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Abstract
In many projects, lexical preprocessors are used to manage
different variants of the project (using conditional compila-
tion) and to define compile-time code transformations (using
macros). Unfortunately, while being a simple way to imple-
ment variability, conditional compilation and lexical macros
hinder automatic analysis, even though such analysis is ur-
gently needed to combat variability-induced complexity. To
analyze code with its variability, we need to parse it without
preprocessing it. However, current parsing solutions use un-
sound heuristics, support only a subset of the language, or
suffer from exponential explosion. As part of the TypeChef
project, we contribute a novel variability-aware parser that
can parse almost all unpreprocessed code without heuristics
in practicable time. Beyond the obvious task of detecting
syntax errors, our parser paves the road for further analy-
sis, such as variability-aware type checking. We implement
variability-aware parsers for Java and GNU C and demon-
strate practicability by parsing the product line MobileMedia
and the entire X86 architecture of the Linux kernel with
6065 variable features.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors; D.2.3 [Software Engineering]:
Coding Tools and Techniques

General Terms Algorithms, Languages, Performance

Keywords parsing, C, preprocessor, #ifdef, variability, con-
ditional compilation, Linux, software product lines

1. Introduction
Compile-time variability is paramount for many software sys-
tems. Such systems must accommodate optional or even alter-
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native requirements for different customers. In software prod-
uct lines, variability is even regarded as a core strategic advan-
tage and planned accordingly [51]. Unfortunately, variability
increases complexity because now many variants of a system
must be developed and maintained. Hence, many researchers
pursue a strategy to lift automated analysis and processing—
such as dead-code detection, type checking, model checking,
refactoring, reengineering, and many more—from individual
variants to entire software product lines in a variability-aware
fashion [4, 13, 15, 24, 33, 52, 61].

In practice, a simple and broadly used mechanism to im-
plement compile-time variability is conditional compilation—
typically performed with lexical preprocessors such as the
C preprocessor [30], Pascal’s preprocessor [58], Antenna for
Java ME [20], pure::variants [11, 53], and Gears [12]. With-
out loss of generality, we focus on the C preprocessor. A code
fragment framed with #ifdef X and #endif directives is only
processed during compilation if the flag X is selected, for in-
stance because it is passed as configuration parameter to the
compiler (as command-line option or using a configuration
file). Using product-line terminology, we refer to such flags
as features and to products created for a given feature selec-
tion as variants. Conditional compilation is widely used in
open-source C projects [39], and it is a common mechanism
to implement software product lines [51]; examples include
Linux with thousands of features [39, 54], HP’s product line
of printer firmware with over 2000 features [49], or NASA’s
flight control software with 275 features [22].

One of the main problems of lexical preprocessors is that
we cannot practically parse code without preprocessing it
first. It is a common perception that parsing unpreprocessed
code is difficult or even impossible [46, 58]. The inability to
parse unpreprocessed code poses a huge obstacle for applying
variability-aware analysis and processing to code bases using
lexical preprocessors, such as the vast amount of existing C
code. Parsing is difficult, because lexical preprocessors are
oblivious to the underlying host language and its structure.
Hence, conditional compilation can be applied to arbitrary
token sequences, i.e., it is not restricted to syntactic structures.
In addition to conditional compilation, lexical macros (again
oblivious to the underlying structure), file inclusion, and
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their interaction with conditional compilation complicate the
picture.

Parsing, analyzing, and processing unpreprocessed code
is interesting for many tasks involving variability, such as
variability-aware error detection [4, 15, 33, 52, 57, 58, 61],
program understanding [28, 36], reengineering [16, 54], refac-
torings [1, 23, 24, 64], and other code transformations [6, 46].
Variability-aware analysis and processing are especially im-
portant when the number of features grows, because there are
up to 2n variants for n features. Without suitable tools, devel-
opers typically analyze and process only few selected variants
that are currently deployed. This way, even simple syntax
or type errors may go undetected until a specific feature
combination is selected, potentially late in the development
process, when mistakes are expensive to fix.

Current attempts to parse unpreprocessed C code are
unsound, incomplete, or suffer from exponential explosion
even in simple cases. For instance, parsing all variants in
isolation in a brute-force fashion does not scale for projects
with more than a few features, due to the exponential number
of variants. Alternatives use either unsound heuristics (such as
assuming that macro names can be identified by capitalized
letters) or restrict the way preprocessor directives can be
used. Although such limitations are acceptable for some
tasks or small projects, our goal is a sound and complete
parsing mechanism that can be used on existing code to
ensure consistency of an entire product line.

We contribute a novel variability-aware parser framework
that can accurately parse unpreprocessed code. With this
framework, we have implemented a sound and almost com-
plete parser for unpreprocessed GNU-C code and a sound
and complete parser for Java with conditional compilation.
In contrast to existing approaches, parsers written with our
framework usually do not require manual code preparation
and do not impose restrictions on possible preprocessor us-
age. Our variability-aware parsers can handle conditional
compilation even when it does not align with the underlying
syntactic structure. In addition, we provide a strategy to deal
with macros and file inclusion, using a variability-aware lexer.
As such, our parsers can be used on existing legacy code.
Without committing to a single variant, we detect syntax er-
rors in all variants and create a parse result that contains all
variability, so further analysis tools (such as type checkers or
refactoring engines) can work on a common representation
of the entire product line.

Although the worst case time and memory complexity of
our parser and the produced abstract syntax tree are exponen-
tial, in practice, most source code is well-behaved and can
be parsed efficiently. We use SAT solvers during lexing and
parsing to efficiently reason about features and their relation-
ships. In addition, we avoid accidental complexity by making
decisions as local as possible. We demonstrate practicality
with two case studies—a small Java product line MobileMe-

dia and the entire X86 architecture of the Linux kernel with
9.5 million lines of code and 6065 features.

The parser is part of our long-term project TypeChef (short
for type checking ifdef variability) but can also be used
in isolation. We open sourced the entire implementation,
provide a web version for easy experimentation, and publish
additional data from our case studies at http://fosd.net/
TypeChef.

In summary, we make the following novel contributions:
• We present a reusable variability-aware parser framework

to parse code with conditional compilation, using SAT
solvers for decisions during the parsing process. This
framework is language-agnostic and can be reused for
many languages using lexical preprocessors.

• We developed variability-aware parsers for Java and GNU
C; to the best of our knowledge, these are the first parsers
that can parse unpreprocessed code without excessive
manual code preparation and without unsound heuristics.

• We demonstrate practicality of our parsers by parsing the
product line MobileMedia and the entire X86 architecture
of the Linux kernel.

Our contributions cover both (a) developing the novel concept
of variability-aware parsing and (b) significant engineering
efforts combining the parsers with other prior research re-
sults (i.e., reasoning about variability and variability models,
variability-aware type systems, variability-aware lexing) to
build a tool infrastructure that scales to parsing Linux.

2. Variability-aware parsing: What and why?
Our goal is to build a parser that produces a single abstract
syntax tree for code that contains variable code fragments
(optional or alternative). In the resulting abstract syntax tree,
the code’s variability is reflected in optional or alternative
subtrees.

We illustrate the problem and the desired result on two
simple expressions in Figure 1, in which the C preprocessor is
used on numeric expressions. The preprocessor prepares the
code by removing code fragments between #if and #endif
directives if the corresponding feature is not selected, and by
replacing macros with their expansion. The first example
expands to two different results, depending on whether
feature X is defined. The second example is more complex
and expands to six different results, depending on whether
features X, Y, and Z are selected. Note how macro B has two
alternative expansions, depending on the feature selection.

Next to the listings, we show the desired parsing result
in form of an abstract syntax tree with variability. The
result reflects variability with choice nodes over a feature
F (denoted as “♦F”), the left child contains the parse result
if feature F is selected, the right branch if it is not selected.1

By replacing choice nodes with their left or right branch,

1 Abstract syntax trees with variability are known from tools, such as
fmp2rsm [14], FeatureMapper [27], and CIDE [31], and from formalisms,



1 3 * 7 +
2 #ifdef X
3 1
4 #else
5 0
6 #endif

+

♦X

01

*

73

1 #define A 3

3 #ifdef X
4 #define B 1
5 #else
6 #define B 2
7 #endif

9 3
10 #ifdef X
11 * 7
12 #endif
13 +
14 #ifdef Y
15 #ifdef Z
16 A
17 #else
18 4
19 #endif
20 * B
21 #else
22 0
23 #endif

+

♦Y

0*

♦X

21

♦Z

43

♦X

3*

73

Figure 1. Expressions with conditional fragments and corre-
sponding parse results with choice nodes.

we could perform conditional compilation on the abstract-
syntax-tree representation to yield the individual parse results.
In many cases however, we want to directly work on a
single abstract syntax tree with variability. In our simple
expression example, a sample analysis would be an algorithm
to approximate upper and lower bounds for the result of
numeric expression, which is trivial to implement on the
abstract syntax tree with variability, but not on the original
source code with preprocessor directives.

2.1 Technical challenges
Parsing unpreprocessed code poses two main technical chal-
lenges, which are already visible in our initial expression
examples and which we illustrate again on the small C-code
snippets in Figure 2.

Macro expansion and file inclusion. Lexical macros and
file inclusion interfere with the parsing process. Before
parsing we must actually include files and expand macros. In
Figure 1, a numeric-expression parser would not understand
the token A; in the first C-code example in Figure 2, a

such as the choice calculus [18]. Our contribution lies not in how to encode
variability in syntax trees, but in parsing such trees from code.
There are different equivalent abstract syntax trees for the same expression.
We can move up the choice nodes in the tree by replicating tokens and
we can move down choice nodes by refactoring common children. Two
trees are equivalent when they can produce the same variants. Erwig and
Walkingshaw [18] have formalized these operations on trees in their choice
calculus and have defined normal forms. Some analysis tools may prefer
choice nodes at certain levels of granularity only. Moving choice nodes in
trees after parsing is straightforward.

1 #define P(msg) \
2 printf(msg);

5 main() {
6 P("Hello\n")
7 P("World\n")
8 }

1 #ifdef BIGINT
2 #define SIZE 64
3 #endif
4 #ifdef SMALLINT
5 #define SIZE 32
6 #endif

8 allocate(SIZE)

1 if (!initialized)
2 #ifdef DYNAMIC
3 if (enabled) {
4 #endif
5 init(); //...
6 #ifdef DYNAMIC
7 }
8 #endif

Figure 2. Challenges in parsing unpreprocessed code (macro
expansion, conditional macros, and undisciplined annota-
tions)

parser would not even recognize two statements because the
separating semicolon is added by a macro. Similar to macro
expansion, we must resolve includes before parsing, which
could contain further macro definitions.

In addition, macros may be defined conditionally (and
files may be included conditionally). In the example in Figure
1, macro B has two alternative expansions, depending on the
feature selection. In the second C-code example, SIZE may
be expanded in two ways or not expanded at all, depending on
the feature selection. To parse unpreprocessed code, we need
a mechanism to handle macro expansion and file inclusion
(cf. Sec. 4).

Undisciplined annotations. Even without macros and file
inclusion, a parser must be able to deal with conditional-
compilation directives that do not align with the underlying
syntactic structure of the code. The lexical nature of many
preprocessors allows developers to annotate individual tokens,
like the closing bracket in the third C-code example. Still, the
parser must be able to make sense of such annotations and
produce a variable abstract syntax tree that is equivalent to
the source code in all possible feature combinations.

We call conditional-compilation directives on subtrees of
the underlying structure disciplined annotations and those
that do not align undisciplined annotations [32, 40]. In our
expression example, most annotations are disciplined: They
just provide alternatives for subexpressions. However, the
annotation on “∗7” (Line 11) is undisciplined since it changes
the structure of the resulting abstract syntax tree; in the result,
we replicated token 3, so the abstract syntax tree covers
both possible structures. Our goal is a parser that can handle
undisciplined annotations.

2.2 Soundness, completeness, and performance
Many tool developers have tried to parse unpreprocessed C
code with its variability, using different strategies. Soundness,
completeness, and performance are three characteristics that
we can use to describe desired properties of our parser and to
distinguish it from other strategies.

We consider a variability-aware parser as sound and
complete if it yields a parse result that correctly represents the
variability of the parsed code fragment. That is, it should not
matter whether we (a) first generate the source code of one
variant (with a standard preprocessor given a desired feature



selection) and then parse that variant with a standard parser
or (b) first parse the unpreprocessed code with a variability-
aware parser and then generate the abstract syntax tree of
the variant (by pruning subtrees not relevant for the desired
feature selection). A variability-aware parser is incomplete
if it rejects a code fragment even though preprocessing and
parsing would succeed for all variants. A variability-aware
parser is unsound if it produces a parse result which does not
correctly represent the result from preprocessing and parsing
in all variants (or if it produces a parse result even if at least
one variant is not syntax-correct).

Finally, performance largely depends on the complexity
of the problem an approach is trying to solve. Unfortunately,
no sound and complete parsing approach can avoid the inher-
ent complexity of the problem, which is already exponential
in the worst case. The challenge is to distinguish inherent
complexity (exponential in the worst case, but usually man-
ageable in real-world examples) from accidental complexity
induced only by the parsing strategy or tool.

We illustrate soundness, completeness, and performance
based on three common strategies to parse unpreprocessed C
code (we discuss these approaches in more detail as part of
related work in Section 10.1):

• Brute force. For many purposes, a simple but effective
strategy is to preprocess a file for all (or all relevant)
feature combinations in a brute-force fashion and to
subsequently parse and analyze the preprocessed variants
in isolation. The brute force approach is our benchmark
for soundness and completeness. However, it suffers from
exponential explosion and quickly becomes infeasible in
practice when the number of features grows. Even if the
inherent complexity of the problem is low (for example,
features affect distinct structures in the same file), the
brute force approach parses all feature combinations.
Already to parse a file with 20 features, we would need
to preprocess and parse the file up to a million times,
independent from the actual inherent complexity of the
variability in that file.

• Manual code preparation. Another common strategy is
to support only a subset of possible preprocessor usage.
If we give up completeness, for example, by requiring
that conditional compilation and macros align with the un-
derlying structure, parsing unpreprocessed code becomes
possible in a sound and efficient fashion [6, 42, 68]: The
parse results are correct, but we cannot parse all programs.
This strategy can only be used on code written according
to certain guidelines; for existing code this would require
manual rewrites.

• Heuristics and partial analysis. Finally, giving up
soundness, several researchers have successfully ap-
plied heuristics to efficiently parse unpreprocessed C
code [23, 24, 46]. They exploit repeating patterns and
idioms, such as the common include-guard pattern or cap-
italized letters for macro names. There are both complete

and incomplete heuristic-based parsers. Despite some
reported success, unsound heuristics can lead to incor-
rect parse results and undetected errors, especially in the
presence of unusual macro expansions and undisciplined
annotations.
Being incomplete or unsound is not a problem per se.

Incomplete or unsound approaches (and even the brute-
force approach) have been successfully applied for various
tasks [6, 23, 47, 48, 64]. However, they do not fit our goals.
Since it appears unrealistic to convince developers of projects
as large as the Linux kernel to rewrite their code, and consider-
ing the vast amount of existing legacy code, we aim for a com-
plete approach that can parse code without preparation. Fur-
thermore, for precise type checking and other error detection,
we aim for a sound parsing mechanism without heuristics to
avoid both error reports on correct code and undetected errors.
In addition, we aim for acceptable performance in real-world
settings; although we cannot avoid the inherent complexity,
we want to avoid accidental complexity as far as possible.

Conceptually, we design a sound and complete solution
in Sections 3–6 and implement a sound and complete parser
for Java with conditional compilation; however, due to im-
plementation issues in the lexer, we makes small sacrifices
regarding completeness for C, as we will discuss in Section 9.

2.3 A final remark
By no means do we intend to encourage developers to use
lexical preprocessors. If they can encode variability with a
better mechanism, they should. For example, frameworks
and module systems [51], syntactic preprocessors [42, 68],
dedicated language constructs for compile-time variability
as in the language D, software composition mechanisms
such as feature-oriented programming or aspect-oriented
programming [2, 35], projectional workbenches [56, 66], and
external variability mappings [14, 27, 31] may all have their
own shortcomings, but they all do not depend on lexical
preprocessing.

Preprocessors have many well-known problems beyond
parsing [17, 19, 59] and should have been replaced decades
ago. However, we acknowledge that they are still widely used
in practice [17, 39] and that they are often the simplest path
to introduce variability. We do not recommend using lexical
preprocessors, but we intend to support developers who are
forced to use them in the vast amount of existing code.

3. Architecture of TypeChef
We consider variability-aware parsing in the larger context
of our TypeChef project, which consists of three main com-
ponents as shown in Figure 3. First, a variability-aware lexer
reads the target file (and some configuration parameters) to
produce a token stream. The lexer propagates variability from
conditional compilation to conditions in the token stream
and resolves macros and file inclusion. Second, a variability-
aware parser reads the token stream and produces an abstract



#ifdef A
#define X 4
#else
#define X 5
#endif

2*3+X

variability-aware

lexer 2 · ∗ · 3 · + · 4A · 5¬A

variability-aware

parser

+

♦A

54

*

32

variability-aware

type system

include directories

partial configuration

variability-aware

parser framework

TypeChef

variability-aware

transformation
variability-aware

further analysis

Figure 3. Architecture of the TypeChef project.

syntax tree with variability. Parsers for specific languages
are implemented using a generic variability-aware parser
framework (a parser-combinator library). Finally, the parse
result can be further processed by a variability-aware type
system. All components can also be used in isolation and for
other purposes.

Our main focus here is the development of the variability-
aware parser-combinator library (Sec. 5), the variability-
aware parsers for GNU C and Java (Sec. 6), and the applica-
tion to two case studies (Sec. 7). We already presented the
variability-aware lexer, based on earlier ideas of preprocessor
analysis [28, 38], in prior work [34]. Nevertheless, we briefly
repeat its basic mechanisms (Sec. 4), because it is relevant for
understanding how conditional-token streams are produced
and how we deal with (conditional) macros.

4. A variability-aware lexer
The variability-aware lexer (formerly also named partial pre-
processor) decomposes a code fragment into tokens, propa-
gates variability from conditional compilation into the pro-
duced token stream, includes all necessary header files, and
expands all macros.

In the produced token stream, each token has a presence
condition—a propositional formula over features—that eval-
uates to true if the token should be included in compilation.2

Hence, we speak of conditional tokens in a conditional-token
stream. After a directive #if X (or similar directives for
other preprocessors), all tokens receive the presence condi-
tion X until the corresponding #endif directive. For nested
#if directives, presence conditions are conjuncted (X∧ Y);
also #if-#elif-#else-#endif chains are handled accordingly.
Deriving presence conditions from #if directives is straight-
forward, see [57] for a more formal description.

We denote presence conditions as subscripts to tokens,
we separate tokens by “ · ”, and we denote the empty token
sequence as “Ø”. We omit the presence condition true on

2 For how to encode nonboolean features see Sec. 9.

tokens that are included in all variants. For example, lexing
the first expression from Figure 1 yields the conditional-token
stream “3 · ∗ · 7 · + · 1A · 0¬A.”

For preprocessors that provide only conditional compila-
tion, such as Antenna for Java ME, tokenizing and detecting
presence condition is sufficient and easy to implement. For
the C preprocessor, we resolve also file inclusion and macros.

File inclusion and macros. Handling file inclusion and
macros is straightforward in principle. When including a
header file, we simply continue reading tokens from that
file; when reading a token for which a macro expansion is
defined, we return the expansion of the macro. When there
are multiple definitions of a macro (e.g., defined in different
conditional compilation blocks as in Figures 1 and 2), we
return all possible expansions with corresponding presence
conditions.3 Hence, the second expression in Figure 1 results
in the following conditional-token stream:

3 · ∗X · 7X · + · 1Y∧Z · 4Y∧¬Z · ∗Y · 1Y∧X · 2Y∧¬X · 0¬Y

There are several nontrivial interactions between condi-
tional compilation, macros, and file inclusion and several
nontrivial constructs in macros, which are all handled in the
variability-aware lexer (except for two minor implementation
issues discussed in Sec. 9; the interested reader may try our
lexer online at the project’s web page). For example, a macro
may expand only under some condition, a macro can be used
inside an #if expression, a second macro definition replaces
previous definition, a macro may be undefined explicitly with
#undef, macros are used for include guards, macros can
have parameters (and variadic parameters), macros may use
stringification, and many more. A detailed description would
exceed the scope of this paper, but we refer the interested
reader to related publications [34, 38].

3 Internally, in contrast to the macro table of an ordinary preprocessor,
our variability-aware lexer stores alternative expansions of a macro in a
conditional macro table [34]. In that table, each macro expansion has a
corresponding presence condition; for example, in Figure 1, B expands to 1
if X and to 2 if ¬X.



1 static void rt_mutex_init_task(struct task_struct *p) {
2 raw_spin_lock_init(&p->pi_lock);
3 #ifdef CONFIG_RT_MUTEXES
4 plist_head_init_raw(&p->pi_waiters, &p->pi_lock);
5 p->pi_blocked_on = NULL;
6 #endif
7 }

↓ macro expansion by variability-aware lexer ↓

1 static void rt_mutex_init_task(struct task_struct *p) {
2 #ifdef CONFIG_DEBUG_SPINLOCK
3 do { static struct lock_class_key __key;

__raw_spin_lock_init((&p->pi_lock), "&p
4 ->pi_lock", &__key); } while (0)
5 #else
6 do { *(&p->pi_lock) = (raw_spinlock_t) { .raw_lock =
7 #ifdef CONFIG_SMP
8 { 0 }
9 #else

10 { }
11 #endif
12 ,
13 #ifdef CONFIG_DEBUG_LOCK_ALLOC
14 .dep_map = { .name = "&p->pi_lock" }
15 #endif
16 }; } while (0)
17 #endif
18 ;
19 #ifdef CONFIG_RT_MUTEXES
20 plist_head_init_raw(&p->pi_waiters, &p->pi_lock);
21 p->pi_blocked_on = ((void *)0);
22 #endif
23 }

Figure 4. Excerpt from file kernel/fork.c in Linux illustrates
how variability-aware lexing exposes variability from macros
in header files.

Note that variability-aware lexing introduces previously
hidden variability from macros and header files into the
token stream. In Figure 4, we illustrate one concrete excerpt
from the Linux kernel, in which variability, depending on
several features defined in header files, becomes apparent
only by lexing (we serialize the token stream as C code for
illustration purpose): “raw_spin_lock_init” in Line 3 is
a macro with alternative expansions, the body of which is
expanded again. In the worst case, alternative macros could
lead to an exponential explosion of the size of the produced
token stream, but for common source code the increase
is moderate.4 In our Linux evaluation, on average, partial
preprocessing increases input size by 6.4 times compared to
the file preprocessed with a minimal configuration.

5. A library of variability-aware parser
combinators

After describing how we create conditional-token streams
(and eliminate of macros and file inclusion in the process),
we focus on parsing these token streams into abstract syntax
trees with choice nodes (“♦”).

4 We discuss performance optimizations, e.g., preserving sharing to prevent
explosion due to iterative replication, elsewhere [26, 34].

Our strategy is to parse the conditional-token stream in a
single pass, but split the parser context on conditional tokens
and join the parser contexts again to produce choice nodes in
the abstract syntax tree. The parser context is a propositional
formula (like presence conditions) that describes for which
variants the parser is currently responsible. We determine
split and join positions by reasoning about the token’s pres-
ence conditions and the parser context. We split only when
necessary and join early to avoid parsing tokens repeatedly.
Nevertheless, we might need to parse some tokens multi-
ple times to handle undisciplined annotations, but since we
split and join locally, we avoid the accidental complexity of
brute-force approaches.

We illustrate the parsing strategy with an example in
Figure 5. In this figure, we explain the process in multiple
steps and show produced abstract-syntax-tree nodes and the
current position of all parser branches and their context.

We have implemented our parser framework as a parser-
combinator library [29] in Scala (and a minimal version in
Haskell as well). The parser-combinator library implements
recursive-descent parsers (also known as top-down, back-
tracking, or LL parsers). Although other parsing technologies
likely would have been possible and even more efficient, we
opted for top-down parser combinators, because they are
easy to understand and modify, which was valuable when
exploring different design decisions. For explanation, we use
concise pattern-matching pseudo code in a functional style.

5.1 Parsers and results
A parser in a standard parser-combinator library (e.g., in
Scala [44, Ch. 31]) is a function that accepts a token stream
and returns a parse result and the remaining token stream, or
an error message:

Parser[T ] = TokenStream→ ParseResult[T ]

ParseResult[T ] = Succ〈T ,TokenStream〉
| Fail〈Msg〉

Two parsers p and q can be combined to form a new parser
with the sequence combinator (p∼q), the alternatives combi-
nator (p|q), a function-application combinator (p^^f), and
others. A standard sequence parser combinator produces a
parser that first executes the parser p and, if that does not
fail, subsequently executes the parser q on the remaining in-
put stream; the combinator returns the concatenated (tupled)
results of both parsers. A standard alternative parser combi-
nator creates a parser that executes parser p and returns either
p’s result, if it is successful, or the result of calling parser
q on the original input. The standard function-application
combinator applies a function f to the parse result of p to pro-
cess the parse result further, for example, to create abstract
syntax from parse trees. In that way, semantic actions can be
executed while parsing.

Our variability-aware parsers are similar, but consider
a context and multiple possible results (corresponding to



(1) The parser consumes three tokens, but cannot
process the fourth token, because that token
is not present in all variants.

( · 3 · + ·
true

4A · (¬A · 5¬A∧B · +¬A∧B · 6¬A · )¬A · )

3

the parser recognized this integer literal

with initial context true, the parser is responsible for all variants

( · 3 · +

A

4A · (¬A · 5¬A∧B · +¬A∧B · 6¬A · )¬A · )

¬A

4A · (¬A · 5¬A∧B · +¬A∧B · 6¬A · )¬A · )

this parser assumes thatA is selected

this parser assumes thatA is not selected

(2) The parser splits into two branches, each with
a context responsible for a distinct part of the
variant space.

(3) The upper branch consumes a token and
skips five tokens it is not responsible for; the
lower branch skips one token and needs to
split again shortly after, because token “5” is
present only in some variants of that branch’s
responsibility.

( · 3 · +
4A · (¬A · 5¬A∧B · +¬A∧B · 6¬A · )¬A ·

A

)

4A · (¬A ·

¬A

5¬A∧B · +¬A∧B · 6¬A · )¬A · )

4

this integer literal is present ifA is selected

skipped, becauseA is not selected in this branch

only responsible for tokens withA

not responsible for tokens withA

( · 3 · +

4A · (¬A · 5¬A∧B · +¬A∧B · 6¬A · )¬A ·
A

)

4A · (¬A
5¬A∧B · +¬A∧B · 6¬A ·

¬A∧ B

)¬A · )

5¬A∧B · +¬A∧B · 6¬A ·
¬A∧ ¬B

)¬A · )

6

+

65

(4) The lower branches both parse an expression
and meet at the same position. We need
to process token 6¬A twice, because the
annotations are not disciplined: 5 · + does
not form a full expression.

(5) Two parser branches join, producing an inter-
mediate result with a choice node.

( · 3 · +

4A · (¬A · 5¬A∧B · +¬A∧B · 6¬A · )¬A ·
A

)

4A · (¬A
5¬A∧B · +¬A∧B · 6¬A

5¬A∧B · +¬A∧B · 6¬A

¬A

)¬A · )♦B

6+

65 intermediate results are joined with a choice node ♦B

( · 3 · +

4A · (¬A · 5¬A∧B · +¬A∧B · 6¬A · )¬A

4A · (¬A
5¬A∧B · +¬A∧B · 6¬A

5¬A∧B · +¬A∧B · 6¬A
)¬A

)

true

+

♦A

♦B

6+

65

4

3
all variability is preserved in the abstract syntax tree

(6) The remaining branches
join before the final clos-
ing bracket, producing an-
other choice node; the
parser produces the final
result in a single branch.

Figure 5. Example of parsing the conditional token stream ( · 3 · + · 4A · (¬A · 5¬A∧B · +¬A∧B · 6¬A · )¬A · ).



multiple branches). A parser is a function from a token
stream and a context (provided as propositional formula, type
Prop) to a result which can either be (a) a parse result with
the remaining tokens, (b) an error message, or (c) a split
result which contains two inner results depending on some
condition (derived from the context and presence condition
when splitting). This way, a parser can return multiple results
to implement context splits.

VParser[T ]

= Prop× TokenStream→ VParseResult[T ]

VParseResult[T ]

= Succ〈T ,TokenStream〉
| Fail〈Message〉
| Split〈Prop,VParseResult[T ],VParseResult[T ]〉

5.2 Context splitting
The fundamental parser on which all further parsers are
built, is the parser next which returns the next token. With
variability, next may return different results depending on
presence conditions and context of the parser. Hence, parser
next implements context splitting and is a core mechanism
of our variability-aware parser.

Given the parser’s context ctx and a token with presence
condition pc, there are three possibilities:
1. The parser consumes the token, if and only if it would

be present in all variants that the parser is responsible
for. Technically, that is the case if ctx implies pc (i.e.,
ctx⇒ pc), which we determine with a SAT solver.

2. The parser skips the token, if and only if the parser is not
responsible for a single variant in which the token would
be present. Technically, that is the case if ctx contradicts
pc (i.e., ctx⇒ ¬pc).

3. In all other cases, the parser is responsible for some, but
not for all, variants in which the token would be present.
In this case, we split the parser context into two branches
with contexts ctx∧ pc and ctx∧ ¬pc (the first of these
parsers will consume the token, the second will skip it).

In case we reach the end of the token stream, we return an
error message.

next : VParser[Token]
next(ctx, Ø)

= Fail〈"unexpected end of file"〉
next(ctx, tpc · rest)

Succ〈tpc, rest〉 if ctx implies pc
=

{
next(ctx, rest) if ctx contradicts pc
Split〈pc, otherwise
next(ctx ∧ pc, tpc · rest),
next(ctx ∧ ¬pc, rest)〉

For example, next(A, 1¬A · 2B · 3) skips the first token,
because it is never responsible (A contradicts ¬A), then splits
the result, because it is responsible for some but not for all

variants of the second token (A does not imply B), and returns
Split〈B, Succ〈2, 3〉, Succ〈3,Ø〉〉.

Our design is rather unusual, because we reason with
a SAT solver during parsing for every token. For each
token, we compare parser state and presence conditions
to determine split positions and skipping.5 Although such
reasoning can be computational expensive in the worst case
(determining tautologies and contradictions is NP-hard), there
is evidence that SAT solvers scale well for tasks in variability
analysis [33, 43, 62]. We will demonstrate their efficiency
also for our parser in our evaluation.

5.3 Filtering
Based on the next parser, we can create more sophisticated
parsers, for example, parsers that expect a certain kind of
token, such as identifiers, numbers, or closing brackets. For
reasoning about variability, these parsers rely entirely on next.
Function textToken creates a parser that checks whether the
next token has a given textual representation; for example,
textToken ’+’ would only accept tokens representing the plus
sign. To implement textToken, we use a filter function that
checks all successful parse results from next and replaces
them by failures in case the expected token does not match.

filter : (T → Bool)× VParseResult[T ]→ VParseResult[T ]

filter(p, Succ〈val, rest〉)

=
{ Succ〈val, rest〉 if val satisfies p

Fail〈"unexpected "+ val〉 otherwise
filter(p, Fail〈msg〉)

= Fail〈msg〉
filter(p, Split〈prop, res1, res2〉)

= Split〈prop, filter(p, res1), filter(p, res2)〉

textToken(·) : String→ VParser[Token]
textToken(text)(ctx, input)

= filter(λt.t represents text, next(ctx, input))

5.4 Joining contexts
We implement a novel parser combinator for the joining of
parse results (p!) that attempts to join the results of another
parser. The key idea is to move variability out of a split parse
result into the resulting abstract syntax tree. That is, instead
of multiple parser branches, each with a different context and
parse result, we produce a single parser branch with one parse
result that contains a choice node (cf. Steps 4–6 in Fig. 5). For

5 In addition, we can also reason about a variability model fm, which
describe intended dependencies between features in software product lines,
such as feature A requires feature B and mutually excludes feature C. This
way, we could restrict the parser only to a subset of variants. Technically, such
reasoning is straightforward, we start the parser with context fm instead
of true or we consume a token if fm ⇒ ctx ⇒ pc holds and skip
it if fm ⇒ ctx ⇒ ¬pc; the latter has more optimization potential for
reasoning with SAT solvers. However, a more detailed discussion is outside
the scope of this paper; see [7, 15, 33, 62] for more information about using
variability models in variability analysis.

kaestner
Notiz
Fixed a typo compared to the definitive version in the ACM digital library: Next is recursively called with the entire token stream, not just with the first token.Thanks to Philip Wadler for discovering the problem.



example, join replaces Split〈A, Succ〈1, 3〉, Succ〈2, 3〉〉
by Succ〈♦A(1, 2), 3〉. Joining early helps to reduce parsing
effort for sequencing and alternative parser combinators (see
below) and produces smaller abstract syntax trees with choice
nodes that are more local.

To join two parser branches in a split parse result, (a) both
parser branches must have succeeded and (b) both must, in
their respective context, expect the next token at the same
position. The second condition guarantees that the further
behind parser can safely catch up to the position of the other
parser, because it would skip the tokens in between anyway.
Therefore, after joining, the parser resumes at the position
of the further advanced branch as determined with auxiliary
function rightmost. If two parse results cannot be merged,
join returns the unmodified parse result.

There are different possible encodings of choice nodes in
abstract syntax trees. Although easiest in an untyped setting
(as typically used for ambiguity nodes in GLR parsing), we
want to preserve types in the abstract syntax tree. We therefore
wrap a generic Conditional[T] decorator type around each
subterm of the abstract syntax tree that should support vari-
ability. A Conditional[T] value can either be One if there is no
variability or Choice (♦ for short) in case of alternatives. For
example, the abstract syntax tree from the previous example is
actually represented as Succ〈♦A(One〈1〉, One〈2〉), 3〉. In
most examples, however, we omit One for better readability,
as already done in previous figures.

Conditional[T ]

= One〈T〉
| ♦Prop(Conditional[T ], Conditional[T ])

join : Prop× VParseResult[T ]→ VParseResult[Conditional[T ] ]

join(ctx, Succ〈val, rest〉) = Succ〈One〈val〉, rest〉
join(ctx, Fail〈msg〉) = Fail〈msg〉
join(ctx, Split〈prop, res1, res2〉)

=



(Succ〈♦prop(val1, val2), rightmost(rest1, rest2)〉
if res ′1 equals Succ〈val1, rest1〉 and

res ′2 equals Succ〈val2, rest2〉 and
next(ctx ∧ prop, rest1) equals
next(ctx ∧ ¬prop, rest2)

Split〈prop, res ′1, res ′2〉
otherwise

where res ′1 is join(ctx ∧ prop, res1) and
res ′2 is join(ctx ∧ ¬prop, res2)

· ! : VParser[T ]→ VParser[Conditional[T ] ]

(p!)(ctx, input) = join(ctx, p(ctx, input))

Optimization. The listed join mechanism attempts to join
only parse results that evolved from the same context split.
Hence, we might miss some join opportunities. For example,
in Figure 6, at the left, we cannot join the branches with
results 1 and 3, because they do not share the same parent,

Split〈a,
Split〈b,

Succ〈1, rest1〉,
Succ〈2, rest2〉〉,

Succ〈3, rest1〉〉

⇒
rewrite

Split〈a ∧ ¬b,
Succ〈2, rest2〉,
Split〈a,

Succ〈1, rest1〉,
Succ〈3, rest1〉〉〉

Figure 6. Restructuring of a Split tree allows joins across
the tree, while preserving variability.

even though they are at the same position rest1 in the token
stream. We improve the join mechanism by attempting to
join every pair of results. To join two matching nodes at dif-
ferent positions in the Split tree, we simply restructure the
tree until the two joinable results are siblings, as illustrated
in Figure 6, at the right. For such restructuring, we com-
bine two simple rules: Split〈a, x, y〉 = Split〈¬a, y, x〉 and
Split〈a, Split〈b, x, y〉, z〉 = Split〈a ∧ b, x, Split〈a, y, z〉〉.
The restructuring preserves the conditions for all results and
allows us to apply the original join function subsequently.
This improvement allows us to join earlier in some cases;
since it is straightforward, but requires more code, we omit a
listing.

When to join? By selecting when to join, we can precisely
determine where in the resulting abstract syntax tree variabil-
ity in the form of choice nodes is allowed. Technically, we
can attempt to join parse result after every parsing step or
after every production. For illustration purposes, we joined at
expression level in Figure 1. In our current parser implemen-
tation for Java and C, we attempt to join at manually defined
positions: in lists, after statements, and after declarations (for
details see Sec. 6).

The rationale for this design decision is based on the fol-
lowing trade off: Checking whether split parse results are join-
able produces a small computational overhead, hence joining
too often may reduce performance. In contrast, joining too
late leads to parsing code fragments in split parser branches
unnecessarily. In our experience, joining after typical fine-
grained program structures seems to be a good balance be-
tween computation overhead and low amount of repeated
parsing. We have not performed an experimental analysis of
how the selection of join positions influences the performance
of the parsing algorithm. Note that joining at different posi-
tions leads to different (but equivalent) resulting parse trees.
For some downstream tools it may be convenient to place
choice nodes only at preselected locations in the resulting
tree, although rewriting a tree to move choice nodes is always
possible as explored in the choice calculus [18].

5.5 Sequencing
The sequence parser combinator (p∼q) becomes more com-
plex when alternative results are involved. The produced
parser continues all successful results (and only successful
results) of the first parser with the second parser. The second



parser might be called multiple times with different contexts
(for multiple successful results of the first parser). If the sec-
ond parser splits the result, the first parse result is copied.6

As example, consider parsing the token sequence 1A ·
2A · 3¬A · 4 with next∼next. The first parser yields
Split〈A, Succ〈1, 2A · 3¬A · 4〉, Succ〈3, 4〉〉, and the sec-
ond parser is called twice, once with contextA on 2A · 3¬A ·
4 and once with context ¬A on 4. Overall, the parser combina-
tor yields Split〈A, Succ〈1∼2, 3¬A · 4〉, Succ〈3∼4,Ø〉〉.

Technically, a function seq calls the second parser with
the token stream and context of the first parse result (note,
the context changes when propagating seq over splitted
parse results). Auxiliary function concat simply concatenates
(tuples) successful results.

seq(ctx, q, Succ〈val1, rest〉) = concat(val1, q(ctx, rest))
seq(ctx, q, Fail〈msg〉) = Fail〈msg〉
seq(ctx, q, Split〈prop, res1, res2〉)

= Split〈prop, seq(ctx ∧ prop, q, res1),
seq(ctx ∧ ¬prop, q, res2)〉

concat(val1, Succ〈val2, rest〉) = Succ〈val1∼val2, rest〉
concat(val1, Fail〈msg〉) = Fail〈msg〉
concat(val1, Split〈prop, res1, res2〉)

= Split〈prop, concat(val1, res1), concat(val1, res2)〉

· ∼· : VParser[S ]× VParser[T ]→ VParser[S∼T ]

(p∼q)(ctx, input) = seq(ctx, q, p(ctx, input))

5.6 Alternatives
The parser combinator for alternatives (p | q) is implemented
similarly to sequencing. However, instead of concatenating
all successful results, it replaces all failures with the result
of the second parser, called with the corresponding con-
text. For example, if parser q returns a split parse result
Split〈A, Succ〈1, 2〉, Fail〈"..."〉〉, the second parser is
called with context ¬A to replace the failed result (of course
the second parser may fail again or return a split parse result).
Again, joining the parser before replacing alternatives can
reduce effort, so that the second parser is called less often.

alt(ctx, input, q, Succ〈val, rest〉) = Succ〈val, rest〉
alt(ctx, input, q, Fail〈msg〉) = q(ctx, input)

alt(ctx, input, q, Split〈prop, res1, res2〉)
= Split〈prop, alt(ctx ∧ prop, input, q, res1),

alt(ctx ∧ ¬prop, input, q, res2)〉

· | · : VParser[T ]× VParser[T ]→ VParser[T ]

(p | q)(ctx, input) = alt(ctx, input, q, p(ctx, input))

6 Since we use immutable parse results, a pointer to the same shared data
structure is sufficient.

5.7 Repetition
Parser combinators for repetition (p∗ or p+) can be con-
structed with sequencing and alternatives. For example, with
a parser combinator e that always returns success without
consuming a token, we can implement p∗ as (p∼p∗) | e. This
correctly deals with conditional tokens but has performance
problems when parsing long lists with optional entries.

To illustrate the problem, consider the following example:
For token sequence 1A · 2 · 3 · 4, the parser next∗

splits at the first token and yields the intermediate result
Split〈A, Succ〈1, 2 · 3 · 4〉, Succ〈2, 3 · 4〉〉, after which
we cannot join because both parser branches are at different
positions in the token stream. The next iteration would yield
Split〈A, Succ〈1∼2, 3 · 4〉, Succ〈2∼3, 4〉〉, which, again,
we cannot join. Advancing only the behind-most branch is
not possible with our combinators so far. In the worst case,
we can only join parser results at the end of the list, which
means that all list elements after an optional element will
be parsed twice. In C code, this problem is critical, because
C files are essentially a long list of top-level declarations,
several of which are typically optional.

Therefore, we provide a specialized combinator repOpt(p)
for repetition, which returns a list of optional entries (instead
of a choice of lists). Each entry in this result list has a presence
condition. For example, parsing 1A · 2 · 3 with repOpt(next)
yields the list OptA(1), Opttrue(2), Opttrue(3).7

Technically, repOpt tries the following strategies: First,
it tries to suppress splitting and parses the first list element
in isolation. If the parser does not skip any tokens in the
process, we can add its result with a corresponding presence
condition to the result list (i.e., in the example above, we
would recognize 1A directly as OptA(1) without splitting).
With repOpt, we avoid excessive splitting and joining within
lists. For some input streams, splitting cannot always be
avoided; then, repOpt parses only in the branch that has
consumed the fewest tokens so far, in the hope that branches
behind catch up and we can join both branches again early.

Similarly, we constructed performance-optimized parser
combinators for comma-separated lists (p∼(q∼p)∗) and non-
empty lists (p+).

5.8 Function application
Finally, we adjusted the parser combinator for function
application (p^̂ f ), that is used to process parse results (e.g.,
for constructing abstract syntax out of parse trees). The
modification is straightforward: We simply apply the function
to all results in a split parse result.

5.9 Parsing effort
As for the variability-aware lexer, worst-case complexity
(parsing time and output size) is exponential. Unfortunately,
this worst-case complexity cannot be avoided—it is inher-

7 Optc(v) is conceptually equivalent to a choice node with an empty branch
♦c(v, ε) and counted as choice node for statistics.
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Figure 7. Undisciplined annotation leading to higher parsing
effort and replication.

ent in the task—because variability can be used in such a
way that for n features there are 2n completely different
outputs. Problematic are code fragments with undisciplined
annotations that change the structure of the output, such as
the example shown in Figure 7. In addition, we again have to
determine satisfiability of propositional formulas (for every
combination of presence condition and parser state) which is
NP-hard.8

Nevertheless, typical source files can be parsed efficiently.
There are several characteristics that contribute to efficiency
in the common cases:

• We split parser context as late as possible and provide
facilities to join parser context early. In contrast to the
brute force approach, we avoid accidental complexity by
not parsing all tokens before and after a variable segment
multiple times.

• If we attempt to join after each parsing step, we guarantee
to consume each token only once in token streams with
only disciplined annotations (tokens consumed by one
parser branch are skipped by all other branches). With
disciplined annotations, we do not replicate any nodes
in the resulting abstract syntax tree. Only in the pres-
ence of undisciplined annotations, we need to consume
tokens multiple times and replicate nodes in the result.
Although undisciplined annotations are quite typical [40],
they mostly occur locally, so that parsing overhead and
replication are comparably low.

• Although we need to reason about the relationship be-
tween parser context and presence condition for every
single token (and once for each parser context), this can
be done efficiently with contemporary SAT solvers, even
for complex formulas with hundreds of features. We have
implemented and fine-tuned a library for propositional
formulas (with some extensions for the C preprocessor’s
facilities for integer constants) in Scala [26] and connected
it to the SAT solver sat4j [10]. In addition, since typically

8 Already the underlying parsing technology, recursive descent parsing with
backtracking, is inefficient. However, we exclude this aspect from discus-
sions within this paper, because we believe that other parsing technologies
could be used as well (e.g., packrat parsing [21], LR parsing [25], GLR
parsing [63]). We merely used recursive descent parsers because parser com-
binators made it easy to understand and explore different strategies. In all
statistics on consumed tokens, we ignore backtracking-related effort (i.e., a
token consumed multiple times in the same context).

1 // #ifdef includeMMAPI
2 public void showMediaList(String recordName, ...) { ...
3 // #ifdef includeFavourites
4 if (favorite) {
5 if (medias[i].isFavorite())
6 mediaList.append(medias[i].getMediaLabel(), null);
7 }
8 else
9 // #endif

10 mediaList.append(medias[i].getMediaLabel(), null);
11 ... }
12 // #endif

Figure 8. Antenna preprocessor for Java (excerpt from Mo-
bileMedia with an undisciplined annotation).

1 statement:
2 labeled-statement
3 compound-statement
4 ...
5 labeled-statement:
6 identifier : statement
7 case constant-expression : statement

1 def statement: MultiParser[Conditional[Statement]] =
2 (labeledStatement | compoundStatement | ...) !
3 def labeledStatement: MultiParser[Statement] =
4 (id ~ COLON ~ statement ^^
5 {case i ~ _ ~ s => LabelStatement(i, s)}) |
6 (textToken("case") ~ constExpr ~ COLON ~ statement ^^
7 {case _ ~ e ~ _ ~ s => CaseStatement(e, s)})
8 def COLON: MultiParser[Token] = textToken(":")

Figure 9. Language specification of C and corresponding
implementation using our parser combinators (excerpt).

a vast majority of tokens share the same presence condi-
tions, caching is very effective.

We empirically investigate parsing effort in two projects in
Section 7.

6. Variability-aware parsers for C and Java
We have used our parser-combinator library to implement
parsers for Java 1.5 and GNU C. Although preprocessor us-
age is less frequent in Java, there are several tools to introduce
conditional compilation again. For example, Antenna, often
used for variability in Java ME projects for mobile devices,
introduces #if and #endif statements in comments as il-
lustrated in Figure 8. For C, we implemented a parser that
recognizes C code (specifically the GNU-C dialect used for
the Linux kernel) with preprocessor directives of the C pre-
processor (again with GNU-specific extensions).

We have implemented both parsers with our parser-
combinator framework, which was essentially a straight-
forward adoption of existing grammars (from JavaCC and
ANTLR) and involved some fine-tuning to add missing GNU-
C extensions. In Figure 9, we illustrate this implementation
with an excerpt from the C language specification [30] and
the corresponding Scala implementation using our parser-
combinator library (the function-application combinator ^^
is used to create abstract-syntax-tree nodes from token se-



quences; this fragment also illustrates joins at statement level).
Although only visible from the type signature, the shown
parser fragment is already variability aware by using our spe-
cialized parser combinators. As join points for the Java parser,
we selected imports, type declarations, modifiers, class mem-
bers, and statements; for the C parser join points are external
definitions, statements, attribute declarations, and type speci-
fiers. We expect that implementing variability-aware parsers
for other languages is similarly straightforward.

A technical note on parsing C: To distinguish types from
values, a C parser requires a stateful symbol table during
parsing. To track the state correctly across parser branches,
we implemented a conditional symbol table that tracks under
which condition a symbol is declared as type.

7. Parsing MobileMedia and Linux X86
To evaluate our parser for practical scenarios, we conducted
two case studies: We parse the entire unpreprocessed code of
(a) the Java ME implementation of MobileMedia and (b) the
Linux kernel (X86 architecture). MobileMedia is a favorable
case study, due to its small size (5183 nonempty lines of Java
code, 14 features) and the absence of macro expansion, so
that we can look at parser results without influence of macros
in the variability-aware lexer. The Linux kernel is larger by
several orders of magnitude—after resolving file inclusion
and macros during variability-aware lexing, we parse a total
of 899 million nonempty lines of C code (2.6 billion tokens)
with 6065 features. At this size, there is no meaningful way
to calculate the exact number of valid feature combinations,
but the variant space is huge. Parsing Linux required some
significant engineering effort to set up and optimize our tools,
because of its scale and because variability is additionally
managed with the build system (kconfig, kbuild). At the same
time, Linux is a good stress test for our tools; for example, we
found macro patterns that we never would have expected such
as alternative expansions of a macro with different numbers
of parameters. From both case studies, we describe the setup,
report our experience, and collect statistics on parsing effort.

All scripts and tools used in our case studies are available
in the open-source repository of TypeChef. We welcome
readers to replicate our evaluation and would gladly help
to set up parsing other projects.

7.1 Parsing 2400 variants of MobileMedia
MobileMedia is a medium-sized software product line of a
Java ME application that manipulates photo, music, and video
on mobile devices developed at the University of Lancaster.9

According to MobileMedia’s variability model, we can derive
2400 distinct variants by selecting from 14 features. 36 of 51
files contain variability, typically with 1 to 5 and a maximum
of 9 features per file; in total, 14 379 of 23 938 (60 %) tokens
are annotated.

9 http://mobilemedia.sf.net/, release 8 OO.

Setting up the variability-aware parser is straightforward.
Variability-aware lexing is trivial, because no include paths
need to be configured and no macros are involved (i.e., files do
not grow during lexing). No external configuration knowledge
is necessary. We can simply lex and parse each Java file in
isolation.

Parsing all 51 files in the entire project takes about 3
seconds.10 The parser reports all files as syntactically correct
in all variants. During parsing, it makes 357 distinct calls
to the SAT solver, which requires a negligible time of less
than 0.1 seconds in total. The produced parse trees contain a
total of 319 choice nodes. Due to undisciplined annotations,
such as the one illustrated in Figure 8, we consume 117 of
23 938 tokens twice and a single token three times. That is,
variability-aware parsing causes an overhead of only 0.5 % in
terms of consumed tokens.

An exact comparison with a brute force strategy is difficult
to make without actual preprocessing. However, a rough
estimate of a brute force approach per file indicates a parsing
overhead of 27 600 %.

7.2 Parsing the Linux kernel with 6065 features
Parsing Linux is more complicated and required some sub-
stantial additional engineering effort. In a nutshell, we suc-
cessfully parsed the entire X86 architecture of Linux release
2.6.33.3 with 6065 variable features and 7665 files (a total
of 44 GB, 899 million nonempty lines of C code, and 2.6
billion tokens after variability-aware lexing).11 Parsing the
entire code with our implementation takes roughly 85 hours
on a single machine, but is easy to parallelize. For readers in-
terested in details, we describe the setup, practical challenges
in the process, and some statistics in the remainder of this
section.

Variability implementation in the Linux kernel. To under-
stand the additional challenges of parsing the Linux kernel,
we first describe how Linux is implemented with C, the C pre-
processor, and a sophisticated build system. A user can select
from over 10 000 features, ranging from different architec-
tures, to different memory models, to numerous drivers, and
to various debugging features. Features and their dependen-
cies are described in a variability model, specified in various
Kconfig files scattered over the source tree [9].

When users want to build a configuration, they invoke a
configuration dialog (make config/menuconfig/xconfig) in

10 All times in this paper have been measured on normal lab computers
(Intel dual/quad-core 3 to 3.4 GHz with 2 to 8 GB RAM; Linux; Java
1.6, OpenJDK). We did not perform low-level optimizations and still
compute debug information and statistics. Measured times provide only
rough indicators about what performance to expect and that variability-aware
parsing is feasible; they are not meant as exact benchmarks.
11 Without preprocessing the analyzed Linux kernel source is roughly
269 MB; but already ordinary preprocessing increases file size dramatically,
because many headers are included in each file. As described in Sec. 4, the
output of the variability-aware lexer is roughly 6.4 times larger than the
output of an ordinary preprocessor in the minimal configuration.



which they can select the desired features. Most features are
of type bool or tristate, that is, they either have two possible
values, include or do not include, or three possible values, do
not include, compile into the kernel, compile as module. Few
features, such as Timer frequency (CONFIG_HZ), have nu-
meric or string values. The configuration mechanism checks
and propagates feature dependencies; for example, selecting
a feature may deselect dependent features and may prevent
to select other features later. The resulting feature selection
is written into a configuration file (.config).

Variability is implemented both at build system level
(deciding which files to compile with which parameters) and
at source code level with preprocessor directives (deciding
which lines to compile and which macros to expand). Based
on the configuration file, the build system decides which
files to compile. For each file, the build system can provide
alternative or additional directories in which the preprocessor
searches for included files (for example, each architecture has
a distinct directory for corresponding header files). Files may
be compiled and linked differently depending on whether
a feature should be compiled as module or as part of the
kernel. In few cases, the build system also runs scripts to
generate additional files. Finally, the build system passes
configured features (as macros prefixed with “CONFIG_”)
to the preprocessor and C compiler, potentially together with
additional definitions from the build script. In the source code,
conditional compilation decides which lines to compile and
which macros to expand (e.g., #ifdef CONFIG_X queries
whether feature X is selected).

Although our variability-aware lexer and parser work
without heuristics, the build system is more difficult to
analyze. We use analysis tools developed by the research
team led by Czarnecki at the University of Waterloo to extract
information about features and their dependency from the
variability model of the X86 architecture [9, 54, 55] and to
extract information about presence conditions on files from
the build system [8]. Unfortunately, due to the expressiveness
of Linux’s variability-modeling language [9], we could only
work on a propositional approximation of the full constraints.
Worse, the mapping from files to presence conditions is
hidden in an imperative build logic within makefiles (using a
universal scripting language). To extract those mappings, the
analysis tools rely on fuzzy parsing (with unsound heuristics)
of the makefiles to recognize patterns. As consequence, for
now, we attempt to reduce our dependency on information
extracted from the build system and variability model where
possible and manually verified involved dependencies in case
of reported parsing errors.

A partial configuration. We do not consider all variability,
but only 6065 features of the X86 architecture. Specifically,
from over 10 000 features in Linux, we deselect all features
from other architectures and features that are dead in X86 ac-
cording to the variability model (i.e., features that may not be
selected by a user). The most important practical reason is that

the variability-model and build-system extraction tools cur-
rently only extract data for the X86 architecture. Furthermore,
we exclude 30 features that expect numeric or textual values
(we simply use a default; cf. Sec. 9). We also do not consider
#ifdef flags without the prefix “CONFIG_”, because they
are not managed by the Linux variability model—of course
the variability-aware lexer handles these flags as well if they
are defined or undefined within the source code, we simply
assume them not to be defined externally as command line
parameters.12

Using the information extracted from the build system, we
determined which files can be included at all in the considered
partial configuration. From that list, we excluded 28 files that
depend on files generated by the build system (analyzing
the build scripts to generate those files is beyond our scope
and using files generated on our system would not reflect
the variability available in the corresponding generators;
cf. Sec. 9). Of 13 665 C files in all architectures combined,
we yield a list with 7665 relevant C files.

Parsing Linux. The parser setup for Linux is straightfor-
ward. We iterate over all 7665 C files and run the variability-
aware lexer with our partial configuration and the correspond-
ing include paths. We feed the resulting token stream into the
parser, together with the presence condition of the entire file
extracted from the build system.

The process is embarrassingly parallel, that is, trivial to
parallelize, since every file can be parsed in isolation from
the others (we will need to consider dependencies between
files only for type checks, or more accurately linker checks,
in future work). Some caching of the results of header files
is theoretically possible, but does not seem to be worth the
additional effort (given that we would need the exactly same
sequence of header files or some nontrivial analysis for sound
caching). We simply start the parsing process on multiple
machines with a shared disk (usually seven lab computers)
and let each computer process the first file not yet started.

Without further setup, the parser reports syntax errors for
some feature combinations on many files. We show an excerpt
of a typical example and the corresponding error message in
Figure 10: If feature CONFIG_SMP is not selected, a header
file defines a macro to replace move_masked_irq from the
source code; however if this macro is expanded in the function
definition in migration.c it breaks the syntax (by default
we report errors with line numbers after macro expansion,
because it corresponds to typical debugging tasks; reporting
line numbers of the original files is possible as well). After
some investigation, we found that the syntax error only occurs
in feature combinations that are not allowed by Linux’s
variability model and cannot be selected when configuring
the kernel manually. The file migration.c is only parsed when
feature CONFIG_GENERIC_PENDING_IRQ is selected,

12 Flags without “CONFIG_” are typical for include guards or for compiler-
specific variability, such as #ifdef __GNUC__. We defined all flags used
by the gcc 4.4.5 compiler on our system.



Source: kernel/irq/migration.c

1 #include <linux/irq.h>
2 #include <linux/interrupt.h>

4 #include "internals.h"

6 void move_masked_irq(int
irq)

7 {
8 ...

Header: include/linux/irq.h

240 #ifdef CONFIG_SMP
241 ...
242 void move_masked_irq(int

irq);
243 ...
244 #else /* CONFIG_SMP */
245 ...
246 #define move_masked_irq(x)
247 #endif /* CONFIG_SMP */

Code after macro expansion in lexer

277545 ...
277546 void
277547 #if !defined(CONFIG_SMP)

277549 #endif
277550 #if defined(CONFIG_SMP)
277551 move_masked_irq(int irq)
277552 #endif
277553 {
277554 ...

Parser output

1 if CONFIG_SMP: succeed
2 if !CONFIG_SMP: failed: end of file expected at line: 277545

Figure 10. Conditional parser error in Linux, when not
considering presence conditions of files.

which depends on CONFIG_SMP; hence, CONFIG_SMP
is always selected when parsing the file and the syntax error
cannot occur. After adding a corresponding dependency to
the variability model, our parser correctly accepts the file.

Whenever we found a parsing error that cannot occur in
practice due to feature dependencies, we added the depen-
dency to an internal model that is used during parsing, leading
to the exclusion of the problematic tokens. (We specifically do
not use the extracted approximated variability model, because
it is not reliable enough.) As a side effect, we are actually
reconstructing a small subset of the variability model from
parser errors. For parsing the entire X86 architecture, we
added 54 such dependencies.

Performance and statistics. Parsing all 7665 files takes ap-
proximately 85 hours and correspondingly less when paral-
lelizing the process (for orientation, parsing and compiling a
single variant of the kernel requires roughly 15 to 20 minutes
with standard tools). On average parsing a file takes 30 sec-
onds, 92 % of all files require less than one minute, only
0.4 % require more than five minutes and the worst case was
22 minutes (caused by many and complex presence condi-
tions in some driver code). Roughly 34 % of all time is spent
on lexing and the remaining 66 % on parsing. In general, with
a couple of machines, one can run the parser over night to
perform some analysis daily, or one can run the parser within
minutes on modified files of a change request or commit.

In total, we parsed 2.6 billion tokens with an overhead of
4.1 % (consuming tokens multiple times due to undisciplined
annotations). On average, per C file, the variability-aware
lexer includes 353 header files, defining 8590 distinct macros
(of which 1387 are conditional and 340 have alternative ex-

pansions). After lexing, the average file contains 335 490 to-
kens, of which 72 % are conditional. We have an average
parsing overhead of 4.1 % due to undisciplined annotations.
The average file is affected by 207 distinct features (which
clearly rules out a brute-force approach) and its tokens have
1779 distinct presence conditions over these features. The av-
erage parse result of a file contains 20 097 choice nodes. All
averages are described by the median; we show distributions
in Figure 11 as box plots.

We could parse all code, which means that we did not find
any syntax errors. All syntax errors that we found initially
were not actual errors, but were false alarms caused by
missing features constraints in the variability model (or by
bugs in our tools, which we fixed). For example, we found
genuine syntax errors in two dead files (mantis_core.c and
i2o_config.c), files which we accidentally parsed due to an
inaccuracy in the build-system extraction.

Despite the large code base and huge variants space, the
absence of syntax errors is realistic, because we analyzed
a released version (and with focus on X86, the most tested
architecture) and because Linux developers have a commit
process in which changes are carefully reviewed. Compile er-
rors are routinely fixed in the mainline branch before releases.
Furthermore, although macros and conditional compilation
are sometimes used in extreme ways, the developers mostly
follow guidelines how to use macros and conditional compi-
lation in a controlled fashion.13 We expect problems rather at
type-system level than at syntax level;14 our variability-aware
parser lays the foundation for corresponding analysis.

8. Perspective
Beyond the most obvious use case of detecting syntax errors,
there are many further use cases for parsing not only a single
variant after preprocessing, but parsing the unpreprocessed
code with all variability.

Development support. The parsed abstract syntax trees can
be used to enhance integrated development environments.
For example, we could provide previews of macro expansion
(including all possible combinations for different variants) or
extend facilities such as code completion with information
about variability. Plenty of editor support for preprocessor-
based languages has been proposed [e.g., 37, 65], but, so far,
none could rely on a sound abstract syntax tree encoding all
variability.

Code transformation. Refactoring engines [24, 64] and
transformation systems [6, 46] typically perform transforma-
tions on abstract syntax trees and struggle with variability; for
example, a rename-method refactoring usually should rename
a method in all variants. Additionally, parsing compile-time

13 cf. /Documentation/SubmittingPatches in the Linux source.
14 Type errors occurring only in specific features or feature combinations
such as the one reported in http://marc.info/?l=linux-kernel&m=
130146346404118&w=2.
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Figure 11. Statistics per file from parsing the Linux kernel (7665 files). Each box plot draws the median as thick line and the
quartiles as thin lines, so that 50 % of all measurements are inside the box. The whiskers roughly represent the distribution of
remaining values; only a small number of outliers that strongly deviate from the median are drawn as separate dots.

variability allows rewrites of the variability implementation
itself. For example, we could rewrite choice nodes into if
statements depending on global variables and, hence, defer
variability decisions from compile time to load time.

Error detection. On the resulting abstract syntax tree with
choice nodes, many interesting opportunities for variability-
aware analysis arise. A prime candidate is variability-aware
type checking, which we outline below. Similarly, extending
other existing analyses in a variability-aware fashion, such
as bug finding, control-flow analysis, and model checking
appears as promising research avenue. Especially for model
checking, variability-aware approaches that analyze state sys-
tems with feature conditions have already been explored [e.g.,
13, 52]; our parser paves the way for translating existing C
code with its variability into such state systems.

Variability-aware type checking. The eventual goal of our
TypeChef project is to type check all variants of the Linux
kernel. Without checking each variant in isolation, we want
to ensure that all, up to 26065, variants are well-typed or
report corresponding error messages otherwise. Such a type
system detects type mismatches, but also dangling function
calls. Checks at linker level are a useful extension as well.
Variability-aware type systems have been explored before [3,
4, 15, 33, 52, 62], but not on unprepared C code. For example,

we implemented such a type system for Java, working around
the parser issue by supporting only disciplined annotations in
a controlled environment [33]. With the parsing issue solved,
variability-aware type checking for C is in reach.

In a nutshell, the idea is to build a conditional symbol
table in which declarations of functions and variables are
stored with a corresponding presence condition (much like the
conditional macro table of our variability-aware lexer [34]).
When we find a function call, we check whether there
is one (or more) declaration in scope. We compare the
presence condition of call pccall and declarations pcdecli

(presence conditions can be deduced from choice nodes in
the abstract syntax tree) and issue an error when there are
variants in which the call but not a declaration is present
(i.e., if, with variability model VM, VM ⇒ (pccall ⇒∨
i pc

decl
i ) does not hold). Similarly, we check that multiple

function definitions are mutually exclusive and that types of
parameters and return types are compatible in all variants. The
type system will provide similar checks for other language
constructs. As other variability-aware analyses, the type
system directly works on the compact representation of the
abstract syntax tree with local variability. Implementing a full
variability-aware type system for C is part of our ongoing
research.



For the various use cases, the long parse times are of
different concern. In many cases, parsing only a single file or
few changed files is sufficient (e.g., in editors or analyzing
patches). Heavy analysis tasks on a large code base can
realistically run in nightly builds with some parallelization.

9. Limitations
Although we were able to show that our setup scales even
for the complexity faced in Linux, there are both conceptual
and implementation-specific limitations that are important
to know to judge the capabilities of our parser. Although we
cannot parse arbitrary C code due to these limitations, the
parser is nearly complete and can handle the vast majority of
code fragments as demonstrated with Linux.

We expect that all features are boolean and limit presence
conditions to propositional formulas. We evaluate constraints
(such as “#if VER>2”) only if the corresponding macros are
defined with #define within the source code, but we do not
accept numeric constraints over features provided as open
command-line parameters. However, we can always (manu-
ally or even automatically) encode countable parameters with
boolean flags by enumerating all possibilities in the source
code (#if VER1 · #define VER 1 · #elif VER2 · #define
VER 2 ...). As consequence, we defined 30 nonboolean fea-
tures with default values as part of our partial configuration
of Linux (cf. Sec. 7.2). This limitation of completeness has
mainly performance reasons, because we can efficiently rea-
son about propositional formulas with SAT solvers; in princi-
ple other solvers would be possible as well.

Variability-aware lexing performs essentially some partial
evaluation of macros and includes, which works well because
the C preprocessor is simple and not Turing-complete (re-
cursion is limited; preprocessing is guaranteed to terminate;
cf. [34]). Lexing is even simpler for languages that do not
contain macro expansion or file inclusion, such as Antenna.
However, there are also more expressive preprocessors that
allow arbitrary computations, such as m4.15 To what degree
variability-aware lexing is possible for such preprocessors is
an open question. Fortunately, handling C preprocessor and
simpler forms is sufficient for most practical applications.

A similar problem comes up when considering not only
the target language and its preprocessor but also the build
system. For example, the Linux build system can run arbitrary
scripts and generates some files. So far, we performed only
a shallow (and unsound) analysis of the build system and
focus on parsing instead (which lead us to exclude 28 files
from our evaluation that depend on generated files). This does
not affect the soundness of the parser though. Discussions of
suitable build systems and how to make them amenable to
variability analysis are interesting open research questions,
but outside the scope of this paper.

For the variability-aware lexer, we currently do not provide
an operation to undo macro expansion and file inclusion.

15 http://www.gnu.org/software/m4/

That is unproblematic for our primary goal of type checking,
but would be required for refactorings and other source-to-
source transformations that should preserve the original code
layout. We currently store the original location of tokens
for displaying meaningful error messages, but transforming a
conditional-token stream back to the original code layout with
macros and includes would require additional investigation
and nontrivial engineering effort.

Finally, in its current form, the variability-aware lexer
is not capable to process some corner-case combinations of
conditional compilation with macros using stringification [30,
§6.10.3]. We manually prepared 13 lines of Linux code (out
of 9.5 millions; documented in the repository) to work around
these bugs, but we are currently working on a solution. In that
regard, the lexer’s implementation is not entirely complete,
but this is an implementation limitation, not a conceptual one.

10. Related work
Our project touches and combines many areas of research,
from parsing unpreprocessed C code, to parsers, to variability
implementation (languages and tools), to partial evaluation
(in the lexer), to variability-model analysis, to variability-
aware type systems, and to several more. For brevity, we
discuss only work that is closest to our novel contributions in
this paper—parsing unpreprocessed code and practical analy-
sis of Linux. For related work on implementing variability,
on the variability-aware lexer, and on variability-aware type
systems, see our discussions in prior work [31, 33, 34]; for
a comprehensive discussion on variability-model analysis
and reasoning about variability, we recommend Benavides’
survey [7].

10.1 Parsing of unpreprocessed C code
In Section 2.2, we already introduced three main strategies
to parse unpreprocessed C code: brute force, manual code
preparation, and heuristics.

The brute-force strategy was used by Vittek to apply
refactorings to C code [64]. He simply processed all 2n

combinations of a file separately, where a user has to specify
the relevant features manually. While this process may be
feasible for the complexity observed in MobileMedia, we
argue that it is unrealistic for Linux, except for restricted
partial configurations.

Manual code preparation for sound but incomplete parsers
was successfully used in projects reported by Baxter and
Mehlich [6]. They enforce that conditional compilation di-
rectives may only wrap selected syntactic structures (such
as entire functions and entire statements; hence preventing
constructs with exponential parsing complexity). They extend
the C grammar such that the C parser accepts conditional-
compilation directives as C language constructs, just like
compound statements [6]. Preparing a grammar to understand
disciplined annotations is straightforward, adding project-
specific patterns (i.e., what is considered disciplined in this



project) is also feasible, but preparing the grammar for all
possible uses of preprocessor directives is considered impos-
sible [46]. Baxter and Mehlich report experience that a small
team of developers can rewrite an industrial project with
50 000 lines of code “in an afternoon” to make it parseable
by this approach. Favre [19] and McCloskey and Brewer [42]
provide migration tools to transform lexical preprocessors
into disciplined forms (in a different implementation mech-
anism). However, such migration tools are faced with the
same parsing problem and are currently based on unsound
heuristics or require human interaction as well. Actually, our
parser could be used to make such migration tools more ac-
curate. Nonetheless, we argue that massive code rewrites are
unrealistic for projects such as the Linux kernel. Our parser
is nearly complete (with the exceptions discussed in Sec. 9)
and can parse large code bases without manual preparation.

Finally, good results for parsing unpreprocessed source
code at a large scale have been achieved with heuristics [1, 23,
24, 41, 46]. For example, Garrido uses a reversible form of
variability-aware lexing (called pseudo preprocessor) together
with heuristics to perform refactorings on unpreprocessed C
code [23, 24]. Padioleau presents a parser Yacfe that accepts
most Linux kernel code [46] using a set of heuristics carefully
tailored for the project. Yacfe does not expand macros, in
that regard, the produced abstract syntax tree does not only
contain C code, but analysis tools need to understand (or
ignore) additional macro nodes. Furthermore, the structure
that is recognized is only correct if all assumptions made
by the heuristics hold consistently in the entire project;
hence, the set of heuristics has to be adapted, fine-tuned, and
maintained for each project to parse. Parsing can already go
wrong if developers write unusually indented code. Similarly,
for an exploratory analysis task, Adams et al. [1] wrote a
parser that ignores all code fragments not understood. Badros
and Notkin developed a parser PCp3 that investigates all
#ifdef branches, but backtracks and considers only a single
path through the document, so alternative macros are not
considered [5]. In addition, srcML is a tool frequently used
to derive code metrics, which tries to roughly recognize code
structures and tries to understand preprocessor directives as
well (without expanding macros at all) [41]. In our experience
with srcML [39, 40], we frequently found incorrect results
for nontrivial preprocessor usage. We are generally skeptical
of heuristics, because it is difficult to judge correctness. In
contrast, we used heuristics only for extracting information
from the build system, but not for parsing.

Although our parser framework allows to write sound and
complete parsers, its performance is orders of magnitude
worse compared to solutions based on code preparation or
heuristics. For example, Yacfe needs 12 minutes to parse the
whole Linux kernel [46], compared to 85 hours for X86 in
our evaluation. The code’s inherent complexity of alternative
macro expansions and undisciplined annotations is the root
of this performance loss, because we cannot ask developers

to rewrite code in a less complex way and we cannot simply
ignore complex cases. We still regard the performance of our
parser as acceptable for many tasks (usually less than one
minute per file, easy to process files in parallel); however, for
many tasks faster parsing may outweigh the disadvantages of
unsound or incomplete parsing. At the same time, we avoid
the accidental complexity of the (sound and complete) brute-
force approach to a large degree; parsing the Linux kernel in
a brute force fashion, with 90 percent of all files affected by
between 124 and 255 distinct features, would be unrealistic.

10.2 Variability-aware parsers
There are a few approaches to parse unpreprocessed C code
that are close to our idea of splitting and joining parse
results using other parser formalisms. We implement our
parser based on parser combinators (the version for eager lan-
guages [67]) in Scala [44]. Despite performance drawbacks
(backtracking and suboptimal tail-call optimization of Scala
in the Java VM), we use LL parsing and a parser-combinator
interface because it is easy to understand and allowed us to
explore different design decisions. It is possible to integrate
our concepts of splitting and joining contexts also with other
parser technologies, possibly yielding better performance,
and different researchers have worked on similar ideas for
LR-based parsers.

First, Platoff et al. sketched a similar parser as part of a
general maintenance framework [50]. At #ifdef directives,
they clone the parser state of an LALR parser and join when
both parsers reach an identical state. However, they do not
support alternative macros and they do not evaluate how their
approach scales beyond medium-sized systems.

Next, Overbey and Johnson outlined a similar strategy,
also based on modified LR parsers [45]. They discussed how
to handle alternative macros and how to keep a link back
to the original source code to allow rewrites. However, they
did not fully implement the proposed concepts; currently,
their parser Ludwig (part of the Photran environment) only
processes single configurations without variability.

Finally, in parallel to our work, Gazzillo and Grimm de-
veloped SuperC, a variability-aware parser based on forking
and merging LALR-parser states [25]. In addition to a dif-
ferent parsing technology, they use binary decision diagrams
instead of SAT solvers, represent variability in token streams
differently, and produce untyped abstract syntax trees. They
evaluated performance of their parser using our setup of the
Linux kernel (including the information we extracted from
the build system) and showed a four times faster performance
compared to our parser. However, they do not consider a fea-
ture model and did not check for parser errors when parsing
Linux (as discussed in Sec. 7.2, without considering depen-
dencies from the feature model, there are many false alarms).

In general, the idea of splitting and joining parser states
for variability is similar to GLR parsing, which splits and
merges the parser state for ambiguities [63]. GLR parsers
return alternative parse results (parse forests) that contain all



matches in case of ambiguities. Technically, they also fork
parse stacks similar to our context splits and use a concept
called local ambiguity packing that is similar to our joins.
In contrast to our parser combinators, but more similar to
SuperC, GLR parsers use sophisticated techniques to advance
the parser with multiple contexts synchronously step by step
without backtracking.

10.3 Analyzing variability in C code.
There are several studies which investigated variability in
C code (often including Linux as case study). However, all
studies we are aware of either use unsound heuristics or look
only at the preprocessor directives but not at the underlying
C code.

In their intention, the works of Tartler et al. are closest to
our TypeChef project [57, 61]. They analyze #ifdef variabil-
ity in the Linux kernel to find bugs, currently with a focus of
finding code fragments that are never included in any variant.
They have reported and confirmed a substantial number of
inconsistencies and bugs. However, they perform their analy-
sis entirely at the level of code blocks between preprocessor
directives, without considering the underlying code structure.
That is, they reason about lines of code and not about abstract
syntax trees. At their abstraction level, it is not possible or
intended to perform type checking. In addition, they did not
consider interactions between macro definition and condi-
tional compilation, as our variability-aware lexer does. In our
parser, dead code is simply skipped by all parser branches.

Padioleau’s parser Yacfe has been used to build code
transformations (called semantic patches) and static analysis
for Linux [47, 48]. In this line of work, the authors have
identified a series of bugs and rule violations (such as “do
not use freed memory” or “do not use floating point in the
kernel”) , however analysis of variability was not in their
focus.

At the level of preprocessor directives, several researchers
have suggested tools to extract variability information [36] or
to provide visualizations, such as #include trees [65]. Some
tools also trace macro expansion, but not their interaction with
conditional compilation (i.e., neither conditional macros nor
alternative macros) [37, 60]. All these approaches intend to
support developers in maintenance tasks, but do not analyze
the underlying C code in a variability-aware fashion.

Ernst et al. quantified macros and conditional compilation
in open-source C code (with a focus on macro usage) [17],
and in prior work, also we investigated how preprocessors are
used to implement variability [39, 40]. However, those results
are based on heuristics (PCp3 and srcML, see above) and do
not focus on producing abstract syntax trees or detecting
errors.

11. Conclusion
We have presented a novel framework for variability-aware
parsing, which, together with a variability-aware lexer, can

be used to construct parsers that produce abstract syntax trees
with variability for unpreprocessed code. Whereas existing
approaches suffer either from exponential explosion, require
manual code preparation, or are based on unsound heuristics,
we have shown that our parser can effectively parse significant
code bases without heuristics and code preparation in rea-
sonable time. We have demonstrated practicality on a small
Java-based software product line and by parsing the entire
X86 architecture of the Linux kernel with 6065 features.

In future work, in our TypeChef project, we plan to
build a variability-aware type system that can type check
the entire Linux kernel and report even type errors hidden
in specific feature combinations. Furthermore, performing
other variability-aware analysis (e.g., bug patterns, data-flow
analysis, model checking) on top of the produced abstract
syntax trees is a promising avenue.
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