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Abstract— Bipolar resistive switching (BRS) cells based on the
valence change mechanism show great potential to enable the
design of future non-volatile memory, logic and neuromorphic
circuits and architectures. To study these circuits and archi-
tectures, accurate compact models are needed, which showcase
the most important physical characteristics and lead to their
specific experimental behavior. If BRS cells are to be used for
computation-in-memory or for neuromorphic computing, their
dynamical behavior has to be modeled with special consideration
of switching times in SET and RESET. For any realistic assess-
ment, variability has to be considered additionally. This study
shows that by extending an existing compact model, which by
itself is able to reproduce many different experiments on device
behavior critical for the anticipated device purposes, variability
found in experimental measurements can be reproduced for
important device characteristics such as I-V characteristics,
endurance behavior and most significantly the SET and RESET
kinetics. Furthermore, this enables the study of spatial and
temporal variability and its impact on the circuit and system
level.
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I. INTRODUCTION

B IPOLAR Resistive Switching cells (BRS cells) based

on the valence change mechanism (VCM) are part of

an emerging class of resistive devices and are viewed to

be promising candidates for future nanoelectronic applica-

tions [1]–[3]. They are foreseen to be used as storage-class-

memory [4] but also for computation-in-memory [5]–[9], and

neuromorphic applications [10], [11]. Neuromorphic comput-

ing describes systems that use physical phenomena as compu-

tational primitives and represent signals in an analog fashion

to mimic biological information processing systems [12].

By virtue of their nonlinearity, multilevel behavior and switch-

ing statistics, VCM cells show great promise for such applica-

tions. VCM devices, like ReRAM devices in general, consist

of a metal - mixed ionic and electronic conductor-metal struc-

ture. VCM switching is found in ReRAM devices which are

based on oxides like HfOx, TaOx, TiOx or ZrOx [13], [14]. The

original memristor publication from HP [15] also described a

VCM cell. The two metal electrodes possess different work

functions where the electrode with the higher and lower work

functions forms a Schottky-type and an ohmic contact with

the oxide, respectively. The high work function electrode

is then called (electronically) active electrode (see Fig. 1

bottom electrode) while the opposing electrode is called ohmic

electrode (see Fig. 1 top electrode). In its initial state directly

after fabrication the oxide is highly insulating. Therefore,

a forming step is performed in which through application of a

high voltage the oxide is locally reduced and oxygen vacan-

cies are created which decrease the resistance of the device.

In filamentary switching systems, this vacancy generation is

confined to a small part of the total cell area. The SET and

RESET operation in VCM cells is based on the redistribution

of oxygen vacancies inside the filament in the vicinity of the

active electrode. This insight motivates splitting the filament

into a disc and plug region as simplification. The disc is said

to be the part of the filament near the active electrode in which

the concentration of oxygen vacancies is increased during
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Fig. 1. Equivalent circuit diagram for the electrical model of the
Pt/HfO2/TiOx/Pt (HOTO) device. The voltage is applied to the bottom
electrode. The exact stack properties can be found in [33].

SET and decreased during RESET. It is equivalent to the

depletion zone of the Schottky contact [16]–[18]. This makes

the disc the part where the actual switching is happening.

The plug is assumed to stay well conducting during the

switching process and serves as an extension of the ohmic

electrode into the oxide towards the active electrode. Disc and

plug can be viewed as two resistances in series where only

the disc resistance is significantly modified. The SET occurs

when a negative potential is applied to the active electrode.

This attracts the double positively charged oxygen vacancies

from the plug, thereby increasing their concentration near the

active electrode and reducing the resistance of the disc. The

concentration in the plug is assumed to be large enough that

this reduction does not significantly alter the resistance of the

plug. After the SET, the device is in the LRS since disc and

plug both have a low resistance. The RESET occurs when a

positive potential is applied to the active electrode which repels

the oxygen vacancies from the disc back into the plug and in

turn increases the resistance of the disc. After the RESET

the device is in the HRS since the disc now determines the

resistance of the disc plug series resistances [17].

One large challenge that hampers the introduction of VCM

cells, however, is their very pronounced variability [19]–[24].

For example, the variation in the switching kinetics, this is,

the time that is needed to switch a cell between two resistive

states at a given voltage, can vary over multiple orders of mag-

nitude [25]. The resistive states also show a strong variation

with a factor of 5 - 100 in the high resistive state (HRS) and

2 - 10 in the low resistive state (LRS) [26]. Those properties

hinder the development of circuits and make the assess-

ment of their functionality challenging. Variability in resis-

tive devices can be categorized as spatial (device-to-device)

variability, which is assumed to stem from process varia-

tions, and temporal (cycle-to-cycle) variability. Cycle-to-cycle

variability arises due to the stochastic nature of the physical

phenomena involved in the resistive switching process. For

example, the switching filament was found to form on multiple

locations and with different geometrical properties inside the

cell representing a source of cycle-to-cycle variability [27].

Variability for filamentary VCM devices has been modeled

before [28]–[31]. In [28], the authors use a different set of

parameters for the SET and for the RESET process in order

to better fit the median I-V curves. Additionally, their model

considers variability connected to the state variable, which

describes the gap distance between a filament tip and the

opposing electrode. This means, that the relationship between

the device resistance and the state variable is unambiguous.

In that case, the response of the cell to an electrical stimuli,

like the application of a voltage pulse, will only depend on

the one state variable. In [29], in contrast, only device-

to-device variability is regarded and cycle-to-cycle variability

is neglected. Wald and Kvatinsky [30] considered the influence

of variability for the performance of logic operations using the

VTEAM model. The VTEAM model is a threshold voltage

based behavioral SPICE-level model. For their study they

varied empirical fitting parameters. However, the problem with

a behavioral model is that the parameters are only faintly

connected to the actual device physics, which weakens the

predictive capability of their considerations. In [31], variability

is introduced into the compact model by drawing the barrier

thickness that determines the HRS from a Gaussian distribu-

tion. This model, however, has only been verified with regard

to quasi static behavior like slow I-V -sweeps and the resistance

distributions of LRS and HRS during these sweeps.

In [32] we showed a deterministic model, the Jülich Aachen

Resistive Switching Tools (JART) VCM v1b model that

describes the SET and RESET kinetic behavior with a special

focus on the initial states before the SET and the RESET.

For [32] the equations have been updated and modified and the

parameters have been adjusted to better match the dynamics

of SET and RESET processes as well as the I-V characteristic

with the high resistive state (HRS) and the low resistive state

(LRS), compared to JART VCM v1, which was presented

in [33].

In this work, the JART VCM v1b model is extended to

account for both the device-to-device and the cycle-to-cycle

variability. This is in detail achieved by adding (i) a random

initialization of the filament parameters and (ii) a random

change of the parameters during the simulation. In analogy to

the results of [27], the filament geometry and oxygen vacancy

concentration in the disc region are varied to achieve variable

behavior. The developed SPICE-level model can describe the

slow ramped voltage-current measurements as well as the

dynamic behavior under square pulse stress using. In addition,

it can reproduce the distribution of SET and RESET delays,

endurance measurements and I-V characteristics, representing

a wide range of slow ramped voltage-current measurements

to dynamic measurements in contrast to the verification using

only slow ramped voltage-current I-V sweeps like [31]. It

offers a consistent description of SET and RESET by assuming

a different conduction mechanism and a different effective

thermal resistance for SET and RESET. The state variable,

which describes the oxygen vacancy concentration in the vicin-

ity of the so-called active electrode, is not used to model the



4620 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 67, NO. 12, DECEMBER 2020

variability. Here, the state variables does not have a stochastic

component, but the filament parameters are varied randomly.

Thus, an ambiguous relation between the state variable and the

device state results, as opposed to [28]. This leads to a variable

dynamic behavior. Additionally, the dynamic behavior turns

out to be different for different filament parameters. The cycle-

to-cycle variability is coupled to the switching process itself

and since it is a physics-based compact model the meaning

of the parameters is closely linked with physics in contrast to

earlier behavioral models like [30].

II. REQUIREMENTS FOR MEMRISTIVE DEVICE MODELS

The utilization of the opportunities enabled by VCM cells

remains demanding. This is in part because there exists a

gap in understanding between the circuit designers and the

device engineers, since circuit designers are classically less

concerned with the exact physical phenomena of their circuit

components, while device engineers are usually no experts

in circuit design. Compact models can help in bridging this

gap. Through its equations, a compact model links physical

phenomena to experimental data. Its high simulation speed

allows performance predictions for circuits and larger systems.

In order to do so, however, the models have to be calibrated to

more physically accurate ones such as finite element models

or Kinetic Monte Carlo models. At the same time, they have

to be calibrated to measurements like I-V sweeps and SET

and RESET dynamic measurements, ideally under different

operating conditions [34].

With this calibration, compact models can reliably simulate

the actually incurred use cases that appear when the cells are

operated in micro chips. If models are only able to reproduce

a specific set of measurements, such as slow I-V sweeps with

time scales of a few seconds per sweep they can hardly be

viewed as being useful in circuit simulations. If VCM cells

are to be used inside micro chips operating at MHz to GHz

frequencies, the models have to reproduce device behavior at

these times scales accurately. This requires a special focus on

modeling the dynamical behavior. Equations have to be found

that are valid over the range of time scales required by micro

chip applications. Of course, ideally, their validity should not

be limited to a specific time scale.

The most anticipated use case for VCM cells is as synapses

in artificial neural networks. Their advantages for this use case

are the possibility to perform the inference operation and the

weight update operation in the same physical location without

needing to transfer the weights from an outside memory which

would alleviate the penalty of the memory bottleneck [35].

Additionally, their analog switching capabilities enable multi

bit storage per weight [36], which gives them a density

advantage compared to resistive technologies that are only

binary like MRAM [37]. Their non-volatility gives them an

edge over volatile solutions in use cases where a large part of

the totally consumed power comes from the standby power.

Those neural networks can either be built up from fully passive

arrays [38] or from 1T1R arrays [11], which already today

enables more advanced architectures. However, those exper-

imental realizations are still in a very early developmental

stage compared to CMOS-based counterparts. Problems that

arise are variability in the device resistance for high resistance

regimes, sneak paths and half select issues, which can lead to

a drift of the device state. Further issues are I-V nonlinearity,

SET and RESET asymmetry and a lack of clarity on the

exploitation of stochastic switching behavior [20]. In order to

better tackle these issues, understanding the cells will be more

useful than progressing by trial and error. Circuit simulations

using deterministic device models cannot adequately describe

BRS. Therefore, circuit simulations have to take a physically

motivated variability of the BRS into account.

III. DEVICE MODELING

Simulations using the deterministic version of the JART

VCM v1b model were shown in [32]. Since the exact changes

were only indicated in [32], this work is used to describe

the deterministic version from [32] as well as the variability

version. The JART VCM v1b model therefore exists as a

deterministic model and as a variability model. The variability

model represents the main contribution of this article. The

considered device stack is Pt/HfO2/TiOx/Pt fabricated as a

nanocrossbar device with a junction of 100 nm x 100 nm.

The fabrication and characterization of this device were

described earlier [33]. Prior to the electroforming process,

the characteristic microstructural properties of the device’s

oxide layers are properly described by HfO2 and TiOx for

the hafnium dioxide and the titanium oxide, respectively. For

reasons of simplicity, this nomenclature will be kept for the

full manuscript. However, it should be clear that the oxygen

vacancy concentrations in the plug and disc regime of the

electroformed and switched devices correspond to a local

change in the stoichiometry, which will significantly deviate

from the stoichiometry of the layers in the pristine device.

The compact model assumes that the HfO2 layer is split

into a well conducting plug region and a disc region with a

modifiable resistance. The two versions enable a description of

the switching behavior on different levels of complexity. In the

deterministic version only the change of the oxygen vacancy

concentration in the disc “Ndisc” is considered during switch-

ing whereas all other physical parameters are kept constant.

The index ‘det’ denotes the parameter values that relate to this

version of the JART VCM v1b model. These are the radius of

the filament “rdet”, the length of the disc region “ldet” and the

minimum and maximum concentration of oxygen vacancies in

the disc “Ndisc, (max/min), det”. By the variation of the length of

the disc region also the length of the plug region is varied since

the cell length at any time step is defined as constant. If the

deterministic version is to be used, all parameters get the index

‘det’ instead of the index ‘var’ in section III-A. Simulations

with the deterministic parameter set can be found in [32].

The higher level of complexity in the switching modeling

is represented by a variability model. The notation in III-A

corresponds to this variant. The notation has been chosen in

this way in order to be consistent with the actual Verilog-A

code that will be published on our website [39]. In contrast to

the deterministic approach, the variability model enables and

considers variation of the parameters within predefined ranges
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for the maximum and minimum oxygen vacancy concentration

“Ndisc, (max/min), var” as well as the radius “rvar” and the length

of the disc “lvar” throughout the simulation as described in

III-B. By this approach, all the physical equations in III-A are

formulated the same way for the deterministic version and for

the variability version. On top of these equations, the variabil-

ity model introduces a variation in certain parameters which

are assumed to play an important role for the variability found

in these devices in experiments.

A. A Physically Motivated VCM Cell Model

The switching model is based on the movement of oxy-

gen vacancies to and from the metal/insulating metal-oxide

interface (here Pt/HfO2). The concentration of these oxygen

vacancies in the interface region (disc) Ndisc is chosen as state

variable. The change in the state variable is calculated as

dNdisc

dt
= −

Iion

zVoeAlvar
. (1)

It is altered by the ionic current

Iion = zVoeAcVoaνo Flimit ·

(

exp
(

−
�WA, min

kBT

)

− exp
(

−
�WA, max

kBT

)

)

, (2)

where e is the elementary charge, zVo is the oxygen vacancy

charge number, a is the ionic hopping distance, ν0 is the

attempt frequency, A = πr2
var is the area of the switching

filament and kB is Boltzmann’s constant. The concentration

cVo is the average concentration of disc and plug and given as

cVo =
Nplug + Ndisc

2
. (3)

The ionic current is limited by the factor Flimit. This ensures

that the vacancy concentration Ndisc neither exceeds Ndisc, max

nor falls below Ndisc, min.

Flimit =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[

1 −

( Ndisc, min

Ndisc

)

10

]

for Vapplied > 0 V

[

1 −

( Ndisc

Ndisc, max

)

10

]

for Vapplied < 0 V .

(4)

The exponent of 10 is chosen such that the ionic current

is only influenced when Ndisc is close to its limits. The

temperature T is calculated as

T = I · (Vdisc + Vplug + Vschottky) · Rth, SET/RESET + T0, (5)

with the ambient temperature T0 and the thermal resistance

of the cell Rth, SET/RESET. I denotes the electrical current

through the cell. All simulations were performed with an

ambient temperature of 293 K. To achieve a more consistent

description of the SET and RESET dynamics a polarity depen-

dent thermal resistance Rth, SET and Rth, RESET is introduced.

Rth, SET/RESET is calculated as

Rth, SET/RESET = Rth0, SET/RESET ·
rdet

2

rvar
2
. (6)

Previous versions of the model included the Mott-Gurney

law to describe the ionic current. The high electrical fields that

arise due to the thin disc region, however, are not sufficiently

described by the Mott-Gurney law [40]. Genreith-Schriever

and De Souza presented a modification of the Mott-Gurney

law for high electrical fields, which is used here. The hopping

migration barriers for jumps in the direction of the electrical

field (forward jumps) �WA, min and for jumps in the opposite

direction of the electrical field (reverse jumps) �WA, max are

calculated according to [40] as

�WA, min = �WA ·
(

√

1 − γ 2 − γ
π

2
+ γ · arcsin(γ )

)

(7)

and

�WA, max = �WA ·
(

√

1 − γ 2 + γ
π

2
+ γ · arcsin(γ )

)

, (8)

where γ is defined as

γ =
ezVoa ESET/RESET

�WAπ
, (9)

with the nominal activation barrier �WA.

The electrical field during the SET is calculated as

ESET =
Vdisc

lvar
, (10)

and during the RESET as

ERESET =
Vschottky + Vdisc + Vplug

lcell
=

Vcell

lcell
, (11)

where V disc, V plug and V schottky are the voltages dropping over

Rdisc, Rplug and the Schottky diode, which is found at the Pt

to HfO2 interface.

Fig. 1 shows the equivalent circuit diagram that is described

by the equations in this chapter. The voltage is applied to the

bottom electrode, which leads to a negative voltage for the

SET and a positive voltage for the RESET operation. The

total length of the cell lcell is defined as the varying lengths

of the disc lvar plus the length of the plug lplug.

By applying a voltage, the oxygen vacancy concentration

in the disc Ndisc can be controlled between Nmin and Nmax,

which label the minimum and maximum oxygen vacancy

concentration in the disc. In this model the plug is considered

to be an infinite reservoir of oxygen vacancies, that can be

exchanged with the disc. Therefore, the vacancy concentration

in the plug is constant and represented by Nplug.

The resistance of TiOx/Ti/Pt is summarized in the series

resistance Rseries. It consists of a constant resistance for the

TiOx (RTiOx) and a current dependent resistance of the lines

contacting the device (Rline), which has been calibrated to mea-

surements of line test structures. In total the series resistance

is calculated similarly to [41] as

Rseries = RTiOx + Rline

= RTiOx + R0 · (1 + αline R0 I 2 Rth, line), (12)

where R0 represents the resistance of the lines for the limit of

zero current, αline represents the temperature coefficient of the

line and Rth, line represents the thermal resistance of the lines.

The difference in the resistance is around 100 � from I = 0 A

to I = 700 µA and therefore might seem negligible. Other

groups have shown, however, that even such a small difference
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in the series resistance of the cell will lead to a change in the

switching time of multiple orders or magnitude [42], indicating

that it can not be neglected.

The disc and plug resistances are given by

Rplug/disc =
lplug/var

zVoeANplug/discµn
, (13)

where µn represents the electron mobility.

The Pt/HfO2 interface is described by a Schottky diode,

possessing an electrostatic barrier that is varied according to

Ndisc. The current through this barrier is described as

Ischottky, V<0

= −

√

πW00e ·

(

− VSchottky +
φBn

cosh 2( W00
kBT

)

)

· exp
(

−eφBn

W0

)(

exp
(−eVSchottky

ε′

)

− 1
)

AA* T

kB
(14)

for the SET process and

Ischottky, V>0 = AA*T 2 exp
(

−eφBn

kBT

)

·

(

exp
(eVschottky

kBT

)

− 1
)

(15)

for the RESET process with A* being the Richardson

constant, eφBn being the effective electrostatic barrier height

and V schottky being the voltage across the barrier. W00 is given

by

W00 =
eh

4π

√

zVo Ndisc

m*ε
(16)

and W0 as

W0 =
W00

tanh
(

W00
kBT

) (17)

and ε′ as

ε′
=

W00

W00
kBT

− tanh( W00
kBT

)
. (18)

Here, h refers to Planck’s constant and ε to the dielectric

permittivity of the oxide. The applied voltage leads to an

electric field, which lowers the electrostatic barrier eφBn0 to

the effective electrostatic barrier eφBn

eφBn = eφBn0−e 4

√

e3 zVo Ndisc · (φBn0 − φn − VSchottky)

8π2ε3
φB

,

(19)

in which eφn defines the energy difference between con-

duction band and Fermi level. εφB describes the permittivity

related to the process of image-force barrier lowering.

The parameter values are listed in Table I. They are chosen

to fit the SET and RESET kinetic as well as the I-V charac-

teristic together with the values of HRS and LRS and they are

the same as used in [32].

TABLE I

DETERMINISTIC MODEL PARAMETERS

B. A Physically Motivated Variability Model

Baeumer et al. [27] showed that cycle-to-cycle variability

is influenced by the possibility of multiple resistance con-

figurations which have different active filaments. The differ-

ent filaments have different oxygen vacancy concentrations

and different geometries. The variate parameters are chosen

accordingly as

• Ndisc, max and Ndisc, min, the maximal and minimal oxygen

vacancy concentration in the disc,

• r, the radius of the disc and plug filament and

• l, the length of the disc,

all connected to the filament geometry or the bounds for

Ndisc.

1) Device-to-Device Variability: Before the initialisation of

the circuit, a random set of parameters is drawn from a

truncated Gaussian distribution for every cell independently.

A Gaussian distribution over x has a nonzero probability for all

x , therefore a truncated Gaussian distribution is used to restrict

the model parameter values to reasonable ranges. The different

parameters have values of different orders of magnitude. While

the radius and the length are both in the range of nanometers

(10−9 m), the bounds for the oxygen vacancy concentration are

in the range of (1026 m−3). In order to obtain a reasonable

behavioral model, we choose, arbitrarily, to apply the same

relative standard deviation for all parameters. In this way,

device-to-device variability is realized.

Fig. 2 shows the variation in the variability of the SET

delay, which is defined as the time difference between applying

a voltage pulse and the time at which the current through

the cell has the highest slope. Here, a voltage pulse of -

1.05 V with a rise time of 1 ns was applied (see black

curve). It can be observed that the SET delay varies from

a minimum of around 4 ns (red curve) up to around 20 µs

(light green curves), showing a variation factor of more than
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Fig. 2. The applied voltage (black curve) is shown together with the current
transients (colored curves) for nine differently initialized cells. It can be
observed that although the SET switching delay, which is defined as the time
difference between applying a voltage pulse and the time at which the current
through the cell has the highest slope varies by three orders of magnitude the
general shape of the curves stays the same. Additionally it can be observed
that a smaller HRS leads to faster switching than a larger HRS.

three orders of magnitude. In general, it is observed that

higher initial HRS lead to a longer SET delay, which is

consistent with experimental work [32], [42] and [43]. Even

though there is a huge variation in the delay, the shapes

of the curves still look very similar and are consistent with

previous studies [25], [42] and [43]. This suggests that the

underlying physical processes do not change but are merely

accelerated. The transients can be divided into two parts. First

a slow and linear increase of the current, which arises from

an electrical field induced accumulation of oxygen vacancies

at the active electrode in unison with an increase of the local

temperature due to the higher conductivity. Secondly an abrupt

thermal runaway process which is triggered by the positive

feedback of temperature increase and increased mobility of the

oxygen vacancies [25] and [42]. This suggests that the physical

mechanisms making up the model are stable to a certain extent

of parameter variation since their “general behavior” is not

changed if those parameters are varied.

2) Cycle-to-Cycle Variability: To model cycle-to-cycle vari-

ability, the variable parameters are changed before every SET

or RESET voltage pulse. This change has a variable but

confined step size whose maximum is chosen to be 10 %

of the current value. This maximum value can be changed to

control the strength of the cycle-to-cycle variability. In order

to change the parameters in a stochastic way, a random walk

model in one dimension with equal probabilities for increasing

or decreasing the parameter is chosen. Random walk is a

mathematical model for describing random movement. It is a

stochastic process with discrete time steps, where every step is

a Bernoulli process that either increases or decreases the value

that it describes. Each step is random in the sense that each

step is independent of the previous step (e.g. [44]). Consid-

ering the parameter ξ in the step k with a maximum change

in every step of �ξmax. �ξmax is chosen here as 90 % for

Ndisc, min, var and as 10 % for the other parameters. Choosing

a larger step size for Ndisc, min, var enables a larger variation in

the HRS between subsequent cycles which corresponds with

the experimental observations. The determination of the next

random walk parameter is described as

ξk = ξk-1 · (1 ± �ξmax · P), (20)

where P is a random number between zero and one, which

randomly scales the step size between zero and �ξmax. The

direction of the change is described by the ± and has a

50 % chance to be plus and 50 % to be minus. Before the

actual SPICE-level simulation, all the needed calculations are

performed in MATLAB and written to a text file, which is

read in by the circuit simulator (Spectre) as a parameter set file.

This file contains one column for each variable parameter (four

per cell) and additionally a column with the points in time at

which the new values should be adopted. The points in time are

chosen such that they align with the start of the SET/RESET

pulses. The circuit netlist is then generated with placeholder

variables (wildcards) for the variability parameters. During the

circuit simulation the parameter file is read by Spectre and its

values are inserted into the model. While Ndisc, max, var and

Ndisc, min, var are directly inserted into the model, lvar and rvar

are coupled with the change of the state variable.

For negative voltages (SET direction)

rvar = rold + (rnew − rold)

(

Ndisc − Ndisc, old

Ndisc, max, var − Ndisc, old

)

(21)

and

lvar = lold + (lnew − lold)

(

Ndisc − Ndisc, old

Ndisc, max, var − Ndisc, old

)

,

(22)

holds. Likewise, for positive voltages (RESET direction)

rvar = rold + (rnew − rold)

(

Ndisc, old − Ndisc

Ndisc, old − Ndisc, min, var

)

(23)

and

lvar = lold + (lnew − lold)

(

Ndisc, old − Ndisc

Ndisc, old − Ndisc, min, var

)

(24)

are used. The ‘var’ index denotes the parameter that con-

nects to the physical equations, while the ‘old’ index denotes

the last parameter being used right before the application of

a SET or RESET voltage and the ‘new’ index denotes the

new value that was determined by the random walk algorithm.

‘old’ and ‘new’ are therefore only connected to the variability

model and only influence the model through their connection

to ‘var’. One effect of this coupling is that rvar and lvar only

change if the state of the cell Ndisc changes. In addition,

only intermediate values for rvar and lvar are attained if the

switching is incomplete, i. e. the state variable does not switch

to Ndisc, min, var or Ndisc, max, var. Complete switching is defined

here as switching into the limits Ndisc, min, var or Ndisc, max, var.

Fig. 3 shows the functionality of the cycle-to-cycle vari-

ability implementation during an I-V sweep simulation with a

current compliance of -400 µA. Fig. 3 (a) shows the applied

voltage signal, which is swept between −1.3 V and +1.3 V

with a sweep rate of 1 V/s. Fig. 3 (b) shows the resulting

current through the cell. At the first dashed vertical line 1,

a SET occurs. It is characterized by an abrupt absolute increase

of the current, which is limited to −400 µA. The RESET
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Fig. 3. The functionality of the cycle-to-cycle variability is shown during
an I-V sweep simulation with a current compliance of −400 µA. The graphs
(a) to (e) show different properties of the simulations during the simulation
with aligned time axes. The applied voltage is swept between −1.3 V and
+1.3 V with a sweep rate of 1 V/s (a). (b) shows the resulting current at
the same time points. (c) shows the model parameters Ndisc, Ndisc, max, var
and Ndisc, min, var, (d) shows rnew, lvar and rold and (e) shows the parameters
lnew, lvar and lold.

can be observed at the third dashed vertical line 3. It is

characterized by an initially abrupt decrease of the current

from a high positive value. Since the current compliance used

in Fig. 3 was −400 µA for the SET the RESET is more abrupt

than the RESET in Fig. 4 (b) which was simulated with a lower

current compliance of −100 µA. This agrees with the results

from [33]. Fig. 3 (c) shows the oxygen vacancy concentration

Ndisc and its maximum and minimum values, Ndisc,max,var

and Ndisc,min,var. For a SET (vertical line 1), the oxygen

vacancy concentration abruptly increases, which corresponds

to a decrease of the device resistance characteristic for the

SET. During the RESET (vertical line 3), the oxygen vacancy

concentration first decreases abruptly and then changes more

gradually as the RESET switching slows down when higher

resistances are reached. The parameters Ndisc, max, var and

Ndisc, min, var are used to confine Ndisc. They change whenever

the voltage polarity changes. If 0 V is crossed, the conditions

change from SET conditions (V applied < 0 V) to RESET

conditions (V applied > 0 V) and back. The vertical lines

2 and 4 indicate points in time when 0 V is crossed (see

Fig. 3 (a)) and the values of Ndisc, max, var and Ndisc, min, var

change (cf. Fig. 3 (c)). Fig. 3 (d) shows the parameters

connected to the filament radius rnew, rvar and rold. In the

JART VCM v1 b model, the filament radius is only used to

calculate the filament area. As described above, rvar denotes

this radius. It changes towards rnew in accordance with equa-

tions (21) and (23) as shown in Fig. 3 (d). The values of

rnew and rold always change when the polarity switches (see

vertical lines 2 and 4). At these instants rold changes to rvar and

rnew changes to the corresponding value from the parameter

set file. Fig. 3 (e) shows the parameters connected to the

disc length lnew, lvar and lold. Their behavior corresponds to

the one observed in Fig. 3 (d). In our simulation setup we

generate the netlists and simulation stimuli and perform the

evaluation of results in MATLAB in an automated fashion.

In this way we synchronize the parameter file with the SET and

RESET events. It is also automated to work with the different

simulations shown in this article.

The first few rows of the parameter set file, which was used

to simulate Fig. 3, can be seen below

pset1 paramset{
time Ndiscmin0 Ndiscmax0 rnew0 lnew0 ...
0 0.0076 20.5 44.3e-9 0.401 ...
2.6 0.0070 19 46.1e-9 0.428 ...
5.2 0.0068 19.3 45.9e-9 0.42 ...
7.8 0.0071 20 44.9e-9 0.379 ...
... ... ... ... ... ...
}.

The number 0 at the end of the parameter name rnew0,

lnew0 is used to distinguish multiple devices when they are

simulated at the same time. The scales in this example deviate

from the actual scales i. e. Ndiscmin0 is 0.0076, Ndiscmax0 is

19 and lnew0 is 0.401. The scaling of these values by 1026,

1026 and 10-9 is performed in the equations of the compact

model in order to improve the convergence behavior. This file

actually corresponds to the first two I-V sweeps of Fig. 3. The

first row of values shows the initial device parameters that are

valid for the first half of the first sweep from 0 V to 1.3 V and

back to 0 V (RESET direction). The second row of parameters

shows the new values that can be reached during the second

half of the first sweep from 0 V to −1.3 V and back to 0 V

(SET direction) and therefore starts at 2.6 s. The third row of

parameters shows the new values that can be reached during

the first half of the second sweep from 0 V to 1.3 V and

back to 0 V (RESET direction) and therefore starts at 5.2 s,
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while the fourth row of parameters again shows the values to

be reached during the second half of the second sweep (SET

direction). To sum up, two rows of parameters are needed for

one I-V sweep; one for the SET branch and one for the RESET

branch.

3) Understanding the Variability Parameters Influence on

the Compact Model Behavior: In order to successfully work

with this compact model and to exploit its variability capabili-

ties, it is necessary to understand the influence of the different

variability parameters on the compact model behavior. As an

example, it will be analyzed how the variability parameters

influence the SET delay. The variation in this characteristic

quantity is displayed in Fig. 2. The influence of the variability

parameters can be understood by considering the model equa-

tions. The thermal resistance of the cell Rth is proportional

to 1/r2 (see Eq. (6)), meaning that decreasing the radius will

increase the thermal resistance, which in turn will increase

the temperature of the filament according to Eq. (5). This

temperature increase has a very strong impact on the switching

speed [41]. For the influence of the disc length on the SET

delay it is found that the electrical field during the SET

(Eq. (10)) and the ionic current (see Eq. (2)) are inversely

proportional to the disc length. Therefore, a shorter disc length

will lead to a higher electrical field during the SET and to

a higher ionic current, which both increase the switching

speed. If the initial oxygen vacancy concentration in the disc

is elevated, the initial resistance is smaller, which results in

a higher current at a specific voltage. This higher current

results in a higher filament temperature due to Joule heating,

which in turn speeds up the switching process significantly.

To conclude, the minimum (maximum) SET delay is achieved

for the minimum (maximum) values of r and l and for the

maximum (minimum) initial oxygen vacancy concentration

Ndisc. A deterministic simulation with these parameters will

result in the fastest (slowest) possible device.

This kind of analysis can be performed for different cell

characteristics like the ranges of LRS and HRS as well

as for the RESET dynamics and represents a strength of

using physically motivated compact models. Not only material

characteristics like Schottky barriers and ion hopping barriers

but also fabrication characteristics such as layer thicknesses

and series resistances can be analysed for their influence on the

characteristics of a single cell and also on the circuit behavior.

IV. RESULTS

A. Validation of the Model

To determine the validity of the variability model, it was

fitted to experimental data of a Pt/HfO2/TiO2/Pt device [33].

In the first step of the fitting process the deterministic ver-

sion of the model has been fitted simultaneously to all the

experiments shown in [32]. This was done manually by

modifying the physical parameters such as the disc length

or the filament radius in order to achieve the best combined

agreement between the measurements and the deterministic

simulations. During the fitting process special care is taken

to keep the fitting parameters in physically reasonable ranges.

The fitting of the variability model is achieved by tuning the

TABLE II

PARAMETER RANGES FOR FIGURE 4

parameters for device-to-device and cycle-to-cycle variability

independently for each experiment and in addition by choosing

the parameters according to the experimental results. Ideally,

different simulations would use the same parameters. However

the fit between simulation and experiment can be optimised

by a more thorough tuning of the parameters to the different

experiments. Still the first aim was to have a consistent set of

parameters and to only tweak some to a specific experiment.

It can be seen that this was achieved for the filament radius and

disc length while the ranges for the maximum and minimum

oxygen vacancy concentration are changed for the different

experiments. These choices will be explained in the context

of the corresponding experiments. The range of the variabil-

ity parameters, i. e. the truncation for the device-to-device

variability, are listed in Table II. In each cell entry, the first

value specifies the lower truncation value, the second one

specifies the mean of the underlying Gaussian distribution and

the last value specifies the upper truncation value. The width

of the underlying Gaussian distribution, which is expressed

by the RSD, was chosen as 0.5 for all model parameters for

the simulations shown in Fig. 4. The RSD enables to tune

the device-to-device variability independently from the cycle-

to-cycle variability. The I-V sweeps in Fig. 4 (b) and the

endurance in Fig. 4 (h) showcase one device over multiple

SET and RESET cycles. Therefore, device-to-device vari-

ability only plays a role in the initial choice of parameters

while cycle-to-cycle variability is responsible for the observed

variation. On the other hand the SET and RESET kinetics

in Fig. 4 (d) and (f) are simulated by initialising a number of

cells and subjecting each of them to the same stimulation for

one (SET kinetic) or two (RESET kinetic) switching cycles.

The variability in these simulations therefore mainly depends

on the device-to-device variability and thereby directly on the

choice of the RSD. The value was therefore motivated by

these two simulations. The value of Nmin, var was chosen in

a different way. In [32] (Fig. 2 (d) therein), it was shown

that the JART VCM v1 b model could reasonably well match

the relationship between the range of initial states and the

range of SET times. The initial experimental resistance values

used were in the range of 100 k� to 500 k�. In order

to represent the variation in the SET kinetics, the compact

model needs a variation in the initial state between 50 k�

and 340 k�. For range 1, the maximum Nmin, var value was

adapted to correspond to a resistance of around 50 k� and the

minimum Nmin, var value corresponds to a resistance of around

340 k�. Both resistance values are evaluated at a read voltage

of −0.1 V.
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Fig. 4. Measured device characteristics alongside results obtained using
the extended compact model. All simulations here were performed using the
ranges from Table II. First row shows measured (a) and simulated (b) voltage
sourced I-V sweeps. Second row shows the measured (c) and simulated
(d) SET kinetics and the third row shows the measured (e) and simulated
(f) RESET kinetics. The blue circles represent the experimental RESET
kinetics starting from LRS between 1.85 k� and 2.22 k� (LRS range I
(experimental)) while the green points represent the RESET kinetics starting
from LRS between 1.52 k� and 1.67 k� (LRS range II (exp.)). The solid lines
represent the RESET kinetics of the deterministic model using the parameters
from Table I and the initial LRS as detailed in [32]. The blue box plots
show the RESET kinetics for the variability model for an LRS range between
1.92 k� and 2.04 k� (LRS range I (simulated)) while the green box plots
show the RESET kinetics of the variability model for an LRS range between
1.58 k� and 1.67 k� (LRS range II (sim.)). The fourth row ((g) and (h)) shows
the measured and simulated endurance behavior over 1000 cycles. Generally,
a good qualitative agreement between measurement and simulation is observed
not only for device properties like LRS, HRS, SET and RESET voltages and
switching kinetics but also for the statistical behavior of these properties.

Characteristic figures used to describe VCM cells include

the I-V characteristic, which can be used to determine the

range for LRS and HRS as well as the ranges of SET and

RESET voltages. Experimental I-V sweeps for a current com-

pliance of 100 µA are shown in Fig. 4 (a) whereas Fig. 4 (b)

shows the simulation result. Both sweeps were performed

using the same sweep rate (1 V/s) and the same stop voltages

for SET and RESET of ±1.3 V. The SET voltages are between

−0.45 V and −0.75 V, while the RESET voltages are between

0.45 V and 0.65 V. The RESET voltage has been defined as

the inflection point when, starting from the LRS, the current

first begins to decrease with an increasing voltage. For this

simulation it is important to match SET and RESET voltage

together with the HRS and LRS states. The possible ranges for

HRS and LRS can be controlled by choosing the right Nmin, var

and Nmax, var and by correctly controlling their variation over

time. The LRS is in the range of 7 k� - 10 k� for most of the

the cycles (80 %) and between 4 k� - 8 k� for the simulations.

The HRS is between 50 k� and 500 k� in experiment and

simulation. For voltages < 0.5 V the HRS matches very

well between measurement and simulation. This match is

highly important as reading voltages < 0.5 V are typically

employed to prevent unintended switching. When measuring

and simulating I-V sweeps, it is important to look at multiple

switching events since the resistance state at the beginning

of a voltage sweep or pulse has a strong influence on the

switching voltage as well as on the state that is reached after

the switching, e. g., [28], [32], [33], [45] and [46]. Here, 30

I-V sweeps were measured and 50 I-V sweeps were simulated.

Comparing multiple sweeps reveals an increase in the SET

voltage for higher HRS states, both, in the experimental data

and the simulation data.

Fig. 4 (c) shows the measured SET delays, i. e. the time

required to switch the cell into the LRS for a voltage pulse

of a specific height between −0.6 V and −1.1 V. It is highly

non-linear and shows a large variation of up to 5 orders of

magnitude at each voltage, which presents a large challenge

for circuit designers willing to employ VCM cells. The nonlin-

earity as well as the variability has been identified as a general

property of filamentary valence change mechanism based

systems such as STO [25], HfOx [32] and TaOx [42], which

makes it one of the most relevant properties to consider in the

modeling of these devices. Fig. 4 (d) shows the simulated SET

kinetics. The variability model reproduces the non-linearity as

well as the multiple orders of magnitude variation in the SET

time. Here, it has to be noted that the resolution limit of the

measurement setup was 10 ns. Therefore, switching events

faster than 10 ns are not observed.

Fig. 4 (e) shows a more complex experiment, which could

be reproduced using the proposed model, namely the RESET

kinetics for different initial LRS. The experimental results

are displayed with points. The solid lines show the results

simulation results without the variability model and the box

plots show the simulation results including the variability

model. The reader is referred to [32] for a detailed description

of the experimental procedure. Now, the same procedure is

simulated using the compact model with variability. The colors

are chosen consistent with the colors in [32]. The blue points

represent RESET events from a LRS between 1.85 k� and

2.22 k� (LRS range I (experimental)), while the green points

represent RESET events from an LRS between 1.52 k� and

1.67 k� (LRS range II (exp.)). These LRS were programmed

using 10 µs pulses with −0.9 V (LRS range I) or −1.2 V (LRS

range II). The solid lines represent the simulated deterministic



BENGEL et al.: VARIABILITY-AWARE MODELING OF FILAMENTARY OXIDE-BASED BRS CELLS 4627

RESET kinetic from an initial state chosen from inside this

range. Fig. 4 (f) shows the deterministic RESET kinetics (solid

lines) as well as the RESET kinetics obtained by using the

variability model and employing the same procedure as for

the experimental RESET kinetic. For this simulation, the cells

were first initialised in the HRS and then subsequently SET

using the same pulse voltage and pulse duration as in the

experiment, but with an additional current compliance to limit

the switching. This current compliance was used to achieve

the same range of resistances as in the experimental data. The

resulting LRS ranges are 1.92 k� - 2.04 k� (LRS range I

(simulated)) for the blue box plots and 1.58 k� - 1.67 k�

(LRS range II (sim.)) for the green box plots. After the cells

were programmed to these LRS ranges, a RESET voltage

was applied with different voltages ranging from 0.9 V to

1.2 V until the cells switched. The resulting switching times,

which were defined as the point in time at which the current

drops below 300 µA, are comparable with the experimental

data. It can be observed, that although the variability in

the simulations is larger than in the experiments, still the

experimental values are in most cases within the simulated

RESET time range. The resulting variability observed in the

simulations is significantly larger for the LRS between 1.52 k�

up to 1.67 k�, and only slightly larger for the LRS between

1.85 k� and 2.22 k�. Only a few measurement points,

however, are provided for each combination of range of LRS

values and RESET voltage. It can therefore be envisioned

that conducting more successful measurements will lead to

larger variability as well. The RESET switching also shows a

strong nonlinear dependence on the applied voltage as well

as a strong dependence on the initial LRS and variability

which was also previously reported by [42]. An increase in

the RESET voltages for smaller LRS has also been shown by

other groups like [45] and [47]. This is analogous to a longer

delay for smaller initial LRS at a constant voltage.

Fig. 4 (g) shows the measured endurance characteristic over

1000 SET-RESET cycles. Initially, the resistance of the cell

was read out at 0.1 V while in the HRS. Afterwards, a negative

voltage pulse was applied to SET the cell. After the SET pulse,

the cell was read again at 0.1 V, which was followed by an

positive RESET pulse and a last read pulse at 0.1 V. The

SET pulses were the same for measurement and simulation,

in particular −0.8 V applied for 1 µs. The RESET pulses

had a length of 5 µs and a pulse amplitude of 1.2 V in the

experiment and 1.5 V in the simulation. The rise and fall

times of the pulses were in the range of 1 ns up to 10 ns and

can therefore be neglected compared to the pulse lengths. The

RESET pulse voltage for the simulation was chosen slightly

above the experimental voltage to better reach the range of

HRS in the experiment as a smaller voltage would have lead

to smaller HRS values and less RESET switching events. The

LRS turns out to be very stable at around 3 k�, while the HRS

varies between 30 k� and 100 k� with only a few outliers

above 100 k�. Fig. 4 (h) shows the simulated endurance

behavior over 1000 cycles. The LRS again is rather stable

with a slightly larger variability than the experiment around

3 k�, while the HRS varies between 20 k� and 100 k�.

The agreement of the resistance states between experiment and

simulation was again achieved by choosing the right Nmin, var

and Nmax, var ranges.

In conclusion, except for the LRS resistance there exists

very little deviation between the ranges observed in experiment

and simulation. The mismatch in the LRS range can be

explained by the speed of the switching transition, which is

faster in the model. The measured devices have a transition

time between 1 ms and 100 ms at −0.6 V (see [32] supple-

mentary Fig. 1), suggesting an even slower transition at lower

voltages, while the transition time in the compact model is

50 ns at −0.5 V (see [32] Fig. 6). It should be noted that the

compact model has been optimized to match the delay times

rather than the transition times.

B. Applications of a Variability Model

The way the variability has been implemented, makes it easy

to adapt it to fit different systems. In addition, it enables to test

the robustness of circuits and architectures against different

amounts of variability. Fig. 5 analyses the switching behavior

of 100 cells initialised in the HRS that are subjected to pulses

of different lengths (from 10 ns to 10 ms) at −0.8 V. This

represents cells from the red rectangle in Fig. 5 (a). When

considering this plot multiple effects can be recognized. The

y-axis displays the cell number from 1 to 100 while the x-axis

displays the resistance at the end of the pulse. The left part of

the x-axis from 1.58 k� to 1.7 k� corresponds to the LRS,

while the right part between 20 k� and 200 k� corresponds

to the HRS. The different pulse lengths are encoded by colors.

If the light green points (1 µs pulse lengths) are considered

35 cells are on the left side of the plot, while 65 cells are on

the right side of the plot. This means that after the application

of −0.8 V for 1 µs, 35 cells (equivalent to 35 % of the total

number of cells) have switched to the LRS, while 65 cells (or

65 % of the cells) still remain in the HRS. By reading the plot

in this way, the switching probabilities at a specific voltage

for a specific pulse length can be determined. Another feature

that can be extracted for each pulse length is the range of

resistance states that are reached after the pulse. The 35 cells

that have switched during the 1 µs pulse switched to LRS

between 1.61 k� and 1.67 k� while the cells that did not

switch had resistances between 30 k� and 180 k�. For pulse

lengths of 10 ns or shorter and for pulse lengths of 10 ms or

longer the switching is deterministic even with the variability.

Between those two pulse lengths, the SET becomes stochastic

since the cells only switch with a specific probability. The

plot also shows that LRS and HRS are well separated. Only

for the fastest pulses data points between 1.7 k� and 20 k�

appear. The switching is binary for this voltage as the pulse

lengths is longer than the transition time, which measures

only the time to switch without the initial delay. As pointed

out by Cueppers et al., an analog switching accessing also

the intermediate resistance range becomes only possible if

the pulse length is smaller than the transition time at this

specific pulse amplitude [32]. Another feature that can be

observed is that longer pulses lead to smaller LRS states.

Nardi et al. [48] reported that for a wide range of materials

the resistance after the SET was reduced if the maximum
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Fig. 5. Change in the switching behavior for different pulse durations for
100 cells is shown.

TABLE III

SUMMARY OF THE SWITCHING BEHAVIOR

FOR DIFFERENT PULSE LENGTHS

current during the SET was higher. This higher maximum

SET current corresponds to a stronger switching and is in that

sense equivalent to a longer application of a voltage pulse.

Also the application of a longer SET pulse increases the SET

probability which is consistent with the reporting of other

groups [49]. In the left part of Fig. 5 the range of LRS changes

to lower resistances. While the range lies between 1.59 k�

and 1.67 k� for a pulse length of 10 ms, it lies between

1.64 k� and 1.72 k� for a pulse length of 100 ns. Table III

summarizes the switching probabilities, HRS and LRS ranges

for the different pulse durations. The column SET probability

shows, what percentage of the 100 cells has switched after

the application of the voltage pulse. As can be observed from

the resistances after the pulse the switching is binary which

makes it easy to determine whether a cell has switched or not.

The third and the fourth column both show the resistance at

the end of the applied voltage pulse read at the pulse voltage

(−0.8 V). For example at a pulse length of 100 ns the SET

probability is 11 % which means that the LRS range for that

row represents the range of device resistances of the 11 %

of cells that have switched while the HRS range for that row

represents the range of device resistances of the 89 % of cells

that did not switch.

V. CONCLUSION

In this work, our JART VCM v1b model was extended

by a physically motivated variability model based on the

statistical variability of the switching filament. The resulting

model can either be used in a deterministic fashion or with

variability. The extended model exhibits device-to-device and

cycle-to-cycle variability. It shows a good agreement with

the experimentally observed variability considering transient

behavior, non-linearity and statistics. The complete pack-

age of deterministic and variability model offers an new

quality of consistency between different types of experiments

and simulations. Additionally, since it has been show, that

the deterministic model offers a description of filamentary

based bipolar resistive switches with different transition metal

oxides, such as STO [50], the variability model should be

applicable to these systems as well. The proposed variability

model can easily be tuned to the amount of observed vari-

ability. In addition, it enables the design of variability-aware

circuits including VCM cells. A deeper understanding of the

impacts of variability on a specific concept can also be used to

communicate to device engineers the requirements which their

devices have to fulfill for that concept to work in experiments.

Our compact model allows a reasonable reproduction of

experiments that require both the quasi static properties to

match as well as the dynamic properties. To the knowledge

of the authors there exists no compact model that has been

able to replicate a comparable number of measurements in

combination with variability.
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