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Abstract—Configurable software systems allow stakeholders to
derive program variants by selecting features. Understanding
the correlation between feature selections and performance is
important for stakeholders to be able to derive a program variant
that meets their requirements. A major challenge in practice is
to accurately predict performance based on a small sample of
measured variants, especially when features interact. We propose
a variability-aware approach to performance prediction via sta-
tistical learning. The approach works progressively with random
samples, without additional effort to detect feature interactions.
Empirical results on six real-world case studies demonstrate an
average of 94 % prediction accuracy based on small random
samples. Furthermore, we investigate why the approach works
by a comparative analysis of performance distributions. Finally,
we compare our approach to an existing technique and guide
users to choose one or the other in practice.

I. INTRODUCTION

Many software systems provide configuration options for

users to tailor their functional behavior as well as non-

functional properties (e.g., performance, cost, and energy

consumption). Configuration options relevant to users are often

called features [2], [3], [7], [8], [13], [16]. Each variant de-

rived from a configurable software system can be represented

as a selection of features, called a configuration.

Performance (e.g., response time or throughput) is one

of the most important non-functional properties, because it

directly affects user perception and cost [25]. Finding an

optimal configuration to meet a specific performance goal is

a fundamental task for developers and system administrators.

Performance of a software system is often subject to a wide

variety of influencing factors [24]. Understanding trade-offs

between influencing factors and performance is non-trivial. In

this paper, we focus on how to determine the influence of

feature selections on performance. Considering a configurable

software system as a black box, we investigate and exploit

the correlation between feature selections and performance for

performance prediction.

A straightforward approach to reveal such correlation is

to measure the performance of all configurations of a soft-

ware system and then provide direct answers (e.g., which

configuration is the fastest). However, such a brute-force

approach is usually infeasible, because even a small-scale

configurable system can give rise to an exponential number

of configurations, due to feature combinatorics, and the cost

of measurement may be high (e.g., executing a complex

benchmark). Therefore, in practice, often only a limited set

of configurations can be measured, either by simulation or by

monitoring in the field [24]. We denote these configurations

along with their performance measurements as a sample,

and all configurations of a software system along with their

performance as the whole population. The challenge is how to

use a small (e.g., linear in the number of features) sample to

predict the performance of other configurations in the whole

population, with a high accuracy (e.g., above 90%).

Quantifying the performance influence of each individual

feature is not sufficient in most cases, as feature interactions

may cause unpredictable performance anomalies [19]. That is,

the performance influence of two features, both appearing in

a configuration, may not be easily deducible from the perfor-

mance influence of each feature without the other. Siegmund

et al. [19] addressed this issue by introducing a measurement-

based prediction approach, called SPLCONQUEROR, which

detects performance-relevant feature interactions using spe-

cific sampling heuristics that meet different feature-coverage

criteria. However, in practice, the configurations that we can

measure or that we already have at our disposal may not meet

any feature-coverage criterion. Thus, we pose the following

research question: Is it feasible to use small random samples

as a basis for accurate performance prediction?

To answer this question, we formalize the problem of

variability-aware performance prediction and reduce it to a

non-linear regression problem. We use a statistical learning

technique, Classification And Regression Trees (CART) [5],

to address the problem and to model the correlation between

feature selections and performance.

Compared to existing methods [19], [20], [22]–[25], our

approach works automatically and progressively with random

samples, such that one can use it to produce predictions,

starting with a small random sample, and subsequently extend

it when further measurements are available; it considers all

features of a system and identifies the performance-relevant

ones; it treats the selected and deselected features in a con-

figuration equally, to describe the correlation between feature

selections and performance; and it can be easily implemented

and deployed in practice, without additional effort to detect

feature interactions—an inherently challenging task [19].

In summary, we make the following contributions:

• We propose a progressive and variability-aware approach

that predicts a configuration’s performance based on
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random samples. The approach builds an explicit perfor-

mance model to specify the correlation between feature

selections and performance, to be used for performance

prediction.

• We implement the approach and demonstrate its practi-

cality and generality by experiments on six real-world

configurable software systems. The results show that the

approach produces an average prediction accuracy of

94%, based on only small random samples. Moreover,

we observe a desirable increasing trend of prediction

accuracy when the sample size increases.

• We conduct a comparative analysis of performance dis-

tributions on the evaluated case studies and empirically

explore why the approach works with small random

samples.1 A key finding is that it works well when the

sample it uses has a performance distribution similar to

the whole population.

• We compare our method with an existing technique

that relies on heuristics and feature coverage [19]. In

particular, we discuss the strengths and weaknesses of

the two approaches and guide users to choose one or the

other in practice.

The implementation of the approach and all experimental

data are available at http://cpm.googlecode.com.

II. MOTIVATING EXAMPLE

We use the configurable tool X264 as an example to

motivate our approach. X264 is a command-line tool to

encode video streams into the H.264/MPEG-4 AVC format.2

In this example, we consider 16 encoder features of X264,

such as parallel encoding on multiple processors or encoding

with multiple reference frames. Users can configure X264 by

selecting different features to encode a video. We use the

encoding time to indicate the performance of X264 in different

configurations. Even such a simple case with only 16 features

gives rise to 1, 152 configurations. Given that we measure the

performance of a limited set of configurations as a sample, how

can we determine the performance of other configurations?

To address this issue, previous work on SPLCONQUEROR

[19] focuses on selecting a specific sample to detect

performance-relevant feature interactions. That is, following

a certain feature-coverage criterion, SPLCONQUEROR selects

a fixed set of specific configurations and then measures

their performance, which is then the input for predicting

the performance of other configurations. Two fundamental

feature-coverage criteria are feature-wise and pair-wise. The

feature-wise measurement quantifies an individual feature’s

performance influence by calculating the performance delta of

two minimal configurations with and without the feature. The

pair-wise heuristic selects and measures additionally a specific

set of configurations to detect all pair-wise feature interactions.

SPLCONQUEROR also provides heuristics for the detection of

higher-order feature interactions.

1A performance distribution denotes the frequency distribution of all
performance values in a sample or in the whole population.

2http://www.videolan.org/developers/x264.html

An important point is that, in practice, the configurations

that we can measure or that we already have are often arbitrari-

ly selected; they may not meet any feature-coverage criterion.

Moreover, the number of available configurations may vary

and is usually very limited due to the high cost of performance

measurement. For example, Table I lists a sample of 16
randomly-selected configurations of X264 and corresponding

performance measurements. The question is, can we predict

performance of all other configurations accurately with such

a limited number of measurements? Next, we formally reduce

this question to a non-linear regression problem, and then we

present our approach to address the problem.

III. PROBLEM FORMALIZATION AND REDUCTION

In this section, we formalize the problem of variability-

aware performance prediction and reduce it to a non-linear

regression problem.

We represent all features of a configurable software system

as a set X of binary decision variables. If a feature is selected

in a configuration, then the corresponding variable x is equal

to 1, and 0 otherwise. We denote the number of all features in

a system as N , i.e., X = {x1, x2, ..., xN}. Then, we represent

each configuration of a system as an N -tuple, assigning value

1 or 0 to each variable in X . For example, X264 has 16
features in total, as listed in Columns x1 to x16 in Table I;

thus, each configuration of X264 is represented by a 16-tuple,

e.g., x1 = (x1 = 1, x2 = 1, x3 = 0, ..., x16 = 1). We denote

all valid configurations in a system as set X.

Each configuration x of a system has an actual perfor-

mance value y. We indicate the actual performance of all

configurations of a system as Y . Suppose that we acquire

a set of configurations XS ⊂ X and measure their actual

performance YS , together forming sample S. For example,

Table I lists a sample of 16 randomly-selected configurations

of X264 (Rows x1 to x16) and their performance values

(the rightmost column). Thus, the problem of variability-aware

performance prediction is how to predict the performance of

other unmeasured configurations in X \ XS based on the

measured sample S.

Since we focus on the influence of feature selections on

performance, we consider all variables in X as predictors and

a configuration’s actual performance value y as the response.

In essence, we try to find a function to relate the tuple x of

predictors to the quantitative response y, which is a typical

regression problem [11]. Given a sample S, the problem is to

find a function f that reveals the correlation between XS and

YS and that makes each configuration’s predicted performance

f(x) as close as possible to its actual performance y, i.e.:

f : X → R such that
∑

x,y∈S

L(y, f(x)) is minimal (1)

where L is a loss function to penalize errors in prediction.

An assumption of our approach is that the sample S and

the whole population exhibit the same or similar correlation

between feature selections and performance. Thus, we can use
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TABLE I
A SAMPLE OF 16 RANDOMLY-SELECTED CONFIGURATIONS OF X264 AND CORRESPONDING PERFORMANCE MEASUREMENTS (SECONDS)

Conf. Features Perf. (s)

xi x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 yi
x1 1 1 0 1 1 1 1 0 1 0 0 1 1 0 0 1 651

x2 1 1 1 1 1 1 0 1 1 1 0 0 1 0 1 0 536

x3 1 1 1 1 0 0 0 0 1 1 0 0 1 0 0 1 581

x4 1 0 0 0 0 0 1 0 1 1 0 0 1 0 1 0 381

x5 1 1 0 1 0 0 0 1 1 1 0 0 1 0 1 0 424

x6 1 1 0 0 1 0 1 1 1 1 0 0 1 0 0 1 615

x7 1 0 1 0 1 1 1 0 1 1 0 0 1 0 1 0 477

x8 1 0 1 0 0 0 0 1 1 0 0 1 1 1 0 0 263

x9 1 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 272

x10 1 1 1 1 0 0 0 1 1 0 0 1 1 1 0 0 247

x11 1 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 612

x12 1 0 1 1 1 0 0 0 1 0 0 1 1 0 1 0 510

x13 1 1 1 1 0 1 1 0 1 0 1 0 1 0 0 1 555

x14 1 1 0 0 1 0 1 1 1 0 0 1 1 1 0 0 264

x15 1 0 1 0 0 1 1 1 1 0 0 1 1 0 0 1 576

x16 1 0 1 0 1 0 1 1 1 0 1 0 1 1 0 0 268

the function f , built on the sample S, to predict performance

of other configurations in X \XS .

Note that we do not presume which features are actually

relevant to performance, but we consider all features of a

system. Moreover, we cannot linearly deduce the performance

of a configuration from the performance influence of each

individual feature in separation due to feature interactions [19].

Therefore, the problem of variability-aware performance pre-

diction is a non-linear regression problem, i.e., the prediction

function depends non-linearly on one or more predictors [11].

IV. VARIABILITY-AWARE PERFORMANCE PREDICTION

This section presents our progressive and variability-aware

approach to performance prediction via statistical learning.

A. Overview of the Approach

Figure 1 illustrates our approach, which consists of two

iterative processes. The first process predicts performance

based on a set of rules. After configuring a system A and

deriving a new, previously unmeasured configuration x, users

want to know the performance y if system A uses the con-

figuration x. Our approach returns the quantitative prediction

(i.e., f(x)) after retrieving the corresponding decision rule

for configuration x. Each decision rule specifies the predicted

performance value of a configuration when the configuration

has the same feature selections (i.e., selected and deselected

features) as the rule defines.

The second process includes performance modeling and val-

idation. As shown in the dotted box in Figure 1, performance

modeling starts with a random sample. We use the sample to

build a performance model automatically by statistical learn-

ing. From the performance model, we derive a set of decision

rules to enable fast, direct question answering for performance

prediction. To validate the current performance model, users

can measure the actual performance of configuration x and

then compare its actual performance measurement with its

A new
configuration x

system A

Configure

Decision rules

Performance
model

Random sample

if system A uses configuration x?
What is performance y

& validation
Measurement

LearningDeriving

prediction
Quantitative

Figure 1. Overview of the approach

performance prediction. Next, configuration x and its actual

performance measurement can be reused to expand the sample

and then to rebuild the performance model. Thus, the approach

works in a progressive way and improves performance predic-

tions based on updated samples.

B. CART-Based Performance Modeling

In this section, we explain the process of variability-aware

performance modeling via statistical learning in detail, as

illustrated in the dotted box in Figure 1. As explained in

Section III, the problem is to find a function f that predicts the

performance value y for a configuration x based on a sample

S. We use CART [5], [11] to address this problem. The basic

idea is as follows. We recursively partition the sample into

smaller segments until we can fit a simple local prediction

model into each segment; and finally we organize all the local

models into a global prediction model, which is represented

as a binary decision tree.

Figure 2 shows a performance model generated by CART

based on the X264 sample in Table I. CART starts with the

sample S that contains 16 configurations x1,x2, ...,x16 and

their performance measurements y1, y2, ..., y16. Then, CART

partitions the sample S into two segments SL and SR by
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{x1,x2, ...,x16}
S

SL

x7 = 1?

{x8,x10}
SLL

ℓSLL
= 255

{x9,x14,x16}
SLR

ℓSLR
= 268

no yes

SRL

x3 = 1?

{x4,x5}
SRLL

ℓSRLL
= 402

{x2,x7,x12}
SRLR

ℓSRLR
= 508

no yes

SRR

x3 = 1?

{x3,x13,x15}
SRRL

ℓSRRL
= 571

{x1,x6,x11}
SRRR

ℓSRRR
= 626

yes no

SR

x15 = 1?
yes no

x14 = 1?
yes no

Figure 2. Example performance model of X264 generated by CART based on the random sample of Table I

exhaustively searching over all feature-selection variables in X

for the best split that minimizes the total prediction errors in its

two resulting segments. For example, as shown in Figure 2, the

first best split for the X264 sample S is the feature-selection

variable x14, because choosing x14 to partition S produces the

minimal total prediction errors in the two resulting segments

SL and SR. After partitioning, configurations with x14 = 1 go

to the left segment SL, and configurations with x14 = 0 go to

the right segment SR. Each segment is partitioned recursively

by further splits, such as the variables x7, x15, and x3.

For each segment Si, we use the sample mean of the actual

performance measurements as the local prediction model of

the segment to make prediction fast [4]:

ℓSi
=

1

|Si|

∑

yj∈Si

yj (2)

The local model of each segment identifies the common

feature selections (the corresponding branch from the first

split to the current split) and the average performance of

the configurations contained in the segment. For example,

the local model of the leftmost leaf in Figure 2 indicates

the common feature selections (x14 = 1, x7 = 0) and the

average performance ℓSLL
= 1

2
(y8 + y10) = 255s for the two

configurations x8,x10.

To penalize the prediction errors in each segment Si that

uses the corresponding local model ℓSi
, we adopt the most

common and convenient loss function, the sum of squared

error loss [11]:

∑

yj∈Si

L(yj , ℓSi
) =

∑

yj∈Si

(yj − ℓSi
)2 (3)

Thus, the best split for each segment Si is determined to

partition Si into two segments SiL and SiR such that:
∑

yj∈SiL

L(yj , ℓSiL
) +

∑

yj∈SiR

L(yj , ℓSiR
) is minimal (4)

To prevent underfitting the input sample, we may expect

that each final segment (i.e., leaf ) is small enough to produce

as small prediction errors as possible; but excessive partition-

ing may give rise to overfitting the input sample and thus

compromise prediction accuracy for other configurations [4],

[11].3 Hence, determining when is the best time to stop the

recursive partitioning process is an empirical activity to trade-

off underfitting and overfitting, and it often involves a manual,

iterative process of parameter tuning [4], [24]. For our case

studies, we use two important parameters and define a set

of empirically-determined parameter settings to automatically

control the termination of the recursive partition process, as

we explain in Section V.

Suppose that there are q leaves in the tree structure of a

performance model; we organize all the local models of these

leaves into a global model as follows:

f(x) =

q∑

i=1

ℓSi
I(x ∈ Si) (5)

where I(x ∈ Si) is an indicator function to denote if

configuration x belongs to a leaf Si. To determine to which

leaf a configuration x belongs, we match the feature selections

of a configuration with the corresponding branch in the tree,

from the first split to a leaf. For example, in the tree shown

in Figure 2, if a configuration x satisfies (x14 = 1, x7 = 0),

3If an algorithm works poorly even with the existing data, then the algorithm
underfits the existing data. If an algorithm works well with the existing data,
but not with new data, then the algorithm overfits the existing data.
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which is consistent with the feature selections of the leftmost

branch, then this configuration falls into the leftmost leaf SLL.

The global model for the tree shown in Figure 2 is specified

as follows:

f(x) = 255 ∗ I(x14 = 1, x7 = 0)
+ 268 ∗ I(x14 = 1, x7 = 1)
+ 402 ∗ I(x14 = 0, x15 = 1, x3 = 0)
+ 508 ∗ I(x14 = 0, x15 = 1, x3 = 1)
+ 571 ∗ I(x14 = 0, x15 = 0, x3 = 1)
+ 626 ∗ I(x14 = 0, x15 = 0, x3 = 0)

We can derive a set of decision rules from a global perfor-

mance model to provide direct performance predictions for

users. Each branch in the tree structure of a performance

model indicates a decision rule. For example, we can derive

the following if-then decision rule from the leftmost branch

of the tree shown in Figure 2: if a configuration satisfies

(x14 = 1, x7 = 0), then its predicted performance is 255s.

V. IMPLEMENTATION

We implemented our approach using R 2.15.1 and JAVA

(ECLIPSE 4.2 with JVM 1.7). R is a language and environ-

ment for statistical computing and graphics.4 We used the R

packages RATTLE and RPART to implement CART and to

generate the performance models [26]. We developed a rule

generator to parse the built performance models and generate

decision rules. We also experimented with two CART variants,

Random Forests and Boosting [26], which try to enhance the

prediction effects of CART, but we observed similar prediction

improvements on our evaluated case studies through parameter

tuning. Thus, we choose a simple solution that uses only

CART for our case studies.

As mentioned in Section IV-B, we use two important

parameters to control the recursive partitioning process of

CART: minbucket is the minimum sample size for any leaf

of the tree structure of a performance model; and minsplit is

the minimum sample size for any segment in the tree before

the segment is considered for further partitioning. A segment

is not considered for partitioning if its sample size is less than

minsplit. We performed a set of preliminary experimental

tests to identify parameter settings that trade-off underfitting

and overfitting for our case studies. Moreover, to implement a

fully-automated process of performance modeling by CART,

we aim at setting the two parameters automatically in terms of

the size of the input sample, i.e., |S|. Since the size of most of

the samples used in our case studies is less than 100, we set

the threshold of 100 to distinguish random samples of different

sizes. Finally, we use the following empirically-determined pa-

rameter settings to achieve automated performance modeling

and reasonable prediction accuracy for our case studies: if

|S| ≤ 100, then minbucket = ⌊ |S|
10

+ 1

2
⌋ and minsplit =

2 ∗minbucket; if |S| > 100, then minsplit = ⌊ |S|
10

+ 1

2
⌋ and

minbucket = ⌊minsplit
2

⌋; the minimum of minbucket is 2;

and the minimum of minsplit is 4.5

4http://www.r-project.org/
5⌊ ⌋ indicates rounding down, i.e., ⌊x⌋ = max{n ∈ Z|n ≤ x}.

VI. EVALUATION

We conducted a series of case studies to evaluate our ap-

proach. We aim at answering the following research questions:

RQ 1: How accurate is the approach of variability-aware

performance prediction? (Section VI-C)

RQ 2: Can the prediction process be progressive? (Sec-

tion VI-C)

RQ 3: How fast is the prediction process? (Section VI-D)

RQ 4: Is it possible to make accurate predictions using only

small random samples? (Section VI-E)

RQ 5: What are the strengths and weaknesses of our

approach compared to existing techniques? (Sec-

tion VI-G)

A. Subject Systems

We performed our case studies on a publicly-available

dataset, deployed with the SPLCONQUEROR tool.6 The

dataset covers a reasonable spectrum of practical applica-

tion scenarios. As shown in Table II, there are six existing

real-world configurable systems with different characteristics:

different sizes (42 thousand to 300 thousand lines of code,

192 to millions of configurations), different implementation

languages (C, C++, and JAVA), and different configuration

mechanisms (conditional compilation, configuration files, and

command-line options). Moreover, the dataset contains the

whole population of each system, i.e., all configurations of

each system and their performance measurements (the ex-

ception is SQLITE, for which the dataset contains 4, 553
configurations for prediction modeling and 100 additional

random configurations for prediction evaluation [19]). For each

system, the performance has been measured using a standard

benchmark, either delivered by its vendor (e.g., ORACLE’s

standard benchmark for BERKELEY DB) or used widely in

its application domain (e.g., AUTOBENCH and HTTPERF for

the APACHE Web Server).

B. Experimental Setup

In our experiments, the independent variables are the sub-

ject system and the size of the input sample. The prediction

fault rate and the time cost of building a performance model

are measured as the dependent variables. The prediction fault

rate is the relative difference between the actual performance

and the predicted performance, i.e., FR=
|actual−predicted|

actual
.

Correspondingly, the prediction accuracy is 1−FR.

To reduce the fluctuations of the dependent variables caused

by random generation, we performed five repetitions for each

combination of the independent variables. That is, for each

subject system, we repeated five times generating a random

sample of a certain size and subsequently measured the depen-

dent variables after applying our approach to the sample. We

took only the average of these measurements for analysis. We

performed all measurements on the same Windows 7 machine

with Intel Core i5 CPU 2.5 GHz and 8 GB RAM.

6The dataset is available at http://fosd.de/SPLConqueror.
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TABLE II
OVERVIEW OF THE SIX SUBJECT SYSTEMS; LANG.—LANGUAGE;

LOC—LINES OF CODE; |X|—NUMBER OF ALL VALID CONFIGURATIONS;
N—NUMBER OF ALL FEATURES; M—NUMBER OF CONFIGURATIONS

REQUIRED BY THE PAIR-WISE HEURISTIC OF SPLCONQUEROR

System Domain Lang. LOC |X| N M

1 APACHE Web Server C 230,277 192 9 29

2 LLVM Compiler C++ 47,549 1,024 11 62

3 X264 Encoder C 45,743 1,152 16 81

4 BERKELEY DB Database C 219,811 2,560 18 139

5 BERKELEY DB Database JAVA 42,596 400 26 48

6 SQLITE Database C 312,625 3,932,160 39 566

For each subject system, we randomly selected a certain

number of configurations from the whole population as the

training sample for prediction modeling and all remaining

as the test sample for prediction evaluation. Take the X264

system as an example, if we select 16 configurations as the

training sample, then the remaining 1, 136 configurations form

the test sample.

To assess the effectiveness of our approach working with

random samples of different sizes, we use four sizes for the

training sample of each subject system: N , 2N , 3N , and M ,

where N is the number of all features of each system, and

M is the number of all specific configurations required by the

pair-wise heuristic of SPLCONQUEROR. We list the concrete

values of N and M for each system in the rightmost two

columns in Table II. We choose size N , 2N , and 3N , because

measuring a sample whose size is linear in the number of all

features is likely feasible and reasonable in practice, given

the high cost of performance measurement. For example, the

number of even one percent of all configurations of X264 (i.e.,

115) is still much more than the triple fold of the number of all

features (i.e., 48). We choose size M , so that we can compare

our approach to SPLCONQUEROR.

C. Experiment on Prediction Fault Rate

CART has been proved effective for many non-linear re-

gression problems [4], [5]. Moreover, most statistical learning

techniques can make more accurate predictions when more da-

ta are available [11]. Hence, the hypotheses of this experiment

are as follows.

1) Hypotheses: Our CART-based approach is effective for

variability-aware performance prediction (for RQ 1). Further-

more, it works progressively and improves the prediction

accuracy when a larger sample is available (for RQ 2).

2) Results: We measured the prediction fault rate for the

six systems listed in Table II and the four sample sizes (N ,

2N , 3N , and M ). We present the experimental results using

different statistical measures. Figure 3a shows the boxplots

of the results excluding outliers, such that other statistical

measures such as the median and quartiles can be shown

clearly.7 Figure 3b includes all outliers. Table III (Column

7A boxplot represents statistical data on a plot, in which a rectangle is
drawn to represent the second and third quartiles, usually with a vertical line
inside to indicate the median value. The lower and upper quartiles are shown
as horizontal lines either side of the rectangle. An outlier is one that appears
to deviate markedly from other members of the sample in which it occurs.
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Figure 3. Boxplots of the prediction fault rates for the six systems (1 to 6

listed in Table II) and the four sample sizes (N to M listed in Table II)

“Fault Rate”) lists the mean and standard deviation of the

prediction fault rate for each system and each sample size.

As shown in Figure 3 and Table III, for any statistical

measure (the mean, standard deviation, median, or outlier),

we observe a robust decreasing trend of the prediction fault

rate when the sample size increases from N to M for each

system.8 As listed in Table III, based on a random sample of

size N (Column “Fault Rate – N”), the fault rate is 8% or

8Note that M depends on the number of features and on the configuration
constraints among features in a case study. In most cases, M is greater than
3N ; the exception is BERKELEY DB JAVA where M = 48 and 3N = 78.
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TABLE III
MEAN±STANDARD DEVIATION OF THE PREDICTION FAULT RATE (%) AND TIME COST (ms) FOR THE SIX SYSTEMS (1 TO 6 LISTED IN TABLE II) AND

THE FOUR SAMPLE SIZES (N TO M LISTED IN TABLE II)

Fault Rate (%) Time Cost (ms)

N 2N 3N M N 2N 3N M

1 26.9±28.4 11.6±14.4 8.4±6.7 9.7±10.8 26±5 30±12 24±5 24±5

2 5.7±4.9 4.5±4.2 4.0±3.6 3.3±2.4 34±5 42±13 36±9 34±9

3 15.1±18.1 8.5±7.5 7.2±6.4 6.4±5.7 24±5 20±0 26±5 22±4

4 112.4±354.6 98.3±243.1 46.8±70.7 7.8±13.2 26±5 42±8 26±5 34±5

5 3.2±2.6 2.2±2.3 2.6±2.5 2.7±2.5 34±9 36±9 34±5 32±4

6 8.0±4.5 8.1±4.4 7.6±4.4 7.2±4.2 44±5 42±4 44±9 90±0

less for three subject systems (LLVM, BERKELEY DB JAVA,

and SQLITE, in Rows 2, 5 and 6). Based on a random sample

of size M , we achieve a mean prediction fault rate of 6.2%,

on average, for all six subject systems, i.e., the average of all

mean prediction fault rates listed in Column “Fault Rate – M”.

3) Discussion: An average prediction accuracy of 93.8%
on small random samples of size M for six real-world config-

urable systems demonstrates the effectiveness of our approach

for variability-aware performance prediction. For three subject

systems, the approach even produces a prediction accuracy

of 92% or higher, based on small random samples of size

N . Moreover, our approach does show a robust increasing

trend of prediction accuracy with the increasing sample size.

Thus, the experiment confirms that our approach can work

progressively with random samples of any user-defined size

(i.e., N or larger) and improve the prediction accuracy when

more data are available.

D. Experiment on Time Cost

For RQ 3, the time consumed by the prediction process of

our approach mainly stems from performance modeling using

CART. Once the performance model is built, as explained

in Section IV, deriving a decision rule and providing the

prediction result for users are instantaneous. Furthermore, as

CART has been widely used in statistics and data-mining

applications, and it has been shown fast and reliable [4], [11],

the hypothesis of this experiment is as follows.

1) Hypothesis: The time of building a performance model

by CART is reasonable.

2) Results: We measured the time of building a perfor-

mance model in the same experimental context as the ex-

periment of Section VI-C. The results are listed in Table III

(Column “Time Cost”). For five of the six systems, the time of

building a performance model on any random sample of size

from N to M is approximately 42 milliseconds (ms). Only for

SQLITE and the sample size M = 566, the time cost reaches

a high of 90ms, which is still a reasonable amount of time.

3) Discussion: Although we perform CART with an ex-

haustive search over all feature-selection variables for the best

split that minimizes the total prediction errors, as explained in

Section IV-B, the constant local model defined in Equation 2

makes the search process fast, because there is no complicated

calculation for the total prediction errors defined in Equation 4.

Moreover, the time of at most 90ms needed for all six subject

systems and for any sample size from N to M demonstrates

that our approach is highly efficient for variability-aware

performance prediction.

E. Comparative Analysis of Performance Distributions

The previous experiments demonstrate the effectiveness of

our approach, however, we still want to give evidence why

the approach works with small random samples (for RQ 4).

Since the approach depends on CART to address a non-linear

regression problem, a general explanation from the statistical-

learning theory is that CART works well when the problem it

addresses or the data it evaluates does fit the regressive pattern

it builds [4]. Moreover, as explained in Section IV-B, CART

builds a tree-like prediction model that recursively partitions a

sample and renders the total prediction errors in each partition

minimal; this way, the prediction model always fits the sample

well. If the sample can represent the whole population or

reflect the important characteristics of the whole population,

then the prediction model built on the sample also fits the

whole population well and makes accurate predictions.

Since our prediction targets numeric performance values,

the performance distribution is an important characteristic for

performance prediction. Thus, we conducted a comparative

analysis of performance distributions between random sam-

ples and the corresponding whole populations, guided by the

following hypothesis.

1) Hypothesis: Our approach works well with a small

random sample when the sample has a similar performance

distribution as the whole population.

2) Results: For each subject system, we collected all the

random samples generated in the previous experiments. Then,

we visualized the average performance distribution for each

sample size from N to M , to mitigate the influence of a

specific performance distribution of a certain random sample.

Furthermore, we visualized the performance distribution of the

whole population of each system, to be able to compare it to

the performance distribution of each random sample of size

from N to M .

Due to the space limit, we present the experimental results

for only one subject system here.9 Figure 4 shows the his-

9The experimental results of all six subject systems (1 to 6 listed in Table II)
are available in a technical report at http://gsd.uwaterloo.ca/node/527.
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tograms of the performance distributions for the four sample

sizes (N to M ) and the whole population of X264.10

As shown in Figure 4e, the performance distribution of the

whole population of X264 is roughly a distribution with two

peaks. The performance distribution of the random sample of

size N (Figure 4a) identifies the two peaks, but misses the

correct locations of these peaks. The performance distributions

for the sample size from 2N (Figure 4b), 3N (Figure 4c), to M

(Figure 4d) gradually move and form the two peaks approxi-

mate to the precise locations, as shown in Figure 4e. With such

a gradual process that generates a more similar performance

distribution as the whole population, the prediction fault rate

shows a robust decreasing trend from 15.1%, 8.5%, 7.2% to

6.4% when the sample size increases from N , 2N , 3N to M .

Similarly, for each of the other five subject systems, the

random sample of size M always exhibits a very similar

performance distribution as the whole population. For the three

systems (LLVM, BERKELEY DB JAVA, and SQLITE) with

92% or higher prediction accuracy based on a random sample

of size N , a similar performance distribution as the whole

population can be found on the random sample of size N .

3) Discussion: The comparative analysis of performance

distributions between random samples and the whole popula-

tions reveals that our approach works well with a small random

sample when the sample has a similar performance distribution

as the whole population. In fact, we found explicit evidence

that a sample does reflect some important characteristics of the

whole population when we can produce accurate predictions

based on it. However, we are aware that the performance

distribution may be just one of the relevant characteristics

for performance prediction. These characteristics may involve,

for example, the number and dispersion of distinct values

as well as the feature coverage. A quantitative study on the

similarity between a random sample and the whole population,

involving more characteristics for performance prediction,

shall be conducted in future work.

F. Threats to Validity

To enhance internal validity, we performed automated ran-

dom sampling avoiding misleading effects of specific-selected

training samples and test samples. We randomly selected

samples of four sizes (N to M ) respectively from the whole

population of each subject system as the training sample, and

all of the rest as the test sample. We repeated each random

sampling five times with freshly generated training samples

and test samples of the same size. The exception is the test

sample of SQLITE, in which the original authors could not

measure all valid configurations in reasonable time; thus, to

mitigate the possible effects of missing some important config-

urations, they sampled 100 additional random configurations

for prediction evaluation [19].

10A histogram provides a quick and intuitive visualization of the distribution
of the data [26]; it consists of two parts: the vertical bars, each of which
displays the frequency of each value range; and the density estimate curve,
which shows a more accurate display of the distribution of the data.

(a) Random sample of size N

(b) Random sample of size 2N

(c) Random sample of size 3N

(d) Random sample of size M

(e) Whole population

Figure 4. Histograms of the performance distributions of the random samples
of four sizes (N to M listed in Table II) and of the whole population of X264
(X-axis: Performance (seconds); Y-axis: Relative Frequency)

To automate the process of performance modeling by

CART, we use two important parameters (minbucket and

minsplit) and fix others provided by the R packages to control

the recursive partitioning process of CART. For each case
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study, we followed the same parameter settings to generate

the performance models automatically. We cannot guarantee

that the prediction fault rate and the time cost of performance

modeling obtained in our experiments depend on certain

shapes of the performance models built by CART. However,

to avoid misleading effects of specially-shaped performance

models, we generated all performance models automatically,

repeated each measurement (the prediction fault rate or the

time cost) for each system and each sample size five times,

and took only the average of these measurements for analysis.

To increase external validity, we used a public dataset with

six systems spanning different domains, with different sizes,

different configuration mechanisms, and different implemen-

tation languages. All systems have been deployed and used in

real-world scenarios. Moreover, the performance is measured

by standard benchmarks in the respective application domain.

However, we are aware that the results of our experiments

are not automatically transferable to all other configurable

systems, but we are confident that we controlled this threat

sufficiently.

G. Strengths and Weaknesses of the Approach

To answer RQ 5, we compared our approach to SPLCON-

QUEROR, a most recent approach to performance prediction

for configurable software systems [19]. We summarize the

strengths and weaknesses of the two approaches, which guides

users to choose one or the other in practice.

1) Prediction Fault Rate: In our experimental setup, N

is the number of all features of a system, and M is the

number of configurations required by the pair-wise heuristic

of SPLCONQUEROR. Moreover, N is similar to the number

of configurations required by the feature-wise measurement of

SPLCONQUEROR. Thus, we can compare the two approaches

according to these sample sizes. Table IV lists the prediction

fault rates produced by the two approaches when we apply

them to the (random or specific) samples of size N and M

for the six subject systems listed in Table II.

Our approach produces a prediction fault rate of 8% or

less based on a random sample of size N for three systems

(Rows 2, 5, and 6 in Table IV); and it produces an average

of 6.2% prediction fault rate for all six systems, when the

sample size reaches M . By comparison, SPLCONQUEROR

produces a prediction fault rate of 7.8% using the feature-wise

measurement on a specific sample of size N for two systems

(Rows 2 and 6); and it produces an average of 9.1% prediction

fault rate using the pair-wise heuristic on a specific sample of

size M for all six systems. When other heuristics for higher-

order feature interactions are considered, SPLCONQUEROR

can produce an average of 5% prediction fault rate for all six

systems (not listed in Table IV) [19], which is more accurate

than our approach, but requires additional measurements.

2) Prediction Effort: The higher prediction accuracy of

SPLCONQUEROR comes at a cost: SPLCONQUEROR needs

additional effort to select specific configurations and to detect

performance-relevant feature interactions. When we encounter

a large-scale system with a great number of features, such

TABLE IV
MEAN±STANDARD DEVIATION OF THE PREDICTION FAULT RATE (%) FOR

THE SIX SYSTEMS (1 TO 6 LISTED IN TABLE II) AND THE TWO SAMPLE

SIZES (N AND M LISTED IN TABLE II) USING OUR APPROACH AND

SPLCONQUEROR; THE NUMBER IN BOLD INDICATES THE BEST CASE IN

EACH ROW

Our approach SPLConqueror

N M N M

1 26.9±28.4 9.7±10.8 14.9±24.8 7.7±11.2

2 5.7±4.9 3.3±2.4 7.8±9.0 7.4±10.2

3 15.1±18.1 6.4±5.7 29.6±22.0 17.9±27.2

4 112.4±354.6 7.8±13.2 44.1±42.3 3.9±5.3

5 3.2±2.6 2.7±2.5 17.7±19.6 8.5±9.6

6 8.0±4.5 7.2±4.2 7.8±9.2 9.3±12.5

Avg. 28.6±68.9 6.2±6.5 20.3±21.2 9.1±12.7

effort can be quite expensive [14]. In contrast, our approach

supports random sampling and progressive performance pre-

diction, which makes it more pragmatic. That is, our approach

can work with random samples and make more accurate

predictions progressively when more data are available. Fur-

thermore, as shown in Section VI-D, our approach is highly

efficient and the prediction process often takes only little time.

3) Sample Dependence: SPLCONQUEROR works because

it relies on specific samples selected by heuristics to detect

performance-relevant feature interactions; our approach works

because (1) the evaluated dataset fits well in the non-linear

regression model we use, and (2) the random sample we use

reflects the important characteristics of the whole population.

As demonstrated in Section VI-E, our approach works well

with a small random sample, provided it has a similar perfor-

mance distribution as the whole population. However, if such

a random sample happens to be skewed to some undesirable

characteristics, the prediction effects of our approach might

be affected. For example, users may prefer some specific

configurations with certain features and always miss some

other features; based on such a sample, our approach may not

produce accurate predictions for the configurations selecting

the missed features.11

4) Application Scope: A clear advantage of a regression

technique is that it can support not only Boolean (e.g., a

“selected” or “deselected” feature), but also numeric feature

selections (e.g., the heap size or the CPU speed [24], [25]),

which makes our approach applicable in wider domains. In

contrast, the existing techniques for feature-interaction detec-

tion support only Boolean feature selections.

5) Summary: Both approaches have strengths and weak-

nesses. We expect that a combination of both approaches is

beneficial to further increase prediction accuracy and reduce

prediction effort in wider application domains (e.g., by com-

bining heuristics used in SPLCONQUEROR to identify suitable

samples for CART). In particular, we provide the following

guidance for users to choose between the two approaches

in practice. (1) If a software system has a small number of

features, such that the cost of detecting feature interactions is

11An exploratory experiment on missing features and skewed configurations
is available in a technical report at http://gsd.uwaterloo.ca/node/484.
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acceptable, users shall choose SPLCONQUEROR, due to its

higher prediction accuracy; otherwise, our proposed approach

is superior, due to its reduced prediction effort and reasonable

prediction accuracy. (2) If there is already a sample available,

one has to check whether the sample satisfies certain feature-

coverage criteria, before using SPLCONQUEROR; whereas one

can produce predictions directly based on the sample using our

approach.

VII. RELATED WORK

A. Model-Based Prediction

CART and its variants, such as Random Forests and Boost-

ing, have been widely used in statistics and data mining,

because CART’s algorithm is fast and reliable, and its tree

structure can provide insight into the relevant input variables

for prediction [4], [11].

Thereska et al. [24] proposed a practical performance model

based on CART for interactive client applications, such as

Microsoft Office and Mozilla. They focused on a range of de-

ployment parameters from the users’ application environment,

such as CPU speed and memory size; instead, we consider

the configuration options of a software system. Moreover, our

approach targets all kinds of configurable software systems,

as long as the valid configurations can be derived.

Westermann et al. [25] presented an approach to the

automated improvement of performance-prediction functions

by three measurement-point-selection strategies based on the

prediction accuracy. They constructed the prediction functions

by statistical inference techniques, including CART. This

approach, however, assumes that all input variables of the

prediction function are already relevant to performance; while

our approach does not have such a restriction, but considers

all features of a software system.

Even though the above studies have demonstrated the effects

of CART on performance prediction for different case studies

[24], [25], they did not explicitly provide evidence for why

CART does or does not work. We found that our approach

works well with a small random sample when the sample has

a similar performance distribution as the whole population.

Happe et al. [10] proposed a compositional reasoning

approach based on component specifications with resource

demands and predicted execution time. Their approach is re-

stricted to component-based systems, whereas our approach is

applicable to all configurable systems, once their configurable

options are abstracted as features.

Tawhid and Petriu [23] presented a model-driven approach

to deriving a performance model from an extended feature

model with performance-analysis information. The approach

requires detailed up-front knowledge from a domain-specific

performance analysis, which makes tuning prediction for accu-

racy difficult. Our approach avoids these problems by directly

working with performance measurements.

Ramirez and Cheng [17] presented an approach that lever-

ages goal-based models to facilitate the automatic derivation of

utility functions at the requirements level; our approach works

at the level of actual program variants.

B. Measurement-Based Prediction

A most recent measurement-based prediction technique is

SPLCONQUEROR [19], [21]. We have compared it to our

approach and discussed the strengths and weaknesses of both

approaches in Section VI-G.

Sincero et al. [22] used existing configurations and measure-

ments to predict a configuration’s non-functional properties.

They designed the Feedback approach to find the correlation

between feature selections and measurements and to provide

qualitative information about how a feature influences a non-

functional property during the configuration process. In con-

trast to our approach, their approach does not actually predict

a performance value quantitatively.

Chen et al. [6] combined benchmarking and profiling to

predict the performance of component-based applications. In

contrast, our approach correlates performance measurements

with configurations and can work with any set of configura-

tions measured by simulation or by monitoring in the field.

VIII. CONCLUSION

We proposed a progressive and variability-aware approach

to performance prediction for configurable software systems

based on random samples. The approach uses the statistical

learning technique CART to build an explicit performance

model that represents the correlation between feature se-

lections and performance. We demonstrated the feasibility

and effectiveness of our approach on six real-world systems,

spanning different domains, implementation languages, and

configuration mechanisms. Our empirical results show that the

approach produces a prediction accuracy of 94%, on average,

based on small random samples. Moreover, our approach

shows a robust increasing trend of prediction accuracy as the

sample size increases. A comparative analysis of performance

distributions revealed that our approach works well when the

corresponding sample has a similar performance distribution as

the whole population. We compared our approach to a state-

of-the-art technique, called SPLCONQUEROR, and explored

the strengths and weaknesses of the two approaches, to guide

users to choose one or the other in practice.

Our approach has the potential of wide application to

help users make trade-offs between feature selections and

performance and to guide the configuration process [15]. In

future work, we aim at performing systematic parameter tuning

for CART and trying other regression techniques (e.g., Sup-

port Vector Machines [4]). Moreover, we aim at quantifying

the similarity between a sample and the whole population,

involving several characteristics for performance prediction. In

addition, we will explore the potential of using our approach

for configuration optimization [1], [9], [18], test generation

[27], and bug prediction [12].
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