scale, independently for SOS and EOS. 
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The “Boreal/Alpine”: predominant biome of LSP change (1982-2012) 

MP and MI showed good agreement on the spatial distribution of significant LSP 

trends – albeit with some differences in the average trend estimates (Table 2, Figures 5 and 

6). Both methods found more than 1/3 of all trends found within the “Boreal/Alpine” biome 

of the Northern Hemisphere (NH). This distribution suggests that intra-annual vegetation 

dynamics are mirroring global warming over this period – which has been twice as fast as the 

global average in this region (IPCC, 2007; Scheffer et al., 2012; IPCC, 2013). The 

consequences of these changes for the boreal carbon sink remain to be further studied. 

Indications are that the boreal (and arctic) carbon-climate feedbacks could be 

disproportionally large (Schimel et al., 2015). 

The fact that the “Boreal/Alpine” biome has relatively little anthropogenic presence 

and hence, direct pressure on vegetated lands (Ellis &  Ramankutty, 2008) suggests that these 

LSP changes may be primarily climate-driven. Increased vegetation activity (i.e. greening), 

increasing air temperatures and reduced snow cover duration (Brown, 2000; Dye, 2002) have 

already been associated with a longer GS in these areas (Bogaert et al., 2002; Alcaraz-Segura 

et al., 2010). Undoubtedly snow cover duration plays a large role in this biome’s LSP 

dynamics for two main reasons. Firstly, snow cover influences vegetation physiology and 

phenology through the micro-climate, soil hydrology and geochemistry (Walker et al., 2001). 

Secondly, the reflectance of snow being very high at optical wavelengths (Pomeroy &  Brun, 

2001), the presence of numerous and repeated snow-affected satellite observations leads to a 

characteristic sharp rise/drop in NDVI at the first/last snow-free retrieval and make snow 

presence a major determinant of the land surface seasonality (Dye, 2002). For the 

“Boreal/Alpine” biome, 10% of the raw NDVI3g time series on average (1982-2012) were 

flagged as “possibly snow”. We therefore consider shifts in snow cover duration as a 

probable main driving factor of LSP change in this biome. This is in agreement with a 
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previous study comparing the spatial and temporal patterns among snow-cover and the NDVI 

trends in northern Eurasia (1982-1999), and linking the derived “greening” trends both to 

more favourable conditions for growth (through rising temperatures) and to declining snow-

cover effects on NDVI (Dye &  Tucker, 2003). A promising step forward for the study of 

vegetation dynamics in this region is the reconstruction of long-term AVHRR NDVI time 

series that aim to correct for the effect of confounding abiotic factors such as snow or bare 

soil, such as presented in (Zhang, 2015). However, the presence of snow within an AVHRR 

pixel does not rule out that vegetation may be active. It is therefore difficult to exclude snow 

contamination to some extent, particularly at large spatial scales and in a boreal biome.  

Within the boreal biome, the “Cold and Mesic” and the “Extremely Cold and Mesic” 

environmental zones display the most significant large-scale changes in LSP (Figure S4). 

Interestingly, these two zones have contrasting average trends in GSL: the “Cold and Mesic” 

zone is where the most extensive rapid lengthening of the GS has occurred between 1982-

2012; and the “Extremely Cold and Mesic” zone has undergone widespread shortening 

during the same period. On one hand, our results reveal the “Cold and Mesic” zone – 

covering broadly boreal forest areas at 50-65°N – as a hotspot of LSP change, because it 

encompasses the largest area of GSL change whilst displaying close agreement in the trend 

estimates found between methods (Figures 5 and 6). This has particular relevance in view of 

examining shifts in large-scale climatic phenological controls over this area, and testing the 

links between these observed LSP trends and their potential climatic drivers. Both SOS and 

EOS trends appear to contribute to this GS lengthening found, which we estimated at ~0.7 

days/year on average. Trend estimates for this environmental zone relied on a full time series 

for the three decades i.e. no special flag appeared as illustrated in Figure 3, adding confidence 

to the idea that this region is a global hotspot of LSP change.  
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On the other hand, the boreal “Extremely Cold and Mesic” zone – showed an opposite 

overall trend in GSL over the period 1982-2012. Negative GS trends were widespread in this 

zone (Figure 4). However, different processes stand out between North America and Eurasia: 

whilst both SOS and EOS appear to have contributed to the negative GSL changes in North 

America, the East Siberian GSL trend appeared to be driven mostly by an earlier senescence 

(Figure 8). A recent small-scale study in Alaska highlighted that the increasingly abundant 

shrubs are transforming the landscape phenology of many tundra areas, and that these tend to 

have an earlier onset of senescence compared to evergreen/graminoid canopies (Sweet et al., 

2015). The “Extremely Cold and Mesic” zone is also where we found two large-scale 

structural change areas: Canada (in the 1990s) and Eastern Siberia (post-2000). These 

continental differences contribute to on-going discussions. Browning trends have been 

identified in boreal North America from a variety of VI datasets (e.g. GIMMSg, GIMMS3g, 

SeaWiFS, SPOT-VGT and MODIS in Guay et al. (2014), as well as greening trends in boreal 

Eurasia including Eastern Siberia (de Jong et al., 2011; Dutrieux et al., 2012; Guay et al., 

2014). (Chen et al., 2014) identified a turning point in the late 1980s in North America, and 

(Buermann et al., 2014) found that the accelerated summer warming without an 

accompanying increase in summer precipitation for the period 1970-2000 in Siberian boreal 

forest may have led to declining vegetation growth since the mid-1990s. The attribution of 

the Eastern Siberian GSL trend to an EOS change mostly appears to be in agreement with 

Barichivich et al. (2013), who found that the spring green-up has kept up with the pace of 

warming in Northern biomes (>45° N), whereas leaf senescence delay has not, because of 

limiting factors such as light and moisture.  

It is unclear whether the (slow but significant) shortening of the GS we identified for 

the “Extremely Cold and Mesic” is linked to a shift to a negative response of vegetation 

growth to increasing temperatures from the mid-1990s onward, as suggested by Buermann et 
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al. (2014); or to a cooling trend as identified over the last decade in western North America 

and Eurasia by both in situ and remotely-sensed temperature and sea ice extent data (Bhatt et 

al., 2013); or to large-scale transformation of the landscape because of increasing deciduous 

shrubs. Overall, a number of co-occurring climatic and vegetation changes appear to be at 

play over this area and need to be further explored (Urban et al., 2014; Park et al., 2015). 

Overall, our results highlight LSP change in an area that is already an important research 

focus for climate change science. This is not only because of the magnitude of environmental 

changes occurring in boreal areas (IPCC, 2013) but also for the multiple atmosphere-

biosphere feedbacks to be considered (Pearson et al., 2013). For instance, as thawed soils 

release greenhouse gases (Parmentier et al., 2013) and as the albedo decreases with Arctic 

greening, studies have pointed to a potential switch of Pan-arctic tundra from a carbon sink to 

a carbon source. 

 

Limitations and outlook 

 It is generally agreed that no method is consistently superior for deriving LSP metrics 

for global applications (Reed et al., 2003; Atkinson et al., 2012). We chose HANTS based on 

previous assessments showing its ability to represent the intra-annual variability of GIMMS 

NDVI data (de Jong et al., 2011). An important known limitation to this algorithm is its 

weaker ability to reproduce abrupt NDVI rise/fall upon snow melt/fall compared to – for 

instance – a double logistic fit (Beck et al., 2006). It is therefore important to state that our 

choice of a common and consistent approach for the entire globe comes at the cost of it not 

being equally adapted to all biomes. Given our indication of the “Boreal/Alpine” biome as a 

major region of LSP change, future studies focusing on this biome should take this limitation 

into account. 
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Finally, despite the usefulness of studying LSP trends for understanding phenological 

patterns consistently and a variety of scales, it is important to reiterate that vegetation 

phenology and land surface phenology remain related yet distinct. LSP incorporates the 

effects of soil and snow (Kathuroju et al., 2007) as well as anthropogenic disturbance or fires 

(White et al., 2009). Upscaling ground phenological information to an NDVI3g pixel footprint 

requires taking into account not only interspecific variation in phenological state – which 

may be important (Gill et al., 2015; Panchen et al., 2015), but also the influence of the entire 

landscape on the NDVI (Fisher et al., 2006). That is why establishing a relationship between 

NDVI-derived metrics and plant-physiological events remains a challenge (D'Odorico et al., 

2015). Steps forward in this direction are important and on going, particularly through the 

development of webcam observation networks as well as through the upscaling of field 

observations to landscape level (Liang &  Schwartz, 2009; Hufkens et al., 2012). 
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TABLES 

Table 1: Summary of quality flags used in the LSP retrieval algorithm. 

 

Flag type Description  Consequence 

Two or more 

growing 

seasons within 

a year 

This flag is based on the number of 

consecutive days of the year with an 

NDVI above the midpoint. For a detailed 

description see Garonna et al. (2014) LSP metric discarded 

from further analysis No distinct 

seasonality 
Annual NDVI range of 0.1 or less 

Little/no 

vegetation  
30-year mean NDVI is 0.1 or less 

Growing 

season 

straddling the 

year end 

When SOS and/or EOS occur within the 

first/last 15 days of the year 

The following year of 

NDVI data is 

considered before 

restarting the LSP 

retrieval process 
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Table 2: GSL trend estimates relative to two previous studies at global scale.  

 

Time 

period 

Average GSL trend (days per year) 
Area covered 

by trends (in % 

of global land 

areas, MP/MI 

methods) 
Reported in previous study 

This study  

(MP / MI methods) 

1981-1991 
+1.09  

(Myneni et al., 1997) 
+1.13 / +1.01* 8 / 7 

1982-2003 
+0.8  

(Julien & Sobrino, 2009) 
+0.61 / +0.67 14 / 10 

1982-2012 - +0.22 / +0.34 13 / 19 

*= the closest available time period was used i.e. 1982-1991. 

 

FIGURE CAPTIONS 

 
Figure 1: Summary illustration of trend estimates in GSL, SOS and EOS (from top to 

bottom, respectively) as reported in latitudinal large-scale and long-term LSP studies. The 

scope of each study is represented by a rectangle within the temporal and spatial scope of the 

present study (1982-2012, global). Each rectangle delineates the time period and latitudinal 

extent considered by the study, and is coloured corresponding to the trend reported. NB: The 

list of studies represented in this figure is not exhaustive. We selected the examples closest to 

a global extent, which considered at least 10 years of data and which explicitly reported 

quantitative estimates for LSP change. A summary figure including results from the present 

study is presented in the Supplementary Online Material section (Figure S1). Key: 1: Wang et 

al. (2015); 2: Jeganathan et al. (2014); 3: Barichivich et al. (2013); 4: Jeong et al. (2011); 5: 

Zeng et al. (2011); 6: Julien &  Sobrino (2009); 7: Tucker et al. (2001); 8: Myneni et al. 

(1997).  
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Figure 2: The top graph presents a sample GSL time series for 1982-2012, of a single pixel 

in Alaska (60.91° N, 157.58° W). The solid grey line represents the trend line under the 

assumption of monotonicity, whereas the dashed grey line detects a structural change in the 

linear regression in the year 2000. The bottom graph presents the F statistics for this time 

series, crossing the significant boundary line (dotted) and reaching a maximum in the year 

2000. 

 

Figure 3: Average (top, in days), Coefficient of Variation (middle, no unit) and proportion 

(bottom, in %) of GSL metrics successfully extracted over 1982-2012, using the MP method. 

White areas represent pixels flagged as having low NDVI annual range or long-term average; 

grey represents pixels flagged as displaying two or more growing seasons during single 

years. For the top panel, contour lines represent thresholds of 100, 150 and 200 days.  

 

Figure 4: Average linear trends in GSL (in days/year) using the MP method, averaged by 

environmental stratum. Only significant trends (α = 5%) are considered. Environmental strata 

for which less than 20% of the area displayed significant trends are left white. The 

corresponding map as derived from the MI method is presented in Figure S2 in the SOM 

section. Also, the per-pixel distribution of GS lengthening and shortening is presented in 

Figure S3 in the SOM.  

 

Figure 5: Average GSL trend and standard error (in days/year, top) and distribution of 

significant (α = 5%) GSL trends (in % of total area, bottom panel) by Global ENvironmental 

Zone (GEnZ), as derived by the MP and MI methods (in light and dark grey colour, 

respectively). Biome names are indicated at the top. Zones are abbreviated as follows: 

ECW1: “Extremely Cold And Wet 1”; ECW2: “Extremely Cold And Wet 2”; CW: “Cold 
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And Wet”; ECM: “Extremely Cold And Mesic”; CM: “Cold And Mesic”; CTD: “Cool 

Temperate And Dry”; CTX: “Cool Temperate And Xeric”; CTM: “Cool Temperate and 

Moist”; WTM: “Warm Temperate And Mesic”; WTX: “Warm Temperate And Xeric”; HM: 

“Hot And Mesic”; HD: “Hot And Dry”; HA: “Hot And Arid”; EHA: “Extremely Hot And 

Arid”; EHX: “Extremely Hot And Xeric”; EHM: “Extremely Hot And Moist”. The two 

Arctic environmental zones were discarded from the figure because of missing LSP data.  

 

Figure 6: Time series of average global NDVI3g-derived Growing Season Length (GSL) for 

1982-2012, using both MP and MI methods (solid and dashed lined, respectively), for the 

“Cold and Mesic” zone (top panel) and for all land areas (“Global”, bottom panel).  

 

Figure 7: Seasonal and inter-annual variability in NDVI, SOS and EOS for global land areas 

(left panel) and the “Cold and Mesic” zone (CM, right panel). Markers indicate yearly 

average SOS and EOS values and lines represent trends (significant at 5%), as derived from 

the MP (blue) and MI (red) methods. Contour lines indicate average NDVI values. 

Quantitative estimates for the average GSL trend are expressed at the top of each plot in 

days/year. Calendar years (January-to-June) are used for Northern Hemisphere pixels; June-

to-July are used for Southern Hemisphere pixels. 

 

Figure 8: Spatial distribution of SOS (a) and EOS (b) trends (significant at α = 0.05) 

contributing to significant GS shortening (orange) and lengthening (green), using the MP 

method. The corresponding figure as derived from the MI method is presented in the SOM 

section (Figure S5). 
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