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ABSTRACT 

Variations in the acoustic space due to changes in speaker mental 
state are potentially overshadowed by variability due to speaker 
identity and phonetic content. Using the Audio/Visual Emotion 
Challenge and Workshop 2013 Depression Dataset we explore the 
suitability of i-vectors for reducing these latter sources of 
variability for distinguishing between low or high levels of speaker 
depression. In addition we investigate whether supervised 
variability compensation methods such as Linear Discriminant 
Analysis (LDA), and Within Class Covariance Normalisation 
(WCCN), applied in the i-vector domain, could be used to 
compensate for speaker and phonetic variability. Classification 
results show that i-vectors formed using an over-sampling 
methodology outperform a baseline set by KL-means supervectors. 
However the effect of these two compensation methods does not 
appear to improve system accuracy. Visualisations afforded by the 
t-Distributed Stochastic Neighbour Embedding (t-SNE) technique 
suggest that despite the application of these techniques, speaker 
variability is still a strong confounding effect. 

Index Terms— Depression, Acoustic Variability, I-vectors, 
Linear Discriminant Analysis, Within Class Covariance 
Normalisation, t-Distributed Stochastic Neighbour Embedding 

1. INTRODUCTION 

A wide range of acoustic information is modulated onto speech 
signals; this potentially places an upper-bound on the accuracy of a 
speech based depression classification system. Acoustic variability 
that arises due to speaker characteristics, channel effects and 
phonetic content has been shown to have detrimental effects on the 
accuracy of recognition of a range of paralinguistic information 
such as long-term speaker traits including age and gender [1], 
temporary speaker traits such as intoxication [2] and sleepiness [3], 
as well as transient speaker states such as emotion [4]. In emotion 
recognition, in particular, it has been shown that speaker variability 
affects the feature space distribution of emotional data [4]. Both 
automatic emotion and depression recognition systems share 
common traits; a continuous negative affect is a key symptom of 
depression [5]. However depression is more steady-state compared 
with the transient nature of emotions, with individuals inflicted for 
weeks or months rather than seconds or minutes [6]. 

In speaker recognition, i-vectors, together with a range of 
complementary transforms designed to further reduce errors arising 
from intersession variability, have become a pseudo standard due 
to their ability to compress both speaker and channel variability 
into a low-dimensional feature space [7], [8]. However little work 
has been done exploring the suitability of this paradigm for 
modelling paralinguistic tasks which often have substantially (both 
in terms of number of speakers and duration) smaller amounts of 

training data when compared with those used in speaker 
recognition. 

Motivated by results showing that both speaker variability and 
phonetic variability have negative effects on depression 
classification [9], [10], we investigate the suitability of i-vectors 
for modelling depressed speech as well as the ability of the 
paradigm to reduce the effects of variability not related to 
depression. 

2. RELATION TO PRIOR WORK 

Whilst a range of prosodic [11], [12], voice quality [13], spectral 
features [9], [14] and Gaussian Mixture Model (GMM) based 
supervectors [10]  have been established for use in an automatic 
speech based depression classifier, there are only a small number 
of papers which have investigated the effects of unwanted acoustic 
variability on depressed speech classification. 

Results presented in [9] show that per-speaker normalisation 
offers no improvement for a depression classifier indicating that, as 
in emotion recognition, speaker variability has stronger effects than 
variability due to depression. Work in [15] shows that depression 
classification is susceptible to both speaker and channel effects.  

Recent results, found using the Audio/Visual Emotion 
Challenge (AVEC) and Workshop 2013 Depression Dataset, show 
that Nuisance Attribute Projection (NAP) applied to Kullback-
Leibler (KL-means) supervectors may be able to help reduce 
effects due to phonetic variability in a depression regression 
system [10]. Whilst this paper focuses on i-vectors for depressed 
speech classification, we also apply our final i-vector system 
configuration to the depression scale prediction challenge (Section 
5.4) to allow comparison with results presented in [10].   

The application of i-vectors to paralinguistic speech 
classification problems may be complicated by more than just the 
lack of previous investigation on comparatively small databases. 
Speaker traits like depression often only have examples of one 
class (i.e. low or high depression but not both) from a single 
speaker among the training/development data [14]. Compared with 
emotion or speaker recognition, in which training databases exist 
with examples of many emotions or channels per speaker [4], a 
different approach will be required. 

Whilst i-vectors, and the related techniques of Joint Factor 
Analysis and Latent Factor Analysis, have been used in other 
paralinguistic classification tasks such as age and gender analysis 
[1], [16] and emotion classification [4], [17], to the best of the 
authors’ knowledge this paper is the first paper to explore the 
suitability of i-vectors for the classification of speech affected by 
depression. Further, depression data, including AVEC, often pose 
the additional challenge that speech utterances from only a single 
level of depression per speaker are available. 
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