
UTRECHT UNIVERSITY

Variability in Multi-Tenant Enterprise

Software

by

Jaap Kabbedijk

A thesis submitted in partial fulfillment for the

degree of Doctor

in the

Faculty of Science

Department of Information and Computing Sciences

December 2014

http://www.uu.nl
mailto:J.Kabbedijk@uu.nl
http://www.uu.nl/faculty/science
http://www.cs.uu.nl/

SIKS Dissertation Series No. 2014-29

The research reported in this thesis has been carried out under the auspices of SIKS, the

Dutch Research School for Information and Knowledge Systems.

The cover image is from the board game Tzolkin: The Mayan Calendar by Czech Games

Edition. The photo is provided by BoardGameGeek member Joshua R.

ISBN/EAN: 978-90-393-6177-1

©2014, Jaap Kabbedijk. All rights reserved

http://boardgamegeek.com/boardgame/126163/tzolk-mayan-calendar
http://czechgames.com/en/
http://czechgames.com/en/
http://boardgamegeek.com/
http://boardgamegeek.com/user/reitoei

Variability in Multi-Tenant Enterprise

Software

Variabiliteit in Multi-tenant Bedrijfssoftware

(met een samenvatting in het Nederlands)

Proefschrift

ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van

de rector magnificus, prof. dr. G.J. van der Zwaan, ingevolge het besluit van het

college voor promoties in het openbaar te verdedigen op dinsdag 23 december 2014

des middags te 12.45 uur door

Jaap Kabbedijk

geboren op 27 mei 1986 te Oosterhout

Promotor: Prof.dr. S. Brinkkemper

Prof.dr.ir. J.C. Wortmann

Copromotor: Dr. R.L. Jansen

This research was financially supported by the NWO ‘Product as a Service’ project.

“Somewhere in the deeply remote past it seriously traumatized a small random

group of atoms drifting through the empty sterility of space and made them cling

together in the most extraordinarily unlikely patterns. These patterns quickly learnt

to copy themselves (this was part of what was so extraordinary of the patterns) and

went on to cause massive trouble on every planet they drifted on to. That was how

life began in the Universe.”

Douglas Adams, The Hitchhiker’s Guide to the Galaxy

Preface

Before I started my PhD., I was not really aware of what such an endeavour would entail.

Now, almost four years later, I do know. I now know one can not fulfil this journey alone.

The are many people to thank and I will try to do this here. Most probably I missed the

most obvious, important and valuable ones. For this I apologize beforehand. If you are

one of them, feel blessed; you can count yourself among my most important and valuable

friends.

Right after my first publication and presentation at a scientific conference, I decided the

thrill and travel of academic interaction was something I would like to experience more.

This was during my master studies and I made the life changing choice to become a PhD.

This was a major choice. An important choice, and a choice I don’t regret.

Using the enthusiasm I had when I started, the literal and intellectual travels began. On

the way I learned to value the people supporting my professionally. Slinger, thank you

for helping me structure and improve my studies. Thanks also for not only being an

academic mentor, but also a friend for beers and laughs.

Unsurprisingly, my gratitude also goes to my promotor Sjaak, who was busy at times,

but always tried to help me find out what was best for me. I also express my thanks to

my second promotor Hans Wortmann and the people I worked with during my research

project and at the many software companies I visited. There are too many people to

name them all, but Liz, Werner, Ronald, Rolf and Machiel, you are certainly among the

many I should actually all thank explicitly.

So, now for the people that helped me out, often not by supporting me directly in writing

my thesis, but by being there for and supporting me. Of course my parents; pap en mam,

bedankt dat jullie er altijd voor me zijn. Also, all my friends. There are, luckily, too

many of you to write all the names down, but thank you all. Special thanks goes to

Kevin, who has been my soul mate for almost ten years now. Last, but certainly not

least, my love goes to Eline.

Knowing what I know now, I can safely state that I learned a lot about software patterns,

software architecture, research methods and the academic culture. But most importantly,

I learned that a PhD., like most things in life, is enjoyed best when you have the people

you love, support you.

Jaap

iv

Contents

Preface iv

1 Introduction 3
1.1 Motivation . 3
1.2 Scientific Relevance . 5
1.3 Positioning the Research . 6

1.3.1 Enterprise Software . 7
1.3.2 Software as a Service . 8
1.3.3 Software Architecture . 10
1.3.4 Software Quality . 10
1.3.5 Software Patterns . 12
1.3.6 Variability . 13

1.4 Research Approach . 13
1.4.1 Research Questions . 14
1.4.2 Research Methods . 17
1.4.3 Validation and Evaluation 20

1.5 Dissertation Outline . 21

I Variability and Multi-tenancy 25

2 Defining Multi-Tenancy 27
2.1 Introduction . 28
2.2 Research Method . 30

2.2.1 Academic Literature Collection 31
2.2.2 Industrial Literature Collection 32

2.3 Classification . 34
2.3.1 Academic Literature Classification 34
2.3.2 Industrial Literature Classification 36

2.4 Observations . 37
2.4.1 Academic Paper Results . 38
2.4.2 Blog Post Results . 38

2.5 Definition . 40
2.6 Research Agenda . 43
2.7 Threats to Validity . 46

v

vi CONTENTS

2.8 Conclusion . 46

3 The Role of Variability Patterns 49
3.1 Introduction . 50
3.2 Concepts . 51

3.2.1 Tenant-based Variability . 51
3.2.2 Variability Patterns . 52

3.3 Conceptual Model . 53
3.3.1 Application Example . 54

3.4 Discussion . 55
3.5 Conclusion . 56

4 Variability in Multi-tenant Systems 57
4.1 Introduction . 58
4.2 Research Approach . 59

4.2.1 Validation . 59
4.3 Related Work and Definitions . 60

4.3.1 Multi-tenancy . 60
4.3.2 Variability . 61
4.3.3 Software Patterns . 62

4.4 User-Variability Trade-off . 63
4.5 Variability Patterns . 64

4.5.1 Customizable Data Views 64
4.5.2 Module Dependent Menu . 65
4.5.3 Pre/Post Update Hooks . 67

4.6 Conclusion and Future Research . 68

5 Variability Consequences of the CQRS Pattern 69
5.1 Introduction . 70
5.2 Related Work . 71
5.3 Research Approach . 73

5.3.1 Research Questions . 74
5.3.2 Validation . 75

5.4 CQRS Implementation . 75
5.5 CQRS Sub Patterns . 77

5.5.1 Event Sourcing . 77
5.5.2 Event Store . 77
5.5.3 Aggregate Root . 78
5.5.4 Command Handler . 79
5.5.5 Query Model Builder . 80
5.5.6 Query Handler . 80
5.5.7 Snapshotting . 81

5.6 Variability Influences . 82
5.7 Discussion and Future Research . 83
5.8 Conclusion . 84

CONTENTS vii

II Selecting Patterns in Systems Design 85

6 Multi-Tenant Architecture Assessment 87
6.1 Introduction . 88
6.2 Research Approach . 89

6.2.1 Structured Literature Research 90
6.2.2 Expert Validation . 92

6.3 Multi-Tenant Architecture Assessment Model 93
6.4 Multi-tenant Architectures . 94

6.4.1 Expert Validation . 97
6.5 MTA Assessment Criteria . 98

6.5.1 Expert Evaluation . 100
6.6 MTA Decision Matrix . 101
6.7 Discussion and Conclusion . 104

7 Comparing Dynamical Adaptation Patterns 105
7.1 Introduction . 106
7.2 Related Work . 107
7.3 Research Approach . 110

7.3.1 Validation . 111
7.4 Pattern Description Method . 111
7.5 Dynamic Functionality Adaptation Patterns 114

7.5.1 Problem Statement . 114
7.5.2 Component Interceptor Pattern 115
7.5.3 Event Distribution Pattern 116
7.5.4 Pattern Comparison . 118

7.6 Dynamic Data Model Extension Patterns 122
7.6.1 Problem Statement . 122
7.6.2 Datasource Router Pattern 124
7.6.3 Custom Property Object Pattern 126
7.6.4 Pattern Comparison . 127

7.7 Conclusion . 132

8 Software Pattern Evaluation Method 135
8.1 Introduction . 136
8.2 Related Work . 137
8.3 Research Approach . 138
8.4 SPEM - Software Pattern Evaluation Method 141
8.5 Method Evolution . 144

8.5.1 Initial Method Construction 144
8.5.2 Method Evaluation . 146

8.6 SPEM Impementation . 150
8.7 Conclusion . 151

9 Conclusion 155
9.1 Contributions and Evaluations . 156

viii CONTENTS

9.2 Implications . 164
9.3 Reflection . 166
9.4 Limitations and Future Research 169

Bibliography 173

A Pattern Catalogue 185
Customizable Data Views Pattern . 186
Module Dependent Menu Pattern . 188
Pre/Post Update Hooks Pattern . 190
CQRS Pattern . 192
Event Sourcing Pattern . 194
Event Store Pattern . 195
Aggregate Root Pattern . 196
Command Handler Pattern . 197
Query Manager Pattern . 198
Snapshotting Pattern . 200
Dedicated Application and Database Server Pattern 201
Shared Application Server / Dedicated Database Server Pattern 203
Shared Instance / Dedicated Database Server Pattern 205
Dedicated Application Server / Shared Database Server Pattern 207
Shared Application and Database Server Pattern 209
Shared Instance and Database Server Pattern 211
Dedicated Application Instance / Shared Database Pattern 213
Shared Application Server and Database Pattern 215
Shared Instance and Database Pattern 217
Dedicated Application Server / Shared Schema Pattern 219
Shared Application Server and Database Schema Pattern 221
Shared Instance and Database Schema Pattern 223
Component Interceptor Pattern . 225
Event Distribution Pattern . 227
Datasource Router Pattern . 229
Custom Property Object Pattern . 231

B Publications used in the Structured Mapping Study 233

C List of Acronyms 239

D Personal Publication List 241

E Summary 245

F Samenvatting 249

G SIKS Dissertation Series 253

Introduction

1

Chapter 1

Introduction

1.1 Motivation

Enterprise software is the backbone of many companies, both large and small,

for many years already (Engelstätter, 2012). Different types of enterprise software

exist, ranging from content management systems to customer relationship manage-

ment products, to large Enterprise Resource Planning (ERP) applications (Hen-

dricks, Singhal, and Stratman, 2007). Traditionally, such software applications

were deployed on-premises at the customer’s site. This means the customer is

responsible for the infrastructure and maintenance contracts in order to be able to

use the product in a reliable way. This made enterprise software deployment and

maintenance a costly endeavour, with long lead times. The upside of on-premises

deployments, however was the opportunity of custom functionality per customer.

Starting in the 1990s, enterprise software applications were increasingly offered to

companies as hosted solutions (Hoch, Kerr, Griffith, et al., 2001), i.e. Application

Service Providers (ASPs). Application service providers hosted the application on

behalf of companies, leading to lower maintenance and infrastructure fees for cus-

tomers. For the software vendor this means a separate installation of the software

has to be deployed for every customer, even if multiple customers use a similar

product.

Gradually the ASP deployment model changed to a more centralized deployment

model; Software as a Service (SaaS) (Turner, Budgen, and Brereton, 2003). Within

the SaaS paradigm, a single instance of a software product may serve many dif-

ferent customers. The sharing of resources has many benefits, among which lower

costs for both provider and customer and convenient ways of sharing data (Wu,

3

4 Chapter 1 Introduction

Lan, and Lee, 2011), but limited the options of custom functionality which was

one of the big benefits of on-premises software. SaaS is often seen as a part of the

cloud computing paradigm, which is a term for describing the offering of software,

hardware or data through the internet (Armbrust et al., 2010). Sharing resources

by offering a shared application or database instance and providing the service

through the internet, is also referred to as multi-tenancy (Bezemer and Zaidman,

2010), in which the lack of customizability is counteracted by offering a certain

level of variability. Multi-tenancy is defined as “a property of a system where

multiple customers, so-called tenants, transparently share the system’s resources,

such as services, applications, databases, or hardware, with the aim of lowering

costs, while still being able to exclusively configure the system to the needs of the

tenant” (Kabbedijk, Bezemer, Jansen, and Zaidman, 2014 (In Press)).

Currently, SaaS has become the de facto standard for enterprise software ap-

plications. Enterprise software which provides functionality for a specific busi-

ness process, such as Content Management Systems (CMSs) (e.g. Wordpress) and

Customer Relationship Management (CRM) systems (e.g. Salesforce) are already

primarily provided as Software as a Service (SaaS) offerings, but more complex

software, e.g. ERP products are still lacking (Forrester, 2013). Currently, just

2% of large and middle sized companies have adopted ERP as an online product

while almost half of all companies is willing to change from an on-premises to

an online deployment (Forbes, 2014). Enterprise software vendors indicate their

current goal is to migrate their products to a SaaS deployment model in the near

future (Forrester, 2012), but are struggling to comply. When non-trivial business

processes, such as planning or financial management are concerned, customers’

requirements differ between each other. This means complex enterprise software

needs to comply to many different customer requirements, leading to a need for

variability in functionality. The lack of multi-tenant offerings of complex enter-

prise software, such as ERP systems, is an indicator software companies struggle

to offer variability in multi-tenant enterprise software.

Problem Statement — It is unclear to software producing organiza-

tions how variability must be implemented in multi-tenant enterprise

software. This uncertainty hampers the production and adoption of

online enterprise software.

Chapter 1 Introduction 5

This nescience of software producing organizations inhibits the creation of multi-

tenant enterprise software and limits the functionality of software offered to cus-

tomers. In this dissertation, we pursue methods, tools, and software patterns for

the realization of multi-tenancy in multi-tenant enterprise software.

1.2 Scientific Relevance

In order to offer different customers different functionality in their software prod-

ucts, variability mechanisms are often applied among the different products from

a software vendor (Pohl, Böckle, and Linden, 2005). Variability has always been a

significant research area in Software Product Lines (SPLs) (Van Gurp, Bosch, and

Svahnberg, 2001). The emphasis in SPLs is on the manufacturing of different prod-

ucts all based on the same shared set of assets, as is common in, for instance, the

automotive industry and the manufacturing of mobile handsets (Thiel and Hein,

2002). Variability the whole software development life cycle (Michalik, Avgeriou,

Tofan, Galster, and Weyns, 2014) and binding to a particular variant of a product

can occur at different moments life cycle, e.g. at run-time (Svahnberg, Gurp, and

Bosch, 2005).

The level of variability in software products is strongly dependent on not only the

architecture of the product, but also the architecture of the platform or operat-

ing system the product runs on. Implementing localization in iOS and Android

applications, for example, is a seemingly simple variability issue, which can be

really hard to tackle, due to the lack of support for localization in both oper-

ating systems (Galster, Männistö, Weyns, and Avgeriou, 2014). The concept of

variability is closely tied to software architecture, since the level of variability

in a software product is dependent on variability choices made early on in the

architecting process. Variability also affects many software architecture quality

attributes and can even be seen as a quality attribute itself, amplifying the strong

link between variability and software architecture (Galster, Männistö, Weyns, and

Avgeriou, 2014). Most concepts in variability research are currently geared to-

wards on-premises software and fail to address variability in online software. The

concept of run-time variability can be used the address the problem of varying

requirements while a software product is running, but is based on single-tenant

software instead of multi-tenant applications. In this dissertation, the problem of

implementing variability in multi-tenant software is addressed.

6 Chapter 1 Introduction

The architecting process in software engineering is frequently documented and

communicated in the form of software patterns (Gamma, Helm, Johnson, and

Vlissides, 1995). Depending on the pattern description form (e.g. Gang of Four

(GoF) based form (Gamma, Helm, Johnson, and Vlissides, 1995) or Pattern-

Oriented Software Architecture (POSA) based form (Buschmann, Meunier, Rohn-

ert, Sommerlad, and Stal, 1996)), patterns describe not only a proposed solution

for a recurring problem, but also consequences of applying the pattern. It is of

importance to know the consequences of applying a pattern, and the effect on

software quality, before implementing a pattern. In software architecture, the

quality of a system is assessed by evaluating quality attributes, as proposed by

ISO/IEC 25010 (ISO/IEC, 2011) (previously ISO/IEC 9126 (ISO/IEC, 2001)), of

a specific system implementation (Bass, Clements, and Kazman, 2013). Patterns,

by definition, are general solutions for a problem instead of a specific implemen-

tation (Coplien and Alexander, 1996). Evaluating the effect of applying a general

solution in depth, instead a specific implementation is currently lacking in scien-

tific literature. Software architecture quality attributes are often measured using

metrics of the system implementation (Kan, 2002). When evaluating patterns,

this is not possible and should be performed in a different way. This dissertation

proposes a method for using expert focus groups (Kitzinger, 1995) to evaluate to

software quality affected by the software pattern.

The two leading conferences in software architecture research (i.e. the European

Conference on Software Architecture (ECSA) and the Working IEEE/IFIP Con-

ference on Software Architecture (WICSA) call explicitly for studies on software

architectures for cloud architectures, architectural patterns and quality attributes,

in their calls for papers, indicating the active research field worldwide. Addition-

ally, the Pattern Languages of Programs (PLoP) community expresses the need

for pattern creation in their call for paper for academics and practitioners, in or-

der to guide the domain of software engineering. This research aims at answering

these calls by adding to the body of knowledge of software architecture research

and developing a software pattern catalogue.

1.3 Positioning the Research

This section discusses the important concepts used within this thesis. For every

concept relevant literature is discussed, after which a definition of the concept is

provided.

Chapter 1 Introduction 7

1.3.1 Enterprise Software

The software business is often characterized to concern software products and

software services (Cusumano, 2004). For product companies, most of the firm’s

revenues come from selling commercial software or licenses. Service companies

earn most of the revenues through selling additional services, such as customiza-

tions and support. The difference between the two different types, however, is not

clear-cut, and many hybrid companies exist (Nambisan, 2001). An important dif-

ference between the software business and other businesses lies in the fact that its

main product is intangible and has a variable production cost of near zero (Messer-

schmitt and Szyperski, 2005). Focusing on software products, enterprise software

serves the needs of companies, instead of individual users and has become the

de-facto software used in large organizations (Brown and Vessey, 2003). Types

of products often mentioned as examples of enterprise software include Enter-

prise Resource Planning (ERP) software, Content Management Systems (CMSs)

and Customer Relationship Management (CRM) applications (Hendricks, Sing-

hal, and Stratman, 2007). An overview of different types of enterprise software

has been given by Xu and Brinkkemper (2007), who define the following four types

of software:

• Shrink-wrapped software — Software that is boxed, shrink-wrapped and sold

in stores.

• Commercial Off-The-Shelf (COTS) software — “Software sold, leased, or

licensed to the general public; offered by a vendor trying to profit from it;

supported and evolved by the vendor, who retains the intellectual property

rights; available in multiple, identical copies and used without source code

modification.” (Brownsword, Oberndorf, and Sledge, 2000, p.49).

• Packaged software — Software products obtainable from software vendors,

which generally little modification or customization.

• Commercial Software — Software which can be purchased through the retail

market.

Enterprise software is also called ‘enterprise applications’ or ‘business software’ (Swan-

son and Wang, 2005). In this dissertation the term ‘software product’ is used,

which refers to packaged enterprise software. Currently, the delivery of enterprise

8 Chapter 1 Introduction

software is shifting from an on-premises deployment model to an online deploy-

ment model (D’souza, Kabbedijk, Seo, Jansen, and Brinkkemper, 2012), which

will be discussed further in the next section.

Definition of Enterprise Software — “Enterprise applications are about the

display, manipulation, and storage of large amounts of often complex data and

the support or automation of business processes with that data.” (Fowler, 2003,

p. xviii)

1.3.2 Software as a Service

The concept of Software as a Service (SaaS) was first mentioned in an internal

document from the Software & Information Industry Association (SIIA), in which

it was introduced as the successor of Application Service Provider (ASP) (Hoch,

Kerr, Griffith, et al., 2001). Turner, Budgen, and Brereton (2003) later stated

that SaaS “focusses on separating the possession and ownership of software from

its use”. Typically, SaaS is delivered as a set of services that can be accessed and use

through the internet (Dubey and Wagle, 2007). The service-oriented approach in

SaaS allows for much more flexibility in system engineering, as opposed to the on-

premises design (Gold, Mohan, Knight, and Munro, 2004). Four different maturity

levels of online software deployment exist according to Chong and Carraro (2006),

which are shown in Figure 1.1.

A deployment model in which all tenants have a custom deployment, which is

hosted by a hosting provider is shown in Figure 1.1a. This level is similar to the

earlier mentioned ASP model (Tao, 2001). This deployment model allows for a

high level of customization but lacks the ability to scale well horizontally (Arlitt,

Krishnamurthy, and Rolia, 2001) if a provider gets a lot of tenants. Also, since

all instances are different, updating the software can be cumbersome. The config-

urable deployment model (cf. Figure 1.1b) offers all tenants a similar customizable

instance of a software product. This improves the ease of software updating, while

keeping the possibility to customize the software product. This model, however,

similar to the previous model, does not scale well if the customer base grows.

One of the main potential benefits of SaaS is the sharing of resources among ten-

ants (Dubey and Wagle, 2007). The configurable shared deployment model (cf.

Figure 1.1c), in which one instance of a software product is shared among all

tenants. This approach allows for a high level of maintainability (Perepletchikov,

Ryan, Frampton, and Tari, 2007), but limits the levels of scalability and functional

Chapter 1 Introduction 9

Instance A Instance CInstance B

Tenant A Tenant B Tenant C

Uses Uses Uses

(a) Custom deployment

Instance InstanceInstance

Tenant A Tenant B Tenant C

Uses Uses Uses

(b) Configurable deployment

Instance

Tenant A Tenant B Tenant C

Uses Uses Uses

(c) Configurable, shared deployment

Instance InstanceInstance

Tenant A Tenant B Tenant C

Uses Uses Uses

Tenant Load Balancer

(d) Configurable, scalable deployment

Figure 1.1: SaaS Maturity Levels

variability(Van Gurp, Bosch, and Svahnberg, 2001). The final level of SaaS matu-

rity is shown in Figure 1.1d. In this model, a load balancer is used to balance the

tenant requests among the different similar product instances, leading to a high

level of scalability (Rimal, Choi, and Lumb, 2009).

SaaS is often characterized as being the top level in the online software stack (also

called “cloud software” (Mell and Grance, 2011)). The other layers are:

• Platform as a Service (PaaS) — Online provision of the software platform

where applications run on (Vaquero, Rodero-Merino, Caceres, and Lindner,

2008).

• Infrastructure as a Service (IAAS) — Provision model for the sourcing of the

infrastructure over the internet (Bhardwaj, Jain, and Jain, 2010).

10 Chapter 1 Introduction

Definition of SaaS — “The capability provided to the consumer is to use the

provider’s applications running on a cloud infrastructure. The applications are

accessible from various client devices through either a thin client interface, such

as a web browser (e.g., web - based email) or a program interface. The consumer

does not manage or control the underlying cloud infrastructure including network,

servers, operating systems, storage, or even individual application capabilities,

with the possible exception of limited user - specific application configuration

settings.” (Mell and Grance, 2011, p. 2)

1.3.3 Software Architecture

The concept of software architecture originates from the 1960s but was made

popular by Shaw and Garlan (1996). Software architecture is a discipline that

primarily consists of three different practices:

• The structure of a software system, i.e. its components and relationships (Clements,

Garlan, Bass, Stafford, Nord, Ivers, and Little, 2002).

• The process of selecting the right architecture; referred to in this dissertation

as ‘architecting process’.

• The documentation of a software system and the decisions made concerning

the system (Bass, Clements, and Kazman, 2013).

The focus in this dissertation is on the structure of software systems. Designing

the structure of an architecture, description of the architecture can be done in

different ways. Taylor, Medvidovic, and Dashofy (2010) state that architectural

patterns are a suitable way to model domain knowledge on application structures.

Definition of Software Architecture — “The software architecture of a pro-

gram or computing system is the structure or structures of the system, which

comprise software elements, the externally visible properties of those elements,

and the relationships among them.” (Bass, Clements, and Kazman, 2013, p. 30)

1.3.4 Software Quality

Different views exist on what software quality entails (Kitchenham and Pfleeger,

1996). A dominant view on software quality is the user perspective, which focusses

Chapter 1 Introduction 11

on how users experience the quality of a product. In this dissertation, we focus

more on the product perspective, which puts attributes of the product central

instead of the subjective perspective of the user.

The quality of software is often expressed as a fixed list of attributes, defined in the

ISO/IEC 25010 standard (ISO/IEC, 2011). In this standard the following main

attributes are expressed:

• Performance efficiency — Degree to which the software product provides

appropriate performance, relative to the amount of resources used, under

stated conditions.

• Compatibility — The ability of multiple software components to exchange

information or to perform their required functions while sharing the same

environment.

• Usability — Degree to which the software product can be understood,

learned and used, when used under specified conditions.

• Reliability — Degree to which the software product can maintain a specified

level of performance when used under specified conditions.

• Security — The protection of system items from accidental or malicious

access, use, modification, destruction, or disclosure.

• Maintainability — Degree to which the software product can be modified.

Modifications may include corrections, improvements or adaptation of the

software to changes in the environment, and in requirements and functional

specifications.

• Portability — Degree to which the software product can be transferred

from one environment to another

The attributes mentioned above, all consist of sub-attributes (e.g. reusability or

changeability), which will not be discussed in depth in the dissertation. Deter-

mining the quality attributes of a software system is done by measuring proxies

within the system, such as the response time or total lines of code (Kan, 2002).

Definition of Software Quality — “Conformance to explicitly stated func-

tional and performance requirements, explicitly documented development stan-

dards, and implicit characteristics that are expected of all professionally developed

software.” (Pressman, 1994, p. 388)

12 Chapter 1 Introduction

1.3.5 Software Patterns

Patterns are originally introduced by Alexander, Ishikawa, Silverstein, Jacobson,

Fiksdahl-King, and Angel (1977), who wrote a pattern language to describe the

design of a city. The concept of describing common problems in a design and

bundling them with a generic solution was picked up in the software engineer-

ing domain and popularized by Gamma, Helm, Johnson, and Vlissides (1995).

They present 23 patterns (e.g. Observer Pattern, Abstract Factory), which all de-

scribe a specific object oriented design problem by listing the following attributes:

1. Name, 2. Intent, 3. Motivation, 4. Applicability, 5. Structure, 6. Consequences

and 7. Known Uses. By using the same description format for all patterns, they

became usable references for software engineers in designing software and commu-

nicating design problems and solutions.

Later, Buschmann, Meunier, Rohnert, Sommerlad, and Stal (1996) introduced

additional patterns and named three different types of patterns.

• Architectural Patterns — “Fundamental structural organization schemas for

software systems. They provide a set of predefined subsystems, specify their

responsibilities, and include rules and guidelines for organizing the relation-

ship between them.” (Buschmann, Meunier, Rohnert, Sommerlad, and Stal,

1996, p.25)

• Design Patterns — “A commonly-recurring structure of communicating com-

ponents that solve a general design problem in a particular context.” (Buschmann,

Meunier, Rohnert, Sommerlad, and Stal, 1996, p.221)

• Idioms — “Low-level patterns specific to a programming language. An idiom

describes how to implement particular aspects of components or relation-

ships between them with the features of the given language.” (Buschmann,

Meunier, Rohnert, Sommerlad, and Stal, 1996, p.345)

This dissertation provides both architectural and design patterns and defines this

group as software patterns as introduced by Schmidt, Fayad, and Johnson (1996).

Definition of Software Patterns — “A particular recurring design problem

that arises in specific design contexts, and presents a well-proven generic scheme

for its solution. The solution scheme is specified by describing its constituent

components, their responsibilities and relationships, and the ways in which they

collaborate.” (Buschmann, Meunier, Rohnert, Sommerlad, and Stal, 1996, p. 8)

Chapter 1 Introduction 13

1.3.6 Variability

Originally, the concept of variability came from the automotive industry, in which

different types of cars are manufactured based on a common set of parts (e.g.

chassis, wheels or engine) (Thiel and Hein, 2002). This idea is later adopted in

the domain of Software Product Lines (SPLs) (Pohl, Böckle, and Linden, 2005).

Within SPL variability, the moment at which design decisions are taken, con-

cerning the functionality supported by the software product, are delayed to later

stages (Van Gurp, Bosch, and Svahnberg, 2001). The following binding moments

for a variant are defined by Svahnberg, Gurp, and Bosch (2005):

• Product Architecture Derivation — Binding is done when a particular prod-

uct architecture is generated.

• Compilation — The final product is bound during compilation, with specific

variants according to compiler directives (e.g. different hardware platforms).

• Linking — Different components of the software product are linked just after

compilation or before run-time. The bounding can be irrevocable or change-

able every time the system runs.

• Run-time — Binding in this type of variability is, usually, defined in the

code. New variants are configured while the product is running.

This dissertation focusses on run-time variability and does this in an online con-

text.

Definition of Variability — “Variability in software architectures describes how

well an architecture supports flexibility in a certain aspect, with an exact specifi-

cation of the differences.” (Galster and Avgeriou, 2011, p. 63)

1.4 Research Approach

In this section, the research questions posed in this dissertation, together with the

research methods used, are discussed.

14 Chapter 1 Introduction

1.4.1 Research Questions

Software vendors offering Enterprise Software Applications are steadily moving

from on-premises deployment models to SaaS deployment models. This shift en-

ables them to share computing resources among their clients and benefit in terms

of scalability and deployment costs. However, software vendors struggle to enable

similar customization freedom as offered in their on-premises applications while

keeping the advantages of the enabled economies of scale (D’souza, Kabbedijk,

Seo, Jansen, and Brinkkemper, 2012). There is a need for variability in online

enterprise software, but an overview of different options to implement variability

is currently lacking.

The Main Research Question (MRQ) of this dissertation is stated as follows:

MRQ - How can variability in multi-tenant enterprise software be re-

alized?

In order to answer the main question of this dissertation, two Research Questions

(RQs) are formulated. First we focus on gathering patterns related to variability

in multi-tenant enterprise software, so that practical solutions in multi-tenant

enterprise software engineering are identified. Second, the focus is more geared

towards the architecting process, to put more emphasis on the role of software

patterns in software development. Each RQ is answered in a different section of

the dissertation and contains several additional sub-questions, which are discussed

below, including the research methods used and, if applicable, a short explanation

on how the results are validated.

RQ 1. How can patterns be employed to implement variability in multi-tenant en-

terprise software?

This question gives an overview of the main concepts relevant in online soft-

ware deployment models and explores the role of software patterns in intro-

ducing variability. Related to the RQ, four sub questions are discussed:

RQ 1.1. What is the concept of multi-tenancy?

The term “Multi-Tenancy” is frequently used in academic literature and

by practitioners, but to date, no comprehensive definition of Multi-

Tenancy exists. Multi-Tenancy can be applied on different levels in the

computing stack (i.e., database or instance level) and in different com-

binations (Mietzner, Unger, Titze, and Leymann, 2009), causing the

Chapter 1 Introduction 15

definitions to focus on different levels and combinations of levels. This

RQ aims at giving an overview of the use of the term “Multi-Tenancy”

by performing a systematic mapping study in academic and industrial

literature. The results are validated by several cross validation checks

during all steps in the mapping study process.

RQ 1.2. How are software patterns used to implement variability?

The implementation of variability in a software product is a challenge for

software vendors. The problems regarding implementation of variability

in online software can be assessed by using the structured approach

patterns offer (Fowler, 2003). This RQ focusses on how the notion of

software patterns can be used to document the problems, solutions and

consequences related to implementing variability in Multi-Tenant SaaS

products.

RQ 1.3. What are the trade-offs of providing more variation in multi-tenant

enterprise software?

The effort needed to offer variability in online enterprise software greatly

depends on the specific deployment model (Mietzner, Leymann, and

Papazoglou, 2008) applied. The more resources, such as application in-

stances or databases, are shared, the harder it can get to implement

tenant specific variability. In this RQ the trade-off between variability

and resource sharing is explored. Also, suggestions on offering variabil-

ity in online enterprise software are provided in the form of different

patterns. The patterns are gathered by performing two case studies and

refined using a design science approach. The results are validated using

expert interviews.

RQ 1.4. How does the Command Query Responsibility Separation (CQRS)

pattern influence the variability of a software product?

A high level architectural pattern for designing scalable enterprise soft-

ware is the CQRS pattern (Betts, Dominguez, Melnik, Simonazzi, and

Subramanian, 2013). This pattern enables the distribution data and re-

sources among different locations. Because of the encouraged distributed

nature of the CQRS pattern, locations can be customized per tenant,

leading to a high variability potential. This RQ examines the CQRS

pattern and documents the different sub patterns and the influence of

CQRS on the variability of online enterprise software. The patterns are

gathered by performing a case study and validated using expert inter-

views and cooperative inquiry (Reason, 1994) during the case study.

16 Chapter 1 Introduction

RQ 2. How can software patterns become an intrinsic part of the architecting pro-

cess?

Numerous solutions for implementing multi-tenancy or variability in multi-

tenancy exist. This leads to a plethora of patterns and a struggle for soft-

ware architects and decision makers to choose the best-fitting pattern. This

question investigates the integration of software pattern decision-making in

existing architecture processes and methods. The following sub questions are

posed to answer the research question:

RQ 2.1. How can software architects be supported in the selection process of

choosing an applicable multi-tenant architecture pattern?

Software vendors have different options to implement variability, each

with different consequences. The options depend on the different lev-

els in the computing stack on which resources are shared (Bhardwaj,

Jain, and Jain, 2010). This RQ explores how software vendors can be

supported in the decision process of choosing the appropriate pattern

and focusses on structuring the different influences of the patterns on

software quality attributes. The multi-tenant architecture patterns and

pattern decision criteria are gathered by performing a structured liter-

ature study, combined with surveys among software architects to vali-

date the results. The final patterns and their consequences are validated

using an additional survey, conducted within three enterprise software

companies.

RQ 2.2. What are the influences of variability patterns on software quality

attributes?

Different ways of implementing variability in online software products

exist. It is unclear, however, what the consequences are of specific

solutions and what patterns are preferred in specific situations. This

RQ addresses which different solutions (e.g., patterns) can be identified

in current software systems. The ‘variability patterns offer a problem

statement, solution and consequences in terms of the effect on different

quality attributes after implementation (e.g. maintainability or scalabil-

ity) (ISO/IEC, 2011) and are gathered by performing three case studies.

The results are evaluated and validated using expert interviews.

RQ 2.3. How can software patterns be transparently evaluated and compared

during the enterprise software architecting process?

The last RQ is directed at proposing a method enabling the comparison

of different patterns. First, the attributes on which the patterns will be

Chapter 1 Introduction 17

evaluated are identified, followed by the construction of a pattern evalu-

ation method. The comparison of the patterns is based on quantitative

assessment of the quality attributes affected by the implementation of

the pattern. Expert focus groups are used to evaluate the patterns

in a design science approach. The evaluation method is validated and

adapted during the design science iterations.

By providing answers to all questions, an overview of how to implement variability

in multi-tenant enterprise software is given. Additionally, software patterns will

be constructed, which can be found in Appendix A.

1.4.2 Research Methods

In this dissertation, different research methods are used in order to gather all data

and construct all artefacts to answer the research questions. An overview of all

research methods and deliverables per chapter can be found in Table 1.2. This

section discusses all research methods used.

Literature Study — Different types of literature study have been employed

in this dissertation. Firstly, many studies perform a literature study, which fol-

lows no explicitly defined structure, with the aim of getting an exploratory view

or vision of a specific topic. A more structured method to gather and analyse

literature is the use of a Structured Literature Research (SLR) (Kitchenham,

2004). Within an SLR, all process steps in collecting and filtering the papers

are documented (Kitchenham and Charters, 2007). Typically all papers are col-

lected, resulting from a search string at a predefined number of academic digital

libraries (Brereton, Kitchenham, Budgen, Turner, and Khalil, 2007), after which

the initial collection of papers is filtered based on a set of inclusion and exclusion

criteria (Fink, 2013). The resulting set is reduced further by filtering sequentially

on different levels like title, abstract or full-text (Petticrew and Roberts, 2009).

The goal of such a structured review is getting a complete overview of a research

domain, based on all papers published on a specific topic.

When little papers exist on a topic, or the topic is too broad or scattered, an

Systematic Mapping Study (SMS) is the appropriate method (Kitchenham, 2004).

An SMS is used to map the field of a certain topic, instead of answering a specific

research question (Petticrew and Roberts, 2009). The main difference with an

SLR is that an SMS is more directed at uncovering research trends, instead of

specific research questions (Kitchenham, Budgen, and Brereton, 2010).

18 Chapter 1 Introduction

Design Science — Research in the domain of Information Technology (IT) ad-

dresses design choices faced by practitioners (March and Smith, 1995). When a

specific artifact (e.g., a software pattern) or method has to be developed, the ap-

propriate application of design science is crucial for success (Peffers, Tuunanen,

Rothenberger, and Chatterjee, 2007). Within design science, existing theories and

models and literature, together with new data (for example from case studies), are

used to develop new theories and artifacts. These results are later evaluated using

interviews, surveys or focus groups (Tremblay, Hevner, and Berndt, 2010) and

refined based on the evaluation results (Hevner, March, Park, and Ram, 2004).

Artifact Creation

Evaluation

Design

Cycle

Relevance

Cycle
Rigor

Cycle

E
n

v
ir

o
n

m
e

n
t K

n
o

w
le

d
g
e

B
a
s
e

Design Science

Figure 1.2: Design Science Research Method

The evaluation of the artifacts is a continuing process in design science, called

the Design Cycle, as illustrated in Figure 1.2. During the design cycle there is a

constant feedback loop with the real world (i.e. Environment) and knowledge ques-

tions (i.e. Knowledge Base) in respectively the Relevance and Rigor Cycle (Hevner

and Chatterjee, 2010; Wieringa, 2009).

Case Study Research — Studying software architecture and architectural de-

cision making, it is important to observe practices in real-world cases. Case study

research is about the descriptive, exploratory or explanatory analysis of a person,

event or organization (Eisenhardt, 1989). This dissertation focuses on the anal-

ysis of online enterprise software and the organizations and people related to it.

Different types of case study design exist, as illustrated by Yin (2009).

The design shown in Figure 1.3a is a holistic single case design in which only

one case is analysed. This can, for example, be the analysis of one software

product in a single company. Figure 1.3b shows a similar design, but now multiple

different cases are analyzed in order to gather data. Studying similar software

products in different companies is an example of the holistic multiple case design.

Chapter 1 Introduction 19

Context

Case

(a) Holistic Single Case Design

Context

Case

Context

Case

Context

Case

Context

Case

(b) Holistic Multiple Case Design

Context

Case

Embedded unit of

analysis

Embedded unit of

analysis

(c) Embedded Single Case Design

Context

Case

Embedded unit of

analysis

Embedded unit of

analysis

Context

Case

Embedded unit of

analysis

Embedded unit of

analysis

Context

Case

Embedded unit of

analysis

Embedded unit of

analysis

Context

Case

Embedded unit of

analysis

Embedded unit of

analysis

(d) Embedded Multiple Case Design

Figure 1.3: Four types of case study designs

Figure 1.3c and 1.3d are representations of embedded case designs. In an embedded

case design, several different units (e.g. software products or design problems) are

analyzed in the same context. Identifying software patterns is ideally based on

an embedded multiple case design; performing research at multiple companies,

analyzing several design problems at each of them.

Case study research is sometimes criticised for being too specific and only geared

towards generating hypothesis, leading to a lack of generalizability (Flyvbjerg,

2006). This critique can be mitigated by representative case selection. Further-

more, as the research presented in this thesis aims to develop theory, case studies

enable the creation of high fidelity empirical research results that can support the

creation of new theories and artifacts, that can later be validated by practitioners.

20 Chapter 1 Introduction

When appropriate cases are selected, and case study protocol is followed rigor-

ously, case study research provides valuable results in the software engineering

domain (Runeson and Höst, 2009).

1.4.3 Validation and Evaluation

When conducting research it is crucial to make sure the entire research process

is setup and performed in a rigorous and valid way (Goodwin and Leech, 2003).

The necessity of data validation and research method validity is also true in a

research domain in which case study research plays a dominant role, e.g. software

pattern research (Eisenhardt, 1989; Yin, 2009). By following prescribed guidelines

for conducting research, such as recording interviews and using multiple sources

of information (Runeson and Höst, 2009), the validity of the research process is

warranted. Different types of validity (i.e. construct, internal and external validity)

are discussed throughout the dissertation. Many artefacts (e.g. patterns) are,

additionally, evaluated in order to assess or measure their properties, based on

certain standards. The following definitions are used in this dissertation:

• Validation — To check whether the results are corroborated on a sound or

authoritative basis (Merriam Webster Online, 2014b).

• Validity — To ensure measurements are well-founded and correspond to the

real world (Goodwin and Leech, 2003).

– Construct Validity — The degree to which a test measures what it

claims, or purports, to be measuring (Cronbach and Meehl, 1955).

– Internal Validity — The extent to which a causal conclusion based on a

study is warranted (Shadish, Cook, and Campbell, 2002).

– External Validity — The extent to which the results of a study can be

generalized to other situations and to other people (Mitchell and Jolley,

2012).

• Evaluation — The assessment of the value or condition of a certain concept

or attribute (Merriam Webster Online, 2014a).

Within this dissertation, all results from data gathering and analysis are validated

to make sure the research was conducted carefully and diligently. Table 1.1 shows

the different measures used within this dissertation to validate the results.

Chapter 1 Introduction 21

Validation Measure Chapter

Cross validation among authors 2
Interviews 4, 5, 6, 7
Focus Groups 4
Cooperative Inquiry 5
Surveys 6
Pilot Sessions 8

Table 1.1: Validation measures used per chapter

The validation measures mentioned in Table 1.1 are employed in this research in

various ways. When cross validation among authors is performed in this disserta-

tion, data collected by, or conclusions drawn by, one researcher are compared to

data or conclusions brought up by another researcher. If differences exist between

the two, the results are discussed and adjusted accordingly. During interviews, ex-

perts are asked about their experiences and vision on certain topics. The interview

can consist of a list of questions (i.e. structured interview) or can be more open

for discussion (i.e. semi-structured interview) (Berg and Lune, 2004). Surveys, in

this research, are used in a similar way to structured interviews, but the questions

and answers are communicated on paper. In focus groups, a group of experts is

interviewed simultaneously, often in a semi-stuctured nature (Kitzinger, 1995).

In cooperative inquiry, during data gathering and analysis, the researcher takes

a place within the case company. Research results can be immediately and con-

stantly validated by discussing them with the experts in the case company (Reason,

1994). Finally, pilot sessions are applied within this research, in which a candidate

method is tested by trying it out in a controlled environment with potential future

users.

Each chapter in this dissertation will discuss these concepts, if applicable, in more

depth in the validation section.

1.5 Dissertation Outline

Chapters 2 to 8 of this dissertation each match exactly one sub-question, as pre-

sented in Section1.4.1. An overview of the questions, methods and contributions

per chapter can be found in Table 1.2. The outline of the dissertation is as follows:

Chapter 1— Introduction

This chapter explains the relevance of this research, from both an academic

22 Chapter 1 Introduction

Ch. RQ Research Method Contributions

2 1.1 Literature Study (SMS) • Multi-tenancy Definition
• MT Research Agenda

3 1.2 • Pattern Vision Statement

4 1.3 Design Science
Case Study Research

• Customizable Data Views Pattern
• Module Dependent Menu Pattern
• Pre/Post Update Hooks Pattern

5 1.4 Design Science
Case Study Research

• Command Query Responsibility Separa-
tion (CQRS) Pattern
• 7 CQRS sub Patterns

6 2.1 Literature Study (SLR)
Design Science

• Multi-tenant Architecture Assessment
Model (MAAM)
• 12 Multi-Tenant Architecture (MTA) Pat-
terns
• MTA Decision Matrix
• MTA Assessment Rules of Thumb

7 2.2 Case Study Research • Component Interceptor Pattern
• Event Distribution Pattern
• Datasource Router Pattern
• Custom Property Object Pattern

8 2.3 Design Science • Software Pattern Evaluation Method
(SPEM)

Table 1.2: Overview of RQs, research methods and contributions per chapter

and industrial perspective. Besides a discussion on important concepts re-

lated to this research, an overview is given of all research questions. The

research methods used in the different chapters are explained as well. Also,

an outline of the dissertation can be found in this chapter.

Chapter 2— Defining Multi-Tenancy

The concept of multi-tenancy is discussed in this chapter. Based on an SMS

of academic papers and industrial blogs, a definition of Multi-Tenant (MT)

is constructed, together with a research agenda aimed at structuring future

multi-tenancy research. This chapter is accepted as a full research paper in

the Journal of Systems and Software (JSS) (Kabbedijk, Bezemer, Jansen,

and Zaidman, 2014 (In Press)).

Chapter 3— The Role of Variability Patterns

In this chapter a conceptual model is presented, illustrating the role software

Chapter 1 Introduction 23

patterns play in solving variability problems. This chapter has been pub-

lished as an invited paper at the International Workshop on Variability in

Software Architecture (VARSA) (Kabbedijk and Jansen, 2012).

Chapter 4— Variability in Multi-tenant Systems

This chapter introduces three variability patterns (i.e. Customizable Data

Views, Module Dependent Menu and Pre/Post Update Hooks)

which enable variability in online software applications. Also, the trade-off

between variability and deployment model is discussed. This chapter has

been published as a full research paper at the International Conference on

Conceptual Modeling (ER) (Kabbedijk and Jansen, 2011).

Chapter 5— Variability Consequences of the CQRS Pattern

The relationship between the CQRS pattern and variability is discussed in

this chapter. Together with the CQRS pattern, seven sub patterns are dis-

cussed which can be implemented to support CQRS. This chapter has been

published as a full paper at the European Conference on Pattern Languages

of Programs (EuroPLoP) (Kabbedijk, Jansen, and Brinkkemper, 2012).

Chapter 6— Multi-Tenant Architecture Assessment

In this chapter, Multi-tenant Architecture Assessment Model (MAAM) is

presented, which helps in the selection of the most fitting Multi-Tenant Ar-

chitecture (MTA). Twelve patterns are provided, together with a comparison

of the patterns and five rules of thumb. The rules of thumb can be used

as initial guidelines in the architecting process. A shortened version of this

chapter has been published at the European Conference on Software Archi-

tecture (ECSA) (Kabbedijk, Pors, Jansen, and Brinkkemper, 2014).

Chapter 7— Comparing Dynamical Adaptation Patterns

This chapter discusses two problems in variable multi-tenant enterprise soft-

ware and presents two patterns for each of the problems. A qualitative

comparison between the patterns is provided. A shorter version of this chap-

ter has been published as a full research paper at the International Con-

ference on Pervasive Patterns and Applications (PATTERNS) (Kabbedijk,

Salfischberger, and Jansen, 2013). The extended chapter has been published

as a full research paper at the International Journal on Advances in Soft-

ware (Kabbedijk, Jansen, and Salfischberger, 2014).

Chapter 8— Software Pattern Evaluation Method

In this chapter, a Software Pattern Evaluation Method (SPEM) is presented.

24 Chapter 1 Introduction

The method prescribes the evaluation of software patterns and aims at pro-

viding software architects with a way to assess the effect of applying patterns,

on software quality. This chapter has been published as a full research pa-

per at the International Conference on Pervasive Patterns and Applications

(PATTERNS) (Kabbedijk, Donselaar, and Jansen, 2014).

Chapter 9— Conclusion

This chapter gives an overview of the answers to all research questions. Also,

a discussion of the contributions, implications and future work is provided.

For easy reference, a pattern catalogue is included in Appendix A, providing an

overview of all software patterns originating from this dissertation.

Part I

Variability and Multi-tenancy

25

Chapter 2

Defining Multi-Tenancy

Abstract

Software as a service is frequently offered in a multi-tenant style, where cus-

tomers of the application and their end-users share resources such as software and

hardware among all users, without necessarily sharing data. It is surprising that,

with such a popular paradigm, little agreement exists with regard to the defini-

tion, domain, and challenges of multi-tenancy. This absence is detrimental to the

research community and the industry, as it hampers progress in the domain of

multi-tenancy and enables organizations and academics to wield their own defini-

tions to further their commercial or research agendas.

In this article, a systematic mapping study on multi-tenancy is described in which

761 academic papers and 371 industrial blogs are analysed. Both the industrial

and academic perspective are assessed, in order to get a complete overview. The

definition and topic maps provide a comprehensive overview of the domain, while

the research agenda, listing seven important domains, provides a roadmap for

future research efforts.

This work has been accepted as Defining Multi-Tenancy: A Structured Mapping Study on the Aca-

demic and the Industrial Perspective (Kabbedijk, Bezemer, Jansen, and Zaidman, 2014 (In Press)). It
is co-authored by Cor-Paul Bezemer, Slinger Jansen and Andy Zaidman.

27

28 Chapter 2 Defining Multi-Tenancy

2.1 Introduction

An ongoing growing influence of cloud computing and Software-as-a-Service (SaaS)

can be observed in the enterprise software domain (Forbes, 2014). One of the key

features of SaaS is the ability to share computing resources in offering a software

product to different customers. To benefit from this ability, the architecture of

SaaS products should cater for the sharing of software instances and databases.

A popular architectural style for achieving this is known as Multi-Tenancy. The

concept of multi-tenancy, within the software architecture community, is usually

referred to as the ability to serve multiple client organizations through one in-

stance of a software product and can be seen as a high level architectural pattern

in which a single instance of a software product is hosted on the software vendor’s

infrastructure, and multiple customers access the same instance (Bezemer, Zaid-

man, Platzbeecker, Hurkmans, and Hart, 2010). The specific method for sharing

instances (e.g. reentrancy or queueing) is generally not specified within the multi-

tenancy pattern. Multi-tenancy allows for the customization of the single software

instance according to the varying requirements of many customers (Kwok, Nguyen,

and Lam, 2008), contrasting with the multi-user model in which there is no sub-

stantial variability (Bezemer and Zaidman, 2010). Also, multi-tenancy is one of

the key factors for achieving higher profit margins by leveraging the economies of

scale (Guo, Sun, Huang, Wang, and Gao, 2007).

Multi-tenancy has evolved from a number of previous paradigms in information

technology. More concretely, starting in the 1960s companies performed time-

sharing, they rented space and processing power on mainframe computers to re-

duce computing expenses; often they also reused existing applications (Wilkes,

1975). Around 1990 the application service provider (ASP) model was introduced,

where ASPs hosted applications on behalf of their customers. ASPs were typically

forced to host applications on separate machines or as separate processes (Smith

and Kumar, 2004). Finally, the multi-user model is most-known from popular

consumer-oriented web applications (e.g. Facebook) that are functionally designed

as a single application instance that serves all customers (Bezemer and Zaidman,

2010). Multi-tenant applications represent a natural evolution from these previous

paradigms. Similarly, around the year 2000, Bennett, Layzell, Budgen, Brereton,

Macaulay, and Munro, 2000 set out a vision for service-based software applica-

tions, in which they note a number of essential ingredients for what we now call

multi-tenancy, namely: demand-led provisioning of software services and a high

degree of personalization of software.

Chapter 2 Defining Multi-Tenancy 29

In the domain of software (and hardware) systems, the topic of multi-tenancy in

scientific literature appeared relatively recently, with the first explicit mention of

the term in a paper by Chong and Carraro, 2006 in the MSDN Library. Within

multi-tenancy, the hardware and software infrastructure is shared and a hosted

application can serve user requests from multiple companies concurrently (Guo,

Sun, Huang, Wang, and Gao, 2007). Multi-tenancy is regarded a key attribute

of well-designed SaaS applications by Chong and Carraro, who developed a com-

monly used maturity model of SaaS that distinguishes four maturity levels. The

last two maturity levels in this model describe multi-tenancy, rendering it as a

requirement for a mature SaaS application. Multi-tenancy is not confined to spe-

cific resources, but is applicable at different levels in a system’s architecture, for

example on a database or instance level. As a result, various approaches to a

multi-tenant architecture are possible (Osipov, Goldszmidt, Taylor, and Poddar,

2009; Natis, 2008).

Most academics and practitioners agree multi-tenancy enables software vendors

to serve multiple customers from a single online product, but specific implemen-

tations differ significantly, leading to an indistinct understanding of the different

levels to which multi-tenancy can be applied. This varying definition of multi-

tenancy is confusing among academics and practitioners, but it also complicates

the communication between them, caused by the different understanding of multi-

tenancy among them. Oracle, for example, looks at multi-tenancy primarily from a

database perspective (Oracle, 2009), while Microsoft looks at multi-tenancy more

from a functional perspective (Microsoft, 2012).

The goal of this paper is to chart and bridge these varying definitions and the

views from both industry and academics on multi-tenancy. First, there is a need

for an overview of the different definitions of multi-tenancy, followed by a clear

analysis of what is shared among the different definitions. Having such an overview

will improve the understandability of multi-tenancy and allows parties to be more

aware of the varying nature of the definitions on multi-tenancy at this moment.

Establishing common ground also allows us to define research challenges to guide

future research in the domain of multi-tenancy. This paper aims at satisfying these

needs by performing a structural search in academic literature and blog posts, as

described in Section 2.2. All search data is analysed (Section 2.3) and an overview

of the results can be found in Section 2.4. The different perspectives on multi-

tenancy emerging from the results are synthesized to one overarching definition

(Section 2.5). To structure future research, a research agenda containing seven

30 Chapter 2 Defining Multi-Tenancy

areas of interest is proposed (Section 2.6), followed by a conclusion and discussion

in Section 2.8.

2.2 Research Method

In order to get an overview of the current state of multi-tenancy literature and get

insight on the interpretation of multi-tenancy from different perspectives a set of

research questions has been constructed. The main research question (RQ) is as

follows:

RQ: How to characterize multi-tenancy?

The main research question is addressed by answering the sub research questions

(SubRQs) listed below. Each question focusses on a different perspective on the

characterization of multi-tenancy.

SubRQ1: What comprehensive definition for multi-tenancy can be constructed

based on current literature?

Rationale: Multi-tenancy is not a new concept, and many different defini-

tions already exist. Since these definitions may reflect different perspectives

on a software product and focus on different elements, an overall definition

should be developed.

SubRQ2: How is multi-tenancy interpreted in academia and industry?

Rationale: The use or understanding of the concept of multi-tenancy in

industry could differ from the common use in academia. This possible chasm

between academia and industry inhibits cooperation and communication be-

tween both domains. To examine this, not only academic papers are ana-

lyzed, but also 300 internet blog results are used to be able to compare uses

in both domains.

SubRQ3: What future research topics can be defined based on current literature?

Rationale: Since the domain of multi-tenancy research is rather young and

scattered, there is a need for guidance on future research. Several research

topics are distilled from the academic literature.

The questions are answered based on the academic papers and public blogs ag-

gregated by the systematic search and selection process that is followed in this

Chapter 2 Defining Multi-Tenancy 31

research. Two different datasets are gathered and analyzed using a Systematic

Mapping Study (SMS) approach. The first dataset is gathered from within the

academic domain, while the second dataset is composed from blogs from the indus-

try domain. An SMS is the appropriate method when trying to answer a general

research question on a certain topic (Kitchenham, Budgen, and Brereton, 2010)

and provides a detailed overview of the topic. A previous paper by Anjum and

Budgen, 2012 was used as a guideline for reporting the mapping study.

2.2.1 Academic Literature Collection

In order to identify, evaluate and interpret the available literature relevant to a

particular topic in an unbiased, objective and systematic way, common practice

is to perform a Systematic Literature Review (SLR) (Budgen, Turner, Brereton,

and Kitchenham, 2008). The proper execution of an SLR is still something that is

not done frequently in the field of Software Engineering (SE) (Kitchenham, Pearl

Brereton, Budgen, Turner, Bailey, and Linkman, 2009). This is probably caused

by the fact that an SLR is time-consuming and should be performed rigorously

within a mature research domain. However, if little evidence exists or the topic is

too broad or scattered, then a Systematic Mapping Study (SMS) is the appropriate

method (Kitchenham, 2004). An SMS is used to map the field of a certain topic,

instead of answering a specific research question (Petticrew and Roberts, 2009).

Since the research domain of multi-tenancy is not mature yet and initial search

shows definitions differ significantly, this study uses an SMS to get a overview of

the concept of multi-tenancy. This paper presents an SMS in which the different

perspectives on multi-tenancy are examined.

The systematic mapping study was performed according to the phases described

by Peterson et al. (Petersen, Feldt, Mujtaba, and Mattsson, 2008). First, a search

for relevant publications was performed, second a classification scheme was con-

structed, and third, the publications were mapped. The details of the different

steps are described below. The first phase consisted of literature retrieval. The

steps and the resulting dataset size are as follows:

1. Search Execution — Dataset retrieval from using the search query on the

following databases: ACM, CiteSeerX, IEEE, ISI, Science Direct, Scopus,

SpringerLink, and Wiley. Since Google Scholar aggregates from all the

databases listed, it was excluded from the search to minimize the number

32 Chapter 2 Defining Multi-Tenancy

of duplicates. The search has been performed using the following keyword

query:

“multi-tenancy” OR “multi-tenant” OR multitenancy OR multi-

tenant OR “multi tenancy” OR “multi tenant”

2. Paper Screening consists of a check for completeness, relevance, and com-

pliance to the inclusion and exclusion criteria. Included papers are peer

reviewed academic papers. Excluded are non-English papers and duplicates

not identified in the previous step.

3. Filtering on Title and Year — Deletion of papers written before 2000 be-

cause the term multi-tenancy in this field was non-existent before that year.

Papers describing multi-tenancy unrelated to IT (e.g. related to housing) are

excluded.

4. Filtering on Abstracts — Papers that merely use the term but do not actively

discuss multi-tenancy are removed as well.

5. Filtering on Full Text — The final selection was based on the criteria that

the paper must either explicitly state a multi-tenancy definition or refer to

one instead.

The results of conducting all five steps were systematically logged in a central

database accessible by all authors. After each step, 10% of all papers have been

selected by querying every 10th entry in the database, and checked for inter-rater

agreement by all authors. If a paper was rated differently by another author, the

discrepancy was discussed and corrected. When more than one discrepancy was

identified, the step was redone. This inter-rater agreement check was done in order

to ensure construct validity of the data gathering (Eisenhardt, 1989).

2.2.2 Industrial Literature Collection

The gathering of industrial literature (i.e. blogs), was performed in order to pro-

vide a sanity check for the academic literature. The results were not used explicitly

for the construction of the multi-tenancy definition or research agenda, but serve

Chapter 2 Defining Multi-Tenancy 33

to examine potential different interpretations of multi-tenancy between industry

and academia. For the industrial perspective of this survey, we have mirrored the

process of the Systematic Mapping Study for scientific literature. We use the same

three phases that Petersen, Feldt, Mujtaba, and Mattsson, 2008 describe for the

traditional SMS, being:

1. Search Execution — Consists of dataset retrieval from using the search query.

We use the same search query as for the scientific literature, but this time

applied it to the traditional Google search and the Google Blog search (www.

google.com/blogsearch). The search string used was:

“multi-tenancy” OR “multi-tenant” OR multitenancy OR multi-

tenant OR “multi tenancy” OR “multi tenant”

The search results are limited to the first 300 results of the traditional Google

Search and to 100 of the Google Blog search. This cut-off is instigated to

keep the results manageable, but we also found that around these thresholds

the search results become decreasingly relevant (e.g., the traditional Google

search started returning results that were not-related to multi-tenancy in the

area of computer science).

2. Website Categorization — The first 100 entries of the traditional Google

search are screened and subsequently the second and fourth authors of the

paper established an initial categorization of the web sites that were encoun-

tered. The categorization is first performed by both authors independently,

after which the initial sets are compared and discussed. Based on discussion,

the final set is constructed. Having a website categorization, makes it easier

to understand the importance of multi-tenancy in industry and how we could

learn from these web sites when considering how multi-tenancy is defined and

used in industry.

3. Inter-rater agreement — The categorization of the websites is done by the

second and fourth author. Both of them categorize half of the website en-

tries. In order to achieve inter-rater agreement 10 websites entries from the

second author and another 10 from the fourth author were exchanged and

re-classified by the other.

4. Investigation of Full Text — Because a web site typically does not have the

same structure as a scientific paper, we screened the full text of each web

site in full in order to determine (1) whether the search result is within the

www.google.com/blogsearch
www.google.com/blogsearch

34 Chapter 2 Defining Multi-Tenancy

scope of this study and (2) in which category the website should be placed.

The scope was determined to be everything related to IT.

Whenever differences existed in the classification done by the second and fourth

author, an agreement is reached through discussion. The classification result and

similar classifications are adjusted according to the new joint interpretation.

2.3 Classification

2.3.1 Academic Literature Classification

In this section, the analysis of the academic literature is illustrated. An overview of

the results per phase in the systematic mapping study is presented below, followed

by a top-down approach for the literature analysis.

1. Search Execution — The search resulted in 1371 papers. After duplicate

removal based on title, a database of 761 papers was created.

2. Paper Screening — This phase resulted in 672 applicable papers.

3. Filtering on Title and Year — Resulted in 259 applicable papers.

4. Filtering on Abstracts — After filtering, 92 applicable papers were identified.

5. Filtering on Full Text — This resulted in 48 applicable papers.

After checking for the inter-rater agreement in each step, small discrepancies be-

tween the raters were found. None of the steps, however, had a discrepancy larger

than one paper, which meant none of the steps had to be redone. The small level

of discrepancy can be explained by the fact both authors are knowledgeable in the

area of multi-tenancy and already knew many of the papers published within this

domain.

Different publication types are discussed in Figure 2.1, showing an overview of

the different paper publication outlet types. Conferences clearly play a dominant

role in publishing papers on multi-tenancy (27 papers), followed by journals (18

papers). Only three papers were found in workshops.

To further investigate the state of the art in the scientific literature an analysis

on the research was performed as well as classification by research type. This

Chapter 2 Defining Multi-Tenancy 35

18Journal Articles

27Conference Articles

3Workshop Articles

0 5 10 15 20 25 30
number of articles

Figure 2.1: Publication outlets for academic articles on multi-tenancy

overview is useful for identifying gaps in current literature. To classify the type of

research approach, six existing distinct research categories were used (Wieringa,

Heerkens, and Regnell, 2009). An overview of these type of research approaches

is presented in Table 2.1.

Category Description N

Solution Proposal Proposes a solution with arguments for its relevance without an evalua-
tion in practice but a proof-of-concept is acceptable.

26

Validation Research Investigates an existing solution and validates it by using a sound scien-
tific approach.

10

Evaluation Research Investigation of a problem or implementation of a technique in practice. 6
Philosophical Paper Introduces a new view on a subject, a new concept, conceptual frame-

work.
5

Experience Paper Explains why or how something has been done in practice. For example
lessons learned from projects.

1

Opinion Paper Contains an author’s opinion on a subject. 0

Table 2.1: Categorization of 48 papers, listing the number of occurrences (N) for each
type of paper encountered.

Papers were classified using an evolutionary approach, where subjects are selected

based on title, abstract and keywords. Papers are categorized and categories are

evolved throughout the review using splitting and merging. The analysis of the

results focuses on presenting the frequencies of publications for different research

categories. An overview of popular and less popular categories can be used to

identify gaps and possibilities for future research. It also provides a picture about

the nature of the scientific material and the maturity of the field. The results

from this analysis are depicted in Table 2.2. Please note the last research category

(i.e. Opinion Paper) is not included in the table, since no papers were part of this

category.

The list of topics is based on the abstracts of the papers and the keywords listed.

It is possible one paper discusses multiple topics, in which case it is listed on all

of these topics. A paper, however, is always part of only one research category.

36 Chapter 2 Defining Multi-Tenancy

E
va

lu
at

io
n

R
es
ea

rc
h

So
lu
ti
on

P
ro

po
sa

l

V
al
id
at

io
n

R
es
ea

rc
h

P
hi
lo
so

ph
ic
al

P
ap

er

E
xp

er
ie
nc

e
P
ap

er

T
ot

al

SaaS 4 19 6 2 1 32
Architecture 4 13 7 3 1 28
Implementation 2 8 2 2 1 15
Database - 4 6 2 1 13
Balancing & Placement 2 6 2 3 - 13
Variability 1 8 1 - 1 11
Infrastructure 1 5 3 1 - 10
Industry Evaluation 1 4 1 2 1 9
Quality Assurance 1 6 1 - - 8
Platform Development - 4 2 1 - 7
Security - 3 1 2 - 6
Standards - 3 - 2 - 5

Total 16 83 32 20 6

Table 2.2: Multi-tenancy research topics per research category

2.3.2 Industrial Literature Classification

This section presents the results of the industry literature gathering per phase,

followed by a discussion of the analysis.

1. Search Execution — Among the results were a number of scientific papers, all

of which were also part of our search for scientific literature. After removing

duplicates, this resulted in 371 entries.

2. Website Categorization — Eight categories were identified, as shown in Ta-

ble 2.3. The first half of the websites was categorized by the second author,

the second half was categorized by the fourth author.

3. Inter-rater agreement — To validate the choice of categories and evaluate

the categorization process, a random sample (N=12) of websites was catego-

rized by both the second and fourth author and compared afterwards. Small

changes existed in the classification, mainly due to different interpretation of

the categories. In 75% (9/12) of the cases, both authors completely agreed on

the categorization (average of 2.33 categories per website). In the three other

cases, they at least partly agreed on the categorization. Considering a web-

site can be categorized in a subset of unknown size of 8 different categories,

we considered this to be a good level of inter-rater agreement.

4. Investigation of Full Text — All of the 371 entries appeared to be relevant

to the concept of multi-tenancy in IT.

Chapter 2 Defining Multi-Tenancy 37

As mentioned in Section 2.2.2, we started out by analyzing the first 100 entries

returned by Google to create an initial categorization of search results. Small

changes to the categorization were made while analyzing all search entries. The

final categories that we ended up with are listed in Table 2.3.

Table 2.3 also describes the criteria that we used for the categorization process.

Note that we tried to distinguish “corporate opinions” from “individual opinions”

as much as possible, hence the many different categories. From the initial search

results we removed duplicates, and excluded 14 academic papers and dead website

links. This resulted in 371 search entries being investigated, divided over the

aforementioned categories. An overview can be seen in Table 2.3. It should be

noted that some search results were categorized in multiple categories, for example,

a corporate blog might also contain an explicit advertisement for the product being

described.

Category Description N

Non-corporate blog A software engineer or technology expert writing about multi-tenancy.
No (corporate) affiliation is mentioned or could be retrieved.

117

Corporate blogs White papers mentioning multi-tenancy. This category consists of web
pages that are either hosted by a corporation or that explicitly state that
the author or text was written from a specific company’s perspective.
It does not directly advertise the services of the company with regard
to multi-tenant technologies, but it describes the company’s vision on
multi-tenancy.

84

Howto Web page describing how to implement multi-tenancy. No corporate
affiliation or link to a specific product is mentioned.

82

Advertisement Web page advertising a product or service related to multi-tenancy. 81
Evangelism Web page containing a strong opinion either in favor or against multi-

tenancy
79

Definition Web page containing a definition (or a discussion on the definition) of
multi-tenancy

38

Support forum Forum discussing multi-tenancy. This forum can be product-specific
or product-agnostic. Some support forums are hosted by corporations,
others are hosted by StackOverflow, Google Groups, etc.

36

Product manual Web page describing how to use a multi-tenancy oriented product or
service. This category of websites can be linked to a specific product or
service.

18

Table 2.3: Categorization of 371 Google search entries, listing the number of oc-
curences (N)

2.4 Observations

This section presents a set of observations, based on the results of the Academic

and Industrial result classification. All observations were discussed among all four

authors and adapted if needed. The observations do not aim to provide a complete

list, but rather give a representative illustration of the multi-tenancy domain.

38 Chapter 2 Defining Multi-Tenancy

2.4.1 Academic Paper Results

Based on the paper classification in Section 2.3.1, the following observations are

made:

Observation 1: Conference oriented — As Figure 2.1 shows, around 56%

of all research papers on multi-tenancy are published in conference proceedings,

compared to 37.5% in journal publications and only around 6.5% in workshop

proceedings. The accent on conference publications in not uncommon in the IT

domain, but the lack of workshop publications is striking. One such distribution

could indicate a very mature research domain, but considering the novelty of

multi-tenancy and number of papers published this is unlikely. A more plausible

cause is that the domain of multi-tenancy research has no strong community yet

and workshops still have to be formed, causing researchers to submit results to

conferences and journals, which often have a broader scope.

Observation 2: Many proposals, lack of experience — Table 2.2 shows a

strong emphasis on solution proposals and only one paper reporting on industrial

experiences. This imbalance indicates that the research domain is still not ma-

ture, and that most of the solutions proposed have not yet been implemented or

evaluated. The large difference can also signal the lack of cooperation between

industry and academia.

Observation 3: Architecture and SaaS play a big role — Unsurprisingly,

the topics of SaaS (32 papers) and architecture (28 papers) are addressed a lot

in multi-tenancy research. Multi-tenancy is clearly positioned as an architectural

tactic for online software. Since SaaS and architecture refer to the entire software

stack, this observation also shows that research focusses on the complete software

product instead of just one level (e.g. Database).

2.4.2 Blog Post Results

We did a full reading of three categories of web pages, being web pages or blog posts

in the categories non-corporate blog, corporate blog, definition and evangelism. This

reading gave us an impression of some of the advantages, disadvantages and/or

issues that practitioners see or have with multi-tenancy. We have translated the

impression that we thus got into the following observations:

Chapter 2 Defining Multi-Tenancy 39

Observation 1: Different multi-tenancy levels — Some practitioners make a

distinction between multi-tenancy at the level of the infrastructure (multiple oper-

ating system instances on the same physical hardware), at the level of the platform

(different applications and/or tenants on the same instance of the operation sys-

tem) and at the application level (a single run-time stack is shared with multiple

tenants). While not every blog post or website is perfectly clear on this, we ob-

serve that most websites on multi-tenancy are actually about the infrastructural

or platform level application of multi-tenancy.

Observation 2: Cloud-based nature — For many practitioners multi-tenancy

is evident in a cloud-based setting (IBM, 2011). This points at two distinct issues

with how multi-tenancy is perceived by practitioners. First, a cloud environment

is — by its very purpose — a shared platform environment, which in turn indicates

that multi-tenancy is seen by many as another way of saying Platform as a Service

or PaaS. Indeed, in a PaaS setting, tenants can rent a piece of shared platform

which can consist of an operating system and standard server applications like

a web server, a database, etc. Secondly, in some cases, practitioners were also

considering multi-tenancy at the level of software in a cloud-based setting. In this

context, practitioners were considering that Software as a Service offerings can be

offered more efficiently if the underlying platform is elastic.

Observation 3: Configurability of multi-tenant applications — Config-

urability, or variability, of multi-tenant applications is seldomly mentioned. This

raises two interesting points:

• As discussed in Observation 1 this may hint at a greater awareness of multi-

tenancy at the infrastructural or platform level, where configurability might

not be so much of an issue

• There is no apparent need for the configurability of multi-tenant software

applications, which might indicate that most applications are actually multi-

user applications or applications that share resources but that do not offer

(advanced) forms of configurability.

When customization is discussed, it is clear that customization should lead to a

tailored experience for each tenant and that customization should be done by con-

figuring application metadata. As such, configurability requires no programming.

Another important point mentioned is that customizations for one client should

not affect other clients.

40 Chapter 2 Defining Multi-Tenancy

Observation 4: Multi-tenant database — A number of websites explicitly

mention the database as being multi-tenant. In this situation different applica-

tions share a single database. When a single multi-tenant application is using

the database, some web site authors express concern about data separation, i.e.,

making sure that tenants do not get access to another tenant’s data.

2.5 Definition

A total of 43 different definitions was extracted from the academic literature with

the aim of finding the best definition for use in the multi-tenancy domain, that

describes the relevant elements, but also at all levels at which multi-tenancy is

possible.

Word Occurrence

Instance 26
Application 24

SaaS 22
Multiple 21

Infrastructure 20
Single 18

Software 15
Customer 15

Share 13
Database 12

Table 2.4: Word Frequency Analysis

Identification: The 43 definitions were identified by manually searching through

papers for terms such as “we define multi-tenancy” or “multi-tenancy is defined as”.

A common observation from these definitions is that these are typically poorly for-

mulated and only applicable at one level of the software stack or infrastructure. An

example: “A multi-tenant cloud system allows multiple users to share a common

physical computing infrastructure in a cost-effective way” (Du, Gu, and Reeves,

2010). This definition is not generic, but refers specifically to a “system”. Its

strong points are the “common physical computing infrastructure” and its em-

phasis on “costs”, one of the main drivers of multi-tenancy. Another definition

is “Multi-tenancy allows a single application to emulate multiple application in-

stances” (Azeez, Perera, Gamage, Linton, Siriwardana, Leelaratne, Weerawarana,

and Fremantle, 2010). This definition speaks specifically of an application, thereby

excluding for instance hardware resources or databases.

Chapter 2 Defining Multi-Tenancy 41

Word Frequency Analysis - An analysis of frequent occurrences of terms was

performed to find the main concepts in multi-tenancy definitions. The results

of this analysis can be found in Table 2.4. Obviously, relevant aspects of multi-

tenancy are the fact that something (single) is being shared among multiple cus-

tomers, that it takes place on several levels (system, service, application, database,

and infrastructure), and that it changes traditional modes of service or software

delivery. To clarify, we have conceptualized a system, such that we can reuse

it for the definition later in Figure 2.2. The dotted boxes are parts of the sys-

tem that are not influenced by software level multi-tenancy. Efforts exist to apply

multi-tenancy at the middle-ware level (Strauch, Andrikopoulos, Gómez Sáez, and

Leymann, 2013), but we did not explicitly analyse this, for the sake of creating a

high level general definition.

Hardware

Virtual Machine

Operating System

Database Server

Database

Database Schema

Middleware

Application Server

Application Instance

Figure 2.2: Software Stack: The different system levels where multi-tenancy can be
applied to share resources.

Checklist: A checklist containing five criteria was constructed for use in this

research, in order to assess the quality of all definitions. The list is based on five

principles discussed by Copi and Miller (1972). Furthermore, for each definition

we attempted to establish whether it was abstract enough to play a part on all

three levels (service, database, and infrastructure). The criteria were formulated

as follows:

• A definition must set out the essential attributes of the thing defined.

• Definitions should avoid circularity.

42 Chapter 2 Defining Multi-Tenancy

• The definition must not be too wide or too narrow. It must be applicable

to everything to which the defined term applies (i.e. not miss anything out),

and to nothing else (i.e. not include any things to which the defined term

would not truly apply).

• The definition must not be obscure.

• A definition should not be negative where it can be positive.

Several definitions were selected to establish a baseline for the multi-tenancy def-

inition in this paper, based on the criteria mentioned above. First, the definition

given by Rimal, Choi, and Lump is “multi-tenancy is when common resources

and a single instance of both the object code of an application and the under-

lying database are used to support multiple customers simultaneously” (Rimal,

Choi, and Lumb, 2009). The definition includes relevant aspects of multi-tenancy,

such as “multiple customers” and “common resources” and it speaks of all three

levels on which multi-tenancy can play a part (database, service, and hardware

resources). However, the definition lacks a goal statement (what is the advantage

of multi-tenancy?). Another definition is given by Guo et al.: “In a multi-tenant

enabled service environment, user requests from different organizations and compa-

nies (tenants) are served concurrently by one or more hosted application instances

based on the shared hardware and software infrastructure.” (Guo, Sun, Huang,

Wang, and Gao, 2007). This definition too addresses only two levels, but adds

multiple instances of the software. Finally, an interesting definition is “Multi-

tenancy aims to enable a service environment that user requests from different

tenants are served concurrently by the least number of hosted service instances

running on the shared hardware and software infrastructure” (Li, Liu, Li, and

Chen, 2008) which focuses on reducing costs by sharing resources. Based on the

definitions stated above we define multi-tenancy as follows:

Definition: Multi-tenancy is a property of a system where multiple customers,

so-called tenants, transparently share the system’s resources, such as services, ap-

plications, databases, or hardware, with the aim of lowering costs, while still being

able to exclusively configure the system to the needs of the tenant.

This definition caters to different needs. To begin with it mentions the most com-

mon terms used to identify multi-tenancy (with the sole exception of “instance”,

Chapter 2 Defining Multi-Tenancy 43

but more on that later). Furthermore, it embraces any kind of system and its lay-

ers, from a complete service system with multiple instances (like Salesforce.com),

to a simple hard drive that is shared among different end-users. Thirdly, it pro-

vides the main aim for applying multi-tenancy in a context, being the reduction

of costs by sharing resources and achieving scalability. The words “single” and

“instance” have been deliberately avoided, such that a qualifier can be used to

determine whether we are speaking of single-instance or multiple-instance. The

definition prescribes that when someone assigns the property multi-tenant, it is

assigned to a system, service, database, or hardware resource, to clarify on what

layer the multi-tenancy aspect applies. Although a small detail, it must be noted

that multi-tenancy is written with a dash in 75% of the definitions.

There are several clarifications that can be made with the definition at hand.

First, the word “transparently” refers to the fact that it is generally unknown

to customers and end-users that another customer or end-user is using the same

resources, otherwise the definition would be applicable to any web application that

is open to multiple users (Google.com, Facebook, etc.).

A question that is frequently asked is what the differences are between multi-

tenant, multi-user and multi-instance systems. The answer is that multi-instance

systems do not necessarily need shared resources: a new system can be generated

or deployed for each new user. Multi-tenant and multi-user systems, however,

always share resources on one or more levels of the software stack. Multi-tenant

systems share resources and allow only for mass-customization by using variabil-

ity. Multi-user systems are only partly multi-tenant and offer the same invariable

functionality to all customers. Please see Table 2.5 for an overview of these differ-

ences.

Multi Shared resources Configurable at runtime

-tenant Yes Fully
-user Yes Partly
-instance Possibly Possibly

Table 2.5: Difference overview for multi-tenant, multi-user, and multi-instance sys-
tems.

2.6 Research Agenda

In order to structure and guide future research in the area of multi-tenancy for

both academics and practitioners, this section presents the major future research

44 Chapter 2 Defining Multi-Tenancy

topics identified in current research on multi-tenancy. The “future work” sections

of all final papers identified in the systematic mapping studies were analyzed to

extract potential future research topics. For this search all sections named “future

work”, “further work”, “discussion” and “conclusion” were included. Also, all papers

were searched entirely, using the keyword “future”. First, all topics mentioned

in the relevant sections were listed, after which synonyms and issues that were

closely related were merged to overarching research themes. Classification and

merging of the topics was performed by two researchers separately, after which

the results were compared and discussed. This way, 23 issues were identified,

which were categorized in four research themes. The analysis is based on the 48

papers that were collected in the structured mapping study. Every call for future

work identified in the papers reflects a potentially strategic theme in the domain of

multi-tenancy. Each of the themes below states the number of papers that address

the theme and mention a specific call to action to researchers and practitioners.

Quality Assurance (6) — Compliance to Service Level Agreements (SLAs),

performance, monitoring, all are mentioned in the current body of multi-tenancy

literature as important issues to address in future research. Most issues within this

topic are similar to important research challenges in the domain of SaaS (Zhang,

Cheng, and Boutaba, 2010). This can be explained by the fact that multi-tenant

software is always hosted in a SaaS environment, causing challenges in this domain

to influence the multi-tenancy domain as well.

Call: An investigation into how customization of the multi-tenant application

affects quality, e.g. in terms of performance. Can one general SLA be upheld, or

should each tenant get a tenant-specific SLA?

Industry Validation (4) — Some papers reported on multi-tenant prototypes

created, but all were missing a real validation. Because of this, a high number of

papers call for industrial application of multi-tenant solutions. Applying proto-

types in real industrial settings and performing more multi-tenancy related case

studies can greatly enhance the validity of multi-tenancy research and is therefore

considered to be a major topic in future research.

Call: With industrial multi-tenant solutions being developed right now, a next

step for researchers is to work closely together with industry to validate research

ideas on actual multi-tenant software systems.

Balancing & Placement (4) — Although all customers in a multi-tenant en-

vironment theoretically are served from one instance of a software product, in

Chapter 2 Defining Multi-Tenancy 45

practice, load balancing is needed between servers. This means identical servers

are used to serve one software product in case this can no longer be done using

one server. Specific tenants need to be placed on a specific server, but determining

the best placement is a difficult task.

Call: There might be opportunities to develop better load balancing algorithms

that take into account the historical usage of the application by the different ten-

ants. Specifically, the load balancing can be targeted at looking at the different

time zones in which the tenants are operating.

Database (4) — Four papers in the systematic mapping study explicitly men-

tioned database related issues as an important future research direction. Areas of

interest include parallelism, locking, replication and partitioning.

Call: A major point of concern that we noted in the blog posts is data isolation,

i.e., making sure that the data of individual tenants is shielded for other tenants.

As such, an investigation into how to isolate and partition the data is a logical next

step. Additionally, developing tests to make sure that data isolation is working

correctly is also an interesting avenue for future work.

Three additional themes were identified, but were not sufficiently highlighted to

count towards a valid collection of research themes. Although these themes were

not emphasized by a sufficient number of authors, we mention them here briefly,

to provide insight into other issues that are relevant. First, two papers mention

the development of and research on multi-tenant platforms as an important next

step in multi-tenancy research. The development of a multi-tenant plat-

form (2) enables other researchers and developers to more easily deploy and test

multi-tenant applications. Such a platform (ie. Salesforce (Fisher, 2007)) is likely

to stimulate multi-tenancy research and development. The call in this context

would be the need for an open platform available for multi-tenant applications.

Researchers and industry should work together in designing, developing, and main-

taining such a platform. Secondly, security (2) is a recurring theme in future

work (Zhang, Cheng, and Boutaba, 2010), where papers specifically focus on the

fact that different organizations, each having their own confidential data, are typi-

cally deployed on the same server and use the same instance of a software product.

This increases the risk of data accidentally being queried by the wrong tenant.

This leads to a call for increased attention to security in multi-tenant systems

than it already does in multi-instance and multi-user systems. Finally, a theme

that only occurs once in the literature that we surveyed, but poses a relevant chal-

lenge is variability (1). Since multi-tenant software is almost exclusively used

46 Chapter 2 Defining Multi-Tenancy

in a setting in which multiple different organizations use the same instance of a

software product, variability is an important research topic. Variability is the abil-

ity of a software product to offer different configurations to organizations hosted

on one instance of a software product. The definition of multi-tenancy presented

in this paper also mentions ‘varying customers’, inducing the need for variabil-

ity (Kabbedijk and Jansen, 2012). The corresponding call is that there should be

more awareness on the importance of variability in multi-tenant software.

2.7 Threats to Validity

Since conducting a systematic mapping study is a largely manual task, most

threats to validity relate to the possibility of researcher bias, and thus to the

concern that other researchers might come to different results and conclusions.

One remedy we adopted is to follow, where possible, guidelines on conducting sys-

tematic mapping studies as suggested by Budgen, Turner, Brereton, and Kitchen-

ham (2008) and Petersen, Feldt, Mujtaba, and Mattsson (2008). The question

of whether an article or blog post should be included in the mapping study is

sometimes debatable. Following the advice of Kitchenham (2004), we enforced

this criterion by utilizing predefined selection criteria that clearly define the scope

(also see Section 5.2).

A potential threat to the validity of the interpretation of the results is researcher

bias in the selection and filtering of the articles and blog posts. Our counter-

measures were (1) the systematic logging of all data related to the screening and

filtering steps in a database accessible by all authors of the paper and (2) randomly

selecting 10% of all papers after each selection or filtering step to determine the

inter-rater agreement for that subset of papers. If a paper is rated differently by

another author, the discrepancy was discussed. Finally, this research assessed re-

sults published up to 2012, so the landscape of multi-tenancy could have evolved

slightly in the mean time. This is identified as a threat to validity.

2.8 Conclusion

A total of 761 research papers and 371 industrial blogs on multi-tenancy have

been analyzed in order to get a complete overview of the multi-tenancy domain.

The results show that most papers propose a solution related to multi-tenancy,

Chapter 2 Defining Multi-Tenancy 47

but almost no papers report on industrial experiences while implementing multi-

tenancy, providing some insight into the maturity of the domain. The blog analysis

shows multi-tenancy is a popular topic and most blogs are written by individuals

instead of corporations. Based on the research results a comprehensive definition

for multi-tenancy is proposed (SubRQ1), positioning multi-tenancy as an archi-

tectural principle of a system where multiple varying customers and their end-users

transparently share the system’s services, applications, databases, or hardware re-

sources, with the aim of lowering costs. We call for this definition to be used in

future research on multi-tenancy to further structure results and communication.

No clear difference on the interpretation of multi-tenancy between academia and

industry was observed, but we did see a significant difference among academia and

industry (SubRQ2). For future research we listed 4 themes (SubRQ3), meant

for the guidance of future research and providing a roadmap within the domain

of multi-tenancy. The main research question (RQ) is answered by the complete

drawing of the current multi-tenancy domain from both the academic and indus-

trial perspective, together with the directions for steering the domain from this

point on.

Chapter 3

The Role of Variability Patterns

Abstract

Within the business software domain, it is crucial for a software vendor to

comply to different customer requirements. Traditionally this could be done by

offering different products to different customers, but because multi-tenant busi-

ness software deployments use one software product to serve all customers, this

is no longer possible. Software vendors have to make sure that one instance of a

software product is variable enough to support all different requirements from all

different customers. This ability is defined as tenant-based variability.

Within this paper a conceptual model is presented, explaining the role software

patterns play in solving variability implementation problems in multi-tenant busi-

ness software. Different important aspects of patterns are explained, like forces

and consequences and are linked to concepts in the problem domain. The pa-

per suggests that variability patterns play a large role in addressing variability

in multi-tenant business software and provide a valuable vocabulary for research-

ing, reporting, thinking and communicating about variability solutions in online

software products.

This work has been published as The Role of Variability Patterns in Multi-tenant Business Software

in the proceedings of the WICSA/ECSA 2012 Companion Volume (Kabbedijk and Jansen, 2012). It is
co-authored by Slinger Jansen.

49

50 Chapter 3 The Role of Variability Patterns

3.1 Introduction

Within business software a frequently studied shift can be observed (D’souza,

Kabbedijk, Seo, Jansen, and Brinkkemper, 2012) in which software products are

no longer delivered to customers and deployed on-site (on-premises), but are de-

ployed at a central location and offered to customers online (SaaS). Using the

on-premises deployment method, one instance (i.e. one running copy of the soft-

ware) of a software product is used by one customer. The product can be tailored

or customized to comply to specific customer requirements in case the standard

product functionality does not align with the requirements needed by the customer

in order to support the business processes in place (Sun, Zhang, Guo, Sun, and Su,

2008). Another way to satisfy specific customer requirements is to create different

products, based on a software product core containing all general requirements

shared by all customers, which are generated in a software product line (Pohl,

Böckle, and Linden, 2005). The ability to create different software products based

on one software product core is referred to as variability and is defined as “Variabil-

ity in software architectures describes how well an architecture supports flexibility

in a certain aspect, with an exact specification of the differences.” (Galster and

Avgeriou, 2011, p. 63)

Software variability was first studied in software product lines. An attempt to give

a complete taxonomy of variability in software products was done by Svahnberg,

Gurp, and Bosch (2005), but this overview is focussed on software product lines

and omits to take online software products into account. Traditionally, variability

only takes on-premises software into account, which leads the fact software prod-

ucts containing specific features have to be created before shipping the software

(i.e. early binding time). Online software, however, only profits from run-time

binding times since it would be undesirable to restart or redeploy a software prod-

uct whenever changes are made (as would be the case with design-time binding

for example). Within online software products, variability is the result of the con-

figurability of a product. The higher the configurability of a product is, the more

variable a product is. A variable product aims to provide customers with “a mul-

titude of options and variations using a single code base, such that it is possible

for each tenant to have a unique software configuration” (Arya, Venkatesakumar,

and Palaniswami, 2010).

Using the SaaS deployment model, it is still possible to have one instance of a

software product per customer (ASP) (Tao, 2001), but because of the fact the

Chapter 3 The Role of Variability Patterns 51

software instance is now deployed in a central location, multiple customers can

potentially use the same instance. Sharing one instance of a software product

with multiple customers, from a software vendor point of view, can be preferred

above having separate instances because of (among others) economies of scale,

easier data sharing, lower maintenance costs and improved scalability. Sharing a

software instance with multiple customers, however, makes it impossible to have

customized software products for a specific customer. In other words, MT software

should be able to fulfil all different customer requirements while still profiting from

shared resources. Whenever multiple customers share one instance of a software

product and are able to configure the application to meet their requirements, we

refer to the application as a multi-tenant SaaS application (Bezemer and Zaidman,

2010). Tenants are organizational entities (customers) using the application and

usually consisting of multiple users. These tenants should be able to configure the

product in the way they want because of this, the product should have the right

level of variability at the right places.

Question remains however how to implement this variability in an efficient way.

Within software architecture, specific problems are often solved in the same way.

If the solution occurs a lot and is also a good solution to the problem, the so-

lution can be documented in a structured way. These documented solutions to

reoccurring problems are called software patterns. Within this research, soft-

ware patterns are considered crucial in communicating variability implementation

solutions in multi-tenant SaaS applications since they offer a structured and doc-

umented manner to do this. The goal of this paper is to explain the importance of

variability in multi-tenant business software and explain the role software patterns

play in achieving this variability. A model containing all different concepts and

relationships between them will be presented in section 3.3.

3.2 Concepts

3.2.1 Tenant-based Variability

As indicated in the previous section, there is a need for variability in multi-tenant

business software products. An important difference is made in variability man-

agement between internal and external variability (Pohl, Böckle, and Linden,

2005). The difference between these two variability types is crucial for defining

tenant-based variability and relating it to the current variability concepts.

52 Chapter 3 The Role of Variability Patterns

• Internal variability - Variability within the product that is only visible

to the developers and architects. It is often an effect of different technical

issues and standards. Having different methods for authenticating credit card

transactions is an example of internal variability.

• External variability - This is the kind of variability that is related to

different customers active within the product environment. If a customer, for

example, wants to have a specific way of importing data, external variability

needs to be in place to facilitate this.

The concept of external run-time variability is closely related to tenant-based vari-

ability, but since external runtime variability is related to customers in a product

line context, it is not geared towards online (SaaS) software. The fact that in multi-

tenant SaaS products, all customers share one software instance, causes changes in

the standard way of thought related to external variability and adapt it to the on-

line domain. An effort to use the concept of external runtime variability in a SaaS

context is done by Mietzner, Unger, Titze, and Leymann (2009), who refer to this

type of variability as Customer-driven variability. The concept of tenant-based

variability used in this research is closely related to customer-driven variability,

with an emphasis on multi-tenant software products. Different customers have

different requirements to a software product. These differences require that the

online software product is configurable to allow for the varying requirements.

3.2.2 Variability Patterns

Tenant-based variability in a software product can be implemented in several dif-

ferent ways. The appropriate solution depends heavily on the exact problem that

needs to be solved. A good way of solving a specific problem is to apply a pat-

tern related to this problem. Patterns are defined as “A particular recurring de-

sign problem that arises in specific design contexts, and presents a well-proven

generic scheme for its solution. The solution scheme is specified by describing its

constituent components, their responsibilities and relationships, and the ways in

which they collaborate.” (Buschmann, Meunier, Rohnert, Sommerlad, and Stal,

1996, p. 8)

A common mistake related to software patterns is the thought that they are a

highly technical representation of a certain design choice, only readable and un-

derstandable by programmers. Patterns are far more general than that and can

Chapter 3 The Role of Variability Patterns 53

be documented in a few different ways. Fowler listed a few common pattern de-

scription forms like for example Alexandrian, GoF or POSA style (Fowler, 1997).

A combination of the different description forms can be used depending on the

specific patterns. The forms are not prescriptive and should be used as guidelines

in writing a pattern instead of set-in-stone rules.

Figure 3.1: Conceptual Model: The role of variability patterns in multi-tenant busi-
ness software

3.3 Conceptual Model

This section shows the relationships between the different concepts that play an

important role within this research domain. Figure 3.1 shows all concepts as

squares, connected by lines indicating the relationships. The left of the figure

shows the problem domain, while the right of the figure shows the attributes of a

software pattern that can be used to assess the problem. In the Software Product

Domain, the Multi-Tenant Software Product (MTSP) plays a central role. The

MTSP is used by different tenants, all having their own specific requirements. The

MTSP contains certain functionality, indicated as features in figure 3.1. Features

can be fixed, like, for example, the functionality of a software product to display

financial data in a spreadsheet. Features can also be variable and influenced by

the specific preferences of a tenant. Variable features could be the possibility to

adapt the workflow within the MTSP or the ability to add specific data entities.

The Software Pattern contains a problem occurring in a specific context. The

problem and context are related to the software product domain since this is the

area of study. The problem and context in the domain of tenant-based variability

54 Chapter 3 The Role of Variability Patterns

will always have to do with tenants having specific requirements and because of this

the need for a variable multi-tenant online business software product. A specific

problem always exists of different drivers that are the cause of the problem. These

drivers are defined as forces within a pattern context (Buschmann, Henney, and

Schmidt, 2007a). By making all the forces that are part of a problem explicit, and

placing the problem in a properly defined context, a specific and useful solution can

be documented. The implementation of a solution always has certain consequences,

either advantages or liabilities (Schmidt, 1995). The pattern description used is

based on Wellhausen and Fießer (2011).

The conceptual model presented in figure 3.1 identifies the most important con-

cepts and related to multi-tenant business software and shows how software pat-

terns can be used to answer and describe the problems related to the realization

of variability in these systems. The conceptual model is a tool for answering prob-

lems related to tenant-based variability in multi-tenant software products that

helps by creating a common lexicon for communicating solutions between and

within industry and academia.

3.3.1 Application Example

As a real case example to illustrate the use of the conceptual model, an online sup-

ply chain management system is analyzed (online software product). The product

is used by more than 120 customers of different sizes from all over the world (ten-

ants), and more than 20.000 transactions are handled per customer per day. The

MTSP supports the customers in tracking and planning different shipments and

integrate different warehousing systems. In order to streamline the shipping pro-

cess, some customers want to send a text message to a truck driver when and

order is packed, but other customers first want a manager to check to order before

it can be picked up. This means the two customers have different requirements

regarding the workflow of the MTSP. The MTSP has a fixed way of handling

workflows (fixed feature), but want to be able to serve bot customers with their

product (problem).

The identified problem in this context is caused by the fact customers have different

business processes (force) and only one instance of the software is deployed on the

server that is used by all tenants (another force). The solution that is applied by

the MTSP vendor is the use of a component in the software product, capable of

calling tenant-dependent components just before or after a certain action in the

Chapter 3 The Role of Variability Patterns 55

workflow is performed. By doing this, the workflow within the MTSP becomes

variable in such a way that different tenants can have different actions performed

by the MTSP at certain time (consequence). The solution however also causes

the MTSP to contain additional tables listing the tenant-dependent modules and

checking for possible modules before and after each step in the workflow. This may

cause performance issues if system load is high (another consequence). The make

this pattern complete, a name (e.g. pre/post update hooks) and a clear diagram

of the solution has to be added, but since this only a illustrative example this has

been omitted for the sake of brevity.

3.4 Discussion

There is more to patterns than only the definition given by Gamma, Helm, John-

son, and Vlissides (1995) on patterns being “a solution”. Besides being a solution,

patterns also need to have a certain “goodness” and recurrence before they can

be considered a pattern. The recurrence of a solution can be shown by performing

a large number of case studies and reporting on the times the specific pattern

is observed. A high recurrence, however, does not necessarily make a solution a

pattern. Whenever a solution is frequently observed, but the solution has serious

liabilities, the solution could even be considered an anti pattern (Brown, Malveau,

and Mowbray, 1998).

Assessing the goodness of a pattern is difficult. Whether a solution is good or

bad depends fully on the context of the problem. Scalability may, for example,

be no issue at all for a software product aimed at five customers, while it is of

the highest importance for a large ERP product aimed at thousands of SMEs. A

way to still say something about the goodness of a pattern is to be thorough in

identifying all the forces playing a role within the problem domain. If the forces

are clearly listed, the consequences of applying the pattern can be related to the

forces. The better all forces are handled, the higher the probability the pattern

is a good solution. Possible liabilities should be analysed and, whenever possible,

solutions for mitigating the liabilities should be given. Because of the generalized,

implementation independent character of a software pattern, the goodness of a

pattern can never be validated. However, by being complete in identifying forces

and consequences, the goodness of a pattern can be evaluated.

Although the method used to describe a pattern can differ per pattern, depending

on the context of the pattern (as discussed in section 3.2.2), patterns do need a

56 Chapter 3 The Role of Variability Patterns

certain fixed form in order to compare different solutions to one another. For this

research a form is chosen in which a pattern is always introduced by a name, a

context description and a extensive description of the problem, including all

forces. The solution is always introduced by a diagram (in no particular mod-

elling language), an explanation and at least one real case example. After that

all consequences (both advantages and liabilities) are assessed. Different pat-

terns can be identified to solve a similar problem. In order to be able to compare

the different patterns, the implementation consequences have to be documented

in a structured way as well. Evaluating architecture quality attributes already

documented in assessment standards (e.g. ISO/IEC 9126(ISO/IEC, 2011)) can

be a solution to this, but only relevant attributes should be selected. Using this

description form, together with a balanced set of quality attributes, gives a com-

plete overview of a variability pattern and can be used in an efficient way for both

research, educational and professional purposes.

3.5 Conclusion

Because different tenants in a multi-tenant environment should have the feeling

they are the only one using a specific software product, meeting specific wishes of

customers is crucial for a SaaS supplier. The software product needs to have a level

of variability in order to achieve the configurability needed to meet those require-

ments. This paper proposes the use of software patterns to help implementing

variability in an online software product. When reported on in a thorough way,

software patterns are the ideal tool to report on variability solutions. The use

of patterns compels to study forces and consequences of a solution in a struc-

tured way, enhancing the rigour of developing the solution. Since the credibility

of a pattern description largely depends on the forces identified and the reported

consequences, a fixed pattern form is recommended.

Overall, variability patterns play a large role in addressing variability in multi-

tenant environments and are a valuable method for researching, reporting, thinking

and communicating about variability solutions in online software products.

Chapter 4

Variability in Multi-tenant Systems

Abstract

In order to serve a lot of different customers in a SaaS environment, software

vendors have to comply to a range of different varying requirements in their soft-

ware product. Because of these varying requirements and the large number of

customers, a variable multi-tenant solution is needed to achieve this goal. This

paper gives a pragmatic approach to the concepts of multi-tenancy and variability

in SaaS environments and proposes three architectural patterns that support vari-

ability in multi-tenant SaaS environments. The Customizable Data Views pattern,

the Module Dependent Menu pattern and the Pre/Post Update Hooks pattern are

explained and shown as good practices for applying variability in a multi-tenant

SaaS environment. All patterns are based on case studies performed at two large

software vendors in the Netherlands, who are offering an ERP software product

as a service.

This work has been published as Variability in Multi-tenant Environments: Architectural Design

Patterns from Industry in the Proceedings of the 30th International Conference on Advances in Con-
ceptual Modeling (ER‘11) (Kabbedijk and Jansen, 2011). It is co-authored by Slinger Jansen.

57

58 Chapter 4 Variability in Multi-tenant Systems

4.1 Introduction

Increasingly, product software vendors want to offer their product as a service

to their customers (Ma, 2007). This principle is referred to in literature as

SaaS (Gold, Mohan, Knight, and Munro, 2004). Turning software into a service

from a vendor’s point of view means separating the possession and ownership of

software from its use. Software is still maintained and deployed by the vendor, but

used by the customer. The problem of moving a software product from different

on-premises locations to one central location, is the fact that it becomes really dif-

ficult to comply to specific customer wishes. In order to serve different customers’

wishes, variability in a software product is needed to offer specific functionality.

By making use of variability in a software product, it is possible to supply software

functionality as optional modules that can be added to the product at runtime.

Applying this principle can overcome many current limitations concerning software

use, deployment, maintenance and evolution in a SaaS context (Turner, Budgen,

and Brereton, 2003). It also reduces support costs, as only a single instance of the

software has to be maintained (Dubey and Wagle, 2007).

Besides complying to specific customer requirements, a software vendor should be

able to offer a service to a large number of customers, each with their own require-

ment wishes, without running into scalability and configuration problems (Beze-

mer and Zaidman, 2010). The solution to this problem is the use of multi-tenancy

within a SaaS product. Multi-tenancy can be seen as an architectural design

pattern in which a single instance of a software product is run on the software

vendors infrastructure, and multiple tenants access the same instance (Bezemer,

Zaidman, Platzbeecker, Hurkmans, and Hart, 2010). It is one of the key compe-

tencies to achieve higher profit margins by leveraging the economy of scale (Guo,

Sun, Huang, Wang, and Gao, 2007). In contrast to a model incorporating multi-

ple users, multi-tenancy requires customizing the single instance according to the

varying requirements among many customers (Kwok, Nguyen, and Lam, 2008).

Currently, no well-documented techniques are available on how to realize the vari-

ability needed in multi-tenant SaaS environments.

First the research method is discussed in section 4.2, after which the most impor-

tant concepts in this paper will be explained and discussed in section 4.3. Then,

the trade-off between the level of variability needed and the number of customers

Chapter 4 Variability in Multi-tenant Systems 59

is discussed in section 4.4, followed by three architectural design patterns for vari-

ability in SaaS product in section 4.5. The paper ends with a conclusion and

future research in section 4.6.

4.2 Research Approach

In this chapter, variability patterns employed within the products of two large

ERP SaaS providers are observed. In order to do this, a literature study has

been performed, in which the combinations of variability, saas and variability,

multi-tenancy were used as keywords in Google Scholar to get an overview of

current variability patterns described in literature. Google Scholar is chosen as

search engine since it indexes and searches almost all academic publishers and

repositories world-wide. Papers resulting from the search are selected and put

into a database if the keywords are mentioned in the title or the abstract. A total

of 27 papers was collected during the search.

Besides the literature study, two independent case studies are performed at large

ERP providers who recently launched their ERP software product as a service

through the Internet (referred to as ErpCompA and ErpCompB from here on).

ErpCompA has a turnover of around 250 million euros and around 20,000 users

using their online product while ErpCompB has a turnover of around 50 million

euros and around 10,000 users. The case studies were performed using the case

study research approach by Yin (2009) and have a holistic multiple case design

(cf. 1.4.2). The variability patterns are presented as architectural design patterns

and created based on the Design Science principles of Hevner, March, Park, and

Ram (2004), in which a constant design cycle consisting of the construction and

evaluation of the variability patterns takes place. The initial model is constructed

using an Exploratory Focus Group (EFG) (Hevner and Chatterjee, 2010), con-

sisting of participants from academia and the case companies and a systematic

literature review (Cooper, 1998). The participants in the EFG have been selected

based on their experience in the area of variable multi-tenant SaaS-environments.

4.2.1 Validation

The validity of the patterns, identified in this chapter, is ensured by using multiple

sources of evidence in a holistic multiple case design. The focus groups, used within

the case companies, allow us to refine and validate our results constantly during

60 Chapter 4 Variability in Multi-tenant Systems

the research process. Additionally, draft versions of the variability patterns are

discussed in interviews with key informants (i.e. software architects) within the

two case companies (Runeson and Höst, 2009). Before patterns are constructed,

the problem and related solution has to be observed in products from both case

companies. The matching of the patterns enhances the internal validity (Yin,

2009). To ensure the external validity, all patterns are compared to the papers

in the paper database. If similar patterns exist, the identified pattern is checked

on completeness. The case study protocol was applied throughout the entire data

gathering process.

4.3 Related Work and Definitions

To explain the multi-faceted concepts used in this paper, this section will discuss

multi-tenancy, design patterns and variability in more depth. The definition pro-

posed are meant to enable researchers to have one shared lexicon on the topic of

multi-tenancy and variability.

4.3.1 Multi-tenancy

Multi-tenancy can be defined as “a property of a system where multiple customers,

so-called tenants, have the possibility to configure the system; it allows them to

transparently share the system’s services, applications, databases, or hardware

resources, with the aim of lowering costs” (cf. Chapter 2). A tenant refers to

an organization or part of an organization with their own specific requirements,

renting the software product. We define different levels of multi-tenancy:

• Data Model Multi-tenancy: All tenants share the same database. All

data is typically provided with a tenant-specific Globally Unique Identifier

(GUID) in order to keep all data separate. Even better is native support for

multi-tenancy in the database management system (Schiller, Schiller, Brodt,

and Mitschang, 2011).

• Application Multi-tenancy: Besides sharing the same database, all ten-

ants also share the same instance of the software product. In practice, this

could also mean a couple of duplications of the same instance, coupled to-

gether with a tenant load balancer (Kwok, Nguyen, and Lam, 2008).

Chapter 4 Variability in Multi-tenant Systems 61

• Full Multi-tenancy: All tenants share the same database and software

instances. They can also have their own variant of the product, based on

their tenant requirements. This level of multi-tenancy adds variability to the

software product.

All items above are sorted on ascending implementation complexity.

4.3.2 Variability

The concept of variability comes from the car industry, in which different combina-

tions of for example chassis, engine and color were defined as different variants. In

software the concept is first introduced in the area of software product lines (Pohl,

Böckle, and Linden, 2005), in which variability is defined as “the ability of a soft-

ware system or artefact to be efficiently extended, changed, customized or config-

ured for use in a particular context” (Svahnberg, Gurp, and Bosch, 2005). Within

the area of software product lines, software is developed by the software vendor

and then shipped to the customer to be run on-premises. This means variants

have to be compiled before product shipping. Within the area of SaaS, software is

still developed by the software vendor, but the product is served to all customers

through the internet from one central place (Turner, Budgen, and Brereton, 2003;

Kwok, Nguyen, and Lam, 2008). In principle, all variants can be composed the

moment customers ask for some specific functionality, so at run-time. In this

research, we define variability as follows: “Variability in software architectures de-

scribes how well an architecture supports flexibility in a certain aspect, with an

exact specification of the differences.” (Galster and Avgeriou, 2011, p. 63)

We identify two different types of variability within multi-tenant SaaS deploy-

ments:

• Segment Variability: Product variability based on the segment a tenant

is part of. Examples of such variability issues are different standard cur-

rencies or tax rules per country or a different layout for Small and Medium

Enterprises (SMEs) and sole proprietorships.

• Tenant-oriented Variability: Product variability based on the specific

requirements of a tenant. Examples of such variability issues are different

background colors or specific functionality.

We also identify different levels of variability in tenant oriented variability:

62 Chapter 4 Variability in Multi-tenant Systems

• Low: Look and Feel: Changes only influencing the visual representation

of the product. These changes only occur in the presentation tier (tier-

based architecture (Eckerson, 1995)) or view element (MVC-based archi-

tecture (Krasner and Pope, 1988)). Examples include different background

colors or different element sorting in lists.

• Medium: Feature: Changes influencing the logic tier in tier-based archi-

tecture or the model or controller element in an MVC-based architecture.

Examples include the changes in workflow or the addition of specific func-

tionality.

• High: Full: Variability of this level can influence multiple tiers at the same

time and can be specific. Examples of this level of variability includes the

ability for tenant to run their own program code.

The scope of this research is focused on runtime tenant-oriented low and medium

variability in multi-tenant enterprise software.

4.3.3 Software Patterns

The concept of patterns was first introduced by Christopher Alexander in his

book about the architecture of towns (Alexander, Ishikawa, Silverstein, Jacob-

son, Fiksdahl-King, and Angel, 1977). This concept was quickly picked up in the

software engineering world and led to the famous ‘Gang of Four’ pattern book

by Gamma, Helm, Johnson, and Vlissides (1995). This book describes several

patterns that are still used today and does this in a way that inspired a lot of sub-

sequent pattern authors. The definition of a pattern used in this paper originates

from the Pattern Oriented Software Architecture series (Buschmann, Meunier,

Rohnert, Sommerlad, and Stal, 1996; Schmidt, Stal, Rohnert, and Buschmann,

2000; Kircher and Jain, 2004; Buschmann, Henney, and Schmidt, 2007a; Buschmann,

Henney, and Schmidt, 2007b) and reads: “A particular recurring design problem

that arises in specific design contexts, and presents a well-proven generic scheme

for its solution. The solution scheme is specified by describing its constituent

components, their responsibilities and relationships, and the ways in which they

collaborate.” (Buschmann, Meunier, Rohnert, Sommerlad, and Stal, 1996, p. 8)

Patterns are not artificially created artifacts but evolve from best practices and

experiences. The patterns described in this paper result from several case studies

and discussions with experienced software architects. All patterns have proven

Chapter 4 Variability in Multi-tenant Systems 63

to be a suitable solution for the problems described in section 4.5, since they

are applied in successful SaaS products at the case companies. Also, all patterns

are described language or platform independent, so the solution can be applied

in various situations in the SaaS domain. More information on future research

concerning the patterns proposed can be found in section 4.6.

4.4 User-Variability Trade-off

The best solution for deploying a software product from a software vendor’s per-

spective depends on the level of resources shared and the level of variability needed

to keep all users satisfied. In figure 4.1 four deployment solutions are introduced,

that are considered best practices in the specific situations shown. In this section,

the need for multi-tenant deployment models is explained.

Need for Variability

N
e

e
d

 f
o

r
re

so
u

rc
e

sh
a

ri
n

g

Custom

Software

Solution

Standard

Multi-tenant

Solution

SPL

Solution

Configurable

Multi-tenant

Solution

P
A

A
S

IA
A

Sa

b

a

b

a+
b

a = Business Growth

b = Customer

Requirements Growth

Figure 4.1: Level of variability versus Number of users

By using the model shown in figure 4.1, software vendors can determine the best-

suited software deployment option. On the horizontal axis, the need for variability

in a software product is depicted, and the number of customers is shown on the

vertical axis. For a small software vendor who does not have a lot of customers

with specific wishes, a standard custom software solution is sufficient. The more

customers software vendors get (business growth), the higher the need for a stan-

dard multi-tenant solution because of the advantages in maintenance. When the

amount of specific customer wishes grows, software vendors can choose the SPL

64 Chapter 4 Variability in Multi-tenant Systems

approach to create variants for all customers having specific requirements. This

solution can lead to a lot of extra maintenance issues as the number of customers

grows. In case of a large number of customers having specific requirements, a con-

figurable multi-tenant solution is the best solution for software vendors, keeping

an eye on performance and maintenance.

4.5 Variability Patterns

In this section, three patterns are described that were observed in the case stud-

ies that were conducted. The patterns are based on solutions observed within

the case companies’ software product, refined by patterns already documented in

literature (Gamma, Helm, Johnson, and Vlissides, 1995; Svahnberg, Gurp, and

Bosch, 2005). All patterns will be explained by a UML diagram, together with a

pattern description based on the model described in Chapter 3. The model has

been extended by an explanation and an example, in order to add more detail to

the pattern description.

4.5.1 Customizable Data Views

In this section, a variability pattern is discussed, enabling developers to give ten-

ants a way to indicate their preferences on the representation of data within the

software product.

DataRepresentation

+filterData()

+sortData()

+xData()

FunctionalComponent

+filter()

+sort()

0.* 0.*
uses

DataComponent

+storeSetting()

+retreiveSetting()

0.*

1

uses

UserSettings

+UserID

+SortOrder

+FilterItems

+FontSize

+FontColor

+AttributeN

Figure 4.2: Customizable Data Views Pattern

Chapter 4 Variability in Multi-tenant Systems 65

Context — Design of a multi-tenant enterprise application.

Problem — It is important to give the tenant the ability to indicate and save his

preferences on the representation of data shown. How can developers be enabled

to give tenants a way to indicate their preferences on the representation of data

within the software product?

Solution — In this variability pattern (cf. figure 4.2), the representation of data

is performed at client side. Tenants can, for example, choose how they want to sort

or filter their data, while the data-queries do not have to be adapted. The only

change needed to a software product is the introduction of tenant-specific repre-

sentation settings. In this table, all preferred font colors, sizes and sort option can

be stored in order to retrieve this information on other occasions to display the

data again, according to the tenant’s wishes.

Explanation — As can be seen in the UML representation of the pattern in fig-

ure 4.2, the DataRepresentation class can manipulate the appearance of all data

by making use of a FunctionalComponent able of sorting, filtering, etcetera. All

settings are later stored by a DataComponent in a specific UserSettings table.

Settings can later be retrieved by the same DataComponent, to be used again by

the DataRepresentation class and FunctionalModule.

Consequences — By implementing this pattern, one extra table has to be imple-

mented. Nothing changes in the way data selection queries have to be formatted.

Representation of all data has to be formatted in a default way, except if a tenant

changes this default way and stores his own preferences.

Example - In a bookkeeping program, a tenant, for example, can decide what

columns he wants to display and how he wants to order them. By clicking the

columns he wants to display, his preferences are saved in the database. When the

tenant uses the product again later, his preferences are fetched from the database

and applied to his data.

4.5.2 Module Dependent Menu

This section describes a pattern to create dynamic menus, based on the modules

associated to a tenant.

Context — Design of a multi-tenant enterprise application.

Problem — All tenants have specific requirements to a software product, they

can all use different sets of functionality. Displaying all possible functionality in

the menu would decrease the user experience of tenants, so menus have to display

only the functionality that is relevant to the tenant. How can a custom menu to

66 Chapter 4 Variability in Multi-tenant Systems

ModuleChecker

+checkModuleID()

+checkUserID()

UserModules

+userID

+moduleID

Button

+Image

+Description

+Link

+MandatoryModule

Menu

+addButton()

+checkModule()

0.* 0.1
uses

Module

+ModuleID

+functionA()

+functionB()

+functionN()

0.* 0.*
links to

Figure 4.3: Module Dependent Menu Pattern

all tenants, only containing links to the functionality relevant to the tenant be

provided?

Solution — The pattern proposed (cf. figure 4.3) creates a menu out of differ-

ent buttons based on the modules associated to the tenant. Every time a tenant

displays the menu, the menu is built dynamically based on the modules he has

selected or bought.

Explanation — The Menu class aggregates and displays different buttons, con-

taining a link a specific module and the prerequisite for displaying this link (manda-

toryModule). The selection of buttons is done, based on the results of the Mod-

uleChecker. This class checks whether an entry is available in the UserModules

table, containing both the ID of the tenant (user) and the mandatory module. If

an entry is present, the Menu aggregates and displays the button corresponding

to this module.

Consequences — To be able to use this pattern, an extra table containing user

IDs and the modules available to this user has to be implemented. Also, the extra

class ModuleChecker has to be implemented. All buttons do need a notion of a

mandatory module that can be checked by the ModuleChecker to verify if a tenant

wants or can have a link to the specific functionality.

Example — In a large bookkeeping product, containing several modules that

can be bought by a tenant, the menus presented to the tenant can be dynamically

composed based on the tenant’s license.‘

Chapter 4 Variability in Multi-tenant Systems 67

4.5.3 Pre/Post Update Hooks

In this section a pattern is described, capable of implementing modules just before

or after a data update.

PreComponent

+AttributeA

+AttributeB

+AttributeN

+operationA()

+operationB()

+operationN()

PostComponent

+AttributeA

+AttributeB

+AttributeN

+operationA()

+operationB()

+operationN()

FunctionalComponent

+update()

+preProcess()

+postProcess()

BusinessComponent

+update(void)

DataComponent

+updateData()

ComponentChecker

+checkModuleID()

+checkUserID()

DataTable

+XData

+YData

+ZData

UserModules

+UserID

+ModuleID

0.* 1
calls

1 0.*
uses

0.*

0.*

implements

0.*

0.*

1

calls

Figure 4.4: Pre/Post Update Hooks Pattern

Context — Design of a multi-tenant enterprise application.

Problem — In business oriented software, workflows often differ per tenant. To

let the software product fit the tenant’s business processes best, extra actions

could be made available to tenants before or after an event is called. How can the

possibility for tenants to have custom functionality just before or after an event

be provided?

Solution — The pattern introduced here (cf. figure 4.4) makes use of a compo-

nent able of calling other components before and after the update of data. The

tenant-specific modules are listed in a separate table, similar to the pattern de-

scribed in section 4.5.2.

Explanation — Before the FunctionalComponent calls the BusinessComponent

68 Chapter 4 Variability in Multi-tenant Systems

in order to perform an update, the ComponentChecker is used to check the User-

Modules table if a tenant wants and may implements an extra component before

the update is performed. After this, the BusinessComponent is called and the

update is performed. The DataComponent takes care of the writing of data to a

specific data table. After this, the ComponentChecker again checks the UserMod-

ules table and a possible PostComponent is called.

Consequences — Extra optional components have to be available in the software

system in order to be able to implement this pattern. The number of components

available depends on the tenants’ requirements.

Example — In a bookkeeping program, tenants can choose, whether they want

to update a third party service as well by using a component that uses the API of

a third party service to make changes there. If so, the FunctionalComponent can

call a third party communicator after an internal update is requested.

4.6 Conclusion and Future Research

This paper gives a classification of different types of multi-tenancy and variability,

enabling researchers to have one shared lexicon. Satisfying the need for a prag-

matic overview on how to comply to the specific requirements of large numbers of

customers, while keeping a product scalable and maintainable, this paper showed

an introduction to the concept of variability in multi-tenant SaaS solutions and

presented three patterns gathered from industry case studies. By applying these

patterns, companies can better serve customers and keep their software product

maintainable and scalable. All three patterns are proven to be effective within

the case companies and are reviewed by experts from the case companies, but still

need to be analyzed more in terms of performance and effectiveness.

More variability patterns still have to be identified, and the effectiveness, main-

tainability, scalability and performance of all variability patterns still has to be

tested in future research. Currently, a preliminary variability pattern evaluation

model is being developed enabling researchers to test all identified variability pat-

terns and draw conclusions on their effectiveness. Also more case companies from

other domains will be examined, enabling us to identify and test more variability

patterns.

Chapter 5

Variability Consequences of the

CQRS Pattern

Abstract

In order to maximize their customer base, business software vendors are trying

to offer software products that support the business needs of as many customers as

possible. The more standardized a software product is, the easier it will be to serve

large numbers of uniform customers. However, if customers are not homogeneous,

a trade-off must be made between flexibility and complexity. A case study is

presented showing the implementation of the CQRS pattern, a pattern dictating

the strict separation between commands and queries. The study was performed

at a large software product vendor currently designing a software product based

on CQRS. Seven sub patterns related to CQRS are identified and discussed. The

research results show the CQRS pattern is implemented and how its different sub

patterns can result in a high level of variability within a software product and how

the different sub patterns can interact to achieve this.

This work has been published as A Case Study of the Variability Consequences of the CQRS Pattern

in Online Business Software in the Proceedings of the 17th European conference on Pattern Languages
of Programs (EuroPLoP 2012) (Kabbedijk, Jansen, and Brinkkemper, 2012). It is co-authored by Slinger
Jansen and Sjaak Brinkkemper.

69

70 Chapter 5 Variability Consequences of the CQRS Pattern

5.1 Introduction

It is highly relevant in business software to offer a product to customers that

fits their business processes, especially in ERP and related bookkeeping software.

This can be problematic, since different customers have different business processes

and because of these different, or even contradictory, requirements to a software

product. The architecture of a software product has to support the variability

needed to offer a software product flexible enough to match all different customer

requirements, while not introducing unwanted side effects, such as complexity,

scalability or security challenges. In Software Product Lines (SPL), variability is

known as the ability to change or customize a software product (Jaring and Bosch,

2002). This definition is sufficient for software products that are manufactured in

a software product line style and deployed on premises at customers, but does not

hold true anymore when it comes to online software products. Online software

products have to be able to offer variable solutions at the same time from a single

customizable instance, a concept known as runtime variability (Mietzner, Metzger,

Leymann, and Pohl, 2009). The principle of serving multiple customers from one

online software product, giving each the idea they are the only customer using the

product in terms of flexibility is known as multi-tenancy (Kabbedijk and Jansen,

2011).

In order to create a software product, capable of offering a certain level of vari-

ability, most current software products separate logic into different layers. Each

tier within this architectural principle is responsible for a different part of the ar-

chitecture (Manuel and AlGhamdi, 2003). An often implemented solution to this

multi-tier architecture is the three-tiered application in which there is a separate

data, logic and presentation tier. Within this solution, the database in the data

tier is often seen as one CRUD (Create, Read, Update and Delete data) data store

in which all commands and queries are performed on the same database. This

can lead to locking, performance and scalability problems, especially with larger

commands or queries since all things have to be taken care of sequentially. Dis-

tributing parts of the system in combination with selective locking of data provides

a partial solution but leads to a high probability of data inconsistency.

Since the CAP theorem (Gilbert and Lynch, 2002) states that it is impossible for

a distributed system to have Consistency, Availability and Partition Tolerance at

the same time, it is an option to split parts of the system that have an emphasis on

consistency from parts that should have an emphasis on availability or partition

Chapter 5 Variability Consequences of the CQRS Pattern 71

tolerance. Following this line of thought, Greg Young and Udi Dahan came up

with the CQRS (Command Query Responsibility Separation) pattern (Young,

2010; Dahan, 2010) in which all logic of a software product is separated based on

whether it changes the application state (commands) or only queries it. This means

executing commands is done by different components than the one responsible for

executing the querying tasks, all of which can be done distributed and in parallel.

Besides helping to solve the scalability problem of multi-tiered software products

by enabling architects to distribute tasks of the system among an unlimited amount

number of systems, CQRS also helps to implement a higher level of variability in

online software products. The high level of variability is caused by the fact the

main pattern keeps commands strictly separated from queries and has a large

collection of sub patterns using the distributed nature of the pattern to enable,

among others, all sort of different tenant dependent configurations, workflows, and

business rules. This concept will be further explained in section 5.6.

This paper will first report on related research in section 5.2, after which the

research approach will be discussed in section 5.3. After this, an example of the

CQRS pattern will be shown we observed in the case company in section 5.4.

Different sub patterns playing a role in CQRS will be discussed in section 5.5,

followed by the consequences CQRS has in section 5.6. The paper ends with a

discussion and some future research in section 5.7, followed by a conclusion in

section 5.8.

5.2 Related Work

The ground principle of CQRS, stating the strict separation of command and

queries, is introduced by Bertrand Meyer in his book Object-Oriented Software

Construction (Meyer, 1988). He called it Command Query Separation (CQS), a

pattern in which each method is either a command performing a certain action or

a query returning data to the caller. Both commands and queries are performed

independently from each other. In his own words, “asking a question should not

change the answer”. This concept was picked up later on by Greg Young and

Udi Dahan, who merged it with ideas out of Domain Driven Design (DDD) by

Eric Evans (Evans, 2004) and combined this to create the CQRS pattern (Young,

2010).

72 Chapter 5 Variability Consequences of the CQRS Pattern

Figure 5.1: CQRS core principle

In a nutshell, the CQRS pattern is only about creating two subsystems, as can be

seen in figure 5.1. From the user interfaces, commands can be sent to the command

manager or queries can be sent to or received from the query manager. Commands

are actions that will be performed on the data, while queries are requests for

data to be shown. The CQRS pattern itself does not prescribe anything about

communication between the command manager and the query manager, but there

is a collection of patterns often used in combination with CQRS that take care

of communication. An often applied pattern within CQRS for communication is

communication through events, which will be elaborated on in section 5.5.1.

Currently there is an active community of developers, architects and enthusiasts

working with the CQRS pattern, but it has not yet penetrated the broadly applied

and widely known collection of software patterns described in the work of Gamma

et al. (Gamma, Helm, Johnson, and Vlissides, 1995) and the Pattern-Oriented

Software Architecture books (Buschmann, Meunier, Rohnert, Sommerlad, and

Stal, 1996; Schmidt, Stal, Rohnert, and Buschmann, 2000; Kircher and Jain, 2004;

Buschmann, Henney, and Schmidt, 2007a; Buschmann, Henney, and Schmidt,

2007b). Several frameworks like NCQRS (github.com/ncqrs), Axon (github.

com/axonframework) and Lokad (github.com/Lokad/lokad-cqrs) however, help-

ing developers to implement the CQRS pattern in several languages are released

in the last two years, making the CQRS pattern increasingly popular. The docu-

mentation and community around these frameworks are also an important source

of knowledge related to the CQRS pattern.

github.com/ncqrs
github.com/axonframework
github.com/axonframework
github.com/Lokad/lokad-cqrs

Chapter 5 Variability Consequences of the CQRS Pattern 73

5.3 Research Approach

In order to gather the data relevant for this research, a case study was performed

at large ERP software vendor from the Netherlands having approximately 10,000

small and medium enterprises using their current online bookkeeping software

product on a day to day basis (i.e. ERPCompB, as discussed in Chapter 4). In

this chapter, we will refer to the case company as ERPComp. During this case

study, (1) several CQRS information sessions for employees at ERPComp in which

the principles of CQRS and are explained, emphasizing on the particular imple-

mentation within ERPComp were attended. We (2) actively participated in the

architecture team for a total of 40 hours in which we also (2a) conducted five

interviews with architects working at ERPComp on the implementation of CQRS

within their software product and its consequences on scalability and variability.

Within these interviews, architecture design artifacts were discussed and shared

with the author. Finally, (2b) all results of the interviews were analyzed within

the architecture team to have a constant feedback loop for interpreting the ar-

chitecture and consequences of implementing the CQRS pattern. This constant

feedback of key figures within the research area is common practice within co-

operative inquiry (Reason, 1994) and the design science cycle of Hevner, March,

Park, and Ram (2004). Besides gathering data within ERPComp, (3) all research

findings are also discussed with an external expert panel consisting out of three

leading CQRS experts from outside the case company. All experts are either au-

thor of a CQRS framework or provide courses in applying the CQRS framework.

The panel also actively participated in reviewing the entire chapter. The overview

of the research approach used can be found in figure 5.2.

The study performed is a ‘single case’ case study according to the classification of

Yin (Yin, 2009). A case study database containing recordings of the interviews

and all notes taken during the interviews was kept in order to improve the trace-

ability and rigour of the case study research. The internal and construct validity

of the research is ensured by using experts within the case company to check

all artifacts and conclusions and by matching the results of the case study with

expected results. A clear case study protocol was used as advised by Runesson

and Höst (Runeson and Höst, 2009) in which the planning and structure of the

interviews was described.

74 Chapter 5 Variability Consequences of the CQRS Pattern

Figure 5.2: Applied Research Method

5.3.1 Research Questions

The main research goal “How can the CQRS pattern influence the vari-

ability of a software product?” will be answered by answering three related

research questions (RQs). These questions are:

1. How is the CQRS pattern designed within the case company?

2. What sub patterns can be identified within the CQRS pattern?

3. How do the different sub patterns influence the variability of a software prod-

uct?

RQ1 is answered by a using interview data and architectural design artifacts gath-

ered at the case company during CQRS information sessions, interviews and con-

stant feedback during architecture team participation. The answers to RQ2 are

primarily answered by using design artifacts from the case company, combined

with literature and expert reviews from an external expert panel consisting of

three CQRS experts. RQ3 again is answered using the interview data resulting

Chapter 5 Variability Consequences of the CQRS Pattern 75

from interviews held with architects at the case company and a review on our

conclusions by an external expert panel.

5.3.2 Validation

Since we took part in the architecture team at ERPComp, the data resulting

from the case study, are constantly validated by discussion within the team. The

constant short feedback loop enhances the construct validity of the patterns iden-

tified (Reason, 1994). Additionally, all patterns identified within the case study,

are explicitly discussed during five interviews with experts from ERPComp (en-

hancing internal validity) and compared to current documentation available online

(enhancing external validity). The patterns are not only compared to academic

literature, but also to industrial blogs and documentation, because the concept

of CQRS is still young, and not many academic papers have been published yet

on the topic. Also, three external CQRS consultants are used as experts to vali-

date the CQRS patterns. The experts all, individually, reviewed the patterns, and

feedback on the pattern content and presentation was processed accordingly. After

the initial feedback, the improved patterns are validated once more to ensure the

changes are performed correctly.

5.4 CQRS Implementation

This section will report on the design of the software architecture of the main

product created by ERPComp. This implementation report is aimed at giving

an impression of the possibilities of the CQRS pattern and related sub patterns.

Currently, ERPComp is redesigning their software product from scratch, keeping

a strict separation between all queries and commands as indicated by the CQRS

pattern. This section reports on the new software architecture designed at ERP-

Comp, so no legacy code or systems are in place.

Figure 5.3 shows the CQRS-based design of the software architecture at ERP-

Comp. On the left side of the figure the User Interface is modelled from which

Commands can be sent to the Command Bus (top of the figure) and Queries can

be sent and received to and from the Query Bus (bottom of the figure). All arrows

in the figure represent communication within the system. Whenever the commu-

nication is explicitly implemented as a command, query or event, this is indicated

in the figure. All other arrows, including the double headed arrows only represent

76 Chapter 5 Variability Consequences of the CQRS Pattern

a certain form of communication, but nothing specific is specified. From the Com-

mand Bus, commands are sent to Command Handlers. The handlers perform the

action indicated by the command, after which the action is stored in the /textit-

Stream Store. From here all events are sent to the Event Bus, who can distribute

the event among different Query Model Builders (QMBs) or route events back to

the Command Bus, through Event Routers. Add the query side, different Query

Model Builders listen to the events broadcasted through the Event Bus and act

on certain events. The events they response to depend on the goal of the specific

builders. All built queries are stored in a Query Store, for easy access by both

the Query Model Builders and Query Handlers. The Query Handlers can publish

query results to the Query Bus, which can be used by he User Interface to display

certain information.

Figure 5.3: CQRS implementation at ERPComp

A further analysis of sub patterns that can be observed within the CQRS-based

software architecture design can be found in section 5.5.

Chapter 5 Variability Consequences of the CQRS Pattern 77

5.5 CQRS Sub Patterns

The CQRS pattern can be extended and complemented by applying several addi-

tional patterns. The number of sub patterns that can be applied within the CQRS

pattern are numerous, but this research focusses on the selection of patterns we

observed within the case company. All sub patterns are described using the pat-

tern description model from Chapter 3. The context for all sub patterns is the

design of a multi-tenant enterprise application, applying the CQRS Pattern.

5.5.1 Event Sourcing

Problem — There needs to be a way to communicate between the command

manager and the query manager.

Solution — One of the possibilities within the CQRS pattern that can play

a big role in terms of scalability is the sourcing of the events created by the

command manager. These events can be sent to an event bus to which the query

model builders in the query manager listen. A query model builder is a different

sub pattern that is able of translating events to appropriate data views, which is

discussed in more depth in section 5.5.5. The different query builders can be on

the same system, but also on different physical or virtual machines. Query model

builders can be on different geographical locations or even at clients. Because of

this, the system becomes scalable, and all sub parts are especially geared towards

the task they have to do (i.e. read or write) (Young, 2010). Please see figure 5.4a

for a representation of the Event Sourcing pattern. The most important aspect

of the event sourcing pattern is the fact different events are broadcasted by the

command manager to be processed by different components.

Consequences — The system becomes scalable and all sub parts are especially

geared towards the task they have to do (i.e. read or write).

5.5.2 Event Store

Problem — Storage by the query manager could be anything, from stored in

cache to stored at the client, or in some database. Because of the uncertainty in

storing method, you can not rely on the availability and recovery of data if the

system crashes.

Solution — Events in the CQRS pattern do not necessarily need to be stored

in any way. They could be sent to the query manager immediately after being

78 Chapter 5 Variability Consequences of the CQRS Pattern

(a) Event Sourcing Sub Pattern (b) Event Store Sub Pattern

Figure 5.4: The Event Sourcing and Event Store CQRS sub patterns

processed and never be stored (as can be seen in figure 5.4a). The query manager

then can do with the event whatever is necessary to get the data in an appropriate

form. Because the storage by the query manager could be anything, from stored

in cache, to stored at the client, or in some database, you can not rely on the

availability and recovery of data if the system crashes. Because of this, an often

implemented pattern within CQRS is the use of an event store. In this store, all

events can be stored sequentially, so all data can be reconstructed based on the

events in case of a system crash (Nijhof, 2010). Figure 5.4b shows the represen-

tation of the event store pattern. From the User Interface commands are sent to

a handler (see section 5.5.4 for more information on command or query handlers)

who sends it to the event store as an event.

Consequences — Events are now stored in a central location and can be accessed

in a reliable way, for the sake of data recovery.

5.5.3 Aggregate Root

Problem — Data in the CQRS pattern is created by different query model

builders and because of the asynchronous way the listeners work nothing is known

about the correctness of data at the time of querying.

Solution — Because data in the CQRS pattern is created by different query model

builders of which you do not necessarily know what or where they are, and because

of the asynchronous way these listeners work you can not say anything about the

correctness of data at the time of querying. As an example, think about a large

web shop selling laptops. Whenever someone wants to order a laptop, the system

Chapter 5 Variability Consequences of the CQRS Pattern 79

needs to know whether the inventory is sufficient to approve the order. In other

words, the system needs to be sure there is at least one laptop available before the

order can be processed. In the core CQRS pattern, there is no way to know for

sure the laptop is in stock because all events are processed asynchronously. The

only way to know for sure the laptop is in stock is to store the number of laptops

available together with the laptop itself and also process this as one. If not, it is

possible that the system checks whether a laptop is in stock, sees one laptop in

stock, starts processing the order and ends up with an erroneous order since the

laptop is sold just before through another process.

The concept of storing and processing all properties and entities that are depen-

dent on each other together is know as aggregation. The main entity is called

the entity root. An order, for example, should always be processed together with

its order lines, since the lines make no sense without the order. In the previously

mentioned example, the order and order lines are an aggregate and the order is the

aggregate root, since deleting the root would indicate deleting the other entities as

well.

Consequences — Related properties and entities are processed and stored to-

gether.

5.5.4 Command Handler

Problem — Commands coming in from the user interface have to be passed

through to something that will perform the action dictated by the command.

Solution — Commands coming in from the user interface have to be passed

through to something that will perform the action dictated by the command. As

discussed in section 5.5.3, these actions can be adequately performed by aggregate

roots as observed within the design of ERPComp. The command coming from

the command bus has to be interpreted and translated somehow before it can

be performed. A command handler is capable of catching one or more commands

and passing it through to an object capable of performing the command (Abdullin,

2010). Figure 5.5 shows an overview of the command handler pattern. The action

performer in the figure should somehow make sure an action is performed. One

way of doing this is using a two phase commit (Gray and Lamport, 2006) in which

a request is sent in two phases, but since this adds significant load to the system,

other methods like delaying the sourcing of events until an aggregate root is totally

finished are recommendable.

Consequences — Commands are correctly and timely processed.

80 Chapter 5 Variability Consequences of the CQRS Pattern

Figure 5.5: Command Handler Sub Pattern

5.5.5 Query Model Builder

Problem — Data queries by tenants are diverse and need to be translated to an

appropriate view. In order to represent the right data in the appropriate form,

the needed view is dependent on the domain of the query. The domain knowledge

needs to be translated to an automatically usable model.

Solution — All events that are sent to the query manager can be caught by a

query model builder, as discussed in section 5.4a. These query model builders

can be everywhere from the client’s cache to all kind of different physical servers.

The QMBs listen to events coming in through the event bus and create a view of

the data needed by the query manager. This view totally depends on the domain

the QMB is in and the goal the data has. A QMB in a system responsible for

generating inventories, for example, will build entirely different query models than

a QMB in a system responsible a displaying the contact details of one person.

Figure 5.6 shows a representation in combination with the query handler pattern

discussed in section 5.5.6.

Consequences — Queries are translated to an automatically usable model.

5.5.6 Query Handler

Problem — Data queries by tenants are diverse and need to be translated to an

appropriate view. In order to represent the right data in the appropriate form,

the needed view is dependent on the domain of the query. The domain knowledge

needs to be translated to an automatically usable model.

Solution — Queries sent by the user interface should be translated somehow in

Chapter 5 Variability Consequences of the CQRS Pattern 81

order to know what should be send back. The QMB only creates views of the data

but does not know how to relate this to the user interface. The use of a query

handler can solve this problem by implementing a component able of receiving all

queries and checking the query store for views created by the QMB (Torkel, 2010).

Figure 5.6 shows a combination between the QMB pattern (section 5.5.5) and the

Figure 5.6: QMB and Query Handler Sub Pattern

query handler pattern. The concept of a query store is introduced to store queries

build by the QMB. This store is not obligatory, but can improve the response time

of the system.

Consequences — Queries are now translated to views, usable for representation

to tenants through the user interface.

5.5.7 Snapshotting

Problem — States only occur in aggregate roots, but recovering the state of an

aggregate root after a system crash is intensive.

Solution — It is common practice in the CQRS pattern to only store changes

(events) and no states. This is because states can always be determined based on

all the changes happened in the system so far. Rerunning al events will bring the

system back in its last state after a possible system crash. States only occur in

aggregate roots (see section 5.5.3), but recovering the state of an aggregate root

after a system crash can be quite intensive, since aggregate roots often stay active

in the system for a long time. A solution to this problem is the use of snapshotting.

82 Chapter 5 Variability Consequences of the CQRS Pattern

In the snapshotting pattern, the state of the aggregate root is stored together with

the events every nth event. The exact value of n depends on the processing load

storing and monitoring the state of the aggregate root gives. When the system

crashes, the latest stored state is recovered, and only the events happened after

this state storage have to be rerun. The snapshotting pattern is often used in

combination with the memento pattern (Gamma, Helm, Johnson, and Vlissides,

1995) that provides the ability to restore objects to their previous state.

Consequences — System recovery is faster and more reliable.

5.6 Variability Influences

Applying the CQRS pattern in a software product does not immediately influence

the level of variability of a software product. Applying CQRS in combination with

sub patterns identified in this case study however does have a positive effect on the

variability level of a software product. On a functional level, it becomes possible

to comply to specific customer groups or branches of industry having their own

specific requirements.

Figure 5.7: Example of variability due to CQRS

Figure 5.7 shows how applying the Event Sourcing and Event Store patterns (sec-

tion 5.5.1) can help in offering specific functionality to different industrial sectors.

The example is an adapted version of a design observed at ERPComp. The figure

shows three different (A, B and C) sectors, but this can differ per implementa-

tion. In the system, one core system is created containing the functionality that

is shared by all sub systems. For example, a CRM system, having specific sub

systems for sectors like retail, furniture and bakeries. All domains share names

and addresses for customers, so commands related to this would be performed by

Aggregate Roots in the core CRM system. All branches would listen to events

Chapter 5 Variability Consequences of the CQRS Pattern 83

broadcasted by the core CRM system and build query models based on events

that are relevant for them. Operations on attributes or entities that only exist on

one of the sub systems (for example a membership card number for retail) will

only be processed within the specific sub system. The core system should only

receive commands and does not have to be able to process queries, since the sector

specific sub systems handle the representation of specific data. By identifying the

different requirements of customers and grouping them in different sub systems,

the level of variability possible within a software product will be high.

The possibility of running Query Model Builders (section 5.5.5) at the client side,

also opens possibilities for customer specific requirements that are not shared

with other customers. Custom QMBs and Query Handlers can be developed and

implemented at customers, allowing them to perform the specific task needed for

their business process. The customer specific listeners listen to events broadcasted

and can react in a way specific for the wishes of one customer. The location of

deployment does not play a role, making it possible to run QMBs at the customer,

but also at third parties. Overall, as observed within ERPComp, the CQRS

pattern enables software vendors to create a software product better capable of

complying to all sort of different customer requirements and by this achieve a high

level of variability. This is primarily caused by the possibility to distribute events

to specific event listeners and the ability to handle those events in a way that can

be customer or customer type specific.

5.7 Discussion and Future Research

Software products designed according to CQRS and sub patterns identified in this

research can profit from an optimal configuration of data stores in such a way

that it is geared towards a specific task (i.e. storing or reading data). By this,

the CAP theorem can be less of a problem than it would have been if one data

store had to do all tasks. The distributed asynchronous way in which events are

handled is primarily useful for business software product having a high concurrent

load or a high need for variability. Business products, as analyzed within our case

study, have both of the characteristics described above and will benefit from ap-

plying the CQRS pattern, including identified sub patterns, in terms of scalability,

performance during load peaks and the level of variability.

The sub patterns reported on in the paper are all based on the patterns applied

within the case company, cross checked with patterns currently described in CQRS

84 Chapter 5 Variability Consequences of the CQRS Pattern

related literature. The selection of patterns described is not a complete set of

patterns related to CQRS. More and different patterns exist, but the patterns

identified in this research are those used within ERPComp. Furthermore, extensive

research at additional case companies can extend the collection of CQRS sub

patterns and create an even more complete overview of CQRS related patterns.

Future research should also make clear when architects should choose certain pat-

terns and how these different sub patterns work together to achieve some common

goal. The characteristics of all patterns should be more extensively evaluated by

domain expert to create a complete catalogue of all CQRS related patterns.

5.8 Conclusion

As the case study and variability example illustrates, the CQRS pattern can help

in achieving a high level of variability in a software product. Different sub patterns

are identified related to CQRS to solve specific problems within a CQRS based

architecture design. This paper helps software architects by explaining the differ-

ent sub patterns and showing how they can influence the variability off a software

product.

We showed an implementation of the CQRS pattern, including seven sub pat-

terns that are observed at ERPComp. This example shows how implementing a

CQRS based architecture instead of a multi-tier architecture can help in creat-

ing a software product capable of serving thousands of customers with variable

product requirements. All identified sub patterns can be implemented together

or individually to create, but none of them are obligatory for implementing the

CQRS pattern. Some sub patterns, like the Event Sourcing pattern and the use

of distributed query model builders, can contribute directly to the variability of a

software product in a significant way. Other sub patterns however have a support-

ing role for the architecture, dealing with scalability, performance or consistency

of the system. There is no perfect combination of sub patterns when it comes to

CQRS since everything specific situation differs, but the pattern descriptions in

this paper help in making a weighed decision for software architects.

Part II

Selecting Patterns in Systems

Design

85

Chapter 6

Multi-Tenant Architecture

Assessment

Abstract

Software architects struggle to choose an adequate architectural style for multi-

tenant software systems. Bad choices result in poor performance, low scalability,

limited flexibility, and obstruct software evolution. We present the Multi-tenant

Architecture Assessment Model (MAAM) that supports architects in choosing the

most suitable architectural pattern, among a set of 12 Multi-Tenant Architec-

ture (MTA) patterns and using 17 assessment criteria. Both patterns and criteria

were evaluated by domain experts. Five architecture assessment rules of thumb

are presented in the paper, aimed at making fast and efficient design decisions.

MAAM provides architects with an effective method for selecting the applicable

multi-tenant architecture pattern, saving them effort, time, and mitigating the

effects of making wrong decisions.

This work has been published as a short paper named Multi-tenant Architecture Comparison to
the 8th European Conference on Software Architecture (ECSA2014). It is co-authored by Michiel Pors,
Slinger Jansen and Sjaak Brinkkemper

87

88 Chapter 6 Multi-Tenant Architecture Assessment

6.1 Introduction

As a consequence of the current shift of on-premises software to the cloud (D’souza,

Kabbedijk, Seo, Jansen, and Brinkkemper, 2012), software architects find them-

selves facing numerous new challenges related to the adequacy of architectures

for cloud software. A commonly used technique in architecting for Software-as-a-

Service (SaaS) is the use of the concept of multi-tenancy, which is defined for this

research as “a property of a system where multiple customers, so-called tenants,

have the possibility to configure the system; it allows them to transparently share

the system’s services, applications, databases, or hardware resources, with the aim

of lowering costs”(See chapter 2 for more details).

Multi-tenancy can bring about many benefits. By serving the software service

from a centrally hosted location, clients are relieved from the responsibility of pur-

chasing and maintaining expensive in-house servers. The total cost of ownership

decreases, giving the SaaS provider access to new potential customers that pre-

viously could not afford the expenses (Chong and Carraro, 2006). In addition,

the utilization rate of hardware in a multi-tenant environment is higher than in

a single-tenant environment (Sääksjärvi, Lassila, and Nordström, 2005). Further-

more, when multiple customers share application and data instances, the total

number of running instances will be lower than in a single-tenant environment,

catering the same number of customers. A low number of instances is beneficial

for maintenance (Kwok, Nguyen, and Lam, 2008) and is beneficial for application

development (Bezemer, Zaidman, Platzbeecker, Hurkmans, and Hart, 2010).

However, multiple barriers withhold service providers from massively switching

to multi-tenant environments. The challenges for multi-tenancy adoption include

performance (Lin, Sun, Zhao, and Han, 2009), scalability, security (Guo, Sun,

Huang, Wang, and Gao, 2007), and the re-engineering of current software appli-

cations (Tsai, Ruan, Sahu, Shaikh, and Shin, 2007). Selecting the appropriate

multi-tenant architecture is a complex problem due to the existence of numer-

ous alternative architectural patterns. Benefits and barriers of multi-tenancy are

identified and described in literature, but the aspect of choosing an appropriate

multi-tenant architecture based on software vendors’ preferences has received little

attention in literature.

Finding the most suitable multi-tenant architecture is crucial; it expresses a funda-

mental structural organization schema for a provider’s software system. However,

choosing the appropriate architecture is a wicked problem (Esfahani, Razavi, and

Chapter 6 Multi-Tenant Architecture Assessment 89

Malek, 2012). Accounting for all the challenges and benefits complicates the de-

cision process considerably (Kazman, Asundi, and Klein, 2001). Previous studies

in multi-tenant architectural decision making exist (Esfahani, Malek, and Razavi,

2013) and often focus on a select set of quality attributes (Koziolek, 2011; Momm

and Krebs, 2011) while assessing architectural decision making, or focus primarily

on quantitative data from test deployments and specific implementations (Wang,

Guo, Gao, Sun, Zhang, and An, 2008). The consequences of applying a specific

pattern are dependent on the implementation. Because of this, assessment of the

architecture by experts based on their experiences is needed, leading to a high-level

analysis of the architecture. The Multi-tenant Architecture Assessment Method

(MAAM) aims at filling this gap by providing a concise and flexible method for

multi-tenant architecture decision making.

This paper presents the MAAM in section 6.3, based on the mixed-method research

approach used within this study (section 6.2). The twelve different Multi-Tenant

Architectures (MTAs) are shown in section 6.4, together with the list of MTA

assessment decision criteria in section 6.5. The MTA decision matrix is explained

in section 6.6, together with a collection of rules of thumb, supporting time-efficient

design decisions. We conclude with a discussion of MAAM, together with threats

to validity present and future work in section 6.7, focussing on the importance of

evaluating more effective methods in architectural decision making.

6.2 Research Approach

The main research question of this research is formulated as follows:

RQ. How can a SaaS provider be supported in the decision process of choosing an

applicable multi-tenant architecture pattern?

Three sub questions are answered in order to develop a decision model that answers

the main research question. The decision model consists of three fundamental

elements, which need to be identified. The first element is a set of multi-tenant

architectures to choose from. Hence, the first sub question is defined as follows:

SQ1. What distinctive layers in multi-tenant architectures can be defined?

Using a Structured Literature Research (SLR) approach, the distinctive layers

in multi-tenant architectures are identified to answer SQ1. Instead of searching

90 Chapter 6 Multi-Tenant Architecture Assessment

directly for multi-tenant architectures, different layers on which multi-tenancy

can be applied are first identified. Based on the different multi-tenancy layers,

generic multi-tenant architectures patterns are composed. The list of candidate

architecture pattern is validated by ten software architects to ensure the list is

complete and concise. The expert validation is not only essential for checking

the correctness of the list, but also to make sure the identified architectures reflect

relevant and implementable architectures. Additionally, the construct and external

validity of the list is enhanced by performing the validation.

SQ2. What are the relevant decision criteria for choosing an appropriate multi-

tenant architecture pattern?

SQ2 aims at identifying the different decision criteria, or architecturally significant

requirements, related to multi-tenant architectures. The decision criteria are aimed

to be attributes, distinguishing in the decision between different multi-tenant ar-

chitecture patterns. Similar to the identification of the MTAs, a structured lit-

erature research is carried out to identify the list of criteria. The identification

process results in a set of candidate criteria, which is analyzed in order to merge

similar and delete unimportant attributes. Consequently, the completeness and

conciseness of the reduced list is validated in an expert evaluation, consisting of

the same ten software architects used to answer SQ1.

SQ3. How do the different multi-tenant architecture patterns perform on the de-

cision criteria?

In order to answer SQ3, an evaluation is performed in which all MTAs are eval-

uated on the identified decision characteristics. The evaluation takes place by

surveying 16 software architects from three different enterprise software compa-

nies, all currently offering online enterprise software on a large scale. All experts

are asked to fill in a survey, querying about the effect of applying the MTAs in

a software product, on the decision characteristics. By using a structured survey

on 16 experts from tree different enterprise software companies, the validity of the

evaluation is ensured.

6.2.1 Structured Literature Research

A structured literature survey is conducted using an explicit search strategy as

prescribed by Kitchenham (Kitchenham and Charters, 2007). As there were no

Chapter 6 Multi-Tenant Architecture Assessment 91

systematic literature reviews on the topic of multi-tenant architecture evaluation,

we conducted a traditional search process in the major digital libraries in the

domain of software engineering and architecture:

1. ACM Portal; 2. IEEE Xplore Digital Library; 3. ScienceDirect; 4. SpringerLink;

5. Scopus

Using the following search string:

abstract:((tenan* or multitenan*) and (software or service or ap-

plication or saas)) and keywords:(tenan* or multitenan*)

An asterisk is used as a wild-card and represents variations of the corresponding

word, e.g., tenan* represents tenant and tenancy. The search string is constructed

by linking the two or lists using the boolean and. For more details on the search

strategy and construction of trail searches, please see our previous technical re-

port (Pors, Blom, Kabbedijk, and Jansen, 2013).

Study selection criteria assess the relevance of the literature found in the first

step. The selection criteria are piloted on a subset of primary studies. The initial

electronic search results in a large number of irrelevant papers, and using these

criteria a smaller, more relevant list of literature can be created. The following

criteria are used:

Inclusion Criteria

1. any article focusing on the topic of multi-tenancy in a hardware or software

environment.

2. any article either describing multi-tenancy levels, decision criteria, or both.

3. any article that is cited by other literature in the description of multi-tenancy

levels.

Exclusion Criteria

1. articles that do not appear in scientific papers or conference proceedings.

2. articles already obtained by other digital libraries.

92 Chapter 6 Multi-Tenant Architecture Assessment

3. articles written in a different language than English.

4. articles of which no full copy can be obtained.

After identification through the SLR, the MTAs and decision criteria are consoli-

dated and evaluated by domain experts to ensure their validity.

6.2.2 Expert Validation

The evaluation of the multi-tenant architectures and decision criteria is conducted

using a questionnaire. Using this survey ten experts are asked for their opinions on

(1) the structured multi-tenant architectures and (2) the composed set of decision

criteria. The experiences of the experts range from 2 years to 27 years, with over

14 years average experience in software architecture. The ten software architects

work for Dutch organizations with large cloud deployments in the public service

sector.

Inclusion of the multi-tenant architectures and decision criteria (as presented in

section 6.5) in the assessment model depends on the median of the evaluation

scores given by the experts. The median describes a numerical value separating

the higher half of a list of numbers from the lower half. If the list has an even

number of items, the median is defined as the mean of the two middle values. The

median is a more robust measure of central tendency in the presence of outlier

values than is the mean (Stevens, 1946). All answers in the questionnaire use a

7-point Likert scale.

If the median MTA evaluation score is equal to or greater than 3, it is included in

the assessment model. This threshold is chosen, because the third Likert item is

semantically described as slightly feasible, which means the experts rate the item

as feasible enough to be included in the assessment model. The decision crite-

ria are evaluated on two requirements; therefore, inclusion of a decision criterion

depends on two medians. If they are both equal to, or greater than 3, the corre-

sponding criterion is included in the assessment model, because the third Likert

item, described as a slight distinction or deciding factor, is considered sufficient.

Chapter 6 Multi-Tenant Architecture Assessment 93

6.3 Multi-Tenant Architecture Assessment Model

The Multi-tenant Architecture Assessment Model, as depicted in Figure 6.1, is

proposed to support software architects and other decision makers in the assess-

ment of appropriate multi-tenant architectures. MAAM uses a different approach

than well-know architecture evaluation methods like ATAM (Kazman, Klein, and

Clements, 2000), since it focusses exclusively on multi-tenant architectures and the

decision criteria related to MTAs. The model consists of three phases, in which

several steps are carried out using three artifacts depicted on the “uses” level.

Decision Criteria

Assessment

Priority

Calculation

Architecture

Assessment

MTA Selection
Decision Criteria

MTA Selection
Decision Matrix

MTA Collection

S
te

p
U

se
s

Figure 6.1: The Multi-tenant Architecture Selection Model: Steps and Artefacts

Decision Criteria Assessment - A SaaS provider initiates the decision process

with the assessment phase. This phase comprises of assessing the criteria set on

completeness and minimum size. The artifact used for this phase is the list of

MTA assessment decision criteria, which can be found in section 6.5. First, a

SaaS provider needs to assess the completeness of the criteria set. This means he

has to determine if each factor influencing the decision problem for that specific

SaaS provider is covered by a criterion. If this is not the case, the SaaS provider

can opt to add criteria. In case no criteria are added to the list, just the minimum

size property should be re-evaluated. The model aims to provide a complete set

of criteria while keeping flexibility if a SaaS provider’s domain requires so.

Priority Calculation - In this phase, the calculation of relative priorities of the

criteria takes place. Weights need to be assigned to each criterion. This can be

done by using an absolute measurement in which each criterion directly receives

a value lying between a predetermined range, representing the importance of that

criterion. Or, using the relative measurement in which criteria on equal level in

the hierarchy are compared with each other on relative importance with respect to

their common parent. Then, together with the MTA assessment decision matrix

in Table 6.3 global priorities can be calculated for each multi-tenant architecture.

Architecture Assessment - In case multiple architectures receive high priorities

lying close to one another, a deeper analysis between these architectures needs to

be conducted. This analysis should make use of more qualitative data and quality

trade-offs. When there is a single preferred multi-tenant architecture, decision

94 Chapter 6 Multi-Tenant Architecture Assessment

Multi-tenancy level N

Application Instance 16
Database Server 16
Database 15
Operating System 15
Hardware 14
Schema 14
Middleware 12
Virtual Machine 9
Application Server 4

Table 6.1: Multi-
Tenancy levels identified

in literature

Hardware

Virtual Machine

Operating System

Database Server

Database

Database Schema

Middleware

Application Server

Application Instance{

{D

A

Figure 6.2: Multi-tenancy comput-
ing stack. ‘A’ and ‘D’ relatively indi-

cate the Application and Data related

layer sets

makers should validate if this architecture in fact meets requirements and achieves

the expected goals.

6.4 Multi-tenant Architectures

The levels at which multi-tenancy can be applied, resulting from the literature

study, are shown in Table 6.1. All levels are listed together with the frequency of

occurrence (N) in literature. The different levels are depicted as layers in a stack

with decreasing granularity from top to bottom in Figure 6.2. The granularity

aspect translates to a sharing versus isolation continuum, where the lowest layer

has the lowest level of sharing with the highest level of isolation. For the highest

layer, it is vice versa. When multi-tenancy is applied at a specific level, the

levels below that level are shared among tenants as well, but isolation occurs

at the levels above, i.e. for each tenant a dedicated instance is running. This

applies to the application and data layer independently. For example, when multi-

tenancy is applied at the application server level, the application server, virtual

machine instance and hardware are shared among tenants. Isolation occurs at the

levels above the application server, so each tenant receives a dedicated application

instance, but multi-tenancy in the data layer can be applied on a different level.

The final two levels of the stack in the data layer are the database and schema

level. These two levels were first described by Chong et al. Chong, Carraro, and

Wolter (2006). When tenants are consolidated in a single database, each tenant

Chapter 6 Multi-Tenant Architecture Assessment 95

operates its own set of tables. In schema-level multi-tenancy, isolation occurs at

table row level.

In cloud computing, an infrastructure provider manages and controls the infras-

tructure consisting of processing, storage, networks and other fundamental com-

puting resources (Mell and Grance, 2011). For a service provider, which develops

the application and is the primary stakeholder in this research, the aspect of

multi-tenancy in these lower levels is little importance. It has no influence on

the architectural design decision of the software product. The number of servers,

instances and databases is far more relevant for a service provider (Dillon, Wu,

and Chang, 2010). For this reason, the hardware, virtual machine, operating

system and middleware levels are not considered in structuring different types of

multi-tenant architectures in this research.

The application related layer set (A) and the data related layer set (D) are stacks

commonly used in enterprise architecture in order to separate concerns (Fowler,

2003). Within this research the application layers and data layers are identified

as separate layer sets, each containing different sub-layers, as can be seen in Fig-

ure 6.2.

Consequently, three tenancy levels, indicated by a two-letter abbreviation, are

identified in the Application related layer set (A). The different levels result from

identifying ascending levels of sharing among all layers on the set:

1. AD - A Dedicated Application server is running for each tenant, and there-

fore, each tenant receives a dedicated application instance.

2. AS - A single Application Server is running for multiple tenants, and each

tenant receives a dedicated application instance.

3. AI - A single application server is running for multiple tenants, and a single

Application Instance is running for multiple tenants.

The first level corresponds to multi-tenancy enabled at the hardware or virtual

machine level. The second level is equal to application server multi-tenancy. The

third level is the same as multi-tenancy enabled at the application instance level.

In the Data related layer set (D) a service provider can select one the following

four tenancy levels:

1. DD - A Dedicated Database server is running for each tenant, and therefore,

each tenant receives a dedicated database.

96 Chapter 6 Multi-Tenant Architecture Assessment

2. DS - A single Database Server is running for multiple tenants, and each

tenant receives a dedicated database.

3. DB - A single DataBase server is running for multiple tenants, data from

multiple tenants is stored in a single database, but each tenant receives a

dedicated set of tables.

4. DC - A single database server is running for multiple tenants, data from

multiple tenants is stored in a single database and a single set of tables,

sharing the same Database sChema.

The first level is equal to multi-tenancy applied at the hardware or virtual machine

level. The second one corresponds to database server multi-tenancy. The third

alternative is the same as multi-tenancy applied to the database, and the final one

is equal to database schema multi-tenancy.

From these options in both the application and data layer, the set of multi-tenant

architectures (MTAs) are constructed. Based on the tenancy levels within the

layers, the number of possible architectures is twelve. Because all MTAs prescribe

a specific tenancy level in set A and D, each architecture is defined as a tuple:

MTA = 〈{AD,AS,AI} , {DD,DS,DB,DC}〉 (6.1)

Each of the twelve MTAs can be seen as an architectural pattern in which tenants

(Tenant A, B and C in the example MTAs) communicate with a software appli-

cation consisting of an application layer and a data layer as shown in Figures 6.3

and 6.4. Two MTAs out of twelve are shown here; for a complete overview of all

MTAs, please see (Pors, Blom, Kabbedijk, and Jansen, 2013).

DB Server
Tenant A

Tenant B

Tenant C

App Server

App

Instance

App

Instance

App

Instance

Figure 6.3: MTA〈AS,DB〉 - Shared Application Server & Shared Database

In Figure 6.3 and 6.4 the application layer is represented as a set of application

servers running one or multiple application instances. The data layer is displayed

Chapter 6 Multi-Tenant Architecture Assessment 97

Tenant A

Tenant B

Tenant C

App Server

App Server

App Server

DB Server

DB

DB

DB

App

Instance

App

Instance

App

Instance

Figure 6.4: MTA〈AD,DS〉 - Dedicated Application Server & Shared Database Server

as a set of database servers, running one or more databases, in which one or

multiple database schema’s exist. If one of these entities is shared among the

tenants, its color is gray. If it is dedicated to only one tenant, its colored white.

For the sake of simplicity, only three tenants are displayed in the architectures. A

service provider can offer his software application to more than three tenants, the

patterns merely present possible arrangements of shared resources.

6.4.1 Expert Validation

Experts are asked to rate the feasibility of the different MTAs, with 1 being the

lowest and 7 being the highest feasibility score.

〈AD,DD〉 receives a high degree of feasibility, seven experts defined it as at least

a very strongly feasible architecture. The opinions are more divided 〈AS,DD〉,

but the majority agrees it represents at least a moderately feasible architecture.

〈AI,DD〉 proves to be the lowest feasible architecture with an aggregate value be-

tween slightly and moderately. Three experts define 〈AD,DS〉 as slightly feasible,

yet five experts define it is at least very strongly feasible. On 〈AS,DS〉 no real

consensus is reached as well, but the collective is stated as having a value between

moderately and strongly feasible.

Opinions on 〈AI,DS〉 are even more divided as each Likert item is checked. Its

shared value is moderately feasible. The extent of feasibility on 〈AD,DB〉 is a

bit higher with a value between moderately and strongly. Half of the experts

define 〈AS,DB〉 as at least very strongly feasible. On the extent of feasibility on

〈AI,DB〉, the judgments can be divided into two equally large groups. One stating

it is slightly feasible at best, and the other stating at least strongly feasible. The

joint value however is moderately feasible. Six out of ten experts define 〈AD,DC〉

as a strongly feasible architecture, equal to its aggregate value. 〈AS,DC〉 receives

a strong degree of feasibility and on 〈AI,DC〉 experts concur on a very strong

98 Chapter 6 Multi-Tenant Architecture Assessment

degree of feasibility. For all MTAs, µ1/2 ≥ 3 applies and therefore all architectures

are included in the MAAM. The median is not calculated to identify differences

between the architectures, but to check per architecture individually how they

score in terms of feasibility.

6.5 MTA Assessment Criteria

106 criteria are initially identified from literature. The initial set potentially in-

cludes irrelevant and redundant attributes, meaning it does not yet adhere to the

minimal and non-redundant principle. The list of criteria is, therefore, reduced

in several evaluation steps. Figure 6.5 illustrates the process how the initial list

of criteria is condensed to the final list of evaluation criteria. The left side of the

figure shows the activities in the SLR selection process, while the right side of the

figure shows the deliverables from these activities.

Figure 6.5: Process Deliverable Diagram of MTA Assessment Criteria Identification

The first step in MTA assessment is identifying and selecting the relevant decision

criteria in accordance with the architects. Consequently, the initial set of decision

criteria is reduced by merging synonyms. After this step, criteria representing

specializations and generalizations of other criteria are combined. The final step

to reduce the list is by deleting infrequent criteria, i.e. attributes that are identified

less than five times in literature. The list of evaluation criteria resulting from the

Chapter 6 Multi-Tenant Architecture Assessment 99

last step is used as input for the expert evaluation discussed in section 6.5.1.

The majority of merging combinations is straightforward, but some decisions need

additional investigation before they can be merged. The most significant merges

of criteria will be shortly discussed below. For a complete discussion of all criteria,

please see Pors, Blom, Kabbedijk, and Jansen (2013).

Scalability is frequently identified in multi-tenancy literature as an important ad-

vantage and area of interest. Bondi defines scalability as a desirable ability of a

system, network, or process to accommodate an increasing amount of elements

and process this accompanying extra volume of work in a capable manner (Bondi,

2000). Additional workload is required when the service is offered to extra tenants

or users. As a result, scalability is related to the number of tenants and users

an architecture can support. For that reason, scalability is merged with both the

number of tenants and the number of users.

In the elaborate Computer Science Handbook, fault tolerance is described as “the

total number of failed elements that can be present without causing output er-

rors” (Tucker, 2004, p. 649). The reliability of a system is defined as “the proba-

bility that the system will produce correct outputs up to time t, provided it was

producing correct outputs to start with” (Tucker, 2004, p. 646). The availabil-

ity of a system is defined as “the probability that the system is operational at

time t” (Tucker, 2004, p. 646). Because a reliable system will be operational and

produce correct outputs, even when there are failed elements, fault tolerance and

reliability are both merged with availability.

The relationship between access control and authorization and authentication is

extensively discussed by Sandhu and Samarati (1994). The authors define access

control as “to limit the actions or operations that a legitimate user of a com-

puter system can perform. Access control constrains what a user can do directly,

as well what programs executing on behalf of the users are allowed to do. In

this way, access control seeks to prevent activity that could lead to a breach of

security”(Sandhu and Samarati, 1994, p. 1). Authentication is concerned with

correctly establishing the identity of the user, while authorization relates to de-

termining if the user attempting to do an operation is authorized to perform that

operation. The effectiveness of access control depends on proper authentication

and correct authorization, causing both access control and authorization to be

merged with authentication.

The result of these steps is the list of evaluation criteria, as illustrated in Table 6.2.

The column after the decision criterion shows how many times (N) that criterion

100 Chapter 6 Multi-Tenant Architecture Assessment

is identified from the list of selected literature. The criteria listed in Table 6.2 are

evaluated by domain experts in Section 6.5.1.

Criterion N Criterion N

Variability 65 Authenticity 12
Number of Tenants 60 Confidentiality 11
Maintainability 45 Deployment Time 9
Number of End-Users 44 Flexibility 9
Resource Utilization 42 Throughput 8
Software Complexity 32 Monitoring 7
Integrity 23 Diverse SLA 5
Time Behaviour 21 Portability 5
Availability 16

Table 6.2: Selection Criteria identified in Literature

The attribute operating cost covers a broad range of expenses, e.g. business over-

head costs and equipment operating costs. All attributes in Table 6.2 can be

associated with certain types of costs. The operating cost attribute encompasses

most costs associated with these other attributes. For this reason, the operating

cost attribute will not be included in the assessment model. Some of the crite-

ria identified are equal to or synonymous of the quality characteristics of software

products and computer systems defined in ISO/IEC 25010 (ISO/IEC, 2011), which

are used to define the quality of software and computer systems. The ISO/IEC

25010 standard contains a different list of attributes than the list identified in this

research. This discrepancy is caused by the focus on multi-tenancy, causing some

ISO attributes to be obsolete or lacking.

6.5.1 Expert Evaluation

Experts are asked to rate to what extent the specific criterion is influenced by

an MTA selection choice, leading to a Distinction Value. Experts were also

asked to assess the effect of the criterion on the MTA assessment process, which

is defined as the Deciding Factor.

According to the experts, Time Behavior has a high distinction and deciding fac-

tor. Resource Utilization holds a high distinction, but the ratings on the deciding

factor are more scattered. Still, more than half of the experts define the criterion

as having at least a strong deciding factor. The distinction ratings of Throughput

are spread, but the current value of five indicates is has a strong distinction. The

aggregate value equates to moderate. On the deciding factor of Throughput, no

Chapter 6 Multi-Tenant Architecture Assessment 101

Likert item is checked more than twice. Here too, the aggregate value equals mod-

erate. There is a better consensus on Number of Tenants with a high distinction

factor and a strong deciding factor. Lesser agreement exists for the distinction on

Number of End-users, but seven experts define it at least as strongly distinct.

For Availability six experts state it has at least a strong distinction and seven

experts stating it has at least a strong deciding factor. The criterion of Confi-

dentiality shows similar scores, and there is consensuses on both factors. There is

less consensus on both factors of the Integrity criterion, yet six experts find it has

at least a strong distinction and deciding factor. Authenticity receives the lowest

aggregate value on distinction. Six experts state a slight distinction among the

architectures and five experts state it has a strong deciding factor.

On Portability there is a good consensus, but the degree of distinction and deciding

factor is only moderate. Eight experts state Variability distinguishes to a degree

between moderately and very strong. Seven experts state its deciding factor lies

on moderate or strong. For Diverse SLA there are again eight experts stating it

distinguishes moderately to very strong. A majority answered the deciding factor

with a moderate extent. For Software Complexity there are seven experts defining

it as at least distinction strongly and six experts defining it as an at least strong

deciding factor. Finally, there exists a high consensus for Monitoring where nine

experts agree it distinguishes strong or very strong, and seven experts agree it has

a strong or very strong deciding factor.

Both medians for each decision criterion are equal to greater than 3 and therefore

each decision criterion is included in the final assessment model.

6.6 MTA Decision Matrix

The MAAM offers software architects a method to make an informed and balanced

decision on the MTAs to consider implementing for their software product. The

MTA Decision Matrix in Table 6.3 enables software architect to select the most

suitable multi-tenant architecture, based on expected usage performance. The

matrix shows the average rating of the 16 experts on the effect of an MTA on

a specific decision criterion. A value of 1 indicates a detrimental effect, while a

score of 5 indicates a positive effect. The last column of the matrix shows the

σ2-value, indicating how much the criterion is affected by the choice for a specific

MTA. Using the matrix, architects can get an overview of the consequences of all

102 Chapter 6 Multi-Tenant Architecture Assessment

Decision Criterion 〈A
D
,
D
D
〉

〈A
S
,
D
D
〉

〈A
I
,
D
D
〉

〈A
D
,
D
S
〉

〈A
S
,
D
S
〉

〈A
I
,
D
S
〉

〈A
D
,
D
B
〉

〈A
S
,
D
B
〉

〈A
I
,
D
B
〉

〈A
D
,
D
C
〉

〈A
S
,
D
C
〉

〈A
I
,
D
C
〉

D
is

t.
F
a
ct

o
r

(σ
2
)

Time Behavior 5.0 4.0 4.0 4.0 3.0 3.0 4.0 3.0 3.0 3.5 3.0 2.5 0.5

Resource Utilization 2.0 2.5 3.0 2.5 3.0 3.0 3.0 3.0 4.0 3.0 3.0 4.5 0.4

Throughput 4.5 3.0 3.0 4.0 3.0 3.0 3.5 3.5 3.0 3.0 3.0 3.0 0.2

Number of Tenants 1.0 3.0 3.0 3.0 3.5 4.0 3.0 4.0 4.0 4.0 4.0 5.0 1.0

Number of End-Users 2.5 3.5 3.0 3.0 3.5 3.5 3.5 3.5 4.0 3.5 4.0 4.5 0.3

Availability 4.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.5 3.0 3.0 3.0 0.1

Recoverability 5.0 4.5 4.5 4.0 4.0 4.0 3.0 3.0 3.0 2.0 2.0 2.0 1.1

Confidentiality 5.0 4.5 4.0 4.0 4.0 4.0 3.5 3.0 3.0 2.0 2.0 2.5 0.9

Integrity 4.5 4.0 3.0 4.0 3.5 3.0 3.5 3.0 3.0 3.0 2.5 2.0 0.5

Authenticity 4.5 3.5 3.0 3.5 3.0 3.0 4.0 3.5 3.0 3.0 3.0 2.5 0.3

Maintainability 1.5 2.5 3.0 2.5 3.0 3.5 2.5 4.0 4.5 3.0 4.0 5.0 1.0

Portability 5.0 5.0 4.5 4.5 4.5 4.5 4.0 4.0 4.0 3.0 3.0 2.5 0.7

Deployment Time 1.5 3.0 3.0 2.5 3.5 4.0 3.0 4.0 4.0 3.0 4.0 5.0 0.8

Variability 5.0 4.0 2.5 5.0 4.0 2.0 4.5 3.5 2.0 2.5 2.0 1.0 1.8

Diverse SLA 4.5 4.0 3.0 4.0 3.5 2.5 4.0 3.0 3.0 3.0 2.5 2.0 0.6

Software Complexity 5.0 4.5 4.0 4.5 4.5 3.5 4.0 4.0 3.0 2.5 2.5 2.0 0.9

Monitoring 1.0 2.0 3.0 2.5 3.0 3.0 3.0 4.0 4.0 3.5 4.0 5.0 1.1

Table 6.3: Multi-Tenant Architecture Decision Matrix (In color) - n = 16

different MTA patterns and assess the weight of the consequences for their specific

situation. Based on the consequences and the weights, architects can select a

subset of patterns to evaluate in more depth, using, for example, the Software

Pattern Evaluation Method (SPEM) presented in Chapter 8. To help in selecting

a subset for future analysis, this section presents some Rules of Thumb (RT)

derived from the decision matrix and are helpful in giving decision makers a quick

overview of the most important consequences of an MTA assessment.

RT1. Focus on the database dimension — The effect of different MTAs on

decision criteria is largest on the database dimension. The MTA Decision Matrix

shows the effect of database related decisions is higher than application related

decisions. Choosing between a set of MTAs, focus on database related decisions

first, and application related decisions after.

RT2. Sharing database tables enables serving of many tenants but

harms robustness — Selecting an MTA in which the database schema is shared

(i.e. 〈A?, DC〉1) is beneficial if the software product serves many tenants and

end-users. The product is easy to maintain and monitor, and deployment time

1‘?’ is used as a single character wild card.

Chapter 6 Multi-Tenant Architecture Assessment 103

is minimal. The recoverability of the system, on the other hand, is greatly com-

promised. It is difficult to implement variability and tenant data may be at risk

of unintentional sharing. Based on this trade-off, SaaS providers should select

〈A?, DC〉 when designing a large scale software product with limited variability

requirements.

RT3. Sharing application instances helps maintainability and perfor-

mance, but harms variability — Choosing an MTA, decision makers can

decide to share the application instance among tenants (i.e. 〈AI,D?〉). Doing so

causes the maintainability and ease of monitoring to increase. Also, the resource

utilization is better and the deployment time low. The variability of the soft-

ware product, however, is lower and more difficult to implement. Because of this,

SaaS should choose 〈AI,D?〉 when maintainability and performance efficiency are

important.

RT4. Ease of implementing variability differs greatly per MTA — Out

of all decision criteria, variability has the highest distinction factor. This means

the variability of a software product is for a significant part determined by the

implemented MTA. Choosing an MTA with a low tenancy level (i.e. 〈AD,DD〉,

variability is relatively easy to achieve. Selecting an MTA with a high tenancy level

however (i.e. 〈AI,DC〉), causes large problems implementing variability among

all tenant instances.

RT5. Dedicated servers improve performance and variability, but ham-

per scalability — When choosing an MTA with dedicated servers (i.e. 〈AD,DD〉)

the time behavior, recoverability, variability and confidentiality are expected to be

good, and software complexity low. The downside to this approach is the low

scalability of the system; when the number of tenants increases, dedicated servers

become hard to maintain, and hardware costs will rise. Choose 〈AD,DD〉 for soft-

ware products with a small user base that need to have high performance and a

high level of flexibility. Typically large enterprise applications fall in this category.

The rules of thumb listed in this section do not aim for completeness, but rather

give software architects and decision makers a collection of rules to guide their

architecture selection.

To illustrate, we take the fictional company FictComp, which is a small software

company who currently produce an on-premises software product, but expect to

grow significantly in the near future. They want their online product to be able to

support a large number of tenants and end-users but will not offer very complex

104 Chapter 6 Multi-Tenant Architecture Assessment

or variable functionality. As a starting point, FictComp assesses the five rules

of thumb. RT2 indicates that sharing database tables is beneficial for FictComp

and enables them to serve a large number of tenants. Because variability plays a

minor role, FictComp decides to also share the application instance among tenant

as described in RT3. These decisions lead FictComp to 〈AI,DC〉 and gives them

a starting point to further analyze the consequences of this specific MTA choice

in 6.3. Using the matrix, they can now adjust or change their choice accordingly.

6.7 Discussion and Conclusion

The MAAM, and the identification of the 12 different multi-tenant architecture

patterns, along with a list of assessment criteria and rules of thumb, supports SaaS

providers in providing a concise and versatile method for multi-tenant architecture

assessment. In case specific assessment criteria or MTAs are irrelevant to a software

architect, those elements can be easily removed from the analysis, simplifying the

selection of a suitable architecture. If an architect feels important decision criteria

are missing from the assessment model, extra decision criteria can be added in the

analysis. However, performance values of the MTAs on these criteria are provided

in this research.

We identify the following threats to validity to this study: 1. The set of twelve

multi-tenant architecture patterns does not take into account possible hybrid pat-

terns in which different solutions are used per sub-system. Hybrid patterns could

have effects on quality attributes, which are not described in this research. 2. The

MAAM is not evaluated yet in an extensive industrial setting. By performing an

industrial evaluation, the applicability of the model can be validated to a larger

extend.

All are threats to external validity, as defined by Yin (2009) and are not criti-

cal. We suggest further research to focus on demonstrating the analytic hierarchy

process in conjunction with the decision matrix at several companies. Then, the

ratings can be evaluated more thoroughly resulting in possible adjustments for

these performance values. Furthermore, the ratings provided in this research are

based on subjective judgements of sixteen experts. The accuracy of the ratings

can be increased by surveying a larger number of experts, causing a decrease of

the standard deviation. Finally, combinations of the MTA patterns (i.e. hybrid

patterns) should be evaluated to check for potential unexpected effects on software

quality.

Chapter 7

Comparing Dynamical Adaptation

Patterns

Abstract

Business software is increasingly moving towards the cloud. Because of this,

variability of software in order to fit requirements of specific customers becomes

more complex. This can no longer be done by directly modifying the applica-

tion for each client, because of the fact that a single application serves multiple

customers in the Software-as-a-Service paradigm. A new set of software patterns

and approaches are required to design software that supports runtime variability.

This paper presents two patterns to solve the problem of dynamically adapting

functionality of an online software product; the Component Interceptor Pattern

and the Event Distribution Pattern. Additionally it presents two patterns to dy-

namically extent the data model; the Datasource Router Pattern and the Custom

Property Object Pattern. The patterns originate from case studies of current soft-

ware systems and are reviewed by domain experts. An evaluation of the patterns

is performed in terms of security, performance, scalability, maintainability and

implementation effort, leading to the conclusion that the Component Interceptor

Pattern and Custom Property Object Pattern are best suited for small projects,

making the Event Distribution Pattern and Datasource Router Pattern best for

large projects.

This work has been published as Comparing Two Architectural Patterns for Dynamically Adapting

Functionality in Online Software Products in the Proceedings of the 5th International Conferences on
Pervasive Patterns and Applications (PATTERNS 2013) (Kabbedijk, Salfischberger, and Jansen, 2013)
and is extended as a journal submission. It is co-authored by Tomas Salfischberger and Slinger Jansen

105

106 Chapter 7 Comparing Dynamical Adaptation Patterns

7.1 Introduction

Software as a Service (SaaS) is a rapidly growing deployment model with a clear

set of advantages to software vendors and their customers. SaaS allows vendors

to deploy changes to applications more rapidly, which increases product inno-

vations while reducing support-costs as only a single version is to be supported

concurrently (Dubey and Wagle, 2007). In the SaaS deployment model a single ap-

plication serves a large number of customers. These customers are called tenants,

which can be a single user or an organisation with hundreds of users. Because

all tenants use the same application, the cost of development and setup of the

application can be amortized over all contracts.

The multi-tenant deployment model requires the application to be aware of dif-

ferent tenants and their users, for example in separating the data visible to dif-

ferent groups of users. We define multi-tenancy as: “the property of a system

where multiple varying customers and their end-users share the system’s services,

applications, databases, or hardware resources, with the aim of lowering costs”.

Database designs for multi-tenant aware software require specialized architecture

principles to accommodate multiple tenants (Aulbach, Grust, Jacobs, Kemper, and

Rittinger, 2008). One of the challenges in multi-tenant application architectures is

the implementation of tenant-specific requirements (S. Jansen, 2010). Variability

of software to fit requirements of specific customers can no longer be done by di-

rectly modifying the application for each client, because a single application serves

multiple customers.

A new set of software patterns and approaches are required to design software

that supports runtime variability. The patterns vary in impact on the technical

properties of the software like performance and maintainability, impact on the

cost-drivers of the SaaS business model, and the requirements they can fulfil. New

patterns are needed for both the data level and instance level of the application.

We propose two dynamic functionality adaptation patterns to implement vari-

ability at instance level and two dynamic datamodel extension patterns to enable

variability at data level. All patterns are evaluated and compared in terms of

situational suitability.

The concepts of variability and quality attributes are explained in Section 7.2, after

which the expert evaluation used is explained in Section 7.3. The Component

Interceptor Pattern and the Event Distribution Pattern, two patterns

both solving the problem of dynamically adapting functionality of online business

Chapter 7 Comparing Dynamical Adaptation Patterns 107

software, are presented in Section 7.5. Section 7.6 presents the Datasource

Router Pattern and Custom Property Object Pattern, which introduce

variability in the datamodel of online software products. All patterns are compared

in terms of security, performance, scalability, maintainability and implementation

effort. A concluding overview, presenting the best suitability for all patterns van

be found in Section 7.7.

Please note; in the text, we set pattern names in small caps according to the con-

vention by Alexander, Ishikawa, Silverstein, Jacobson, Fiksdahl-King, and Angel

(1977).

7.2 Related Work

Software Patterns - Object oriented design patterns were first introduced by Gamma,

Helm, Johnson, and Vlissides (1995) who define design patterns as recurring pat-

terns of classes and communicating objects in many object-oriented systems. They

state “each design pattern systematically names, explains, and evaluates an impor-

tant and recurring design in object-oriented systems”. We distinguish the patterns

described in this research from the original object oriented design patterns by

using the name software patterns and define them as “A particular recurring de-

sign problem that arises in specific design contexts, and presents a well-proven

generic scheme for its solution. The solution scheme is specified by describing its

constituent components, their responsibilities and relationships, and the ways in

which they collaborate.” (Buschmann, Meunier, Rohnert, Sommerlad, and Stal,

1996, p. 8). We intend to describe software patterns for variability techniques in

a multi-tenant context in a similar manner to the object oriented design patterns

described by Gamma, Helm, Johnson, and Vlissides (1995).

Others have, based on the first set of design patterns by Gamma, Helm, John-

son, and Vlissides (1995), researched the best methods for describing and com-

municating design patterns for later reuse. For example Evitts and Hinchcliffe

(2000) applies the UML to design patterns and proposes a modeling technique

based on UML-modeling. The same approach is taken by Mapelsden, Hosking,

and Grundy (2002) in their proposal for the Design Pattern Modeling Language

(DPML). DPML provides a method for the specification of design patterns as well

as a notation linking the elements of design patterns in DPML to UML model

elements. Mapelsden, Hosking, and Grundy (2002) consider three forms, the pat-

tern specification, the pattern instantiation and the final UML object model of

108 Chapter 7 Comparing Dynamical Adaptation Patterns

the instantiation. In a later publication Mapelsden et al. present tool-support

for the DPML to automatically transform a pattern specification into a pattern

instantiation and to maintain consistency between pattern specification, pattern

instantiation and the UML object model (Maplesden, Hosking, and Grundy, 2001).

Lauder and Kent (1998) discuss the need of a more formal design pattern descrip-

tion language to support Computer Aided Software Engineering (CASE) tools.

They describe previous pattern description languages based on generic UML dia-

grams annotated with natural language constraints as a problem for CASE tools.

Their main concern however is the fact that previous pattern description ap-

proaches tend to describe a single implementation of the pattern where the true

meaning of the pattern is lost to a description of implementation details. The

running example is the Abstract Factory Pattern as described by Gamma, Helm,

Johnson, and Vlissides (1995). The proposed solution is to apply three separate

layers of modeling, the role-model, type-model and class-model. At the highest

level of modeling the role-model only describes the parts of a design pattern and

their relative roles and interaction. The type-model is a refinement of the role-

model where details like implemented methods are added. The type-model should

according to Lauder and Kent (1998) be supplemented by a textual description of

the motivation, trade-offs and known uses. The final refinement of the type-model

is the class-model where a concrete implementation is described as is the case in

previous pattern description languages.

Variability - The field of software variability has been the subject of research

from both the modeling perspective as well as the technical perspective. Software

variability modeling is common in software product lines as described by Jaring

and Bosch (2002). The application of variability modeling as used in product line

variability (Bayer, Gerard, Haugen, Mansell, Møller-Pedersen, Oldevik, Tessier,

Thibault, and Widen, 2006) to software as a service environments has been de-

scribed by Mietzner, Unger, Titze, and Leymann (2009). Variability modeling as

discussed in the aforementioned works contributes to the understanding of where

the application architecture needs to be able to accommodate change or extension.

Patterns play an important role in modeling and solving variability in software

products (Kabbedijk and Jansen, 2012).

Svahnberg, Gurp, and Bosch (2005) propose feature diagrams as a modeling tech-

nique to describe the different variants of feature in a software product. Svahnberg,

Gurp, and Bosch (2005) use their feature diagrams as the basis for a method to

Chapter 7 Comparing Dynamical Adaptation Patterns 109

identify variability in a product, constrain this variability, pick a method of im-

plementation for the variability and further manage this variability point in the

application lifecycle. The main difference from the objectives of our research is

that Svahnberg, Gurp, and Bosch (2005) describe implementation techniques for

variability per installation instance of the software, whereas we focus on runtime

variability in a multi-tenant context.

Quality Attributes - Benlian and Hess (2011) identify security as one of the

most important risk-factors perceived, followed by performance risks. To assess

security risks, SaaS vendors need to include security as a quality attribute in

their design of the architecture. This leads to security as the first desired quality

attribute for business SaaS. Performance as an important factor to SaaS users

is closely related to the most important factor as found; cost Benlian and Hess

(2011). When performance is insufficient, clients are lost, when the system uses

too many resources to gain an acceptable level of performance, cost is increased.

A SaaS vendor must thus assess the possible performance impact of changes to

the software. To control cost in business SaaS, the SaaS vendor needs to utilize its

opportunities for scalability to decrease the cost of hardware or hosting fees (e.g.

using scalable software to make optimal use of cloud-hosting).

Another cost driver in SaaS is the cost of development and maintenance of the

software product. Maintenance cost is generally decreased by having to maintain

only a single version instead of multiple previous releases. On the other hand this

maintainability cost-saving must not be lost while implementing runtime variabil-

ity. Thus scalability and maintainability are also desired quality attributes for

business SaaS. Another way the implementation of runtime variability will influ-

ence product cost is through implementation-cost. Development is a cost-driver

for SaaS, thus if one or more specialized developers are required to implement a

certain pattern this will influence the final product cost.

The identified quality attributes are the following:

Security - The ability to isolate tenants from each other and the possible impact

of security breaches in custom components on other parts of the system.

Performance - The utilization of computing, storage and network resources by

the application at a certain level of usage by clients.

Scalability - The relative increase in capacity achieved by the addition of com-

puting, storage and network resources to the system as well as the flexibility with

which these resources could be added to the system.

Maintainability - The ease with which the system can be extended and potential

110 Chapter 7 Comparing Dynamical Adaptation Patterns

problems can be solved.

Implementation Effort - The effort required to implement and deploy a specific

system.

7.3 Research Approach

In order to identify the patterns in this chapter, a design science approach (Hevner

and Chatterjee, 2010) was used in which patterns are constucted based on vari-

ability solutions observed in different software products. The candidate patterns

are evaluated by experts to improve the pattern description and ensure the cor-

rectness. A holistic multiple case study design was applied in which three case

companies were used to gather the patterns. Company A has a software product

for high volume analysis of marketing data, Company B has a customer relations

management product for small to medium sized companies and Company C has

a logistics planning product for complex supply chains. The observed variability

solutions are all implemented in current commercial software products and one of

the researchers took part as a consultant in all three case companies. Solutions ob-

served in at least two independent products are considered to be general solutions

and presented as patterns. All patterns are evaluated by two experts to enhance

the validity of the patterns (Runeson and Höst, 2009). During each evaluation

session, a pattern is discussed with an expert, in a semi-structured way. The effect

of the patterns in relation to a set of quality attributes is discussed per attribute,

after which additional topics related to the patterns that came up during the in-

terview (e.g. implementation considerations), are discussed. The results are used

to validate the patterns and to evaluate the consequences of implementing the

patterns.

Both experts used in this study have experience in the development of large en-

terprise software products and multi-tenancy. The first expert used within this

research to evaluate and validate the results, is a senior software architect in an

international software consulting firm specialized in large scale development of

Enterprise Java applications. His role is to investigate technologies and method-

ologies to help design better architectures resulting in faster development and

more extensible software. A recent project includes a multi-tenant administrative

application storing security sensitive data for multiple organizations. The sec-

ond expert is a technology director and lead architect for an application used in

Chapter 7 Comparing Dynamical Adaptation Patterns 111

distributed processing of data, previously working in software performance con-

sulting for web-scale systems. His experience lies in the field of high-performance

distributed computing. The application his company works on focuses of low-

latency coordinated processing of large volumes of data to calculate metrics used

for marketing.

7.3.1 Validation

The patterns identified within this chapter are evaluated by two experts, who

validated all patterns based on correctness, completeness and understandability

of description. By using the two experts to validate the patterns, the likeliness of

capturing the appropriate problems and solutions in the patterns (i.e. construct

validity), is enhanced. Additionally, the pattern descriptions are reviewed by the

case company architects, in order to confirm the descriptions accurately describe

the actual implemented solution. The review of the patterns has a positive effect on

the external validity of the results. Finally, the fact that all patterns are observed

in multiple case companies, also enhances the construct validity by using multiple

sources of evidence (Yin, 2009).

7.4 Pattern Description Method

The use of patterns in order to describe multi-tenant systems is different from

the way object oriented design pattern are commonly applied. An object oriented

design pattern describes common solutions to problems in object oriented software

design. The most important difference between object oriented software design

and the design of multi-tenant systems is that the problem scope in multi-tenant

systems is not limited to only the objects in object oriented software. The software

system is considered not only to be a set of source files, but to include supporting

systems like databases, message-bus and infrastructure.

The needs for a description language for the discussed design patterns thus includes

the need to describe any necessary characteristics of the supporting systems and

auxiliary materials. When considering design patterns for software systems we pro-

pose a combination of description techniques at different levels similar tot Lauder

and Kent (1998). Instead of modelling different levels of detail and abstraction

112 Chapter 7 Comparing Dynamical Adaptation Patterns

within only object oriented design different levels of the software architecture in-

cluding supporting systems have to be modelled. The levels we propose to describe

online systems are:

1. Functional level

2. System level

3. Implementation level

Workflow

+ Name

Step

+ Order

VariableStep

+ SituationDescription

DefaultStep

+ Description

Figure 7.1: Example UML class diagram

Functional level - This level describes the functional intention of the pattern in

a technical context. Multiple different patterns can share the same model at func-

tional level, because several patterns can be designed to reach the same functional

effect with, for example, different performance and scalability characteristics. For

the graphical modelling of the functional level, UML class diagrams are used as

shown in Figure 7.1. This diagram captures the functional situation resulting

from application of the pattern without considering implementation of pattern

instantiation details.

System level - This level models the overview of the software including sup-

porting systems after the application of the pattern. Interaction among different

components within and between systems as a result of the implemented pattern are

shown. A UML deployment diagrams (Rumbaugh, Jacobson, and Booch, 2004) is

used to describe this level (see Figure 7.2 for an example).

Implementation level - The third level describes the potential implementation

of the pattern. These diagram depicts a specific implementation of the components

of the pattern. The implementation diagram is closely related to the system model,

Chapter 7 Comparing Dynamical Adaptation Patterns 113

Figure 7.2: Example UML Deployment Diagram

Figure 7.3: Example Sequence Diagram

but depicts the method of application of the components in the system model on

a more detailed level. Within this research we use a sequence diagram as shown

in Figure 7.3 to illustrate the implementation. This description level should be

regarded as a possible way to implement the pattern, but it does not prescribe a

specific implementation.

This chapter applies an alternative pattern description model than presented in

Chapter 3. The reason is that in order to assist architects in implementing the

patterns a lower abstraction level is required in the pattern descriptions. The

pattern catalogue in Appendix A, however, does present the patterns from this

chapter formatted according to the description model from Chapter 3.

114 Chapter 7 Comparing Dynamical Adaptation Patterns

7.5 Dynamic Functionality Adaptation Patterns

7.5.1 Problem Statement

Software product vendors not only need to offer a data model that fits an organ-

isation’s requirements, software functionality also has to meet an organisation’s

processes (Van der Aalst, Hofstede, and Weske, 2003). When tailor-made software

is developed, it is possible to set the requirements to exactly match the processes

of a specific organisation. For standard online software products this is not possi-

ble and differences between requirements of organisation have to be addressed at

runtime.

A requirement for the ERP system of a manufacturing company could be to send a

notification to the department responsible for transportation if tomorrow’s batch

will be larger than a certain size. If this requirement is not met by the soft-

ware product selected, the company could either decide to select another software

product or develop a tailor-made application that does meet their requirements.

To allow for the addition of extra functionality in the application a solution is

needed that allow to configure this functionality. This functional situation is mod-

eled in Figure 7.4, the envisioned functional situation. The StandardComponent

is a normal component of the software with default functionality, this component

has a set of ExtensionPoints. An ExtensionPoint is a location within the nor-

mal workflow where there is a possibility to add or change functionality. This

functionality is specified in an ExtensionComponent, which contains the actual

functionality that is to be executed at the specified ExtensionPoint.

StandardComponent

+ Name

+ Function ExtensionComponent

+ Name

+ Function

+ Behaviour

ExtensionPoint

Figure 7.4: Functional Model for adapting functionality

Chapter 7 Comparing Dynamical Adaptation Patterns 115

Figure 7.5: Component Interceptor Pattern: System Model

Two different patterns are identified, both offering a solution to dynamically adding

functionality to a software product.

7.5.2 Component Interceptor Pattern

The Component Interceptor Pattern as depicted in Figure 7.5 consists

of only a single application server. Interceptors are tightly integrated with the

application, because they run in-line with normal application code. Before the

StandardComponent is called the interceptors are allowed to inspect and possibly

modify the set of arguments and data passed to the standard component. To do

this the interceptor has to be able to access all arguments, modify them or pass

them along in the original form. Running interceptors outside of the application

requires marshalling of the arguments and data to a format suitable for transport,

then unmarshalling by the interceptor component and again marshalling the possi-

bly modified arguments to be passed on to the standard component that was being

intercepted. This is impractical and involves a performance penalty (Carpenter,

Fox, Ko, and Lim, 1999).

Running the extension components inside the application-server while support-

ing runtime variability requires support for adding and changing interceptors at

runtime. The system model depicts this requirement in the form of a reloadable

container. In some implementations this could be as simple as changing a source

file, because the programming platform used will interpret source code on the fly.

Other platforms require special provisions for reloading code, such as OSGi for the

Java platform or Managed Extensibility Framework for the .NET platform.

116 Chapter 7 Comparing Dynamical Adaptation Patterns

Figure 7.6: Component Interceptor Pattern: Sequence Diagram

Figure 7.6 depicts the interaction with interceptors involved. Interaction with

standard components that can be extended goes through the interceptor registry.

This registry is needed to keep track of all interceptors that are interested in

each interaction. Without the registry the calling code would have to be aware

of all possible interceptors. As depicted, multiple interceptors can be active per

component. It is up to the interceptor registry to determine the order in which

interceptors will be called. An example strategy would be to call the first registered

interceptor first or to register an explicit order when registering the interceptors.

Each interceptor has the ability to change the data that is passed to the standard

component, modify the result returned by the standard component, execute ac-

tions before or after passing on the call or even skip the invocation of the next step

all together and immediately return. Immediately returning would for example be

used when the interceptor implements certain extra validation steps and refuses

the request based on the outcome of the validation. As a result of these possibil-

ities the interceptors must be invoked in-line with the standard component, the

application cannot continue until all interceptors have finished executing.

7.5.3 Event Distribution Pattern

In the event distribution pattern the application generates events at extension

points, which are distributed by a broker. At each extension point the standard

component is programmed to send an event indicating the point and appropriate

contextual data (e.g. which record is being edited) to a broker. For example in

a CRM system the standard component for editing client-records sends a Clien-

tUpdated event with the ID of the client that was edited. Extension components

listen for these events and take appropriate actions based on the events received.

Chapter 7 Comparing Dynamical Adaptation Patterns 117

Figure 7.7: Event Distribution Pattern: System Model

In the example of a ClientUpdated event an extension component could be devel-

oped that sends a notification to an external system to update the client details

there.

The system model in Figure 7.7 depicts the distributed nature of the Event

Distribution Pattern. Standard components run in the application server,

sending events to a central broker, which can be run outside of the application.

Extension components are isolated and can be on a separate physical server or run

as separate processes on the same server depending on capacity and scale of the

application. Components are loosely coupled, sharing only the predefined set of

events.

The standard components are unaware of which extension components listen for

their events, execution of extension components is decoupled from the standard

components. Executing the extension components separately allows for indepen-

dent scalability of these components. Depending on system load and the volume of

events each component listens for, it is possible to allocate the appropriate amount

of resources to each component. Because there is no interaction between listeners,

it is possible to execute all listeners in parallel if appropriate for the execution

environment.

Standard components publish events to the broker as depicted in the sequence

diagram in Figure 7.8. The activation of the standard component not necessarily

overlaps with its listeners. After publishing the event, a standard component is free

to continue execution. Depending on the fault tolerance and nature of the events it

is up to the standard component to make a trade-off between guaranteed delivery

at a higher latency by waiting on the broker system to acknowledge reception

of the event or continue without waiting for such an acknowledgement. If, for

example, an event is only meant to prime a cache for extra performance the loss of

such a message would not impact critical functionality of the system while waiting

118 Chapter 7 Comparing Dynamical Adaptation Patterns

for the message might mitigate any performance gains. If on the other hand an

event is used for updating an external system for which no other synchronization

method is available the system needs guaranteed delivery to function correctly. At

design time this decision can be made on an event by event basis depending on

the capabilities of the messaging system used.

Because of the one-way nature of events and decoupled execution of extension

components it is not possible for an ExtensionComponent to stop standard func-

tionality from happening. In the observed system this was solved by allowing

ExtensionComponents to execute a compensating action in their listener. The

compensating action is sent from the listener component back to the system in-

dependently of the original action that caused the event. An example of such a

compensating action is an extension component that monitors changes to certain

records and reverts the change in case special conditions are met. This approach

has the added benefit that any changes made by extension components are clearly

visible in audit logs, which simplifies tracing possibly unexpected system behaviour

back to an ExtensionComponent.

7.5.4 Pattern Comparison

This section presents an analysis of both patterns on the five presented quality

attributes.

Figure 7.8: Event Distribution Pattern: Sequence Diagram

Chapter 7 Comparing Dynamical Adaptation Patterns 119

7.5.4.1 Security

When adapting functionality of an application, there is always the possibility of

introducing new security vulnerabilities. This is an inherent risk of extending an

application. The variability patterns do, however, influence how much larger the

attack surface becomes and how well a breach in one of the components is isolated

from other components. In the component interceptor pattern the code

handling the new functionality becomes part of the application and will have the

ability to execute arbitrary code within the context of the main application as

depicted in Figure 7.5. It will also have full access to any parameters passed

to intercepted functions as well as any returned values. A security breach in

the extension components (interceptors) is not isolated to only those components

unless extra security measures are implemented to separate the components from

the main application. This isolation would however have an impact on performance

because of the nature of the integration.

The event distribution pattern isolates the extension components from the

application by executing them in a separate context based on incoming events as

depicted in Figure 7.6. This execution in a separate context allows for more iso-

lation between extension components and the main application components. The

components also have far more limited access to standard functionality, because

any change the component wants to make has to go through explicitly exported

APIs or messages. Combined with event-sourcing, any change to data as a re-

sult of custom functionality is fully traceable including the original values (Fowler,

2003).

7.5.4.2 Performance

The component interceptor pattern executes interceptors within the con-

text of the application. This results in little overhead when executing the exten-

sion components, because data does not need to be marshalled, unmarshalled and

transferred between applications. For security reasons it could however be nec-

essary to separate the interceptors from the main application as described in the

previous section. This removes one of the performance advantages of the compo-

nent interceptor pattern because data must be transferred between the different

contexts.

120 Chapter 7 Comparing Dynamical Adaptation Patterns

Applications implementing the event distribution pattern require the setup

of a message broker that handles all events coming from the application and go-

ing into the extension components. This requires extra processing and network

resources and in the case of durable message delivery mechanisms also storage

resources reading and writing the messages. To transfer the events from the ap-

plication via a message broker to the extension components the events must be

marshalled into a format suitable for transferring over a network and unmarshalled

upon reception by the extension component, these steps add non-trivial cost to

the operations.

7.5.4.3 Scalability

Applications using the component interceptor pattern will execute inter-

ceptors within the context of the application. This has performance advantages

described in the previous section, however the interceptors cannot be scaled inde-

pendently of the application. When a high number of interceptors exists requiring

significant resources the application as a whole needs more application servers to

execute. The interceptors must be available to all application servers in that case.

The event distribution pattern on the other hand decouples the execution

of the event handlers from the application by running them on a logically separate

application server. Because events are handled outside the execution flow of the

standard components they can also be distributed to multiple systems. Adding

extra application servers subscribing to the same events in the message broker the

processing capacity of events could increase linearly. For the event distribu-

tion pattern this requires a message broker system that is able to handle the

increasing numbers of messages. Those systems are available off the shelf from

open source projects like Fuse Message Broker, JBoss Messaging, RabbitMQ and

commercial offerings like Microsoft BizTalk, Oracle Message Broker or Cloverleaf.

7.5.4.4 Maintainability

When adapting the functionality of an application, maintainability is also affected

by the necessity to make sure future extensions and modifications are compatible

with any custom functionality implemented for tenants. This is a trade-off be-

tween the flexibility and depth with which ExtensionComponents can affect the

application and the impact that changes to the application will have on the Exten-

sionComponents. As an example of the aforementioned trade-off a simple system

Chapter 7 Comparing Dynamical Adaptation Patterns 121

with only a single ExtensionPoint will have a much lower impact on maintain-

ability than a complex system with a very high number of ExtensionPoints. This

however affects both patterns equally.

The way the patterns decouple ExtensionComponents from StandardComponents

is however a differentiating factor. In the component interceptor pattern

the ExtensionComponent is more tightly integrated with the StandardComponent

because calls to a StandardComponent at an ExtensionPoint go through the inter-

ceptor providing all parameters and return values of the call. When changing calls

by adding or removing parameters this will directly affect the input of each Ex-

tensionComponent registered from that ExtensionPoint. When applying the event

distribution pattern the integration is more decoupled because calls to Standard-

Components are not directly affected by the ExtensionComponents. Instead the

ExtensionComponent receives a standardized event-message and uses a provided

API to send any changes or other actions back to the application. This allows for

changes to the StandardComponent without changing the event-messages going to

the ExtensionComponent. At the same time the API used by ExtensionCompo-

nents to influence the application can be kept stable for small changes or versioned

to support future compatibility using methods like the one described by Weinreich,

Ziebermayr, and Draheim (Weinreich, Ziebermayr, and Draheim, 2007).

7.5.4.5 Implementation Effort

When implementing a pattern for adding functionality to an application we dis-

tinguish two factors determining the implementation effort. The first factor is

the direct effort required to implement the pattern in the system, e.g. adding

ExtensionPoints to the StandardComponents of the application. The second fac-

tor is the effort necessary to implement ExtensionComponents. Later changes to

the components might also require development effort, this is however excluded

from implementation effort because it is covered under maintainability. Both pat-

terns require the definition and implementation of ExtensionPoints, the way these

points are implemented differs per pattern. When implementing the component

interceptor pattern it is necessary to setup an Interceptor Registry and mod-

ify calls to StandardComponents to go through the Interceptor Registry.

In the event distribution pattern, a message broker system must be setup to

handle the event-messages flowing from StandardComponents to ExtensionCom-

ponents. The application still has to be modified at the ExtensionPoints to send

122 Chapter 7 Comparing Dynamical Adaptation Patterns

the event-messages belonging to that ExtensionPoint. A larger difference between

the two patterns emerges in the way they influence the system. Using component

interceptor pattern each interceptor has full access to the application because

it executes within the same context. Communication with StandardComponents

from within ExtensionComponents could use normal function-calls just like any

other part of the system. This differs from the event distribution pattern where

the ExtensionComponents execute in a separate environment outside the context

of the StandardComponents. Any interaction between ExtensionComponents and

StandardComponents needs to go through an external interface. Depending on the

type of system and the requirements for interaction this requires the development

of some sort of (webservice-)API for the ExtensionComponents to use.

The second factor of implementation effort, the effort required to implement Ex-

tensionComponents, affects both patterns. In the component interceptor

pattern the implementation requires the development of an interceptor, which

executes the correct behaviour when certain conditions are met. The event dis-

tribution pattern requires the development of ExtensionComponents, which

listen for the right messages and execute the correct functionality when certain

conditions are met.

Please see Table 7.1 for an overview of the evaluation of both patterns. Plus and

minus signs are used to indicate whether a characteristic is positive or negative.

Keep in mind all scores are relative scores compared to the other pattern.

7.6 Dynamic Data Model Extension Patterns

7.6.1 Problem Statement

Organisations within the same or different market all strive to differentiate them-

selves, which results in numerous different working processes each with specific

requirements for the supporting software systems. Additionally, across markets

and jurisdictions differences exist in regulations and standards which require the

storage and reporting of different data for each organisation. Organisations will

thus set varying requirements to store data specific to their needs. These require-

ments could be met by software specifically designed for the market in which this

organisation operates or even software tailored to the needs of one specific organisa-

tion. Specializing software of a small market or even single organisation decreases

the number of possible clients for the software vendor and increases the cost per

Chapter 7 Comparing Dynamical Adaptation Patterns 123

C
om

p
on

en
t

In
te

rc
ep

to
r

P
at

te
rn

E
ve

n
t

D
is

tr
ib

u
ti

on
P
at

te
rn

S
ec

u
ri

ty
-

E
x
te

n
si

on
co

m
p
on

en
ts

ex
ec

u
te

w
it

h
in

ap
-

p
li
ca

ti
on

sc
op

e
+

Is
ol

at
io

n
of

ex
te

n
si

on
co

m
p
on

en
ts

an
d

fu
ll

tr
ac

ea
b
il
it
y

of
ac

ti
on

s
b
y

ex
te

n
si

on
co

m
p
o-

n
en

ts

P
er

fo
rm

an
ce

+
D

ir
ec

t
ex

ec
u
ti

on
of

ex
te

n
si

on
co

m
p
on

en
ts

-
N

et
w

or
k

ov
er

h
ea

d
fo

r
ca

ll
in

g
ex

te
n
si

on
co

m
-

p
on

en
ts

-
T

h
e

b
ro

ke
r

sy
st

em
re

q
u
ir

es
ex

tr
a

re
so

u
rc

es

S
ca

la
b
il
it
y

-
N

o
in

d
ep

en
d
en

t
sc

al
in

g
of

ex
te

n
si

on
co

m
p
o-

n
en

ts
+

In
d
ep

en
d
en

t
sc

al
in

g
of

ex
te

n
si

on
co

m
p
o-

n
en

ts
-

D
o
es

n
ot

sc
al

e
to

h
ig

h
n
u
m

b
er

of
ex

te
n
si

on
co

m
p
on

en
ts

+
E

x
te

n
si

on
co

m
p
on

en
ts

ca
n
n
ot

d
el

ay
st

an
-

d
ar

d
co

m
p
on

en
ts

-
R

eq
u
ir

es
sc

al
ab

le
m

es
sa

ge
-b

ro
ke

r
sy

st
em

M
ai

n
ta

in
ab

il
it
y

-
T

ig
h
t

co
u
p
li
n
g

of
ex

te
n
si

on
co

m
p
on

en
ts

+
L
o
os

e
co

u
p
li
n
g

of
ex

te
n
si

on
co

m
p
on

en
ts

Im
p
le

m
en

ta
ti

on
E

ff
or

t
+

D
ir

ec
t

co
m

m
u
n
ic

at
io

n
w

it
h

st
an

d
ar

d
co

m
-

p
on

en
ts

-
R

eq
u
ir

es
th

e
se

tu
p

of
a

m
es

sa
ge

b
ro

ke
r

sy
s-

te
m

+
A

cc
es

s
to

al
l
d
at

a
b
y

d
es

ig
n
.

-
R

eq
u
ir

es
a

se
p
ar

at
e

m
ec

h
an

is
m

to
co

m
m

u
-

n
ic

at
e

w
it

h
th

e
ap

p
li
ca

ti
on

T
a
b
l
e

7
.1

:
O

v
er

v
ie

w
of

b
ot

h
D

y
n
am

ic
F
u
n
ct

io
n
al

it
y

A
d
ap

ta
ti

on
P
a
tt

er
n
s

124 Chapter 7 Comparing Dynamical Adaptation Patterns

client. A software product that provides enough variability on the data model to

meet organisation specific requirements will decrease cost and attract clients that

cannot currently be serviced by software products unable to meet their specific

requirements. Extension of the data model by creating additional fields to store

data that are specific to an organisation or their working processes is a common

requirement (Sun, Zhang, Guo, Sun, and Su, 2008).

DynamicProperty

+ Name

+ Type

+ Entity

DynamicPropertyValue

+ Property

+ Value

Entity

+ ID

+ Collection of properties

Figure 7.9: Functional Model for datamodel extension

In case of standardized software where this requirement is not met by the default

installation of the software an extension of the existing data model is required.

Figure 7.9 depicts the envisioned functional situation, storing custom properties

of entities in the domain model. The depicted Entity is the original entity in

the application domain model which contains a DynamicPropertyValue and has a

relation to a DynamicProperty. This property is configured for a specific tenant

and holds settings like for example a name and expected data-type.

7.6.2 Datasource Router Pattern

In this pattern the application uses a different database instance (or schema) for

each tenant. Custom properties are then added to the database as normal fields.

Each component in the application accesses this database through the Datasource

Router. The Datasource Router component determines which database is to be

used (based on the tenant the current user belongs to) and routes all access to the

right database automatically. The other components can thus work without being

aware of the fact that the application is actually serving multiple tenants using

different databases.

The system model, which is shown in Figure 7.10, describes the overview of the

system when implementing the datasource router pattern. As shown, the

Chapter 7 Comparing Dynamical Adaptation Patterns 125

Figure 7.10: Datasource Router Pattern: System Model

application uses multiple separate databases (i.e. Database 1 and Database 2

in the figure) to store data for different tenants. Each component accesses the

database through a Datasource Router which determines to which database the

queries are sent. Due to this isolation the components that access the database

never encounter data for multiple tenants at once, since a query will always return

results for one and only one tenant, because it is sent to a database which contains

only data for a single tenant. This means the components do not need to be multi-

tenancy aware in querying the data.

Figure 7.11: Datasource Router Pattern: Sequence Diagram

The interaction between tenant-unaware components and the database goes through

the Datasource Router. The sequence diagram in Figure 7.11 depicts the inter-

action from component through Datasource Router to the actual database. First

the user interacts with a component, this component requires access to data which

is done through the Datasource Router. The Datasource Router is then respon-

sible for determining which tenant the current user belongs to, this responsibility

is delegated to the User Context. It is implementation dependant how this User

126 Chapter 7 Comparing Dynamical Adaptation Patterns

Context is implemented, the only requirement is that it is able to tell the Data-

source Router which tenant is to be used in the context of the current request.

After determining which tenant is active the Datasource Router executes the query

on the right database (selected based on the active tenant), the results are then

returned to the component which originally needed access to the data. In this se-

quence it is clear that from the perspective of a component requesting data it does

not matter how multi-tenancy is implemented in deeper layers. The component is

isolated from these choices and the possible complexity involved in selecting the

right datasource to use for the current user.

7.6.3 Custom Property Object Pattern

When implementing the custom property object pattern, data from all

tenants is stored in a single database with a single schema. Any additional data

like custom properties is modeled in the design of the application as separate

custom property objects which are stored in the existing static schema. Because

all data is stored in a single database components using that data need to be aware

of multi-tenancy and explicitly query for data of a specific tenant.

Figure 7.12: Custom Property Object Pattern: System Model

This pattern prescribes the storage of all data in a single database which is ac-

cessed by components that are aware of how to filter data for each tenant. In the

system model, as depicted in Figure 7.13, components are aware of multi-tenancy

and directly access a single database to query for the data necessary to complete

requests. When querying the data it is the responsibility of each component to

only query data related to the requested tenant or filter data while processing, to

get results only for the current tenant.

As a result of using a single database for all tenants, the other components need

to be aware of the context in which they operate. When retrieving data the

Chapter 7 Comparing Dynamical Adaptation Patterns 127

Figure 7.13: Custom Property Object Pattern:Sequence Diagram

components need to filter the results to only show data for the current tenant.

The resulting interaction from component to database is depicted in Figure 7.13.

The component first determines which tenant is currently active, this is done by

using the User Context. It is implementation dependant how this User Context

determines this, the only requirement is that it is able to tell a component which

tenant is to be used in the context of the current request. The component then

generates a query that is specific to the current tenant and sends this to the

database. It is the responsibility of the component to ensure that the generated

query only accesses data for the current tenant and to avoid retrieving data outside

of tenant boundaries.

7.6.4 Pattern Comparison

7.6.4.1 Security

Comparing the different data storage structures of the datasource router

pattern and the custom property object pattern shows that the data-

source router pattern separates data from each tenant in a separate schema

or database. This separation also guarantees that when a query is executed it will

only return data for a single tenant without extra efforts from the developer. Be-

cause the datasource router component is the only component involved in selecting

the datasource for a query, the changes of accidentally mixing data from multiple

tenants due to programming errors are low. Failing to select a datasource would

simply crash the application instead of mixing data from other tenants.

128 Chapter 7 Comparing Dynamical Adaptation Patterns

The custom property objects pattern on the other hand relies on the de-

velopers to write queries to only return data from the appropriate tenant. When

no precautions are taken in the development and testing process the possibility

of accidentally mixing data from multiple tenants is higher than when the data-

source router pattern is used. When a correct filter is not applied in this

pattern, users will receiving data from other tenants that should never be visible

to them. When implementing this pattern it is critical to implement a strong

test and quality assurance system as well as methods for automatically detecting

queries that fail to filter data correctly.

At the system level the datasource router pattern requires a separate database

or schema per tenant, these separate instances must all be monitored, updated and

secured separately. Automation of security related system administration tasks is

important, to ensure that all instances are always in the required state. Failing to

implement proper procedures might result in tenant instances being in different

states of updates and security related configuration settings. Security procedures

for the custom property objects pattern can be simpler, because only a single

database needs to be monitored and secured. This single database system is how-

ever a more high value target from a security perspective because data from all

tenants is stored in a single place.

7.6.4.2 Performance

The custom property objects pattern uses only a single large database or

schema which allows the database server to allocate all resources to one entity. The

datasource router pattern requires a separate database or schema for each

tenant which, depending on the database system used, can result in partitioning of

available resources like memory and caches and requiring more network resources

to connect to all databases separately. Query efficiency in the custom property

objects pattern is dependent upon the design of the database schema.

If the schema is generic, storing all data in field types without type information,

the database engine will not be able to apply optimizations for specific datatypes.

For example storing fixed length integers in a variable length BLOB-field does

not allow the database engine to make use of the known length of the field for

faster searching through the storage structures. Designing the schema to partition

data by tenant allows the database to limit the amount of data that is necessary to

retrieve when executing a query for a single tenant. This limitation comes naturally

Chapter 7 Comparing Dynamical Adaptation Patterns 129

for the datasource router pattern, because the data for each tenant is stored

separately.

7.6.4.3 Scalability

Two types of scalability exist; vertical scalability and horizontal scalability. In

vertical scalability we consider the amount of added capacity available when in-

creasing the resources of a single system, e.g. adding more memory, more storage

or more processing power to a single server. This is naturally limited by the

available hardware options and associated costs of those components. Horizontal

scalability concerns the scalability of adding more instances instead of increasing

capacity in a single system. Horizontal scalability does not have the implied limits

of available hardware that exist in vertical scalability, however achieving perfect

horizontal scalability has several challenges in coordination of nodes in a system.

In practice this coordination costs resources, which makes it hard to achieve linear

scalability in systems that require coordination of their workload.

By applying the custom property objects pattern the application will only

use a single database system. This impacts scalability in the application which

requires a database system that is able to scale by itself to achieve scalability of

the system as a whole. For example a database system that supports clustering is

appropriate to support scalability of the custom property objects pattern. In the

datasource router pattern adding additional sources by moving part of the

databases to separate servers is possible and does not require a database system

capable of clustering.

The datasource router pattern is easier to scale out when the amount of

tenants increases. An example case is a system currently using two database

systems. In this example system new tenants subscribe to the service and the ca-

pacity becomes insufficient to service all tenants. Horizontal scalability is possible

by adding two more database systems, effectively doubling the database capacity

by allowing the data for new tenants to be stored on the new systems. There is

virtually no overhead involved in this addition, because no extra coordination is

required between the database systems servicing data for separate tenants.

The custom property objects pattern requires a database system that is

able to store all data for all tenants. The database system must in that case

support vertical scalability by increasing the capacity of a single system instead

of horizontal scalability. The application of a database system that provides a

130 Chapter 7 Comparing Dynamical Adaptation Patterns

scalability capability is necessary for large deployments of this pattern. The results

are dependant upon the effectiveness with which the database system deals with

scalability challenges.

7.6.4.4 Maintainability

When extending the application with new functionality both patterns require that

the new functionality is aware of any customized objects. For the datasource

router pattern this involves creating a solution able of determining all database

schema variations and correctly copying these values. The code involved can be

complex because of the need to support various database modifications supported

by the underlying database system. In the custom property objects pat-

tern, the extra properties are stored as predefined database objects which can be

handled the same as any other object stored in the database of the application.

This means the code to handle the custom properties can be much simpler. A

generic system could always handle the custom properties in the same way agnos-

tic of their contents because they are abstracted as normal database objects. For

problem solving a similar difference exists.

A problem affecting a single tenant in an application using the datasource

router pattern can be harder to reproduce because of the various schema

changes that could be done to the schema for that specific tenant. Because the

changes, it is harder to isolate the root-cause of the problem. The custom prop-

erty objects pattern deals with a fully standardized database schema where

the possible types of custom properties are explicitly visible in the design of the

system. Because of this it is easier to create correct test-cases for the custom

property objects pattern, whereas the datasource router pattern has

much more potential schema-variations which must be explicitly handled correctly

and tested.

7.6.4.5 Implementation Effort

For the datasource router pattern the initial implementation requires the

development of the router component as well as systems to manage and automat-

ically deploy new database instances for new tenants. The other components can

however be left unchanged because awareness of the multi-tenant environment is

not required. Using the custom property objects pattern, on the other

Chapter 7 Comparing Dynamical Adaptation Patterns 131

D
at

as
ou

rc
e

R
ou

te
r

P
at

te
rn

C
u
st

om
P

ro
p
er

ty
O

b
je

ct
P
at

te
rn

S
ec

u
ri

ty
+

N
at

u
ra

l
se

p
ar

at
io

n
of

d
at

as
et

s
+

O
n
ly

a
si

n
gl

e
d
at

as
ou

rc
e

to
se

cu
re

an
d

m
ai

n
ta

in
+

S
in

gl
e

p
oi

n
t
of

se
le

ct
in

g
co

rr
ec

t
d
at

as
ou

rc
e

-
R

is
k

of
lo

si
n
g

d
at

a
se

p
ar

at
io

n
w

it
h

p
ro

gr
am

-
m

in
g

er
ro

rs
-

M
or

e
d
at

as
ou

rc
es

to
se

cu
re

an
d

m
ai

n
ta

in

P
er

fo
rm

an
ce

+
C

or
re

ct
d
at

a-
ty

p
es

al
lo

w
fo

r
op

ti
m

iz
at

io
n
s

+
F
u
ll

re
so

u
rc

e
u
ti

li
za

ti
on

ac
ro

ss
al

l
sc

h
em

as
-

R
es

ou
rc

e
p
ar

ti
ti

on
in

g
ac

ro
ss

se
p
ar

at
e

sc
h
em

as
-

L
os

s
of

op
ti

m
iz

at
io

n
s

d
u
e

to
la

ck
of

ty
p
e

in
fo

rm
at

io
n

S
ca

la
b
il
it
y

+
N

at
u
ra

ls
ca

la
b
il
it
y

d
u
e

to
se

p
ar

at
e

sc
h
em

as
-

N
o

in
h
er

en
t

sc
al

ab
il
it
y

in
p
at

te
rn

st
ru

ct
u
re

+
N

o
n
ee

d
fo

r
sc

al
ab

il
it
y

su
p
p
or

t
in

d
at

ab
as

e
-
R

eq
u
ir

es
d
at

ab
as

e
sy

st
em

ca
p
ab

le
of

sc
al

in
g

M
ai

n
ta

in
ab

il
it
y

-
L
ar

ge
n
u
m

b
er

of
p
os

si
b
le

d
at

ab
as

e
sc

h
em

as
m

u
st

b
e

te
st

ed
+

S
in

gl
e

st
at

ic
d
at

ab
as

e
sc

h
em

a

-
P

ro
b
le

m
so

lv
in

g
re

q
u
ir

es
sc

h
em

a
va

ri
an

ts
to

b
e

in
cl

u
d
ed

+
C

u
st

om
p
ro

p
er

ti
es

ca
n

b
e

h
an

d
le

d
w

it
h

ge
n
er

ic
sh

ar
ed

co
d
e

Im
p
le

m
en

ta
ti

on
E

ff
or

t
+

C
en

tr
al

co
m

p
on

en
t

to
h
an

d
le

al
l

d
at

a-
ac

ce
ss

-
R

eq
u
ir

es
ad

ap
ti
on

of
d
at

a-
ac

ce
ss

in
al

l
co

m
-

p
on

en
ts

-
C

u
st

om
p
ro

p
er

ti
es

m
u
st

b
e

h
an

d
le

d
in

al
l

co
m

p
on

en
ts

-
C

u
st

om
p
ro

p
er

ti
es

m
u
st

b
e

h
an

d
le

d
in

al
l

co
m

p
on

en
ts

T
a
b
l
e

7
.2

:
O

v
er

v
ie

w
of

b
ot

h
D

y
n
am

ic
D

at
am

o
d
el

E
x
te

n
si

o
n

P
a
tt

er
n
s

132 Chapter 7 Comparing Dynamical Adaptation Patterns

hand, does not require the development of new components or management sys-

tems. For this pattern the existing components need to be adapted to query the

right data and use appropriate filtering methods. Both patterns require the imple-

mentation of code handling the existence of custom properties for entities in the

applications data model. This is equal for both patterns and thus of no influence

in a comparison on implementation effort.

7.7 Conclusion

Within this paper two problem domains related to implementing runtime variabil-

ity in online business software are discussed. Also a pattern description method

is proposed, suggestion the use of the following description levels: 1. Functional

level, 2. System level and 3. Implementation level.

First, two dynamic functionality adaptation patterns, which are the component

interceptor pattern and the event distribution pattern are compared

in terms of security, performance, scalability, maintainability and implementation

effort. Both patterns offer a solution for dynamically adapting functionality of an

online software product, but do so in different ways. The component inter-

ceptor pattern performs less in terms of scalability, because the interceptors

can not scale independently of the application. When scaling up in terms of num-

ber of servers, the interceptors need to be available to all servers. Related to this

issue, the maintainability of the component interceptor pattern is also less

than that of the event distribution pattern. This is caused by the fact the

interceptors can not be decoupled from the rest of the system, creating a software

product which will be difficult to maintain. The event distribution pattern

offers more isolation in terms of security than the other pattern, but requires more

processing and network resources in terms of performance. Related to implemen-

tation effort, the component interceptor pattern is easier to implement,

because no message broker or related services are required. In general, the com-

ponent interceptor pattern serves best for adapting functionality of small

projects, where the event distribution pattern is better for large projects,

considering the quality attributes described in this paper.

Second, two dynamic data model extension patterns, being the datasource

router pattern and custom property object pattern are presented and

evaluated. We conclude that the datasource router pattern has advantages

on security by naturally isolating the data for all tenants, scalability by allowing for

Chapter 7 Comparing Dynamical Adaptation Patterns 133

the distribution of tenants across datasources and implementation by not requiring

all queries and components to be adapted but providing a single router component

instead. The custom property objects pattern holds an advantage on performance

by allowing better resource utilization, however extra care is necessary to design an

appropriate database schema. The custom property objects pattern also

scores better on maintainability by allowing standardized handling of the dynamic

properties and using a static data model avoiding the need to test every possible

variation when adapting the software.

For future work we are currently setting up larger evaluation sessions in which

different patterns will be evaluated using experts. The evaluation of patterns is

particularly difficult, because you should evaluate an abstract solution instead of

a specific implementation. We are working on a structured method for comparing

sets of patterns and making use of the implicit knowledge of experts. By doing

this, we aim at evaluation the solution, instead of just an implementation.

Chapter 8

Software Pattern Evaluation

Method

Abstract

Software architecture makes extensive use of many software patterns. The

decision on which pattern to select is complex and architects struggle to make

well-advised choices. Decisions are often solely made on the experience of one

architect, lacking quantitative results to support the decision outcome. There is

a need for a more structured evaluation of patterns, supporting adequate decision

making. This paper proposes a Software Pattern Evaluation Method (SPEM) that

enables the quantification of different pattern attributes by using structured focus

groups. The method is formed using a design science approach in which an initial

method was created using expert interviews, which was later refined using several

evaluation sessions. SPEM helps software producing companies in structuring

their decision making and selecting the most appropriate patterns. Also, SPEM

helps in enriching pattern documentation by providing a way to add quantitative

information to pattern descriptions.

This work has been published as SPEM: A Software Pattern Evaluation Method at the 6th Interna-
tional Conferences on Pervasive Patterns and Applications (PATTERNS 2014) (Kabbedijk, Donselaar,
and Jansen, 2014). It is co-authored by Rene van Donselaar and Slinger Jansen

135

136 Chapter 8 Software Pattern Evaluation Method

8.1 Introduction

Modern software architecture heavily relies on the use of many different soft-

ware patterns, often used complementary to each other in order to solve complex

architectural problems. Software architecture provides guidelines and tools for

high-level system design in which architects select best fitting patterns to be used

within the software product (Bass, Clements, and Kazman, 2013). Many differ-

ent patterns and tactics exist, leading to a complicated trade-off analysis between

different solutions and causing the evaluation and selection of the appropriate soft-

ware patterns to be a complex task (Jansen, Van Der Ven, Avgeriou, and Hammer,

2007). This complexity means architects need to have in-depth understanding of

the project characteristics and requirements combined with extensive experience

in software development.

The information needed for appropriate pattern selection is seldom available to

all architects in a centralized or standardized way. Architectural decisions are

frequently still made based on experience and personal assessment of one person,

instead of using the knowledge of many (Babar and Gorton, 2007). Allowing soft-

ware architects to use all information efficiently saves time when selecting fitting

software patterns and leads to better and more adequate decision making. For

this to be possible, a method has to be created, enabling the evaluation and docu-

mentation of crucial attributes of a software pattern (Tyree and Akerman, 2005).

This structured evaluation will allow architects and decision makers to compare

different solutions and select the best matching pattern. Patterns, however, are

an high-level solution that can be used different scenarios, making it impossible

to use one specific implementation of the pattern to evaluate the entire pattern.

Because specific implementations are unusable, the relevant pattern attributes can

not be directly measured in a quantitative way.

Pattern evaluation adds retrospect and the knowledge of many experts to existing

pattern documentation. This study also relates to software architecture as it

solves a problem found in the software pattern selection process. Software pattern

evaluation helps when performing pattern-oriented software architecture in cases

where alternative patterns to solve the same problem and only a single pattern

can be selected. This is an important factor to take into account, because it means

that rather than selecting individual patterns, an architect will want to select an

architectural style, and thus select a large set of patterns that fit this style. This

Chapter 8 Software Pattern Evaluation Method 137

area of software architecture has developed, which resulted in a large amount of

documented patterns and allows for comparing architectural styles (Booch, 2005).

Although it seems that comparing individual patterns is less relevant for software

architecture, an architectural style is selected at the early stages of software design

and cannot easily be changed after the development has started. This creates a

problem because while the software is being developed, the requirements for the

project or the environment will change. Therefore, it is necessary to extend the

architecture or at times alter the existing architecture. At this point, it becomes

relevant to compare individual patterns in order to select the pattern that fits the

project requirements. This is an ongoing process that happens throughout software

development and relies on the experience of software architects and developers.

Current documentation of software patterns lacks a way to compare them with

each other. But if multiple patterns tackle the same problem, how does an architect

decide which one to use? This is tacit knowledge of experienced architects and

developers, leading to the following problem statement:“There is no formal way to

express the quality of one pattern over another”.

This paper presents the Software Pattern Evaluation Method (SPEM). Using

SPEM, software producing companies are supported in pattern selection decision

making and are able to quantitatively compare different patterns. SPEM enables

them to get an overview of specific pattern characteristics in a timely manner.

Also, SPEM can be used to generate a publicly available pattern related body

of knowledge, helping research and practitioners in architectural research and de-

cision making. This paper first gives an overview of research related to pattern

comparison in Section 8.2. The design science approach used in the research is de-

scribed in Section 8.3, after which SPEM is presented in Section 8.4. The pattern

evolution, including the initial method creation (Section 8.5.1) and method eval-

uation (Section 8.5.2), showing the changes during the method creation process

can be found in Section 8.5. To conclude, the application of SPEM are discussed

(Section 8.6), followed by a conclusion (Section 8.7).

8.2 Related Work

Software Patterns — As software development was maturing in the 1980s, the

need arose to share common solutions to recurring problems. This process started

out by developers communicating to their colleagues how they solved a recurring

development issue. The communication was informal, and there were no clear

138 Chapter 8 Software Pattern Evaluation Method

rules for documentation. In later years software patterns have become an essen-

tial part of software development as a way to capture and communicate knowl-

edge. Software patterns are solutions to a recurring problem in a particular con-

text (Buschmann, Meunier, Rohnert, Sommerlad, and Stal, 1996; Gamma, Helm,

Johnson, and Vlissides, 1995). When properly documented, these solutions are a

valuable asset for communication with and among practitioners (Beck, Crocker,

Meszaros, Vlissides, Coplien, Dominick, and Paulisch, 1996). Usage of software

patterns allows for time and cost reduction in software development projects, mak-

ing them an important tool for software design and development. Although soft-

ware patterns started out as a way to communicate solutions among developers,

they have become a crucial part of software architecture (Buschmann, Henney,

and Schmidt, 2007c) as well. A pattern selected by a developer, however, does

not take into account the entire architecture and how it combines with existing

patterns. This problem is solved by selecting patterns at the architectural level.

Architecture Evaluation — Evaluation is commonly used in software archi-

tecture in order to increase quality and decrease cost (Abowd, Bass, Clements,

Kazman, and Northrop, 1997). Many evaluation methods for software architec-

ture have been developed and compared in recent years (Babar, Zhu, and Jeffery,

2004). The evaluation should be performed as early as possible in order to prevent

large-scale changes in later stages of development. Software architecture evalu-

ation is linked to the development requirements and desired quality attributes.

Therefore, it is not a general evaluation of software architecture, nor an evaluation

of a specific implementation. The evaluation should be an indication of whether

the proposed architecture is a good fit for the project. Pattern comparison and

evaluation has been done before in a quantitative manner (Hills, Klint, Van Der

Storm, and Vinju, 2011), but has focussed on the implementation of different

patterns and lacks the evaluation of the idea the pattern describes.

8.3 Research Approach

This section presents the research questions answered in this paper and the design

science approach used to construct SPEM. The main research question (MRQ)

answered in this paper is:

MRQ: How can software patterns be transparently evaluated and com-

pared during the enterprise software architecting process?

Chapter 8 Software Pattern Evaluation Method 139

The aim of this study is to aid software architects in the decision-making process

of selecting software patterns. This can only be useful when the pattern evaluation

method yields transparent and comparable results. Since software patterns can

not be measured objectively, the opinions of multiple software architects are used

to form a quantitative and weighted score, representing their common view on the

specific pattern. A quantitative study also allows for easy comparison between

alternative patterns. For the purpose of answering this research question, multiple

sub-questions are constructed:

SQ1: Which quality attributes and characteristics are relevant in pat-

tern evaluation?

Rationale: Patterns can possess many attributes that give important information

on usefulness and quality. For example, how the pattern effects performance or

maintainability can both be attributes of a pattern.

Attributes are used in software architecture to evaluate the quality of certain as-

pects of the architecture. We apply the same principles for evaluation of software

patterns. The first step is to create a list of attributes by looking at related lit-

erature. This list is then reduced by performing expert interviews. This tells us

which of the listed attributes are important to software architects when evaluating

a pattern. A validation of the reduced list of attributes is performed by interview-

ing a second expert. If validation fails, another expert interview and validation

is performed. When successful, the result of these interviews is a validated list of

attributes that play a role in the software pattern evaluation process.

SQ2: How can attributes relevant in pattern evaluation be quantified in

a manner that allows for comparison?

Rationale: Typical documentation on software patterns is qualitative in nature.

Although this might be suited for documentation on patterns it does not allow for

comparison. For this reason, the different attributes relevant for pattern evaluation

need to be quantified. A structured method of quantification that is used for

evaluation would allow for patterns to be compared on attribute level.

To answer the main research question, first comparable methods in which at-

tributes are quantified, within the domain of software engineering, are assessed.

From these methods, the specific characteristics are deduced. An example of these

characteristics can be the ability to assign a negative value to an attribute. Finding

140 Chapter 8 Software Pattern Evaluation Method

Conduct expert

interviews

Evaluate method

Improvements

No improvements

Initial method

Improved method

Is basis for

SPEM methodBuild SPEM method

Is finalized in

Figure 8.1: Design Science Research Method

out which characteristics are important to architects when evaluating a pattern is

the next step. This is done by conducting an expert interview. In this interview,

the software architect can express which characteristics are important and why.

A second interview is held with a different expert to validate the findings. The

result is a validated list of characteristics that are important for quantification of

attributes. A method for quantification is constructed based on the list of charac-

teristics. The method is evaluated by using it in a focus group session after which

is can be incrementally improved.

A design science approach is used, which is depicted in Figure 8.1. An initial

method is created based on an earlier exploratory study on the use of focus groups

in pattern evaluation (Kabbedijk, Galster, and Jansen, 2012), extended by expert

interviews. The method is evaluated in multiple cycles in which the method was

put to practice in a real-life setting. Three subsequent sessions are organized in

which both professional software architects with a high level of experience and

participants with a low level of experience used the method. Software architecture

students are used to test how the method functions for participants with a low

level of experience. Since SPEM has the aim of aiding software architects with

different backgrounds and levels of experiences, it is important to validate the

Chapter 8 Software Pattern Evaluation Method 141

method with both experienced and inexperienced participants. Also, the sessions

with the inexperienced participants are used as pilot sessions, to test the feasibility

of the method in practice. The audio and video of all sessions is recorded to be

able to analyze the sessions afterwards. Additionally, an evaluation form is filled

in by all participants after each session. A revised method was constructed after

each session, based on the feedback, which is used in the next session. After three

sessions no significant changes were needed based on the feedback, leading to the

creation of the final method (i.e. SPEM).

8.4 SPEM - Software Pattern Evaluation Method

SPEM has been constructed to evaluate software patterns in a manner that allows

for comparison. There are two distinct roles:

Evaluator — Leads the evaluation process by introducing concepts and directing

discussions. He is responsible for timekeeping, collecting all deliverables and noting

scores.

Participant — A software architect or developer who uses his knowledge to

assign scores to attributes, enters the discussion, shares arguments and tries to

reach consensus.

The evaluation data is gathered during a focus group session. These sessions vary

in duration from one to two hours. Four to twelve participants can partake in the

evaluation, excluding the evaluator. The basis of the evaluation are attributes,

categorized in both quality attributes and pattern attributes. Quality attributes

are used to measure the impact the pattern has on software quality and are based

on ISO/IEC 25010 (ISO/IEC, 2011). The following quality attributes are used in

SPEM:

• Performance efficiency — Degree to which the software product provides

appropriate performance, relative to the amount of resources used, under

stated conditions.

• Compatibility — The ability of multiple software components to exchange

information or to perform their required functions while sharing the same

environment.

• Usability — Degree to which the software product can be understood,

learned, used and attractive to the user, when used under specified condi-

tions.

142 Chapter 8 Software Pattern Evaluation Method

• Reliability — Degree to which the software product can maintain a specified

level of performance when used under specified conditions.

• Security — The protection of system items from accidental or malicious

access, use, modification, destruction, or disclosure.

• Maintainability — Degree to which the software product can be modi-

fied. Modifications may include corrections, improvements or adaptation of

the software to changes in environment, and in requirements and functional

specifications.

• Portability — Degree to which the software product can be transferred

from one environment to another

Assign scores

Create participant

profiles

Assign personal

scores

Assign group score

Write evaluation

summary

Consensus

No consensus

Participant profiles

Personal score list

Evaluation summary

Is included in

Is input for

[All attributes discussed]

[Next attribute]

Score table

Is included in

Figure 8.2: SPEM: Software Pattern Evaluation Method

Pattern attributes are characteristics of the pattern itself, used to measure its

learnability or ease of implementation. The goal of the evaluation is to assign a

score to each attribute by all participants. The score is a relative measure based

Chapter 8 Software Pattern Evaluation Method 143

on the experience of the participant, ranging from −3 to +3. The score is a

generalization of the software pattern, not based on a specific implementation.

Experience using the pattern in a variety of situations is expressed by the score.

Therefore, the difference in experience among all participants is a key factor in

the evaluation, which is compensated in a group score. A group score is assigned

to each attribute (excluding sub-attribute) and expresses a score after a round

of discussion. This discussion of each attribute allows the participants to share

their knowledge with each other. The goal of the discussion is to reach consensus,

meaning that after knowledge has been shared between participants with different

amounts of experience, one score is assigned on which all participants agree. The

result is quantitative data in the form of scores based on personal experience and

the knowledge of a group, visualized in an evaluation summary (see Figure 8.3).

Figure 8.3: SPEM evaluation summary (observer pattern)

SPEM consists of four activities and three deliverables, as shown in Figure 8.2.

The first activity focuses on creating participant profiles.1 These profiles are forms

containing fields for the participant’s name, job description and years of experience.

Additionally there are input fields for the pattern name and experience with the

pattern. The participant profile also provides a list of quality attributes, sub-

attributes and pattern attributes. For each item on this list, the possibility is

provided to give a personal score. The evaluator introduces the method to the

participants by explaining each deliverable and the focus group session protocol.

In the protocol all activities and actors are listed and described. Thereafter the

evaluator asks the participants to fill out part one of the participant profile.

In the second process, personal scores are assigned to an attribute. During the

evaluation, the scores are recorded in the personal score list. After the evalua-

tion, the personal scores are entered in the score table. The score table contains

rows with all attributes used in the evaluation and columns containing all per-

sonal scores, average scores, standard deviations and group scores. The evaluator

1Templates can be found on http://www.staff.science.uu.nl/~kabbe101/PATTERNS2014/

http://www.staff.science.uu.nl/~kabbe101/PATTERNS2014/

144 Chapter 8 Software Pattern Evaluation Method

introduces an attribute by giving a short description. The participants are then

asked to assign a score to the attribute and all corresponding sub-attributes.

In the process assign group score, a group score is assigned to an attribute and

noted in the score table. The group score is a score which is produced by gaining

consensus, which means all participants partake in a discussion. The focus of the

discussion is to exchange arguments on the score of an attribute. If consensus is

reached among all participants, the resulting group score is assigned and noted

on the score table. If consensus is not reached, the group score is not assigned,

and no score will be noted in the score table. The evaluator initiates a discussion

on the current attribute by asking a single participant’s score and motivation for

the score. Other participants are free to respond and exchange views, directed

by the evaluator. If the discussion ends or if no time if left, the evaluator asks

the participants if they have reached consensus. When consensus is reached, the

group score is recorded in the score table.

When all attributes have been evaluated, an evaluation summary is created. The

evaluation summary is a combination of all participant profiles and a filled out

score table. Additionally, a new form is added containing the name of the evalua-

tor, date and threats to validity. This gives the evaluator the opportunity to note

any occurrences that are not expressed in the main deliverables. This process is

performed by the evaluator at the end of the focus group session and concludes

the evaluation.

8.5 Method Evolution

This section discusses how the initial method evolved and shows the explicit

changes made to the method based on the expert evaluation sessions.

8.5.1 Initial Method Construction

Expert interviews formed the basis of the initial version of the SPEM method.

Two software architects from different companies cooperated to share their views

on software pattern evaluation. Understanding which attributes play a role in

pattern evaluation and how they could be quantified was the goal of the inter-

view. During the interview, a list of quality attributes derived from ISO/IEC

9126 (ISO/IEC, 2001) and ISO/IEC 25010 (ISO/IEC, 2011) was discussed, the

latter being preferred by the interviewees. Although both interviews had different

Chapter 8 Software Pattern Evaluation Method 145

results on the importance of each individual attribute of the standard, none could

be excluded. Ease of learning and ease of implementation are both attributes de-

scribing characteristics of software patterns. Both attributes should be included

in software pattern evaluation as they play an important part in software pattern

selection.

Scenarios are often used in software architecture evaluation, but do not fit pattern

evaluation. The fact that patterns are evaluated without a specific implementation

in mind makes the use of scenarios irrelevant. A software architect should inter-

pret the results of pattern evaluation by relating it to their own project. When

attributes are quantified using a score, it should be possible to assign a negative

value. Patterns can affect software quality in a negative way or have negative

characteristics, which a score should be able to express. The range of the scores

should be between a five and ten point scale. At larger ranges, it would be difficult

for an architect to assign an accurate score.

When multiple architects perform a pattern evaluation, they are likely to have

varying degrees of experience. Experience is key in understanding software pat-

terns and their effect on software quality. It is important to assign a score to

an attribute that takes into account the varying degrees of experience software

architects have. This should be done using discussion and consensus. In a discus-

sion, those who have more experience can share their knowledge with those who

have less experience. Together working towards consensus can improve the level

of knowledge of the participants and consequently improve the score. Software

pattern evaluation should be performed with at least one architect who has expe-

rience using the pattern that is being evaluated. This restriction makes sure the

evaluation yields a valuable result.

Based on these interview results a method was constructed incorporating the fol-

lowing:

• All attributes and sub-attributes from ISO/IEC 25010 (ISO/IEC, 2011).

• Two additional attributes; ease of implementation and ease of learning.

• Scoring ranging from −5 to +5

• Discussion after each attribute

• The goal of trying to reach consensus on each attribute

146 Chapter 8 Software Pattern Evaluation Method

8.5.2 Method Evaluation

Using a design science approach, the initial method was evaluated and improved

over several iterations. A total of three focus group sessions were hosted to eval-

uate the method. In these sessions, the method was carried out by evaluating a

software pattern. All sessions were lead by an evaluator, who presented a pattern

and queried the participants systematically on the different consequences of apply-

ing the pattern. The evaluator also encourages and guides the discussion among

participants. At the end of the focus group session, participants were asked to

fill out an evaluation form regarding their feedback on the method in order to

enhance the external and construct validity of SPEM. The survey consisted of the

following six questions:

Q1. Is the information asked on the participant profile?

Q2. Does the introduction provide enough information?

Q3. Does the introduction of attributes provide enough information?

Q4. Is the score range sufficient?

Q5. Does the score table include all relevant score data?

Q6. Do the score table and diagram enable pattern comparison?

The feedback gathered in the evaluation forms and experiences from hosting the

sessions were the basis for each new iteration of the SPEM method as is typical

for incremental method evaluation and improvement (Peffers, Tuunanen, Rothen-

berger, and Chatterjee, 2007).

First focus group evaluation — During the first focus group session, four soft-

ware architects participated, each having over nine years of experience in software

development. During this session, the observer pattern was evaluated using the

initial version of SPEM. The pattern was selected based on the experience of the

participants with the pattern. The session took approximately two hours. During

the session, the quality attribute ‘functional suitability’ and corresponding sub-

attributes appeared to be unclear to the participants. It was not possible to assign

a score as the attribute demanded a specific context. Not having a description for

sub-attributes was confusing and diverted discussions to the definitions of certain

sub-attributes. Table 8.1 shows the responses on the feedback survey conducted

after evaluation session 1.

Based on the results presented in Table 8.1, it shows that almost all experts

indicated that the method can be satisfactory used for its purpose. Question 2,

Chapter 8 Software Pattern Evaluation Method 147

Question P1 P2 P3 P4

Q1 Yes Yes Yes Yes
Q2 N/A N/A Yes N/A
Q3 Yes Yes Yes Yes
Q4 Yes Yes Yes Yes
Q5 Yes Yes Yes Yes
Q6 No Yes Yes Yes

Table 8.1: Feedback on evaluation session 1

however, shows a high number of abstentions, which is explained by the fact most

experts were already familiar with the pattern discussed during the evaluation.

Because of this, it was hard for them to give any feedback about the pattern

introduction. Further evaluation of the method is performed in the second focus

group session. Based on the first evaluation session, the following improvements

were incorporated in the method:

• Removal of attribute ‘Functional suitability’ — This attribute, includ-

ing its sub-attributes turned out to be irrelevant based on the focus group

session. Functional suitability can only be assessed by looking at specific

implementations.

• Including a description for all sub-attributes — A description of each

attribute, including all sub-attributes was needed. This way different inter-

pretations of attributes can be precluded.

Second focus group evaluation — The second focus group session was per-

formed with ten participating master students. The students have an information

systems background and were all enrolled in the Software Architecture course,

which prepared the students for the focus group session. The primary goal of this

evaluation session is to evaluate the method, using participants with a low level

of experience.

The Access Point pattern was evaluated and each time after the introduction of

a quality attribute, participants were free to discuss the attribute without any

intervention from the evaluator. This resulted in lengthy discussions making the

session take longer than anticipated. Discussions should be halted by the evaluator

after a certain period based on the time that is available. Assigning scores to sub-

attributes and discussing them was time-consuming. Sub-attributes needed a less

prominent role in the method. It was not always possible for participants to

assign a score to an attribute. Therefore, it should be possible to have an explicit

148 Chapter 8 Software Pattern Evaluation Method

option stating that no score is assigned, instead of leaving it empty which might

imply a neutral score. Also, the introduction of the pattern allowed for ambiguous

interpretations, leading to discussion and debate.

Question P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Q1 Yes Yes Yes Yes No Yes Yes Yes No No
Q2 Yes No No Yes No No No No No No
Q3 No No No Yes Yes No No No No No
Q4 Yes No No N/A N/A Yes No Yes Yes Yes
Q5 Yes No N/A Yes Yes Yes Yes Yes Yes No
Q6 Yes N/A N/A Yes N/A No Yes Yes Yes Yes

Table 8.2: Feedback on evaluation session 2

The results of the survey conducted after the evaluation session are presented in

Table 8.2. The results show a decline in satisfaction about the method. For ex-

ample, according to 80% of participants, the pattern introduction did not provide

enough information in order to evaluate the pattern. This result is caused by the

fact that participants had no experience using the pattern, meaning they needed

an extensive introduction in order to understand and evaluate it. Also, again ac-

cording to 80% of the participants, the introduction of the quality attributes was

not sufficient enough. The evaluation method is meant to be accessible to both

experienced and inexperienced software architects, which means the method needs

to be adapted. Based on the second evaluation session, the following improvements

were incorporated in the method:

• Sub-attributes removed — Because discussion on sub-attributes took too

long, they were removed from the method.

• Added an option to give an attribute no score — An explicit way

was added for participants to indicate they do not want to give a score to a

certain attribute.

• More focus on pattern introduction — The pattern needs to be thor-

oughly explaining to prevent discussions.

• More focus on explaining what the scores represent — Scores rep-

resent the impact the evaluated pattern has on software quality or charac-

teristics of the pattern itself. This distinction needs to be clear in order to

properly assign scores.

• Stronger role of the evaluator — The evaluator needs to direct the

discussions. Apart from initiating discussions, they should also be halted.

Time keeping is the responsibility of the evaluator.

Chapter 8 Software Pattern Evaluation Method 149

Third focus group evaluation — The third focus group session was performed

with eight software architecture students, al different from the students used in the

second focus group evaluation. Although sub-attributes did not receive a score due

to the changes based on the previous iteration, they were referred to in discussions

to better understand an attribute. Therefore, it is important to include the sub-

attributes in the method. Discussions for each sub-attribute would increase the

time to complete an evaluation substantially. Personal scores were assigned to

sub-attributes while discussions, and consequently group scores, related to the

sub-attributes were left out.

Question P1 P2 P3 P4 P5 P6 P7 P8

Q1 Yes Yes Yes Yes Yes Yes Yes Yes
Q2 Yes No Yes Yes Yes Yes No Yes
Q3 No Yes No Yes Yes No Yes Yes
Q4 Yes Yes Yes Yes Yes Yes Yes No
Q5 Yes Yes No Yes Yes Yes Yes Yes
Q6 Yes Yes Yes Yes Yes Yes Yes Yes

Table 8.3: Feedback on evaluation session 3

The results presented in Table 8.3 show an improvement to the results presented

in Table 8.2. Overall, we see that compared to the second focus group session, the

responses to the third session are more positive. In the second session, 42% of the

answers were negative, indicating that many activities and deliverables needed to

be adapted. The changes to the method, evaluated in the third evaluation session,

resulted in only 15% of negative answers. Based on the third evaluation session,

the following improvements were incorporated in the method:

• Sub-attributes added — Can help the understanding of attributes and

provide more detail to the data.

• Sub-attribute discussions removed — Gives the sub-attributes a less

prominent role in the method and focusses more on attributes.

• Descriptions for each attribute / sub-attribute added to partici-

pant profile — Allows the participants to read descriptions of attributes

independent of the evaluator.

After the three sessions, the final method (i.e. SPEM) was created.

150 Chapter 8 Software Pattern Evaluation Method

8.6 SPEM Impementation

SPEM is created to evaluate software patterns in general, without a specific imple-

mentation in mind. This enables the option for comparison of software patterns,

because each pattern has been evaluated as an abstract solution. It prevents un-

balanced comparison between patterns based on different implementations. There

is a trade-off between easy to compare generic evaluation and implementation

specific evaluation. An implementation specific evaluation provides more accu-

rate data, but it can only be compared to evaluated patterns based on the same

implementation. A generic evaluation might not be as accurate, but ensures all

evaluated patterns can be compared. SPEM can be used for implementation spe-

cific evaluation with few adjustments. It requires the evaluator to explain that

the scores should be assigned with an implementation in mind. There needs to

be an input field describing the implementation on the score table. With these

adjustments, an evaluation session would be identical to SPEM and allows for use

of all processes and deliverables used in SPEM.

This study provides knowledge on software pattern evaluation by introducing a

method to evaluate software patterns. The data SPEM evaluations provide further

expands the body of knowledge on patterns. It adds retrospect to the existing

software pattern documentation and provides insight on the impact patterns have

on software quality. A collection of SPEM evaluation results provides valuable

knowledge on the understanding of software patterns and software quality. A

knowledge base would enable the disclosure of SPEM evaluation results and would

allow results to be combined and compared. From an industrial perspective, a

SPEM knowledge base would enable software architects to share their knowledge

on software patterns. It would make knowledge available to aid in software pattern

selection, leading to better decision making and overall software quality. It is

through sharing knowledge that software pattern selection can reach a higher level

of maturity, allowing for a structured way of comparing software patterns.

SPEM uses discussion and consensus to obtain quantitative evaluation data. This

method of quantification was introduced to cope with different experience levels

among participants. It has imposed a constraint on the method of data gath-

ering used in SPEM. As discussions require interaction between participants, all

participants need to be able to communicate with each other at the same time.

Therefore, SPEM is used in focus group sessions, limiting the number of partici-

pants. A trade-off exists between a more accurate score based on consensus with

Chapter 8 Software Pattern Evaluation Method 151

a small number of participants and a less accurate but more reliable score with a

large number of participants.

8.7 Conclusion

SPEM is a transparent software pattern evaluation method which can be used

to compare patterns. It is used to evaluate relevant attributes of patterns based

on the experience of software architects. SPEM provides quantitative data on

attributes in the form of scores. The data can be interpreted and visualized to

allow for software pattern comparison. This answers the main research question

(MRQ).

The question “Which attributes are relevant in pattern evaluation?” (SQ1) is

answered with a list of attributes, consisting of quality attributes and pattern at-

tributes. The quality attributes are based on ISO/IEC 25010 and modified for

pattern evaluation, resulting in the following set of attributes: a) Performance

efficiency, b) Compatibility, c) Usability, d) Reliability, e) Security, f) Maintain-

ability, and g) Portability. These attributes can be quantified in a manner that

allows for comparison (SQ2) by rating the different the attributes by experts in

a focus group setting. It requires that personal scores ranging from -3 to +3 are

assigned to all attributes and sub-attributes. A group score is assigned to all at-

tributes after a discussion and reaching consensus. All scores are noted in the

score table.

Conclusion

153

Chapter 9

Conclusion

This dissertation consists of two parts, each having a different focus and provide

conclusions to two perspectives on the problem statement. The main conclusion

is that variability in multi-tenant enterprise software is indispensable and can

be documented in the form of software patterns. The conclusion of the second

part is that software patterns are useful instruments in the architecting process

and should be employed to compare different solutions and structure the decision

process. The Main Research Question (MRQ) answered in this dissertation is:

MRQ - How can variability in multi-tenant enterprise software be im-

plemented?

The question is answered by providing a collection of software patterns (see Ap-

pendix A) that help in solving multi-tenant enterprise software design problems.

The patterns describe different design problems and propose solutions, together

with consequences of applying the pattern. Using the catalogue, software archi-

tects have an essential toolbox for addressing variability problems in multi-tenant

enterprise software. The patterns have been gathered from focus groups and inter-

views with software architects during case studies at software companies. Also, the

intrinsic role of patterns in the architecting process is discussed, in terms of pat-

tern selection, comparison and evaluation. In this section, the research questions

are discussed, and the evaluation of the answers presented. After the evaluation,

implications of the study are discussed, followed by reflections on the research

area. The main limitations of the research and future research topics related to

variability in multi-tenant enterprise software are presented at the end of this

section.

155

156 Chapter 9 Conclusion

9.1 Contributions and Evaluations

In the dissertation, the following nine Research Questions (RQs), answers and

contributions are presented:

RQ 1. How can patterns be employed to implement variability in multi-tenant

enterprise software?

This question is answered in Part I, based on four sub questions, which are

answered subsequently in Chapter 2 to 5. A summary of the answers is

provided below:

RQ 1.1. What is the concept of multi-tenancy?

The term “Multi-Tenancy” is frequently used in academic literature and

by practitioners, but no clear definition of Multi-Tenancy exists, lead-

ing to inefficient and potentially confusing communication among them.

Based on the analysis of 761 research papers and 371 industrial blogs on

multi-tenancy, which have been identified using a Systematic Mapping

Study (SMS), the following definition of multi-tenancy is formulated:

“Multi-tenancy is a property of a system where multiple customers, so-

called tenants, have the possibility to configure the system; it allows them

to transparently share the system’s services, applications, databases, or

hardware resources, with the aim of lowering costs”.

Multi-tenancy is also characterized as a research domain which is still

evolving and of which no clear research direction exists. Chapter 2

identifies seven research themes that can steer the multi-tenancy domain,

which are:

• Quality Assurance — An investigation into how customization of

the multi-tenant application affects quality (e.g. performance). For

example, can one general SLA be enforced, or should each tenant

get a tentant-specific SLA?

• Industry Validation — With industrial multi-tenant solutions

being developed right now, the next step for researchers is to work

closely together with industry to validate research ideas on actual

multi-tenant software systems.

• Balancing & Placement — Research on the opportunities to

develop better load balancing algorithms, taking into account the

historical usage of the application by the different tenants, needs to

be performed.

Chapter 9 Conclusion 157

• Database — Investigation into how to isolate data in a secure way.

Additionally, the partitioning of data, based on tenant interaction

should be addressed.

• Platform Development — There should be an open platform

available for multi-tenant applications. Researchers and industry

should work together in achieving and maintaining such a platform.

• Security — The topic of security should be inextricably related to

both research and development of multi-tenant software. Security

should play an even more indispensable role in multi-tenant systems

than it already does in multi-instance and multi-user systems since

data of all tenants can be stored in the same database or table.

• Variability — There should be more awareness of the importance

of variability in multi-tenant software. Variability should be inex-

tricably tied to the concept of multi-tenancy in implementation and

communication.

These themes are also a call to other researchers for future work on

multi-tenancy and are discussed in more detail in Chapter 2.

RQ 1.2. How are software patterns used to implement variability?

Software patterns have proven to be a useful instrument for document-

ing common solutions to frequently occurring problems in software en-

gineering. Patterns can contain many different elements, of which the

following are used in this research:

• Context — Sets the stage where the pattern takes place.

• Problem — Explains what the actual problem is.

• Forces — Describe why the problem is difficult to solve.

• Solution — Explains the solution in detail.

• Consequences — Demonstrates what happens when you apply

the solution.

The pattern elements can be mapped to variability related attributes as

shown in Figure 9.1.

The use of patterns to document variability problems compels to study

forces and consequences of a solution in a structured way, enhancing

the rigour of developing the solution. By using appropriate patterns,

software architects and decision makers can implement variability in

multi-tenant enterprise applications in a predictable way. The struc-

tured nature of patterns enhances the predictability by providing clear

158 Chapter 9 Conclusion

Figure 9.1: The role of variability patterns in multi-tenant enterprise software

descriptions of defined elements of a complete solution. Software pat-

terns are a valuable tool in the design of multi-tenant applications, as

can be seen in Chapter 3.

RQ 1.3. What are the trade-offs of providing more variation in multi-tenant

enterprise software?

When the number of different, or opposing, customer requirements for

a software product grows, the need for variability in the solution grows.

A software product line implementation satisfies a high need for vari-

ability but fails to suffice if the number of customers grows. The specific

software solution most suited for implementing an appropriate level of

variability also depends on the need for resource sharing. Figure 9.2

shows how multi-tenancy plays an important role implementing vari-

ability of the needs for resource sharing are high.

Need for Variability

N
e

e
d

 f
o

r
re

so
u

rc
e

sh
a

ri
n

g

Custom

Software

Solution

Standard

Multi-tenant

Solution

SPL

Solution

Configurable

Multi-tenant

Solution

P
A

A
S

IA
A

Sa

b

a

b

a+
b

a = Business Growth

b = Customer

Requirements Growth

Figure 9.2: Level of variability versus Number of users

Chapter 9 Conclusion 159

Software patterns help to implement variability to different degrees in

multi-tenant enterprise software. The following three patterns are iden-

tified in Chapter 4:

• Customizable Data Views Pattern — Gives the tenant the

ability to indicate and save his preferences on the representation of

data shown.

• Module Dependent Menu Pattern — Provides a custom menu

to all tenants, only containing links to the functionality relevant to

the tenant.

• Pre/Post Update Hooks — Provides the possibility for tenants

to have custom functionality just before or after an event.

Using the patterns, architects and developers are supported in imple-

menting variability in configurable multi-tenant solutions.

RQ 1.4. How does the CQRS pattern influence the variability of a software

product?

The CQRS pattern dictates the strict separation between commands and

queries in the entire software product, which causes software products to

be more scalable and variable than traditional multi-tier based products.

The scalability and variability offered by CQRS are crucial in deploying

multi-tenant enterprise software. An overview of CQRS is depicted in

Figure 9.3.

Figure 9.3: Overview of the CQRS pattern

A case study was performed, at a software company using the CQRS

pattern. During the case study, the software architecture of the relevant

product was examined, based on expert interviews. The following seven

sub-patterns have been identified, that can be used to implement CQRS:

160 Chapter 9 Conclusion

• Event Sourcing — Different events are broadcasted by the com-

mand manager to be processed by different components

• Event Store — Central place in which the events are stored and

changes can be reconstructed from.

• Aggregate Root — Storing and processing all properties and en-

tities that are dependent on each other together

• Command Handler — System capable of catching one or more

commands and passing it through to an object capable of performing

the command.

• Query Model Builder — Listens to events coming in through

the event bus, and create a view of the data needed by the query

manager.

• Query Handler — Receives all queries and checks the query store

for views created by the Query Model Builder.

• Snapshotting — Storing the state of the aggregate root, together

with the events, every nth event.

None of the sub-patterns are obligatory for the implementation of CQRS

and can be used in any combination. In CQRS the commands and

queries are separated. Because of this separation, software application

using the pattern, with a combination of sub-patterns, can easily im-

plement variability. More details on the CQRS pattern and the sub-

patterns can be found in Chapter 5.

RQ 2. How can software patterns become an intrinsic part of the architecting

process?

This question is answered in Part II, based on three sub-questions, which are

answered subsequently in Chapter 6 to 8. A summary of the answers can be

found below:

RQ 2.1. How can software architects be supported in the selection process of

choosing an applicable multi-tenant architecture pattern?

Twelve Multi-Tenant Architecture (MTA) patterns are constructed that

can be used to design multi-tenant enterprise software. All patterns can

be defined in the tuple:

MTA = 〈{AD,AS,AI} , {DD,DS,DB,DC}〉 (9.1)

Chapter 9 Conclusion 161

In each pattern, resources are shared on different levels related to the

Application (A) and to the Database (D). The three different application

levels are:

• AD - A Dedicated Application server is running for each tenant,

and therefore, each tenant receives a dedicated application instance.

• AS - A single Application Server is running for multiple tenants,

and each tenant receives a dedicated application instance.

• AI - A single application server is running for multiple tenants, and

a single Application Instance is running for multiple tenants.

Concerning the database, resources can be shared on the following four

levels:

• DD - A Dedicated Database server is running for each tenant, and

therefore, each tenant receives a dedicated database.

• DS - A single Database Server is running for multiple tenants, and

each tenant receives a dedicated database.

• DB - A single DataBase server is running for multiple tenants, data

from multiple tenants is stored in a single database, but each tenant

receives a dedicated set of tables.

• DC - A single database server is running for multiple tenants, data

from multiple tenants is stored in a single database and a single set

of tables, sharing the same Database sChema.

Based on the discussed levels of multi-tenancy, a full set of multi-tenant

architecture patterns is created.

Choosing the appropriate pattern is a challenging task, depending on

many different factors. During the selection process, architects have to

take the effect of a specific pattern on many different, sometimes con-

tradicting, quality attributes into account. Multi-tenant Architecture

Assessment Model (MAAM) supports architects and decision makers in

selecting applicable multi-tenant architecture patterns by focusing on

consequences of applying the patterns. By using MAAM, decision mak-

ers are forced to focus on a limited set of consequences they consider

important, helping them structure their decision. A collection of rules

of thumb (e.g. Focus on the database dimension) is presented to give

additional guidance in the decision process. Chapter 6 provides more

elaboration on the MTA patterns and assessment method.

RQ 2.2. What are the influences of variability patterns on software quality

attributes?

162 Chapter 9 Conclusion

Different ways of implementing variability in online software products

exist. It is unclear, however, what the consequences are of specific so-

lutions and what patterns are preferred in certain situations. In order

to implement variable functionality and a variable data model in multi-

tenant enterprise software, four software patterns are presented. Firstly,

to dynamically adapt functionality in online software products, the fol-

lowing to patterns can be used:

• Component Interceptor Pattern — A single application server,

in which the interceptors are tightly integrated with the application,

because they run in-line with normal application code. This pattern

serves best for adapting functionality of small projects.

• Event Distribution Pattern — The application generates events

at extension points, which are distributed by a broker. At each

extension point, the standard component is programmed to send

an event indicating the point and appropriate contextual data to a

broker. This pattern is best for large projects.

To extend the data model of an application, the following two patterns

are identified:

• Datasource Router Pattern — The application uses a different

database instance (or schema) for each tenant. Custom properties

are then added to the database as normal fields.

• Custom Property Object Pattern — Data from all tenants is

stored in a single database with a single schema. Any additional data

like custom properties is modeled in the design of the application

as separate custom property objects which are stored in the exist-

ing static schema. Because all data is stored in a single database,

components using that data need to be aware of multi-tenancy and

explicitly query for data of a specific tenant.

The custom property objects pattern holds an advantage on performance

by allowing better resource utilization, however extra care is necessary

to design an appropriate database schema. An elaborate comparison

between all patterns can be found in Chapter 7.

RQ 2.3. How can software patterns be objectively evaluated and compared

during the enterprise software architecting process?

Using the Software Pattern Evaluation Method (SPEM), software ar-

chitects can evaluate patterns based on different quality attributes. The

Chapter 9 Conclusion 163

evaluation is used to compare which patterns are most fitting for their

architecting decisions.

Assign scores

Create participant

profiles

Assign personal

scores

Assign group score

Write evaluation

summary

Consensus

No consensus

Participant profiles

Personal score list

Evaluation summary

Is included in

Is input for

[All attributes discussed]

[Next attribute]

Score table

Is included in

Figure 9.4: SPEM: Software Pattern Evaluation Method

Figure 9.4 shows an overview of the method, which takes place in a focus

group setting. First, profiles are created of all participants of the focus

group. After this, a pattern is presented followed by a sequence of quality

attributes. When a quality attribute is presented, participants fill in

their personal score concerning the expected influence of the pattern on

the attribute. A discussion follows in which the group tries to agree on a

group score for the attribute. After all quality attributes are discussed,

a pattern evaluation report is created. More details on the method

construction and how to perform the method can be found in Chapter 8.

Using the Software Pattern Evaluation Method (SPEM), architects can

164 Chapter 9 Conclusion

make better-informed architecting decisions, saving them time, effort

and evolution challenges in the future.

9.2 Implications

The result of this research has different implications for the software engineering

and software architecture research community, and the software industry. The

largest implications are in the following three areas:

• Providing a unambiguous view on multi-tenancy

• Giving a practical set of multi-tenant architecture patterns

• Presenting a method for the evaluation of software patterns (SPEM)

All of the areas are discussed below.

Unambiguous view on multi-tenancy — Considering the apparent unstop-

pable shift towards the SaaS deployment model and cloud computing paradigm

that can be observed in the software industry, sharing resources among many cus-

tomers becomes of undeniable importance. In order to streamline research on

this topic of resource sharing and foster adoption of academic results by indus-

try, a common vocabulary is indispensable. Multi-tenancy is a concept which is

concerned with the sharing of software resources among different customers, but

which is used differently between and among academia and industry. There is no

consensus on what elements of a software product need to be shared among tenants

in order to make a product multi-tenant. Also, the number of tenants that can be

catered for by a software product is not clear. The many varying uses of the term

can not only confuse software vendors, but can even be harmful when it comes to

buying the appropriate third party software. Every vendor can employ another

interpretation of multi-tenancy, which means a multi-tenant product offering may

not be able to share the resources or offer the variability expected by the client.

We now have postulated an unambiguous definition of multi-tenancy in Chapter 2,

aiding the software industry and software engineering research field, by giving a

common way of talking about multi-tenancy, so confusion can be avoided. The

definition, together with the multi-tenancy research agenda, also helps researchers

in structuring future research in the area multi-tenancy and SaaS, leading to a more

mature research area. The view on multi-tenancy presented in this dissertation

Chapter 9 Conclusion 165

implicates a common ground among research and industry, catalyzing multi-tenant

enterprise software manufacturing.

Essential set of multi-tenant architecture patterns — Defining a suitable

architecture for a software product is crucial. Especially when an application is

hosted online and may serve up to millions of customers and users, thorough knowl-

edge on the consequences of architectural design decisions is inevitable. Many en-

terprise software producing companies struggle to select the appropriate architec-

ture for their online software product. Quality attributes, such as maintainability,

scalability or variability, are important factors in the architecting process, which

are often hard, or almost impossible to assess beforehand.

The twelve Multi-Tenant Architectures (MTAs), as explained in Chapter 6 and

presented in Appendix A, help software architects and decision makers in struc-

turing the architecting process. Before decisions are made, the consequences can

be assessed by looking at the evaluations of the MTAs. Communication for both

industry and academia is improved by using the set of MTAs, because they provide

clear patterns that can be referred to. The patterns provided in Chapter 6 entail

a set of multi-tenant architecture patterns for enterprise software. This set pro-

vides a foundation for academics to efficiently visualize and communicate about

multi-tenant architectures and did not exist before. The patterns form the basis

for future research and enable more in-depth analysis of the quality consequences

of using a specific multi-tenant architecture. A much-needed essential set of pat-

terns for multi-tenant architecting is provided by the results of this dissertation.

Replication of the study would provide the same set of essential architecture pat-

terns, possibly extended by hybrid patterns, based on the patterns provided in

this research.

Software pattern evaluation method — For years, software patterns have

been used to structure and document design solutions in software engineering.

Numerous patterns exist and are capable of solving a wide variety of different,

and similar, problems. Patterns often include a description on the consequences

of applying the pattern, but these consequences are seldom presented in quanti-

tative form and focus on only a selection of relevant criteria. Analyzing how the

implementation of a software pattern affects the quality of a system is a domain

that is still largely uncharted.

With the creation of SPEM, a proof of concept is provided for the evaluation of

patterns, related to their expected impact on the system implementation. One goal

of SPEM is to create more awareness for this kind of evaluations. Our research

166 Chapter 9 Conclusion

paves the road for pattern and software architecture researchers to study the eval-

uation of software patterns in more depth. Using the knowledge of architects to

assess the consequences of applying a specific pattern, by means of focus groups,

is a new approach for software quality evaluation. In current literature, measures

exist for evaluating the quality of a software architecture. Also, efforts have been

done to measure the effects of a pattern on a specific system implementation. A

combination of both, in which the effect of a pattern on a software architecture is

assessed, has not been performed before. The results of this dissertation fill this

gap and give patterns a prominent role in the entire architecting process.

9.3 Reflection

This section gives an overview of reflections on the research project in general, but

also more specific on the research process, methods used and observations on the

software industry. The following four reflections will be discussed:

• Software patterns are underused in the Dutch software industry.

• It is impossible to individually measure pattern consequences using a test

environment.

• Case studies are invaluable in software pattern research.

• On the future of patterns.

Unawareness of patterns in the software industry — Software patterns have

been used in this project to document design solutions, but also serve as means

of communication and comparison tool in the architecting process. The primary

method used to gather the patterns is by performing case studies at Dutch software

producing companies. During the interviews that were performed with software

architects and other experts at the companies, the knowledge on patterns was often

limited. Many interviewees see the 23 design patterns, as proposed by Gamma,

Helm, Johnson, and Vlissides (1995) (e.g. Observer or Visitor patterns), not only

as the seminal patterns, but often these patterns are the only patterns familiar

to them. We observed a clear unawareness of software architects on the potential

of software patterns. Many have the feeling they were constantly ‘reinventing

the wheel’, but do not know the potential of patterns to document, communicate

and compare solutions. Also, many express the urge for a structured way of

documenting solutions and ways of comparison.

Chapter 9 Conclusion 167

Software patterns can offer the needed structure but are unacknowledged and un-

derused in the Dutch software industry. Based on our observations and personal

reflections, patterns are not used enough in the software industry. In my opinion,

the software industry would benefit greatly by making a more explicit use of pat-

terns. A potential inhibitor is (1) the lack of pattern knowledge infrastructures

in place. Additionally, (2) patterns are not used sufficiently in documentation

within software companies. The root of this problem may be in the (3) conven-

tional and limited coverage of software patterns at universities; inadequate pattern

education. Lastly, responsibility for proper pattern use throughout the entire de-

velopment cycle, primarily needs to be carried by the software industry.

Envisioned test environment for patterns — An important part of this

research is the assessment of the consequences of applying a pattern on the quality

of a software product. At the beginning of the research, the aim was to measure

the differences between software patterns by creating a test environment in which

different patterns could be set up. Each set-up could then be tested on different

quality attributes, depending on several scenarios. The idea of creating a test

environment is based on current practices of performance measuring. The problem

with measuring the results of applying a specific pattern, is that we measure the

implementation, instead of the pattern. The problem lies in what defines a pattern.

In describing a pattern, always a generic solution is given, instead of a specific

implementation. This means an architect or developer always has to interpret

the proposed solution and implement as he finds suited. Because of this abstract

nature of patterns, it is impossible to measure the effect of a pattern in a test

environment. One always measures the specific set-up in the test environment,

instead of the pattern itself.

In this research, the test environment is replaced by expert interviews and focus

groups to collect data about the consequences of applying specific patterns. This

leads to a more indirect way of measuring different consequences of applying pat-

terns, but combines the experience and expertise of many different professionals.

By gathering this knowledge in a structured way, we get valuable results and eval-

uate many different interpretations of a pattern at once. Combining the knowledge

of all architects, allows us to evaluate many implementations simultaneously, in-

stead of only one implementation. When a future, central a collaborative pattern

catalogue is in place, however, many researchers could test similar patterns in a test

environment. The collaborative testing of patterns could generate a large enough

data set to distil knowledge on the pattern, instead of the specific implementation.

168 Chapter 9 Conclusion

Value of case studies in pattern research — Case study research is sometimes

criticized for being very case specific and lacking generalizability. During this

research, an appropriate research method had to be selected in order to identify

the different software patterns. An often used rule of thumb in pattern gathering

is that a solution should be observed in at least three occasions before it can be

rightfully documented as a pattern. The best way to do this is by performing case

studies at different software producing companies, in which software architects are

interviewed on how they solve specific problems in their software product. Using

source code analysis to identify potential patterns will not work for architectural

patterns and other high-level solutions. Also, the documentation available at

the case companies often proved to be too poor to study for the sake of pattern

identification.

By using interviews in a multiple case study research design, as discussed in Sec-

tion 1.4.2, we were able to gather different patterns efficiently. The claim that case

study research lacks generalizability is not true for pattern gathering if clear prob-

lems are analyzed. In fact, because patterns are supposed to be proven common

practices, case study research is a well-fitting method for identification.

Future of patterns — Patterns can be used as an educational tool to train

software architects. Architects are human beings that solve problems by weighing

alternatives and making various decisions. These decisions are anchored in their

education, their experience, and the problem at hand. Patterns enable architects

to make informed decisions, without having to trust on gut feeling and experience

alone. This research, for instance, provides software architects with a decision

tool in chapter 6 for choosing appropriate multi-tenant deployment architectures

for online applications, supporting architects in decision making. As patterns are

becoming an increasing part of common software engineering practice, tools will

increasingly support these building blocks. Similar to three-dimensional drawing

tools for building architects that contain basic constructs such as walls, windows,

and stairs, we expect integrated development environments to assist in rapid de-

ployment of reference implementations of (for instance) the model-view-controller

pattern, the CQRS pattern, and many others. We can even imagine that refac-

torings take on the shape of refactorings towards a specific type of pattern to

optimally support developers in re-engineering their software.

One often heard criticism among developers is that design patterns are essentially

solid object-oriented practices. Although this is true for some of the lower level

software patterns (i.e. idioms and some design patterns), we must strongly object

Chapter 9 Conclusion 169

to a generalization to all patterns. The patterns in this work and presented by

many others are advanced constructs that solve larger scale design problems in

specific problem domains. These constructs are typically complex and provide a

blueprint solution for a problem that is larger than just its programmatic imple-

mentation. Another often heard criticism is that software patterns are essentially

constructs missing in the language that thus had to be defined by outsiders. Ef-

fectively, this comment suffers from the same problem as the previous comment,

which is that some patterns are much more complex than can be fixed by one

construct in a language. It is important to keep in mind that different levels of

patterns exist, as discussed and explained in section 1.3.5, and comments about

one specific type of patterns does not need to apply to all patterns. Patterns

should be used as reference solutions. They should not kill developer creativity

and should not turn them into “macro-composers”.

9.4 Limitations and Future Research

The limitations of the results, presented in this dissertation, are discussed in this

section, followed by directions on future research.

Variability in the functionality or data model of multi-tenant enterprise software

can be implemented in numerous ways, each having their specific consequences.

This dissertation describes and compares a number of patterns to implement vari-

ability, but the collection provided is not all-embracing yet. More patterns need

to be identified and evaluated in order to get a complete view on the architect-

ing options in multi-tenant enterprise software. Also, the patterns need to be

stored in a central and open catalogue, to enable easy access to the patterns for

software architect and researchers. A central, online, catalogue will also enable

distributed identification and comparison of patterns and pattern implementation

consequences. A risk of this research is the intensive use of patterns in document-

ing, evaluating and comparing design solutions. While this is done deliberately,

it could harm the acceptance of the results. Software patterns are not universally

used by academics and industry, leading to a potential hesitation in the adoption

of the results of this research.

Researchers can only perform a limited number of cases and can never cover the en-

tire population (i.e. all organisations producing multi-tenant enterprise software).

To counteract this, we carefully selected our case companies to reflect and repre-

sent the industry as good as possible. Within our selection are three of the largest

170 Chapter 9 Conclusion

ERP vendors in the Netherlands, together with a large group of smaller organi-

sations, all producing enterprise software in varying domains. The results of our

studies were later evaluated by experts to increase the level of generalizability. One

threat is that all companies are based in the Netherlands. Because of the interna-

tional character of many of the companies, however, we have no reason to think

this will harm the generalizability of our results. Additionally, patterns are proven

solutions to a common problem, based on multiple observations of the solution.

Because of this, increasing the number of case companies would not increase the

generalizability of the identified patterns. It would, however, potentially increase

the number of patterns found.

Validation of research results is crucial throughout the entire research process. In

this dissertation, all results are validated by discussing them in expert interviews,

focus groups, or surveys. Additionally, the validity of the results is ensured by

rigorously following the case study protocol that is set up beforehand and employ-

ing design science approach in which the results are constantly validated during

each iteration of the cycle. Although we tried to ensure the validity of our results,

a thorough, overall validation of all patterns at the same time, using a similar

validation approach for every pattern is still lacking. A future, overall validation,

in addition to the current disperse validation methods, could improve the validity

of the current results even more.

For future research, the concept of multi-tenancy in enterprise software should be

researched more extensively on the following topics:

• Quality assurance — An investigation into how customization of the multi-

tenant application affects quality, e.g. in terms of performance. Can one

general SLA be upheld, or should each tenant get a tenant-specific SLA?

• Industry Validation — With industrial multi-tenant solutions being devel-

oped right now, the next step for researchers is to work closely together with

industry to validate research ideas on actual multi-tenant software systems.

• Balancing and Placement — There might be opportunities to develop

better load balancing algorithms that take into account the historical usage

of the application by the different tenants. Specifically, the load balancing

can be targeted at looking at the different time zones in which the tenants

are operating.

• Database sharing — A major point of concern that we noted in the blog

posts is data isolation, i.e., making sure that the data of individual tenants

Chapter 9 Conclusion 171

is shielded for other tenants. As such, an investigation into how to isolate

and partition the data is a logical next step. Additionally, developing tests

to make sure that data isolation is working correctly is also an interesting

avenue for future work.

Performing more in-depth studies in these areas would lead to a more mature

research domain and a more extensively defined concept of multi-tenancy. The

current discomposure on the characterization of multi-tenancy underlines the need

for further research in this area.

Regarding the patterns that are presented in this dissertation, more evaluation

needs to be done to assess the effect of all patterns on software quality attributes,

such as maintainability, scalability and performance. Also, more patterns can be

identified if additional case studies are performed. Doing this would enrich the

pattern catalogue and give software architects a wider variety of patterns to choose

from. Assuming an appropriate evaluation method is used during assessment, a

richer catalogue would improve the architecting process. Currently the pattern

language body of knowledge is already constantly growing with recent additions

such as the patterns in this thesis, but also, among others, the recent pattern

collection books Cloud Design Patterns (Homer, Sharp, Brader, Masashi, and

Trent, 2014) and Designing Distributed Control Systems: A Pattern Language

Approach (Eloranta, Koskinen, Leppanen, and Reijonen, 2014). Little effort has

gone into collecting, mapping, and classifying all software design patterns. We

strongly believe this calls for an indexed pattern encyclopedia, in which patterns

can be collected. Ideally, such an encyclopedia allows for annotations to be made

that add knowledge on the patterns in practice, pattern variations, pattern com-

plements, reference implementations, etc. The patterns elaborated on in this thesis

could fill the section on variability in online multi-tenant software.

Bibliography

Abdullin, R. (2010). Theory of CQRS Command Handlers: Sagas, ARs and Event Sub-

scriptions. http://abdullin.com/journal/2010/9/26/theory-of-cqrs-command-

handlers-sagas-ars-and-event-subscrip.html.

Abowd, G., L. Bass, P. Clements, R. Kazman, and L. Northrop (1997). Recommended

Best Industrial Practice for Software Architecture Evaluation. Tech. rep. DTIC Docu-

ment.

Alexander, C., S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-King, and S. Angel

(1977). A pattern language: Towns, Buildings, Construction. Oxford University Press,

Oxford, UK.

Anjum, M. and D. Budgen (2012). “A mapping study of the definitions used for Service

Oriented Architecture”. In: Prodceeings of the International Conference on Evaluation

& Assessment in Software Engineering (EASE). IET, pp. 57–61.

Arlitt, M., D. Krishnamurthy, and J. Rolia (2001). “Characterizing the scalability of a

large web-based shopping system”. In: ACM Transactions on Internet Technology 1.1,

pp. 44–69.

Armbrust, M., A. Fox, R. Griffith, et al. (2010). “A view of cloud computing”. In: Com-

munications of the ACM 53.4, pp. 50–58.

Arya, P., V. Venkatesakumar, and S. Palaniswami (2010). “Configurability in SaaS for

an electronic contract management application”. In: Proceedings of the International

Conference on Networking, VLSI and Signal Processing. ACM, pp. 210–216.

Aulbach, S., T. Grust, D. Jacobs, A. Kemper, and J. Rittinger (2008). “Multi-tenant

databases for software as a service: schema-mapping techniques”. In: Proceedings of

the International Conference on Management of Data. ACM, pp. 1195–1206.

Azeez, A., S. Perera, D. Gamage, R. Linton, P. Siriwardana, D. Leelaratne, S. Weer-

awarana, and P. Fremantle (2010). “Multi-tenant SOA middleware for cloud comput-

ing”. In: Proceedings of the International Conference on Cloud Computing (CLOUD).

IEEE, pp. 458–465.

173

http://abdullin.com/journal/2010/9/26/theory-of-cqrs-command-handlers-sagas-ars-and-event-subscrip.html
http://abdullin.com/journal/2010/9/26/theory-of-cqrs-command-handlers-sagas-ars-and-event-subscrip.html

174 Bibliography

Babar, M. A. and I. Gorton (2007). “A tool for managing software architecture knowl-

edge”. In: Proceedings of Workshop on Sharing and Reusing Architectural Knowledge

(SHARK). IEEE, pp. 11–17.

Babar, M. A., L. Zhu, and R. Jeffery (2004). “A framework for classifying and comparing

software architecture evaluation methods”. In: Proceedings of the Australian Software

Engineering Conference. IEEE, pp. 309–318.

Bass, L., P. Clements, and R. Kazman (2013). Software Architecture in Practice. Addison

Wesley, Boston.

Bayer, J., . Gerard, O. Haugen, J. Mansell, B. Møller-Pedersen, J. Oldevik, P. Tessier,

J. Thibault, and T. Widen (2006). “Consolidated Product Line Variability Modeling”.

In: Software Product Lines. Springer, pp. 195–241.

Beck, K., R. Crocker, G. Meszaros, J. Vlissides, J. O. Coplien, L. Dominick, and F.

Paulisch (1996). “Industrial experience with design patterns”. In: Proceedings of the

International Conference on Software engineering. IEEE, pp. 103–114.

Benlian, A. and T. Hess (2011). “Opportunities and risks of software-as-a-service: Find-

ings from a survey of IT executives”. In: Decision Support Systems 52.1, pp. 232–246.

Bennett, K., P. Layzell, D. Budgen, P. Brereton, L. Macaulay, and M. Munro (2000).

“Service-based software: the future for flexible software”. In: Proceedings of the Asia-

Pacific Software Engineering Conference (APSEC). IEEE, pp. 214–221.

Berg, B. L. and H. Lune (2004). Qualitative research methods for the social sciences.

Pearson, Boston.

Betts, D., J. Dominguez, G. Melnik, F. Simonazzi, and M. Subramanian (2013). Ex-

ploring CQRS and Event Sourcing: A journey into high scalability, availability, and

maintainability with Windows Azure. Microsoft patterns & practices, Redmond.

Bezemer, C. and A. Zaidman (2010). “Multi-tenant SaaS applications: maintenance

dream or nightmare?” In: Proceedings of the Joint ERCIM Workshop on Software

Evolution (EVOL) and International Workshop on Principles of Software Evolution

(IWPSE). ACM, pp. 88–92.

Bezemer, C., A. Zaidman, B. Platzbeecker, T. Hurkmans, and A. Hart (2010). “Enabling

multi-tenancy: An industrial experience report”. In: Proceedings of the International

Conference on Software Maintenance (ICSM). IEEE.

Bhardwaj, S., L. Jain, and S. Jain (2010). “Cloud computing: A study of infrastructure as

a service (IAAS)”. In: International Journal of engineering and information Technology

2.1, pp. 60–63.

Bondi, A. B. (2000). “Characteristics of scalability and their impact on performance”.

In: Proceedings of the International workshop on Software and Performance (WOSP).

ACM, pp. 195–203.

Bibliography 175

Booch, G. (2005). “On creating a handbook of software architecture”. In: Proceedings of

the Conference on Object Oriented Programming Systems Languages and Applications

(OOPSLA), pp. 8–8.

Brereton, P., B. A. Kitchenham, D. Budgen, M. Turner, and M. Khalil (2007). “Lessons

from applying the systematic literature review process within the software engineering

domain”. In: Journal of Systems and Software 80.4, pp. 571–583.

Brown, C. and I. Vessey (2003). “Managing the next wave of enterprise systems: lever-

aging lessons from ERP”. In: MIS Quarterly Executive 2.1, pp. 45–57.

Brown, W., R. Malveau, and T. Mowbray (1998). AntiPatterns: refactoring software,

architectures, and projects in crisis. John Wiley & Sons, New York.

Brownsword, L., T. Oberndorf, and C. A. Sledge (2000). “Developing new processes for

COTS-based systems”. In: IEEE Software 17.4, pp. 48–55.

Budgen, D., M. Turner, P. Brereton, and B. Kitchenham (2008). “Using mapping studies

in software engineering”. In: Proceedings of the Annual Meeting of the Psychology of

Programming Interest Group. PPIG, pp. 195–204.

Buschmann, F., K. Henney, and D. Schmidt (2007a). Pattern-oriented software architec-

ture: On patterns and pattern languages. John Wiley & Sons, New York.

– (2007b). Pattern-Oriented Software Architecture, Volume 4: Pattern Language for Dis-

tributed Computing. John Wiley & Sons, New York.

Buschmann, F., R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal (1996). Pattern-

Oriented Software Architecture, Volume 1: A System of Patterns. John Wiley & Sons,

New York.

Buschmann, F., K. Henney, and D. C. Schmidt (2007c). “Past, present, and future trends

in software patterns”. In: IEEE Software 24.4, pp. 31–37.

Carpenter, B., G. Fox, S. Ko, and S. Lim (1999). “Object serialization for marshalling

data in a Java interface to MPI”. In: Proceedings of the Conference on Java Grande.

ACM, pp. 66–71.

Chong, F. and G. Carraro (2006). Architecture strategies for catching the long tail. Tech.

rep. MSDN Library, Microsoft Corporation.

Chong, F., G. Carraro, and R. Wolter (2006). Multi-tenant data architecture. Tech. rep.

MSDN Library, Microsoft Corporation.

Clements, P., D. Garlan, L. Bass, J. Stafford, R. Nord, J. Ivers, and R. Little (2002). Doc-

umenting software architectures: views and beyond. Pearson Education, Upper Sadle

River.

Cooper, H. (1998). Synthesizing research: A guide for literature reviews. SAGE Publica-

tions, London, UK.

Copi, I. M. and R. W. Miller (1972). Introduction to Logic: Study Guide. Macmillan,

London, UK.

Coplien, J. O. and C. Alexander (1996). A word on Software patterns. SIGS, New York.

176 Bibliography

Cronbach, L. J. and P. E. Meehl (1955). “Construct validity in psychological tests.” In:

Psychological bulletin 52.4, pp. 281–302.

Cusumano, M. A. (2004). The Business of Software. Free Press, New York.

Dahan, U. (2010). Clarified CQRS. http://www.udidahan.com/2009/12/09/clarified-

cqrs/.

Dillon, T., C. Wu, and E. Chang (2010). “Cloud computing: Issues and challenges”. In:

Proceedings of the International Conference on Advanced Information Networking and

Applications (AINA). IEEE, pp. 27–33.

D’souza, A., J. Kabbedijk, D. Seo, S. Jansen, and S. Brinkkemper (2012). “Software-as-

a-Service: Implications for Business and Technology in Product Software Companies”.

In: Proceedings of the Pacific Asia Conference on Information Systems (PACIS). AIS,

Paper 140.

Du, J., X. Gu, and D. S. Reeves (2010). “Highly available component sharing in large-

scale multi-tenant cloud systems”. In: Proceedings of the International Symposium on

High Performance Distributed Computing. ACM, pp. 85–94.

Dubey, A. and D. Wagle (2007). “Delivering software as a service”. In: The McKinsey

Quarterly 6, pp. 1–12.

Eckerson, W. (1995). “Three Tier Client/Server Architectures: Achieving Scalability, Per-

formance, and Efficiency in Client/Server Applications”. In: Open Information Systems

3.20, pp. 46–50.

Eisenhardt, K. M. (1989). “Building theories from case study research”. In: Academy of

management review 14.4, pp. 532–550.

Eloranta, V., J. Koskinen, M. Leppanen, and V. Reijonen (2014). Designing Distributed

Control Systems: A Pattern Language Approach. John Wiley & Sons, New York.

Engelstätter, B. (2012). “It is not all about performance gains–enterprise software and

innovations”. In: Economics of Innovation and New Technology 21.3, pp. 223–245.

Esfahani, N., S. Malek, and K. Razavi (2013). “GuideArch: guiding the exploration of

architectural solution space under uncertainty”. In: Proceedings of the International

Conference on Software Engineering (ICSE). IEEE, pp. 43–52.

Esfahani, N., K. Razavi, and S. Malek (2012). “Dealing with uncertainty in early software

architecture”. In: Proceedings of the International Symposium on the Foundations of

Software Engineering. ACM, pp. 21–24.

Evans, E. (2004). Domain-driven design: tackling complexity in the heart of software.

Addison Wesley, Boston.

Evitts, P. and D. Hinchcliffe (2000). A UML pattern language. Vol. 201. Macmillan Tech-

nical Publishing, London, UK.

Fink, A. (2013). Conducting research literature reviews. Sage Publications, London, UK.

http://www.udidahan.com/2009/12/09/clarified-cqrs/
http://www.udidahan.com/2009/12/09/clarified-cqrs/

Bibliography 177

Fisher, S. (2007). “The architecture of the apex platform, salesforce.com’s platform for

building on-demand applications”. In: Proceedings of the International Conference on

Software Engineering-Companion (ICSE). IEEE, p. 3.

Flyvbjerg, B. (2006). “Five misunderstandings about case-study research”. In: Qualitative

inquiry 12.2, pp. 219–245.

Forbes (2014). Why Cloud ERP Adoption Is Faster Than Gartner Predicts. http://

www.forbes.com/sites/louiscolumbus/2014/02/07/why-cloud-erp-adoption-

is-faster-than-gartner-predicts/.

Forrester (2012). Thoughts On The ERP Market As 2012 Shifts Into 2013. http://

blogs.forrester.com/china_martens/12-12-10-thoughts_on_the_erp_market_

as_2012_shifts_into_2013.

– (2013). Cloud Computing Predictions for 2014: Cloud Joins the Formal IT Portfolio.

http://blogs.forrester.com/james_staten/13- 12- 04- cloud_computing_

predictions_for_2014_cloud_joins_the_formal_it_portfolio.

Fowler, M. (1997). Analysis Patterns: reusable object models. Addison-Wesley, Boston.

– (2003). Patterns of enterprise application architecture. Addison-Wesley Professional.

Galster, M. and P. Avgeriou (2011). “The notion of variability in software architecture:

results from a preliminary exploratory study”. In: Proceedings of the Workshop on

Variability Modeling of Software-Intensive Systems. ACM, pp. 59–67.

Galster, M., T. Männistö, D. Weyns, and P. Avgeriou (2014). “Variability in software

architecture: the road ahead”. In: ACM SIGSOFT Software Engineering Notes 39.4,

pp. 33–34.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides (1995). Design patterns: elements of

reusable object-oriented software. Addison-wesley Reading.

Gilbert, S. and N. Lynch (2002). “Brewer’s conjecture and the feasibility of consistent,

available, partition-tolerant web services”. In: ACM SIGACT News 33.2, pp. 51–59.

Gold, N., A. Mohan, C. Knight, and M. Munro (2004). “Understanding service-oriented

software”. In: IEEE Software 21.2, pp. 71–77.

Goodwin, L. D. and N. L. Leech (2003). “The Meaning of Validity in the New Standards

for Educational and Psychological Testing: Implications for Measurement Courses.”

In: Measurement and evaluation in Counseling and Development 36.3, pp. 181–192.

Gray, J. and L. Lamport (2006). “Consensus on transaction commit”. In: ACM Transac-

tions on Database Systems (TODS) 31.1, pp. 133–160.

Guo, C., W. Sun, Y. Huang, Z. Wang, and B. Gao (2007). “A framework for native

multi-tenancy application development and management”. In: Proceedings of the In-

ternational Conference on E-Commerce Technology and the International Conference

on Enterprise Computing, E-Commerce and E-Services. IEEE, pp. 551–558.

http://www.forbes.com/sites/louiscolumbus/2014/02/07/why-cloud-erp-adoption-is-faster-than-gartner-predicts/
http://www.forbes.com/sites/louiscolumbus/2014/02/07/why-cloud-erp-adoption-is-faster-than-gartner-predicts/
http://www.forbes.com/sites/louiscolumbus/2014/02/07/why-cloud-erp-adoption-is-faster-than-gartner-predicts/
http://blogs.forrester.com/china_martens/12-12-10-thoughts_on_the_erp_market_as_2012_shifts_into_2013
http://blogs.forrester.com/china_martens/12-12-10-thoughts_on_the_erp_market_as_2012_shifts_into_2013
http://blogs.forrester.com/china_martens/12-12-10-thoughts_on_the_erp_market_as_2012_shifts_into_2013
http://blogs.forrester.com/james_staten/13-12-04-cloud_computing_predictions_for_2014_cloud_joins_the_formal_it_portfolio
http://blogs.forrester.com/james_staten/13-12-04-cloud_computing_predictions_for_2014_cloud_joins_the_formal_it_portfolio

178 Bibliography

Hendricks, K. B., V. R. Singhal, and J. K. Stratman (2007). “The impact of enterprise

systems on corporate performance: A study of ERP, SCM, and CRM system imple-

mentations”. In: Journal of Operations Management 25.1, pp. 65–82.

Hevner, A. R., S. T. March, J. Park, and S. Ram (2004). “Design Science in Information

Systems Research”. In: MIS Quarterly 28.1, pp. 75–105.

Hevner, A. and S. Chatterjee (2010). Design research in information systems: theory and

practice. Springer, New York.

Hills, M., P. Klint, T. Van Der Storm, and J. Vinju (2011). “A case of visitor versus

interpreter pattern”. In: Objects, Models, Components, Patterns. Springer, pp. 228–

243.

Hoch, F., M. Kerr, A. Griffith, et al. (2001). Software as a service: Strategic backgrounder.

Tech. rep. Software & Information Industry Association (SIIA).

Homer, A., J. Sharp, L. Brader, N. Masashi, and S. Trent (2014). Cloud Design Patterns:

Prescriptive Architecture Guidance for Cloud Applications. Microsoft Publishing, Red-

mont.

IBM (July 2011). Best practices for cloud computing multi-tenancy. http://www.ibm.

com/developerworks/cloud/library/cl-multitenantcloud/.

ISO/IEC (2001). ISO/IEC 9126-1: 2001. International Organization for Standardization.

– (2011). ISO/IEC 25010: 2011. International Organization for Standardization.

Jansen, A., J. Van Der Ven, P. Avgeriou, and D. K. Hammer (2007). “Tool support for

architectural decisions”. In: The Working IEEE/IFIP Conference on Software Archi-

tecture (WICSA). IEEE, pp. 4–14.

Jaring, M. and J. Bosch (2002). “Representing variability in software product lines: A

case study”. In: Software Product Lines 2379, pp. 219–245.

Kabbedijk, J., C. Bezemer, S. Jansen, and A. Zaidman (2014 (In Press)). “Defining

Multi-Tenancy: A Structured Mapping Study on the Academic and the Industrial

Perspective”. In: Journal of Systems and Software.

Kabbedijk, J., R. van Donselaar, and S. Jansen (2014). “SPEM: A Software Pattern

Evaluation Method”. In: Proceedings of the International Conferences on Pervasive

Patterns and Applications (PATTERNS). IARIA, pp. 38–43.

Kabbedijk, J., M. Galster, and S. Jansen (2012). “Focus Group Report: Evaluating the

Consequences of Applying Architectural Patterns”. In: Proceedings of the European

conference on Pattern Languages of Programs (EuroPLoP).

Kabbedijk, J. and S. Jansen (2011). “Variability in Multi-Tenant Environments: Architec-

tural Design Patterns from Industry”. In: Proceedings of the International Conference

on Advances in conceptual modeling: recent developments and new directions (ER).

Springer, pp. 151–160.

– (2012). “The Role of Variability Patterns in Multi-Tenant Business Software”. In: Pro-

ceedings of the WICSA/ECSA 2012 Companion Volume. ACM, pp. 143–146.

http://www.ibm.com/developerworks/cloud/library/cl-multitenantcloud/
http://www.ibm.com/developerworks/cloud/library/cl-multitenantcloud/

Bibliography 179

Kabbedijk, J., M. Pors, S. Jansen, and S. Brinkkemper (2014). “Multi-Tenant Architec-

ture Comparison”. In: Proceedings of the European conference on Software Architecture

(ECSA). ACM, pp. 202–209.

Kabbedijk, J., T. Salfischberger, and S. Jansen (2013). “Comparing Two Architectural

Patterns for Dynamically Adapting Functionality in Online Software Products - Best

Paper Award”. In: Proceedings of the International Conferences on Pervasive Patterns

and Applications (PATTERNS), pp. 20–25.

Kabbedijk, J., S. Jansen, and S. Brinkkemper (2012). “A Case Study of the Variability

Consequences of the CQRS Pattern in Online Business Software”. In: Proceedings of

the European Conference on Pattern Languages of Programs (EuroPLoP). ACM, 2:1–

2:10.

Kabbedijk, J., S. Jansen, and T. Salfischberger (2014). “Runtime Variability in Online

Software Products: A Comparison of Four Patterns”. In: International Journal On

Advances in Software 7.1 and 2, pp. 101–111.

Kan, S. H. (2002). Metrics and models in software quality engineering. Addison-Wesley,

Boston.

Kazman, R., J. Asundi, and M. Klein (2001). “Quantifying the costs and benefits of

architectural decisions”. In: Proceedings of the International Conference on Software

Engineering (ICSE). IEEE, pp. 297–306.

Kazman, R., M. Klein, and P. Clements (2000). ATAM: Method for architecture evalua-

tion. Tech. rep. DTIC.

Kircher, M. and P. Jain (2004). Pattern-Oriented Software Architecture, Volume 3: Pat-

terns for Resource Management. John Wiley & Sons, New York.

Kitchenham, B. (2004). Procedures for performing systematic reviews. Tech. rep. Keele

University, UK.

Kitchenham, B. A., D. Budgen, and P. Brereton (2010). “The value of mapping studies:

a participant-observer case study”. In: Proceedings of Evaluation and Assessment of

Software Engineering (EASE), pp. 25–33.

Kitchenham, B. A. and S. Charters (2007). Guidelines for performing systematic litera-

ture reviews in software engineering. Tech. rep. Keele University, UK.

Kitchenham, B., O. Pearl Brereton, D. Budgen, M. Turner, J. Bailey, and S. Linkman

(2009). “Systematic literature reviews in software engineering–a systematic literature

review”. In: Information and software technology 51.1, pp. 7–15.

Kitchenham, B. and S. L. Pfleeger (1996). “Software quality: The elusive target”. In:

IEEE software 13.1, pp. 12–21.

Kitzinger, J. (1995). “Qualitative research. Introducing focus groups.” In: BMJ: British

medical journal 311.7000, pp. 299–302.

180 Bibliography

Koziolek, H. (2011). “The sposad architectural style for multi-tenant software applica-

tions”. In: Proceeding of the Working IEEE/IFIP Conference on Software Architecture

(WICSA). IEEE, pp. 320–327.

Krasner, G. and S. Pope (1988). “A description of the model-view-controller user interface

paradigm in the smalltalk-80 system”. In: Journal of Object Oriented Programming 1.3,

pp. 26–49.

Kwok, T., T. Nguyen, and L. Lam (2008). “A software as a service with multi-tenancy

support for an electronic contract management application”. In: Proceedings of the

International Conference on Services Computing (SCC). IEEE, pp. 179–186.

Lauder, A. and S. Kent (1998). “Precise visual specification of design patterns”. In:

Proceeding of Object-Oriented Programming. Springer, pp. 114–134.

Li, X., T. Liu, Y. Li, and Y. Chen (2008). “SPIN: Service performance isolation infrastruc-

ture in multi-tenancy environment”. In: Proceedings of the International Conference on

Service-Oriented Computing (ICSOC). Springer, pp. 649–663.

Lin, H., K. Sun, S. Zhao, and Y. Han (2009). “Feedback-control-based performance reg-

ulation for multi-tenant applications”. In: Proceedings of the International Conference

on Parallel and Distributed Systems (ICPADS). IEEE, pp. 134–141.

Ma, D. (2007). “The Business Model of Software-As-A-Service”. In: Proceedings of the

International Conference on Services Computing (SCC). IEEE, pp. 701–702.

Manuel, P. and J. AlGhamdi (2003). “A data-centric design for n-tier architecture”. In:

Information Sciences 150.3, pp. 195–206.

Mapelsden, D., J. Hosking, and J. Grundy (2002). “Design pattern modelling and instan-

tiation using DPML”. In: Proceedings of the International Conference on Tools Pacific:

Objects for internet, mobile and embedded applications. Australian Computer Society,

pp. 3–11.

Maplesden, D., J. G. Hosking, and J. C. Grundy (2001). “A Visual Language for Design

Pattern Modelling and Instantiation.” In: Proceedings of the Symposia on Human-

Centric Computing Languages and Environments. IEEE, pp. 338–339.

March, S. T. and G. F. Smith (1995). “Design and natural science research on information

technology”. In: Decision support systems 15.4, pp. 251–266.

Mell, P. and T. Grance (2011). The NIST definition of cloud computing. Tech. rep. NIST.

Merriam Webster Online (2014a). Evaluate. http : / / www . merriam - webster . com /

dictionary/evaluate/.

– (2014b). Validate. http://www.merriam-webster.com/dictionary/validate/.

Messerschmitt, D. G. and C. Szyperski (2005). Software ecosystem: understanding an

indispensable technology and industry. The MIT Press, Cambridge.

Meyer, B. (1988). Object-oriented software construction. Prentice Hall PTR, New York.

http://www.merriam-webster.com/dictionary/evaluate/
http://www.merriam-webster.com/dictionary/evaluate/
http://www.merriam-webster.com/dictionary/validate/

Bibliography 181

Michalik, B., P. Avgeriou, D. Tofan, M. Galster, and D. Weyns (2014). “Variability

in Software Systems - A Systematic Literature Review”. In: IEEE Transactions on

Software Engineering 40.3, pp. 282–306.

Microsoft (June 2012). Principles of Sharing in a Shared First World: Multi-Tenancy.

http://www.microsoft.com/government/en- us/federal/futurefed/pages/

details.aspx?Principles- of- Sharing- in- a- Shared- First- World:- Multi-

Tenancy&blogid=158.

Mietzner, R., T. Unger, R. Titze, and F. Leymann (2009). “Combining Different Multi-

tenancy Patterns in Service-Oriented Applications”. In: Proceedings of the Interna-

tional Enterprise Distributed Object Computing Conference. IEEE, pp. 131–140.

Mietzner, R., F. Leymann, and M. P. Papazoglou (2008). “Defining composite config-

urable SaaS application packages using SCA, variability descriptors and multi-tenancy

patterns”. In: Proceedings on the International Conference on Internet and Web Ap-

plications and Services (ICIW). IEEE, pp. 156–161.

Mietzner, R., A. Metzger, F. Leymann, and K. Pohl (2009). “Variability modeling to

support customization and deployment of multi-tenant-aware Software as a Service

applications”. In: Proceedings of the Workshop on Principles of Engineering Service

Oriented Systems. IEEE, pp. 18–25.

Mitchell, M. and J. Jolley (2012). Research design explained. Cengage Learning, Boston.

Momm, C. and R. Krebs (2011). “A Qualitative Discussion of Different Approaches for

Implementing Multi-Tenant SaaS Offerings.” In: Proceedings of the Software Engineer-

ing (SE) Workshop.

Nambisan, S. (2001). “Why service businesses are not product businesses”. In: MIT Sloan

Management Review 42.4, pp. 72–80.

Natis, Y. V. (2008). “Reference Architecture for Multitenancy: Enterprise Computing in

the Cloud”. In: Gartner 3, pp. 4–8.

Nijhof, M. (2010). Elegant Code >CQRS >Event Sourcing. http://elegantcode.com/

2010/02/05/cqrs-event-sourcing/.

Oracle (Oct. 2009). Multi-Tenancy (Non Virtualized). http : / / www . oracle . com /

technetwork/topics/cloud/blueprint-multi-tenant-novm-089433.html.

Osipov, C., G. Goldszmidt, M. Taylor, and I. Poddar (2009). Develop and Deploy Multi-

Tenant Web-delivered Solutions using IBM middleware: Part 2: Approaches for en-

abling multi-tenancy. Tech. rep. IBM Corporation.

Peffers, K., T. Tuunanen, M. A. Rothenberger, and S. Chatterjee (2007). “A design

science research methodology for information systems research”. In: Journal of man-

agement information systems 24.3, pp. 45–77.

Perepletchikov, M., C. Ryan, K. Frampton, and Z. Tari (2007). “Coupling metrics for

predicting maintainability in service-oriented designs”. In: Proceedings of the Australian

Software Engineering Conference (ASWEC). IEEE, pp. 329–340.

http://www.microsoft.com/government/en-us/federal/futurefed/pages/details.aspx?Principles-of-Sharing-in-a-Shared-First-World:-Multi-Tenancy&blogid=158
http://www.microsoft.com/government/en-us/federal/futurefed/pages/details.aspx?Principles-of-Sharing-in-a-Shared-First-World:-Multi-Tenancy&blogid=158
http://www.microsoft.com/government/en-us/federal/futurefed/pages/details.aspx?Principles-of-Sharing-in-a-Shared-First-World:-Multi-Tenancy&blogid=158
http://elegantcode.com/2010/02/05/cqrs-event-sourcing/
http://elegantcode.com/2010/02/05/cqrs-event-sourcing/
http://www.oracle.com/technetwork/topics/cloud/blueprint-multi-tenant-novm-089433.html
http://www.oracle.com/technetwork/topics/cloud/blueprint-multi-tenant-novm-089433.html

182 Bibliography

Petersen, K., R. Feldt, S. Mujtaba, and M. Mattsson (2008). “Systematic mapping studies

in software engineering”. In: Proceedings of the International Conference on Evaluation

and Assessment in Software Engineering. ACM, pp. 71–80.

Petticrew, M. and H. Roberts (2009). Systematic reviews in the social sciences: A prac-

tical guide. Oxford: Blackwell Publisher, Hoboken, p. 336.

Pohl, K., G. Böckle, and F. van der Linden (2005). Software product line engineering:

foundations, principles, and techniques. Springer-Verlag, New York.

Pors, M., L. Blom, J. Kabbedijk, and S. Jansen (2013). Sharing is Caring - A Decision

Support Model for Multi-Tenant Architectures. Tech. rep. UU-CS-2013-015. Depart-

ment of Information and Computing Sciences, Utrecht University.

Pressman, R. S. (1994). Software Engineering: a practitioner’s approach. McGraw-Hill,

New York.

Reason, P. (1994). Three approaches to participative inquiry. Sage Publications, Thou-

sand Oaks.

Rimal, B., E. Choi, and I. Lumb (2009). “A taxonomy and survey of cloud computing

systems”. In: Proceedings of the International Joint Conference on INC, IMS and IDC

(NCM). IEEE, pp. 44–51.

Rumbaugh, J., I. Jacobson, and G. Booch (2004). The Unified Modeling Language Ref-

erence Manual. Pearson Higher Education, London, UK.

Runeson, P. and M. Höst (2009). “Guidelines for conducting and reporting case study

research in software engineering”. In: Empirical Software Engineering 14.2, pp. 131–

164.

S. Jansen G.J. Houben, S. B. (July 2010). “Customization Realization in Multi-tenant

Web Applications: Case Studies from the Library Sector”. In: Proceedings of the 10th

International Conference on Web Engineering (ICWE 2010). Vol. 6189. LNCS. Vienna,

Austria: Springer, pp. 445–459.

Sääksjärvi, M., A. Lassila, and H. Nordström (2005). “Evaluating the software as a service

business model: From CPU time-sharing to online innovation sharing”. In: Proceedings

of the International Conference on e-Society. IEEE, pp. 27–30.

Sandhu, R. S. and P. Samarati (1994). “Access control: principle and practice”. In: IEEE

Communications Magazine 32.9, pp. 40–48.

Schiller, O., B. Schiller, A. Brodt, and B. Mitschang (2011). “Native support of multi-

tenancy in RDBMS for software as a service”. In: Proceedings of the International

Conference on Extending Database Technology. ACM, pp. 117–128.

Schmidt, D., M. Stal, H. Rohnert, and F. Buschmann (2000). Pattern-Oriented Software

Architecture, Volume 2: Patterns for Concurrent and Networked Objects. John Wiley

& Sons, New York.

Schmidt, D. C. (1995). “Using design patterns to develop reusable object-oriented com-

munication software”. In: Communications of the ACM 38.10, pp. 65–74.

Bibliography 183

Schmidt, D. C., M. Fayad, and R. E. Johnson (1996). “Software patterns”. In: Commu-

nications of the ACM 39.10, pp. 37–39.

Shadish, W. R., T. D. Cook, and D. T. Campbell (2002). Experimental and quasi-

experimental designs for generalized causal inference. Cengage learning, New York.

Shaw, M. and D. Garlan (1996). Software architecture: perspectives on an emerging dis-

cipline. Prentice Hall, Englewood Cliffs.

Smith, M. A. and R. L. Kumar (2004). “A theory of application service provider (ASP)

use from a client perspective”. In: Information & management 41.8, pp. 977–1002.

Stevens, S. S. (1946). On the theory of scales of measurement. Bobbs-Merrill, Indianapo-

lis.

Strauch, S., V. Andrikopoulos, S. Gómez Sáez, and F. Leymann (2013). “ESBMT:

A Multi-tenant Aware Enterprise Service Bus”. In: International Journal of Next-

Generation Computing 4.3, pp. 230–249.

Sun, W., X. Zhang, C. Guo, P. Sun, and H. Su (2008). “Software as a service: Config-

uration and customization perspectives”. In: Proceedings of the Congress on Services

Part II. IEEE, pp. 18–25.

Svahnberg, M., J. van Gurp, and J. Bosch (2005). “A taxonomy of variability realization

techniques”. In: Software: Practice and Experience 35.8, pp. 705–754.

Swanson, E. B. and P. Wang (2005). “Knowing why and how to innovate with packaged

business software”. In: Journal of Information Technology 20.1, pp. 20–31.

Tao, L. (2001). “Shifting paradigms with the application service provider model”. In:

Computer 34.10, pp. 32–39.

Taylor, R., N. Medvidovic, and E. Dashofy (2010). Software Architecture: Foundations,

Theory and Practice. John Wiley & Sons, New York.

Thiel, S. and A. Hein (2002). “Modeling and using product line variability in automotive

systems”. In: IEEE software 19.4, pp. 66–72.

Torkel, O. (2010). Queries & Aggregates & DDD. http://www.codinginstinct.com/

2011/04/queries-aggregates-ddd.html.

Tremblay, M. C., A. R. Hevner, and D. J. Berndt (2010). “The Use of Focus Groups in

Design Science Research”. In: Design Research in Information Systems 22, pp. 121–

143.

Tsai, C.-H., Y. Ruan, S. Sahu, A. Shaikh, and K. G. Shin (2007). “Virtualization-based

techniques for enabling multi-tenant management tools”. In: Lecture Notes in Com-

puter Science. Vol. 4785. Springer, pp. 171–182.

Tucker, A. B. (2004). Computer Science: Handbook. CRC press, Boca Raton.

Turner, M., D. Budgen, and P. Brereton (2003). “Turning software into a service”. In:

Computer 36.10, pp. 38–44.

Tyree, J. and A. Akerman (2005). “Architecture decisions: Demystifying architecture”.

In: IEEE Software 22.2, pp. 19–27.

http://www.codinginstinct.com/2011/04/queries-aggregates-ddd.html
http://www.codinginstinct.com/2011/04/queries-aggregates-ddd.html

184 Bibliography

Van der Aalst, W., A. ter Hofstede, and M. Weske (2003). “Business process management:

A survey”. In: Business Process Management 2678, pp. 1019–1019.

Van Gurp, J., J. Bosch, and M. Svahnberg (2001). “On the notion of variability in

software product lines”. In: Proceedings of the Working IEEE/IFIP Conference on

Software Architecture (WICSA). IEEE, pp. 45–54.

Vaquero, L. M., L. Rodero-Merino, J. Caceres, and M. Lindner (2008). “A break in the

clouds: towards a cloud definition”. In: ACM SIGCOMM Computer Communication

Review 39.1, pp. 50–55.

Wang, Z. H., C. J. Guo, B. Gao, W. Sun, Z. Zhang, and W. H. An (2008). “A study

and performance evaluation of the multi-tenant data tier design patterns for service

oriented computing”. In: Proceedings of the International Conference on e-Business

Engineering (ICEBE). IEEE, pp. 94–101.

Weinreich, R., T. Ziebermayr, and D. Draheim (2007). “A versioning model for enterprise

services”. In: Proceedings of the International Conference on Advanced Information

Networking and Applications Workshops (AINAW). Vol. 2. IEEE, pp. 570–575.

Wellhausen, T. and A. Fießer (2011). “How to write a pattern”. In: Proceedings of the

European conference on pattern languages of programs (EuroPLoP).

Wieringa, R., H. Heerkens, and B. Regnell (2009). “How to write and read a scientific

evaluation paper”. In: Proceedings of the International Requirements Engineering Con-

ference (RE). IEEE, pp. 361–364.

Wieringa, R. (2009). “Design science as nested problem solving”. In: Proceedings of the In-

ternational Conference on Design Science Research in Information Systems and Tech-

nology. ACM, p. 8.

Wilkes, M. V. (1975). Time sharing computer systems. Elsevier Science, New York.

Wu, W., L. Lan, and Y. Lee (2011). “Exploring decisive factors affecting an organization’s

SaaS adoption: A case study”. In: International Journal of Information Management

31.6, pp. 556–563.

Xu, L. and S. Brinkkemper (2007). “Concepts of product software”. In: European Journal

of Information Systems 16.5, pp. 531–541.

Yin, R. (2009). Case study research: Design and methods. Sage Publications, New York.

Young, G. (2010). CQRS and Event Sourcing. http://codebetter.com/gregyoung/

2010/02/13/cqrs-and-event-sourcing/.

Zhang, Q., L. Cheng, and R. Boutaba (2010). “Cloud computing: state-of-the-art and

research challenges”. In: Journal of Internet Services and Applications 1.1, pp. 7–18.

http://codebetter.com/gregyoung/2010/02/13/cqrs-and-event-sourcing/
http://codebetter.com/gregyoung/2010/02/13/cqrs-and-event-sourcing/

Appendix A

Pattern Catalogue

This catalogue gives an overview of all software patterns originating from this

dissertation. Every pattern starts on a new page and discusses the context, prob-

lem, solution and consequences of the pattern. The patterns description style is

based on the style presented in Chapter 3. The element ‘Forces’ is integrated with

‘Solution’ for the sake of brevity.

185

186 Appendix A Pattern Catalogue

Customizable Data Views Pattern

Context

Design of a multi-tenant enterprise application.

Problem

It must be possible to provide tenants the ability to indicate and save his prefer-

ences on the representation of data shown. How can developers be enabled to give

tenants a way to indicate their preferences on the representation of data within

the software product?

Solution

DataRepresentation

+filterData()

+sortData()

+xData()

FunctionalComponent

+filter()

+sort()

0.* 0.*
uses

DataComponent

+storeSetting()

+retreiveSetting()

0.*

1

uses

UserSettings

+UserID

+SortOrder

+FilterItems

+FontSize

+FontColor

+AttributeN

Figure A.1: Customizable Data Views Pattern

In this variability pattern, the representation of data is performed at client side.

Tenants can for example choose how they want to sort or filter their data, while

the data-queries do not have to be adapted. The only change needed to a software

product is the introduction of tenant-specific representation settings. In this table,

all preferred font colors, sizes and sort option can be stored in order to retrieve this

information on other occasions to display the data again, according to the tenant’s

wishes. The DataRepresentation class can manipulate the appearance of all data

by making use of a FunctionalComponent able of sorting, filtering, etcetera. All

settings are later stored by a DataComponent in a specific UserSettings table.

Appendix A Pattern Catalogue 187

Settings can later be retrieved by the same DataComponent, to be used again by

the DataRepresentation class and FunctionalModule.

Consequences

By implementing this pattern, one extra table has to be implemented. Nothing

changes in the way data selection queries have to be formatted. Representation

of all data has to be formatted in a default way, except if a tenant changes this

default way and stores his own preferences.

More details on this pattern can be found on page 64.

188 Appendix A Pattern Catalogue

Module Dependent Menu Pattern

Context

Design of a multi-tenant enterprise application.

Problem

Tenants of a shared software system have specific requirements to a software prod-

uct, they can all use different sets of functionality. Displaying all possible func-

tionality in the menu would decrease the user experience of tenants, so menus

have to display only the functionality that is relevant to the tenant. How can a

custom menu to all tenants, only containing links to the functionality relevant to

the tenant be provided?

Solution

ModuleChecker

+checkModuleID()

+checkUserID()

UserModules

+userID

+moduleID

Button

+Image

+Description

+Link

+MandatoryModule

Menu

+addButton()

+checkModule()

0.* 0.1
uses

Module

+ModuleID

+functionA()

+functionB()

+functionN()

0.* 0.*
links to

Figure A.2: Module Dependent Menu Pattern

The pattern creates a menu out of different buttons based on the modules asso-

ciated to the tenant. Every time a tenant displays the menu, the menu is built

dynamically based on the modules he has selected or bought. The Menu class ag-

gregates and displays different buttons, containing a link a specific module and the

prerequisite for displaying this link (mandatoryModule). The selection of buttons

is done, based on the results of the ModuleChecker. This class checks whether an

entry is available in the UserModules table, containing both the ID of the tenant

Appendix A Pattern Catalogue 189

(user) and the mandatory module. If an entry is present, the Menu aggregates

and displays the button corresponding to this module.

Consequences

To be able to use this pattern, an extra table containing user IDs and the modules

available to this user has to be implemented. Also, the extra class ModuleChecker

has to be implemented. All buttons do need a notion of a mandatory module that

can be checked by the ModuleChecker to verify if a tenant wants or can have a

link to the specific functionality.

More details on this pattern can be found on page 65.

190 Appendix A Pattern Catalogue

Pre/Post Update Hooks Pattern

Context

Design of a multi-tenant enterprise application.

Problem

In business oriented software, workflows often differ per tenant. To let the soft-

ware product fit the tenants business processes best, extra actions could be made

available to tentants before or after an event is called. How can the possibility for

tenants to have custom functionality just before or after an event be provided?

Solution

PreComponent

+AttributeA

+AttributeB

+AttributeN

+operationA()

+operationB()

+operationN()

PostComponent

+AttributeA

+AttributeB

+AttributeN

+operationA()

+operationB()

+operationN()

FunctionalComponent

+update()

+preProcess()

+postProcess()

BusinessComponent

+update(void)

DataComponent

+updateData()

ComponentChecker

+checkModuleID()

+checkUserID()

DataTable

+XData

+YData

+ZData

UserModules

+UserID

+ModuleID

0.* 1
calls

1 0.*
uses

0.*

0.*

implements

0.*

0.*

1

calls

Figure A.3: Pre/Post Update Hooks Pattern

The pattern creates a menu out of different buttons based on the modules asso-

ciated to the tenant. Every time a tenant displays the menu, the menu is built

Appendix A Pattern Catalogue 191

dynamically based on the modules he has selected or bought. The Menu class ag-

gregates and displays different buttons, containing a link a specific module and the

prerequisite for displaying this link (mandatoryModule). The selection of buttons

is done, based on the results of the ModuleChecker. This class checks whether an

entry is available in the UserModules table, containing both the ID of the tenant

(user) and the mandatory module. If an entry is present, the Menu aggregates

and displays the button corresponding to this module.

Consequences

To be able to use this pattern, an extra table containing user IDs and the modules

available to this user has to be implemented. Also, the extra class ModuleChecker

has to be implemented. All buttons do need a notion of a mandatory module that

can be checked by the ModuleChecker to verify if a tenant wants or can have a

link to the specific functionality.

More details on this pattern can be found on page 67.

192 Appendix A Pattern Catalogue

CQRS Pattern

Context

Design of a multi-tenant enterprise application.

Problem

In order to create a software product, capable of offering a certain level of vari-

ability, most current software products separate logic into different layers. Each

tier within this architectural principle is responsible for a different part of the

architecture. An often implemented solution to this multi-tier architecture is the

three-tiered application in which there is a separate data, logic and presentation

tier. Within this solution, the database in the data tier is often seen as one CRUD

(i.e. Create, Read, Update and Delete data) data store in which all commands

and queries are performed on the same database. This can lead to locking, perfor-

mance and scalability problems, especially with larger commands or queries, since

all things have to be taken care of sequentially. Distributing parts of the system

in combination with selective locking of data provides a partial solution, but leads

to a high probability of data inconsistency.

Solution

Figure A.4: CQRS Pattern

The CQRS pattern is prescribes the creation of two subsystems in a system design.

From the user interfaces commands can be sent to the command manager or queries

can be send to or received from the query manager. Commands are actions that

will be performed on the data, while queries are requests for data to be shown. The

Appendix A Pattern Catalogue 193

CQRS pattern itself does not prescribe anything about communication between

the command manager and the query manager, but the following sub patterns are

often used in combination with CQRS:

• Event Sourcing

• Event Store

• Aggregate Root

• Command Handler

• Query Model Builder

• Query Handler

• Snapshotting

A description of the patterns mentioned above can be found in the sections of the

pattern catalogue.

Consequences

By implementing CQRS, highly scalable and variable multi-tenant enterprise prod-

ucts can be designed. Also, it enables for the use of the aforementioned sub pat-

terns.

More details on this pattern can be found in Chapter 5.

194 Appendix A Pattern Catalogue

Event Sourcing Pattern

Context

Design of a multi-tenant enterprise application, applying the CQRS Pattern.

Problem

There needs to be a way to communicate between the command manager and the

query manager.

Solution

Figure A.5: Event Sourcing Pattern

Sourcing of the events created by the command manager, which can be sent to an

event bus to which the query model builders in the query manager listen. The

different query builders can be on the same system, but also on different physical or

virtual machines. Query model builders can be on different geographical locations

or even at clients. The most important aspect of the event sourcing pattern is the

fact different events are broadcasted by the command manager to be processed by

different components.

Consequences

The system becomes scalable and all sub parts are specially geared towards the

task they have to do (ie. read or write).

More details on this pattern can be found on page 77.

Appendix A Pattern Catalogue 195

Event Store Pattern

Context

Design of a multi-tenant enterprise application, applying the CQRS Pattern.

Problem

Storage by the query manager could be anything, from stored in cache, to stored

at the client, or in some database. Because of the uncertainty in storing method,

you can not rely on the availability and recovery of data if the system crashes.

Solution

Figure A.6: Event Sourcing Pattern

In the event store all events can be stored sequentially, so the all data can be

reconstructed based on the events in case of a system crash. From the User

Interface commands are sent to a handler, who sends it to the event store as an

event.

Consequences

Events are now stored in a central location and can be accessed in a reliable way,

for the sake of data recovery.

More details on this pattern can be found on page 77.

196 Appendix A Pattern Catalogue

Aggregate Root Pattern

Context

Design of a multi-tenant enterprise application, applying the CQRS Pattern.

Problem

Because data in the CQRS pattern is created by different query model builders

of which you do not necessarily know what or where they are, and because of

the asynchronous way these listeners work you can not say anything about the

correctness of data at the time of querying. As an example, think about a large

web shop selling laptops. Whenever someone wants to order a laptop, the system

needs to know whether the inventory is sufficient to approve the order. In other

words, the system needs to be sure there is at least one laptop available before the

order can be processed. In the core CQRS pattern, there is no way to know for

sure the laptop is in stock, because all events are processed asynchronous. The

only way to know for sure the laptop is in stock, is to store the number of laptops

available together with the laptop itself and also process this as one. If not, it is

possible that the system checks whether a laptop is in stock, sees one laptop in

stock, starts processing the order and ends up with an erroneous order since the

laptop is sold just before through another process.

Solution

The concept of storing and processing all properties and entities that are dependent

on each other together is know as aggregation. The main entity is called the entity

root. An order, for example should always be processed together with its order

lines, since the lines make no sense without the order. In the previously mentioned

example, the order and order lines are an aggregate and the order is the aggregate

root, since deleting the root would indicate deleting the other entities as well.

Consequences

Related properties and entities are processed and stored together.

More details on this pattern can be found on page 78.

Appendix A Pattern Catalogue 197

Command Handler Pattern

Context

Design of a multi-tenant enterprise application, applying the CQRS Pattern.

Problem

Commands coming in from the user interface have to be passed through to some-

thing that will perform the action dictated by the command. These actions can

be adequately performed by Aggregate roots, but the commands coming from the

command bus have to be interpreted and translated somehow before they can be

processed.

Solution

Figure A.7: Command Handler Pattern

A command handler is capable of catching one or more commands and passing it

through to an object capable of performing the command. The action performer

makes sure an action is actually performed, by, for example, delaying the sourcing

of events until an aggregate root is completely finished.

Consequences

Commands are correctly and timely processed.

More details on this pattern can be found on page 79.

198 Appendix A Pattern Catalogue

Query Manager Pattern

Context

Design of a multi-tenant enterprise application, applying the CQRS Pattern.

Problem

Data queries by tenants are diverse and need to be translated to an appropriate

view. In order to represent the right data in the appropriate form, the needed

view is dependent on the domain of the query. The domain knowledge needs to

be translated to an automatically usable model.

Solution

Figure A.8: QMB Manager Pattern

The query handler implements a component able of receiving all queries and check-

ing the query store for views created by the Query Model Builder. Query

Model Builders (QMBs) can be everywhere, from the clients cache, to on all kind

of different physical servers. The QMBs listen to events coming in through the

event bus, and create a view of the data needed by the query manager. This

view totally depends on the domain the QMB is in and the goal the data has. A

QMB in a system responsible for generating inventories, for example, will build

entirely different query models than a QMB in a system responsible for displaying

the contact details of one person. The concept of a query store is introduced to

Appendix A Pattern Catalogue 199

store queries build by the QMB. This store is not obligatory, but can improve the

response time of the system.

Consequences

Queries are now translated to views, usable for representation to tenants through

the user interface.

More details on this pattern can be found in Section 5.5.5 and 5.5.6 on page 80.

200 Appendix A Pattern Catalogue

Snapshotting Pattern

Context

Design of a multi-tenant enterprise application, applying the CQRS Pattern.

Problem

It is common practice in the CQRS pattern to only store changes (events) and no

states. This is because states can always be determined based on all the changes

happened in the system so far. Rerunning al events will bring the system back in

its last state after a possible system crash. States only occur in aggregate roots,

but recovering the state of an aggregate root after a system crash can be quite

intensive, since aggregate roots often stay active in the system for a long time.

Solution

In the snapshotting pattern, the state of the aggregate root is stored together with

the events every nth event. The exact value of n depends on the processing load

storing and monitoring the state of the aggregate root gives. When the system

crashes, the latest stored state is recovered and only the events happened after this

state storage have to be rerun. The snapshotting pattern is often used in com-

bination with the memento pattern (Gamma, Helm, Johnson, and Vlissides,

1995) that provides the ability to restore objects to their previous state.

Consequences

System recovery is faster and more reliable.

More details on this pattern can be found on page 81.

Appendix A Pattern Catalogue 201

Dedicated Application and Database Server Pattern

Context

Design of the architecture of a multi-tenant enterprise application.

Problem

In order to implement a multi-tenant architecture, resources have to be shared on

different levels of the computing stack. It is not clear what can be shared and

what the effects are of sharing specific levels of the computing stack.

Solution

Tenant A

Tenant B

Tenant C

App Server

App Server

App Server

DB Server

DB Server

DB Server

DB

DB

DB

App

Instance

App

Instance

App

Instance

Figure A.9: Dedicated Application and Database Server Pattern

The tenants share no resources at all. For each tenant, a dedicated application

server and a dedicated database server is run.

202 Appendix A Pattern Catalogue

Consequences

This pattern has the following consequences, with 1 being a high negative influ-

ence and 5 a high positive influence:

T
im

e
B
eh

av
io

r
R
es

ou
rc

e
U
ti
liz

at
io

n

T
hr

ou
gh

pu
t

N
um

b
er

of
T
en

an
ts

N
um

b
er

of
E
nd

-U
se

rs

A
va

ila
bi

lit
y

R
ec

ov
er

ab
ili

ty
C
on

fid
en

ti
al

it
y

In
te

gr
it
y

A
ut

he
nt

ic
it
y

M
ai

nt
ai

na
bi

lit
y

P
or

ta
bi

lit
y

D
ep

lo
ym

en
t
T
im

e

V
ar

ia
bi

lit
y

D
iv

er
se

SL
A

So
ft
w
ar

e
C
om

pl
ex

it
y

M
on

it
or

in
g

Rating 5.0 2.5 4.5 1.0 2.5 4.0 5.0 5.0 4.5 4.5 1.5 5.0 1.5 5.0 4.5 5.0 1.0

Table A.1: MTA 〈AD,DD〉 Pattern Consequences (In color)

Applying this pattern has a positive effect on the variability and recoverability of

a software product, but harms the maintainability and the number of tenants that

can be served.

More details on this pattern can be found in Chapter 6.

Appendix A Pattern Catalogue 203

Shared Application Server / Dedicated Database Server Pat-

tern

Context

Design of the architecture of a multi-tenant enterprise application.

Problem

In order to implement a multi-tenant architecture, resources have to be shared on

different levels of the computing stack. It is not clear what can be shared and

what the effects are of sharing specific levels of the computing stack.

Solution

Tenant A

Tenant B

Tenant C

App Server DB Server

DB Server

DB Server

DB

DB

DB

App

Instance

App

Instance

App

Instance

Figure A.10: Shared Application Server / Dedicated Database Server Pattern

Tenants only share an application server. A dedicated application instance and

database server is running for each tenant.

204 Appendix A Pattern Catalogue

Consequences

This pattern has the following consequences, with 1 being a high negative influ-

ence and 5 a high positive influence:

T
im

e
B
eh

av
io

r
R
es

ou
rc

e
U
ti
liz

at
io

n

T
hr

ou
gh

pu
t

N
um

b
er

of
T
en

an
ts

N
um

b
er

of
E
nd

-U
se

rs

A
va

ila
bi

lit
y

R
ec

ov
er

ab
ili

ty
C
on

fid
en

ti
al

it
y

In
te

gr
it
y

A
ut

he
nt

ic
it
y

M
ai

nt
ai

na
bi

lit
y

P
or

ta
bi

lit
y

D
ep

lo
ym

en
t
T
im

e

V
ar

ia
bi

lit
y

D
iv

er
se

SL
A

So
ft
w
ar

e
C
om

pl
ex

it
y

M
on

it
or

in
g

Rating 4.0 2.5 3.0 3.0 3.5 3.0 4.5 4.5 4.0 3.5 2.5 5.0 3.0 4.0 4.0 4.5 2.0

Table A.2: MTA 〈AS,DD〉 Pattern Consequences (In color)

Applying this pattern has a positive effect on the portability and recoverability of

a software product, but harms the monitoring and resource utilization.

More details on this pattern can be found in Chapter 6.

Appendix A Pattern Catalogue 205

Shared Instance / Dedicated Database Server Pattern

Context

Design of the architecture of a multi-tenant enterprise application.

Problem

In order to implement a multi-tenant architecture, resources have to be shared on

different levels of the computing stack. It is not clear what can be shared and

what the effects are of sharing specific levels of the computing stack.

Solution

Tenant A

Tenant B

Tenant C

App Server DB Server

DB Server

DB Server

DB

DB

DB

App

Instance

Figure A.11: Shared Instance / Dedicated Database Server Pattern

Tenants share an application server and instance. A dedicated database server is

running for each tenant.

206 Appendix A Pattern Catalogue

Consequences

This pattern has the following consequences, with 1 being a high negative influ-

ence and 5 a high positive influence:

T
im

e
B
eh

av
io

r
R
es

ou
rc

e
U
ti
liz

at
io

n

T
hr

ou
gh

pu
t

N
um

b
er

of
T
en

an
ts

N
um

b
er

of
E
nd

-U
se

rs

A
va

ila
bi

lit
y

R
ec

ov
er

ab
ili

ty
C
on

fid
en

ti
al

it
y

In
te

gr
it
y

A
ut

he
nt

ic
it
y

M
ai

nt
ai

na
bi

lit
y

P
or

ta
bi

lit
y

D
ep

lo
ym

en
t
T
im

e

V
ar

ia
bi

lit
y

D
iv

er
se

SL
A

So
ft
w
ar

e
C
om

pl
ex

it
y

M
on

it
or

in
g

Rating 4.0 3.0 3.0 3.0 3.0 3.0 4.5 4.0 3.0 3.0 3.0 4.5 3.0 2.5 3.0 4.0 3.0

Table A.3: MTA 〈AI,DD〉 Pattern Consequences (In color)

Applying this pattern has a positive effect on the portability and recoverability of

a software product, but harms the variability.

More details on this pattern can be found in Chapter 6.

Appendix A Pattern Catalogue 207

Dedicated Application Server / Shared Database Server Pat-

tern

Context

Design of the architecture of a multi-tenant enterprise application.

Problem

In order to implement a multi-tenant architecture, resources have to be shared on

different levels of the computing stack. It is not clear what can be shared and

what the effects are of sharing specific levels of the computing stack.

Solution

Tenant A

Tenant B

Tenant C

App Server

App Server

App Server

DB Server

DB

DB

DB

App

Instance

App

Instance

App

Instance

Figure A.12: Dedicated Application Server / Shared Database Server Pattern

Tenants share a database server, but each have their own database. A dedicated

application server is running for each tenant.

208 Appendix A Pattern Catalogue

Consequences

This pattern has the following consequences, with 1 being a high negative influ-

ence and 5 a high positive influence:

T
im

e
B
eh

av
io

r
R
es

ou
rc

e
U
ti
liz

at
io

n

T
hr

ou
gh

pu
t

N
um

b
er

of
T
en

an
ts

N
um

b
er

of
E
nd

-U
se

rs

A
va

ila
bi

lit
y

R
ec

ov
er

ab
ili

ty
C
on

fid
en

ti
al

it
y

In
te

gr
it
y

A
ut

he
nt

ic
it
y

M
ai

nt
ai

na
bi

lit
y

P
or

ta
bi

lit
y

D
ep

lo
ym

en
t
T
im

e

V
ar

ia
bi

lit
y

D
iv

er
se

SL
A

So
ft
w
ar

e
C
om

pl
ex

it
y

M
on

it
or

in
g

Rating 4.0 2.5 4.0 3.0 3.0 3.0 4.0 4.0 4.0 3.5 2.5 4.5 2.5 5.0 4.0 4.5 2.5

Table A.4: MTA 〈AD,DS〉 Pattern Consequences (In color)

Applying this pattern has a positive effect on the variability and portability of a

software product, but harms the deployment time and resource utilization.

More details on this pattern can be found in Chapter 6.

Appendix A Pattern Catalogue 209

Shared Application and Database Server Pattern

Context

Design of the architecture of a multi-tenant enterprise application.

Problem

In order to implement a multi-tenant architecture, resources have to be shared on

different levels of the computing stack. It is not clear what can be shared and

what the effects are of sharing specific levels of the computing stack.

Solution

Tenant A

Tenant B

Tenant C

DB Server

DB

DB

DB

App Server

App

Instance

App

Instance

App

Instance

Figure A.13: Shared Application and Database Server Pattern

Tenants share a database and application server, but all tenants have their own

database and application instance.

210 Appendix A Pattern Catalogue

Consequences

This pattern has the following consequences, with 1 being a high negative influ-

ence and 5 a high positive influence:

T
im

e
B
eh

av
io

r
R
es

ou
rc

e
U
ti
liz

at
io

n

T
hr

ou
gh

pu
t

N
um

b
er

of
T
en

an
ts

N
um

b
er

of
E
nd

-U
se

rs

A
va

ila
bi

lit
y

R
ec

ov
er

ab
ili

ty
C
on

fid
en

ti
al

it
y

In
te

gr
it
y

A
ut

he
nt

ic
it
y

M
ai

nt
ai

na
bi

lit
y

P
or

ta
bi

lit
y

D
ep

lo
ym

en
t
T
im

e

V
ar

ia
bi

lit
y

D
iv

er
se

SL
A

So
ft
w
ar

e
C
om

pl
ex

it
y

M
on

it
or

in
g

Rating 3.0 3.0 3.0 3.5 3.5 3.0 4.0 4.0 3.5 3.0 3.0 4.5 3.5 4.0 3.5 4.5 3.0

Table A.5: MTA 〈AS,DS〉 Pattern Consequences (In color)

Applying this pattern has a positive effect on the portability and complexity of a

software product, but has a neutral effect on many other quality attributes.

More details on this pattern can be found in Chapter 6.

Appendix A Pattern Catalogue 211

Shared Instance and Database Server Pattern

Context

Design of the architecture of a multi-tenant enterprise application.

Problem

In order to implement a multi-tenant architecture, resources have to be shared on

different levels of the computing stack. It is not clear what can be shared and

what the effects are of sharing specific levels of the computing stack.

Solution

Tenant A

Tenant B

Tenant C

DB Server

DB

DB

DB

App Server

App

Instance

Figure A.14: Shared Instance and Database Server Pattern

Tenants share an application server, instance and database server. A dedicated

database is running for each tenant.

212 Appendix A Pattern Catalogue

Consequences

This pattern has the following consequences, with 1 being a high negative influ-

ence and 5 a high positive influence:

T
im

e
B
eh

av
io

r
R
es

ou
rc

e
U
ti
liz

at
io

n

T
hr

ou
gh

pu
t

N
um

b
er

of
T
en

an
ts

N
um

b
er

of
E
nd

-U
se

rs

A
va

ila
bi

lit
y

R
ec

ov
er

ab
ili

ty
C
on

fid
en

ti
al

it
y

In
te

gr
it
y

A
ut

he
nt

ic
it
y

M
ai

nt
ai

na
bi

lit
y

P
or

ta
bi

lit
y

D
ep

lo
ym

en
t
T
im

e

V
ar

ia
bi

lit
y

D
iv

er
se

SL
A

So
ft
w
ar

e
C
om

pl
ex

it
y

M
on

it
or

in
g

Rating 3.0 3.0 3.0 4.0 3.5 3.0 4.0 4.0 3.0 3.0 3.5 4.5 4.0 2.0 2.5 3.5 3.0

Table A.6: MTA 〈AI,DS〉 Pattern Consequences (In color)

Applying this pattern has a positive effect on the portability of a software prod-

uct, but harms the variability and diversification possibilities of the service level

agreements.

More details on this pattern can be found in Chapter 6.

Appendix A Pattern Catalogue 213

Dedicated Application Instance / Shared Database Pattern

Context

Design of the architecture of a multi-tenant enterprise application.

Problem

In order to implement a multi-tenant architecture, resources have to be shared on

different levels of the computing stack. It is not clear what can be shared and

what the effects are of sharing specific levels of the computing stack.

Solution

DB Server
Tenant A

Tenant B

Tenant C

App Server

App Server

App Server

App

Instance

App

Instance

App

Instance

Figure A.15: Dedicated Application Instance / Shared Database Pattern

Tenants share a database and database server. A dedicated application server is

running for each tenant.

214 Appendix A Pattern Catalogue

Consequences

This pattern has the following consequences, with 1 being a high negative influ-

ence and 5 a high positive influence:

T
im

e
B
eh

av
io

r
R
es

ou
rc

e
U
ti
liz

at
io

n

T
hr

ou
gh

pu
t

N
um

b
er

of
T
en

an
ts

N
um

b
er

of
E
nd

-U
se

rs

A
va

ila
bi

lit
y

R
ec

ov
er

ab
ili

ty
C
on

fid
en

ti
al

it
y

In
te

gr
it
y

A
ut

he
nt

ic
it
y

M
ai

nt
ai

na
bi

lit
y

P
or

ta
bi

lit
y

D
ep

lo
ym

en
t
T
im

e

V
ar

ia
bi

lit
y

D
iv

er
se

SL
A

So
ft
w
ar

e
C
om

pl
ex

it
y

M
on

it
or

in
g

Rating 4.0 3.0 3.5 3.0 3.5 3.0 3.0 3.5 3.5 4.0 2.5 4.0 3.0 4.5 4.0 4.0 3.0

Table A.7: MTA 〈AD,DB〉 Pattern Consequences (In color)

Applying this pattern has a positive effect on the variability of a software product,

but harms the maintainability.

More details on this pattern can be found in Chapter 6.

Appendix A Pattern Catalogue 215

Shared Application Server and Database Pattern

Context

Design of the architecture of a multi-tenant enterprise application.

Problem

In order to implement a multi-tenant architecture, resources have to be shared on

different levels of the computing stack. It is not clear what can be shared and

what the effects are of sharing specific levels of the computing stack.

Solution

DB Server
Tenant A

Tenant B

Tenant C

App Server

App

Instance

App

Instance

App

Instance

Figure A.16: Shared Application Server and Database Pattern

Tenants share a database, database server and application server. A dedicated

application instance is running for each tenant.

216 Appendix A Pattern Catalogue

Consequences

This pattern has the following consequences, with 1 being a high negative influ-

ence and 5 a high positive influence:

T
im

e
B
eh

av
io

r
R
es

ou
rc

e
U
ti
liz

at
io

n

T
hr

ou
gh

pu
t

N
um

b
er

of
T
en

an
ts

N
um

b
er

of
E
nd

-U
se

rs

A
va

ila
bi

lit
y

R
ec

ov
er

ab
ili

ty
C
on

fid
en

ti
al

it
y

In
te

gr
it
y

A
ut

he
nt

ic
it
y

M
ai

nt
ai

na
bi

lit
y

P
or

ta
bi

lit
y

D
ep

lo
ym

en
t
T
im

e

V
ar

ia
bi

lit
y

D
iv

er
se

SL
A

So
ft
w
ar

e
C
om

pl
ex

it
y

M
on

it
or

in
g

Rating 3.0 3.0 3.5 4.0 3.5 3.0 3.0 3.0 3.0 3.5 4.0 4.0 4.0 3.5 3.0 4.0 4.0

Table A.8: MTA 〈AS,DB〉 Pattern Consequences (In color)

Applying this pattern has a slight positive effect on the maintainability and de-

ployment time of a software product, but has a neutral effect on many other quality

attributes.

More details on this pattern can be found in Chapter 6.

Appendix A Pattern Catalogue 217

Shared Instance and Database Pattern

Context

Design of the architecture of a multi-tenant enterprise application.

Problem

In order to implement a multi-tenant architecture, resources have to be shared on

different levels of the computing stack. It is not clear what can be shared and

what the effects are of sharing specific levels of the computing stack.

Solution

DB Server
Tenant A

Tenant B

Tenant C

App Server

App

Instance

Figure A.17: Shared Instance and Database Pattern

Tenants share a database and application instance. Tenant data is stored in sep-

arate tables.

218 Appendix A Pattern Catalogue

Consequences

This pattern has the following consequences, with 1 being a high negative influ-

ence and 5 a high positive influence:

T
im

e
B
eh

av
io

r
R
es

ou
rc

e
U
ti
liz

at
io

n

T
hr

ou
gh

pu
t

N
um

b
er

of
T
en

an
ts

N
um

b
er

of
E
nd

-U
se

rs

A
va

ila
bi

lit
y

R
ec

ov
er

ab
ili

ty
C
on

fid
en

ti
al

it
y

In
te

gr
it
y

A
ut

he
nt

ic
it
y

M
ai

nt
ai

na
bi

lit
y

P
or

ta
bi

lit
y

D
ep

lo
ym

en
t
T
im

e

V
ar

ia
bi

lit
y

D
iv

er
se

SL
A

So
ft
w
ar

e
C
om

pl
ex

it
y

M
on

it
or

in
g

Rating 3.0 4.0 3.0 4.0 4.0 3.5 3.0 3.0 3.0 3.0 4.5 4.0 4.0 2.0 3.0 3.0 4.0

Table A.9: MTA 〈AI,DB〉 Pattern Consequences (In color)

Applying this pattern has a slight positive effect on the maintainability and re-

source utilization of a software product, but harms the variability.

More details on this pattern can be found in Chapter 6.

Appendix A Pattern Catalogue 219

Dedicated Application Server / Shared Schema Pattern

Context

Design of the architecture of a multi-tenant enterprise application.

Problem

In order to implement a multi-tenant architecture, resources have to be shared on

different levels of the computing stack. It is not clear what can be shared and

what the effects are of sharing specific levels of the computing stack.

Solution

DB Server
Tenant A

Tenant B

Tenant C

App Server

App Server

App Server

App

Instance

App

Instance

App

Instance

Figure A.18: Dedicated Application Server / Shared Schema Pattern

Tenants share a database, database schema and database server. A dedicated

application server is running for each tenant.

220 Appendix A Pattern Catalogue

Consequences

This pattern has the following consequences, with 1 being a high negative influ-

ence and 5 a high positive influence:

T
im

e
B
eh

av
io

r
R
es

ou
rc

e
U
ti
liz

at
io

n

T
hr

ou
gh

pu
t

N
um

b
er

of
T
en

an
ts

N
um

b
er

of
E
nd

-U
se

rs

A
va

ila
bi

lit
y

R
ec

ov
er

ab
ili

ty
C
on

fid
en

ti
al

it
y

In
te

gr
it
y

A
ut

he
nt

ic
it
y

M
ai

nt
ai

na
bi

lit
y

P
or

ta
bi

lit
y

D
ep

lo
ym

en
t
T
im

e

V
ar

ia
bi

lit
y

D
iv

er
se

SL
A

So
ft
w
ar

e
C
om

pl
ex

it
y

M
on

it
or

in
g

Rating 3.5 3.0 3.0 4.0 3.5 3.0 2.0 2.0 3.0 3.0 3.0 3.0 3.0 2.5 3.0 2.5 3.5

Table A.10: MTA 〈AD,DC〉 Pattern Consequences (In color)

Applying this pattern harms the recoverability and confidentiality of a software

product, but has a neutral effect on many other quality attributes.

More details on this pattern can be found in Chapter 6.

Appendix A Pattern Catalogue 221

Shared Application Server and Database Schema Pattern

Context

Design of the architecture of a multi-tenant enterprise application.

Problem

In order to implement a multi-tenant architecture, resources have to be shared on

different levels of the computing stack. It is not clear what can be shared and

what the effects are of sharing specific levels of the computing stack.

Solution

DB Server
Tenant A

Tenant B

Tenant C

App Server

App

Instance

App

Instance

App

Instance

Figure A.19: Shared Application Server and Database Schema Pattern

Tenants share a database, database schema and database server. A dedicated

application instance is running for each tenant.

222 Appendix A Pattern Catalogue

Consequences

This pattern has the following consequences, with 1 being a high negative influ-

ence and 5 a high positive influence:

T
im

e
B
eh

av
io

r
R
es

ou
rc

e
U
ti
liz

at
io

n

T
hr

ou
gh

pu
t

N
um

b
er

of
T
en

an
ts

N
um

b
er

of
E
nd

-U
se

rs

A
va

ila
bi

lit
y

R
ec

ov
er

ab
ili

ty
C
on

fid
en

ti
al

it
y

In
te

gr
it
y

A
ut

he
nt

ic
it
y

M
ai

nt
ai

na
bi

lit
y

P
or

ta
bi

lit
y

D
ep

lo
ym

en
t
T
im

e

V
ar

ia
bi

lit
y

D
iv

er
se

SL
A

So
ft
w
ar

e
C
om

pl
ex

it
y

M
on

it
or

in
g

Rating 3.0 3.0 3.0 4.0 4.0 3.0 2.0 2.0 2.5 3.0 4.0 3.0 4.0 2.0 2.5 2.5 4.0

Table A.11: MTA 〈AS,DC〉 Pattern Consequences (In color)

Applying this pattern has a positive effect on the maintainability and deployment

time of a software product, but harms the variability and recoverability.

More details on this pattern can be found in Chapter 6.

Appendix A Pattern Catalogue 223

Shared Instance and Database Schema Pattern

Context

Design of the architecture of a multi-tenant enterprise application.

Problem

In order to implement a multi-tenant architecture, resources have to be shared on

different levels of the computing stack. It is not clear what can be shared and

what the effects are of sharing specific levels of the computing stack.

Solution

DB Server
Tenant A

Tenant B

Tenant C

App Server

App

Instance

Figure A.20: Shared Instance and Database Schema Pattern

Tenants share an application instance and a database to schema level. No dedi-

cated services are run.

224 Appendix A Pattern Catalogue

Consequences

This pattern has the following consequences, with 1 being a high negative influ-

ence and 5 a high positive influence:

T
im

e
B
eh

av
io

r
R
es

ou
rc

e
U
ti
liz

at
io

n

T
hr

ou
gh

pu
t

N
um

b
er

of
T
en

an
ts

N
um

b
er

of
E
nd

-U
se

rs

A
va

ila
bi

lit
y

R
ec

ov
er

ab
ili

ty
C
on

fid
en

ti
al

it
y

In
te

gr
it
y

A
ut

he
nt

ic
it
y

M
ai

nt
ai

na
bi

lit
y

P
or

ta
bi

lit
y

D
ep

lo
ym

en
t
T
im

e

V
ar

ia
bi

lit
y

D
iv

er
se

SL
A

So
ft
w
ar

e
C
om

pl
ex

it
y

M
on

it
or

in
g

Rating 2.5 4.5 3.0 5.0 4.5 3.0 2.0 2.5 2.0 2.5 5.0 2.5 5.0 1.0 2.0 2.0 5.0

Table A.12: MTA 〈AI,DC〉 Pattern Consequences (In color)

Applying this pattern has a positive effect on the maintainability and monitoring

of a software product, but harms the variability and software complexity.

More details on this pattern can be found in Chapter 6.

Appendix A Pattern Catalogue 225

Component Interceptor Pattern

Context

Design of a multi-tenant enterprise application.

Problem

Software product vendors not only need to offer a data model that fits an organ-

isation’s requirements, software functionality also has to meet an organisation’s

processes. When tailor-made software is developed, it is possible to set the re-

quirements to exactly match the processes of a specific organisation. For standard

online software products this is not possible and differences between requirements

of organisation have to be addressed at runtime.

Solution

Figure A.21: Component Interceptor Pattern: System Model

Interceptors are tightly integrated with the application, because they run in-line

with normal application code. Before the StandardComponent is called the inter-

ceptors are allowed to inspect and possibly modify the set of arguments and data

passed to the standard component. To do this the interceptor has to be able to

access all arguments, modify them or pass them along in the original form. Run-

ning interceptors outside of the application requires marshalling of the arguments

and data to a format suitable for transport, then unmarshalling by the interceptor

component and again marshalling the possibly modified arguments to be passed

226 Appendix A Pattern Catalogue

on to the standard component that was being intercepted. This is impractical and

involves a performance penalty.

Figure A.22: Component Interceptor Pattern: Sequence Diagram

Interaction with standard components that can be extended goes through the

interceptor registry. This registry is needed to keep track of all interceptors that

are interested in each interaction. Without the registry the calling code would have

to be aware of all possible interceptors. As depicted, multiple interceptors can be

active per component. It is up to the interceptor registry to determine the order

in which interceptors will be called. Each interceptor has the ability to change

the data that is passed to the standard component, modify the result returned

by the standard component, execute actions before or after passing on the call

or even skip the invocation of the next step all together and immediately return.

As a result of these possibilities the interceptors must be invoked in-line with the

standard component, the application cannot continue until all interceptors have

finished executing.

Consequences

Security - Extension components execute within application scope

Performance + Direct execution of extension components

Scalability - No independent scaling of extension components
- Does not scale to high number of extension components

Maintainability - Tight coupling of extension components

Implementation Effort + Direct communication with standard components
+ Access to all data by design

Table A.13: Consequences of applying the Component Interceptor Pattern

More details on this pattern can be found on page 115.

Appendix A Pattern Catalogue 227

Event Distribution Pattern

Context

Design of a multi-tenant enterprise application.

Problem

Software product vendors not only need to offer a data model that fits an organ-

isation’s requirements, software functionality also has to meet an organisation’s

processes. When tailor-made software is developed, it is possible to set the re-

quirements to exactly match the processes of a specific organisation. For standard

online software products this is not possible and differences between requirements

of organisation have to be addressed at runtime.

Solution

Figure A.23: Event Distribution Pattern: System Model

Standard components run in the application server, sending events to a central

broker, which can be run outside of the application. Extension components are

isolated and can be on a separate physical server or run as separate processes

on the same server depending on capacity and scale of the application. Compo-

nents are loosely coupled, sharing only the predefined set of events. The standard

components are unaware of which extension components listen for their events,

execution of extension components is decoupled from the standard components.

Executing the extension components separately allows for independent scalability

of these components. Depending on system load and the volume of events each

component listens for, it is possible to allocate the appropriate amount of resources

to each component. Because there is no interaction between listeners, it is possible

to execute all listeners in parallel if appropriate for the execution environment.

228 Appendix A Pattern Catalogue

Figure A.24: Event Distribution Pattern: Sequence Diagram

After publishing the event, a standard component is free to continue execution.

Depending on the fault tolerance and nature of the events it is up to the standard

component to make a trade-off between guaranteed delivery at a higher latency

by waiting on the broker system to acknowledge reception of the event or continue

without waiting for such an acknowledgement.

Consequences

Security + Isolation of extension components and full traceability

Performance - Network overhead for calling extension components
- The broker system requires extra resources

Scalability + Independent scaling of extension components
+ Extension components cannot delay standard components
- Requires scalable message-broker system

Maintainability + Loose coupling of extension components

Implementation Effort - Requires the setup of a message broker system
- Requires a separate mechanism to communicate

Table A.14: Consequences of applying the Event Distribution Pattern

More details on this pattern can be found on page 116.

Appendix A Pattern Catalogue 229

Datasource Router Pattern

Context

Design of a multi-tenant enterprise application.

Problem

Across markets and jurisdictions differences exist in regulations and standards

which require the storage and reporting of different data for each organisation.

Organisations will thus set varying requirements to store data specific to their

needs. A software product that provides enough variability on the data model to

meet organisation specific requirements will decrease cost and attract clients that

cannot currently be serviced by software products unable to meet their specific

requirements. Extension of the data model by creating additional fields to store

data that are specific to an organisation or their working processes is a common

requirement.

Solution

Figure A.25: Datasource Router Pattern: System Model

the application uses a different database instance (or schema) for each tenant. Cus-

tom properties are then added to the database as normal fields. Each component in

the application accesses this database through the Datasource Router. The Data-

source Router component determines which database is to be used (based on the

tenant the current user belongs to) and routes all access to the right database au-

tomatically. The other components can thus work without being aware of the fact

that the application is actually serving multiple tenants using different databases.

The interaction between tenant-unaware components and the database goes through

the Datasource Router. First the user interacts with a component, this compo-

nent requires access to data which is done through the Datasource Router. The

230 Appendix A Pattern Catalogue

Figure A.26: Datasource Router Pattern: Sequence Diagram

Datasource Router is then responsible for determining which tenant the current

user belongs to, this responsibility is delegated to the User Context. It is imple-

mentation dependant how this User Context is implemented, the only requirement

is that it is able to tell the Datasource Router which tenant is to be used in the

context of the current request. After determining which tenant is active the Data-

source Router executes the query on the right database (selected based on the

active tenant), the results are then returned to the component which originally

needed access to the data. The component is isolated from these choices and the

possible complexity involved in selecting the right datasource to use for the current

user.

Consequences

Security + Natural separation of datasets
+ Single point of selecting correct datasource
- More datasources to secure and maintain

Performance + Correct data-types allow for optimizations
- Resource partitioning across separate schemas

Scalability + Natural scalability due to separate schemas
+ No need for scalability support in database

Maintainability - Large number of possible database schemas must be tested
- Problem solving requires schema variants to be included

Implementation Effort + Central component to handle all data-access
- Custom properties must be handled in all components

Table A.15: Consequences of applying the Datasource Router Pattern

More details on this pattern can be found on page 124.

Appendix A Pattern Catalogue 231

Custom Property Object Pattern

Context

Design of a multi-tenant enterprise application.

Problem

Across markets and jurisdictions differences exist in regulations and standards

which require the storage and reporting of different data for each organisation.

Organisations will thus set varying requirements to store data specific to their

needs. A software product that provides enough variability on the data model to

meet organisation specific requirements will decrease cost and attract clients that

cannot currently be serviced by software products unable to meet their specific

requirements. Extension of the data model by creating additional fields to store

data that are specific to an organisation or their working processes is a common

requirement.

Solution

Figure A.27: Custom Property Object Pattern: System Model

This pattern prescribes the storage of all data in a single database which is ac-

cessed by components that are aware of how to filter data for each tenant. In the

system model, components are aware of multi-tenancy and directly access a single

database to query for the data necessary to complete requests. When querying the

data it is the responsibility of each component to only query data related to the

requested tenant or filter data while processing, to get results only for the current

tenant.

232 Appendix A Pattern Catalogue

Figure A.28: Custom Property Object Pattern:Sequence Diagram

As a result of using a single database for all tenants, the other components need

to be aware of the context in which they operate. When retrieving data the

components need to filter the results to only show data for the current tenant.

The component first determines which tenant is currently active, this is done by

using the User Context. It is implementation dependant how this User Context

determines this, the only requirement is that it is able to tell a component which

tenant is to be used in the context of the current request. The component then

generates a query that is specific to the current tenant and sends this to the

database. It is the responsibility of the component to ensure that the generated

query only accesses data for the current tenant and to avoid retrieving data outside

of tenant boundaries.

Consequences

Security + Only a single datasource to secure and maintain
- Risk of losing data separation with programming errors

Performance + Full resource utilization across all schemas
- Loss of optimizations due to lack of type information

Scalability - No inherent scalability in pattern structure
- Requires database system capable of scaling

Maintainability + Single static database schema
+ Custom properties can be handled with generic shared code

Implementation Effort - Requires adaption of data-access in all components
- Custom properties must be handled in all components

Table A.16: Consequences of applying the Custom Property Object Pattern

More details on this pattern can be found on page 126.

Appendix B

Publications used in the Structured

Mapping Study

This appendix contains a complete list of all papers identified within the structured

mapping study performed in Chapter 2. The list is displayed in alphabetical order

of first author.

Arya, P. K., V. Venkatesakumar, and S. Palaniswami (2010). “Configurability in SaaS for

an electronic contract management application”. In: Proceedings of the International

Conference on Networking, VLSI and signal processing (ICNVS). ACM, pp. 210–216.

Azeez, A., S. Perera, D. Gamage, R. Linton, P. Siriwardana, D. Leelaratne, S. Weer-

awarana, and P. Fremantle (2010). “Multi-tenant SOA middleware for cloud comput-

ing”. In: Proceedings of the International Conference on Cloud Computing (CLOUD).

IEEE, pp. 458–465.

Bakshi, K. (2011). “Considerations for cloud data centers: Framework, architecture and

adoption”. In: Proceedings of the Aerospace Conference. IEEE, pp. 1–7.

Bezemer, C.-P. and A. Zaidman (2010). “Multi-tenant SaaS applications: maintenance

dream or nightmare?” In: Proceedings of the Joint ERCIM Workshop on Software

Evolution (EVOL) and International Workshop on Principles of Software Evolution

(IWPSE). ACM, pp. 88–92.

Bezemer, C.-P., A. Zaidman, B. Platzbeecker, T. Hurkmans, and A. t Hart (2010). “En-

abling multi-tenancy: An industrial experience report”. In: Proceedings of the Interna-

tional Conference on Software Maintenance (ICSM). IEEE, pp. 1–8.

Cai, H., N. Wang, and M. J. Zhou (2010). “A transparent approach of enabling SaaS

multi-tenancy in the cloud”. In: Proceedings of the World Congress on Services. IEEE,

pp. 40–47.

233

234 Appendix B Publications used in the Structured Mapping Study

Cai, H., K. Zhang, M. J. Zhou, W. Gong, J. J. Cai, and X. S. Mao (2009). “An end-to-

end methodology and toolkit for fine granularity saas-ization”. In: Proceedings of the

International Conference on Cloud Computing (CLOUD). IEEE, pp. 101–108.

Domingo, E. J., J. T. Niño, A. L. Lemos, M. L. Lemos, R. C. Palacios, and J. M. G.

Berbıs (2010). “CLOUDIO: A Cloud Computing-Oriented Multi-tenant Architecture

for Business Information Systems”. In: Proceedings of the International Conference on

Cloud Computing (CLOUD). IEEE, pp. 532–533.

Du, J., X. Gu, and D. S. Reeves (2010). “Highly available component sharing in large-

scale multi-tenant cloud systems”. In: Proceedings of the International Symposium on

High Performance Distributed Computing. ACM, pp. 85–94.

Fehling, C., F. Leymann, and R. Mietzner (2010). “A framework for optimized distribu-

tion of tenants in cloud applications”. In: Proceedings of the International Conference

on Cloud Computing (CLOUD). IEEE, pp. 252–259.

Foping, F. S., I. M. Dokas, J. Feehan, and S. Imran (2009). “A new hybrid schema-

sharing technique for multitenant applications”. In: Proceedings of the International

Conference on Digital Information Management (ICDIM). IEEE, pp. 1–6.

Grund, M., M. Schapranow, J. Krueger, J. Schaffner, and A. Bog (2008). “Shared table

access pattern analysis for multi-tenant applications”. In: Proceedings of the Symposium

on Advanced Management of Information for Globalized Enterprises (AMIGE). IEEE,

pp. 1–5.

Guo, C. J., W. Sun, Y. Huang, Z. H. Wang, and B. Gao (2007). “A framework for

native multi-tenancy application development and management”. In: Proceedings of the

International Conference on E-Commerce Technology and the International Conference

on Enterprise Computing, E-Commerce, and E-Services. IEEE, pp. 551–558.

Guo, C.-J., W. Sun, Z.-B. Jiang, Y. Huang, B. Gao, and Z.-H. Wang (2011). “Study of

Software as a Service Support Platform for Small and Medium Businesses”. In: New

Frontiers in Information and Software as Services. Springer, pp. 1–30.

Jacobs, D., S. Aulbach, et al. (2007). “Ruminations on Multi-Tenant Databases”. In:

Fachtagung für Datenbanksysteme in Business, Technologie und Web, pp. 5–9.

Jiang, X., Y. Zhang, and S. Liu (2010). “A Well-designed SaaS Application Platform

Based on Model-driven Approach”. In: Proceedings of the International Conference on

Grid and Cooperative Computing (GCC). IEEE, pp. 276–281.

Kang, S., S. Kang, and S. Hur (2011). “A Design of the Conceptual Architecture for

a Multitenant SaaS Application Platform”. In: Proceedings of the International Con-

ference on Computers, Networks, Systems and Industrial Engineering (CNSI). IEEE,

pp. 462–467.

Kangarlou, A., D. Xu, U. C. Kozat, P. Padala, B. Lantz, and K. Igarashi (2011). “In-

network live snapshot service for recovering virtual infrastructures”. In: IEEE Network

25.4, pp. 12–19.

Appendix B Publications used in the Structured Mapping Study 235

Kong, L., Q. Li, and X. Zheng (2010). “A Novel Model Supporting Customization Sharing

in SaaS Applications”. In: Proceedings of the International Conference on Multimedia

Information Networking and Security (MINES). IEEE, pp. 225–229.

Kwok, T., T. Nguyen, and L. Lam (2008). “A software as a service with multi-tenancy

support for an electronic contract management application”. In: Proceedings of the

International Conference on Services Computing (SCC). IEEE, pp. 179–186.

Lee, J. and S. J. Hur (2011). “Level 2 SaaS platform and platform management frame-

work”. In: Proceedings of the International Conference on Advanced Communication

Technology (ICACT). IEEE, pp. 1177–1180.

Li, X.-Y., Y. Shi, Y. Guo, and W. Ma (2010). “Multi-tenancy based access control in

cloud”. In: Proceedings of the International Conference onComputational Intelligence

and Software Engineering (CiSE). IEEE, pp. 1–4.

Li, X. H., T. C. Liu, Y. Li, and Y. Chen (2008). “SPIN: Service performance isolation in-

frastructure in multi-tenancy environment”. In: Service-Oriented Computing. Springer,

pp. 649–663.

Lin, H., K. Sun, S. Zhao, and Y. Han (2009). “Feedback-control-based performance reg-

ulation for multi-tenant applications”. In: Proceedings of the International Conference

on Parallel and Distributed Systems (ICPADS). IEEE, pp. 134–141.

Mietzner, R., D. Karastoyanova, and F. Leymann (2009). “Business Grid: Combining

Web Services and the Grid”. In: Transactions on Petri Nets and Other Models of

Concurrency II. Springer, pp. 136–151.

Mietzner, R., F. Leymann, and M. P. Papazoglou (2008). “Defining composite config-

urable SaaS application packages using SCA, variability descriptors and multi-tenancy

patterns”. In: Proceedings of the International Conference on Internet and Web Appli-

cations and Services (ICIW). IEEE, pp. 156–161.

Mietzner, R., T. Unger, R. Titze, and F. Leymann (2009). “Combining different multi-

tenancy patterns in service-oriented applications”. In: Proceedings of the International

Enterprise Distributed Object Computing. IEEE, pp. 131–140.

Ranchal, R., L. Lilien, B. Bhargava, A. Kim, L. B. Othmane, and M. Kang (2010). “An

Approach for Preserving Privacy and Protecting Personally Identifiable Information

in Cloud Computing”. In: Unknown Journal.

Rimal, B. P., E. Choi, and I. Lumb (2010). “A taxonomy, survey, and issues of cloud

computing ecosystems”. In: Cloud Computing. Springer, pp. 21–46.

Schaffner, J., B. Eckart, C. Schwarz, J. Brunnert, D. Jacobs, and A. Zeier (2011). “To-

wards Analytics-as-a-Service Using an In-Memory Column Database”. In: New Fron-

tiers in Information and Software as Services. Springer, pp. 257–282.

Sénica, N., C. Teixeira, and J. S. Pinto (2011). “Cloud Computing: A Platform of Services

for Services”. In: Enterprise Information Systems. Springer, pp. 91–100.

236 Appendix B Publications used in the Structured Mapping Study

Shi, Y., S. Luan, Q. Li, and H. Wang (2009a). “A flexible business process customization

framework for SaaS”. In: Proceedings of tje International Conference on Information

Engineering (ICIE). Vol. 2. IEEE, pp. 350–353.

– (2009b). “A Multi-tenant Oriented Business Process Customization System”. In: Pro-

ceedings of the International Conference on New Trends in Information and Service

Science (NISS). IEEE, pp. 319–324.

Shwartz, L., Y. Diao, and G. Y. Grabarnik (2009). “Multi-tenant solution for it service

management: A quantitative study of benefits”. In: Proceedings of the International

Symposium on Integrated Network Management. IEEE, pp. 721–731.

Siddhisena, B., L. Warusawithana, and M. Mendis (2011). “Next generation multi-tenant

virtualization cloud computing platform”. In: Proceedings of the International Confer-

ence on Advanced Communication Technology (ICACT). IEEE, pp. 405–410.

Tang, K., Z. B. Jiang, W. Sun, X. Zhang, and W. S. Dong (2010). “Research on Tenant

Placement Based on Business Relations”. In: Proceedings of the International Confer-

ence on e-Business Engineering (ICEBE). IEEE, pp. 479–483.

Tsai, C.-H., Y. Ruan, S. Sahu, A. Shaikh, and K. G. Shin (2007). “Virtualization-based

techniques for enabling multi-tenant management tools”. In: Managing Virtualization

of Networks and Services. Springer, pp. 171–182.

Tsai, W.-T., Q. Shao, and J. Elston (2010). “Prioritizing Service Requests on Cloud with

Multi-tenancy”. In: Proceedings of the International Conference one-Business Engi-

neering (ICEBE). IEEE, pp. 117–124.

Tsai, W.-T., X. Sun, Q. Shao, and G. Qi (2010). “Two-tier multi-tenancy scaling and load

balancing”. In: Proceedings of the International Conference on e-Business Engineering

(ICEBE). IEEE, pp. 484–489.

Wang, D., Y. Zhang, B. Zhang, and Y. Liu (2009). “Research and Implementation of a

New SaaS Service Execution Mechanism with Multi-Tenancy Support”. In: Proceed-

ings of the International Conference on Information Science and Engineering (ICISE).

IEEE, pp. 336–339.

Wang, X. F. and P. J. Dong (2009). “The multi-tenant data architecture design for

the collaboration service system of textile & apparel supply chain”. In: Proceedings

of the International Conference on Wireless Communications, Networking and Mobile

Computing. IEEE, pp. 1–4.

Wang, Z. H., C. J. Guo, B. Gao, W. Sun, Z. Zhang, and W. H. An (2008). “A study

and performance evaluation of the multi-tenant data tier design patterns for service

oriented computing”. In: Proceedings of the International Conference on e-Business

Engineering (ICEBE). IEEE, pp. 94–101.

Weissman, C. D. and S. Bobrowski (2009). “The design of the force.com multitenant in-

ternet application development platform.” In: Proceedings of the SIGMOD Conference,

pp. 889–896.

Appendix B Publications used in the Structured Mapping Study 237

Wu, M. (2011). “Cloud Computing: Hype or Vision”. In: Applied Informatics and Com-

munication. Springer, pp. 346–353.

Xu, X. (2012). “From cloud computing to cloud manufacturing”. In: Robotics and computer-

integrated manufacturing 28.1, pp. 75–86.

Zhang, K., Q. Li, and Y. Shi (2011). “Data privacy preservation during schema evolution

for multi-tenancy applications in cloud computing”. In: Web Information Systems and

Mining. Springer, pp. 376–383.

Zhang, S. W. and X. P. Wang (2011). “Configuration of Multi-Tenant Applications”. In:

Advanced Materials Research 219, pp. 1182–1185.

Zhang, Y., Z. Wang, B. Gao, C. Guo, W. Sun, and X. Li (2010). “An effective heuristic

for on-line tenant placement problem in SaaS”. In: Proceedings of the International

Conference on Web Services (ICWS). IEEE, pp. 425–432.

Appendix C

List of Acronyms

API Application Programming Interface

ASP Application Service Provider

CMS Content Management System

COTS Commercial Off-The-Shelf

CQRS Command Query Responsibility Separation

CRM Customer Relationship Management

EFG Exploratory Focus Group

ERP Enterprise Resource Planning

ESA Enterprise Software Application

GoF Gang of Four

GUID Globally Unique Identifier

IAAS Infrastructure as a Service

IT Information Technology

MAAM Multi-tenant Architecture Assessment Model

MRQ Main Research Question

239

240 Appendix C List of Acronyms

MT Multi-Tenancy

MTA Multi-Tenant Architecture

MTSP Multi-Tenant Software Product

MVC Model View Controller

PaaS Platform as a Service

POSA Pattern-Oriented Software Architecture

RQ Research Question

SaaS Software as a Service

SIIA Software & Information Industry Association

SLR Structured Literature Research

SME Small and Medium Enterprise

SMS Systematic Mapping Study

SPEM Software Pattern Evaluation Method

SPL Software Product Line

UML Unified Modeling Language

Appendix D

Personal Publication List

Kabbedijk, J., C. Bezemer, S. Jansen, and A. Zaidman (2014 (In Press)). “Defining

Multi-Tenancy: A Structured Mapping Study on the Academic and the Industrial

Perspective”. In: Journal of Systems and Software.

Kabbedijk, J., R. van Donselaar, and S. Jansen (2014). “SPEM: A Software Pattern

Evaluation Method”. In: Proceedings of the 5th International Conferences on Pervasive

Patterns and Applications (PATTERNS 2014), pp. 38–43.

Kabbedijk, J., M. Pors, S. Jansen, and S. Brinkkemper (2014). “Multi-Tenant Architec-

ture Comparison”. In: Proceedings of the 8th European conference on Software Archi-

tecture (ECSA’14), pp. 202–209.

Kabbedijk, J., S. Jansen, and T. Salfischberger (2014). “Runtime Variability in Online

Software Products: A Comparison of Four Patterns”. In: International Journal On

Advances in Software 7.1 and 2, pp. 101–111.

Angeren, J. v., J. Kabbedijk, K. Popp, and S. Jansen (2013). “Managing Software Ecosys-

tems through Partnering”. In: Software Ecosystems: Analyzing and Managing Busi-

ness Networks in the Software Industry. Cheltenham, UK: Edward Elgar Publishing.

Chap. 5, pp. 85–102.

Kabbedijk, J. and S. Jansen (2013). “Unraveling Ruby Ecosystem Dynamics: A Quan-

titative Network Analysis”. In: Software Ecosystems: Analyzing and Managing Busi-

ness Networks in the Software Industry. Cheltenham, UK: Edward Elgar Publishing.

Chap. 15, pp. 322–332.

Kabbedijk, J., T. Salfischberger, and S. Jansen (2013). “Comparing Two Architectural

Patterns for Dynamically Adapting Functionality in Online Software Products - Best

241

242 Appendix D Personal Publication List

Paper Award”. In: Proceedings of the 5th International Conferences on Pervasive Pat-

terns and Applications (PATTERNS 2013), pp. 20–25.

Pors, M., L. Blom, J. Kabbedijk, and S. Jansen (2013). Sharing is Caring - A Decision

Support Model for Multi-Tenant Architectures. Tech. rep. UU-CS-2013-015. Depart-

ment of Information and Computing Sciences, Utrecht University.

D’souza, A., J. Kabbedijk, D. Seo, S. Jansen, and S. Brinkkemper (2012). “Software-as-

a-Service: Implications for Business and Technology in Product Software Companies”.

In: Proceedings of the Pacific Asia Conference on Information Systems (PACIS). Paper

140.

Kabbedijk, J., M. Galster, and S. Jansen (2012). “Focus Group Report: Evaluating the

Consequences of Applying Architectural Patterns”. In: Proceedings of the 17th Euro-

pean conference on Pattern Languages of Programs (EuroPLoP 2012).

Kabbedijk, J. and S. Jansen (2012). “The Role of Variability Patterns in Multi-Tenant

Business Software”. In: Proceedings of the WICSA/ECSA 2012 Companion Volume.

ACM, pp. 143–146.

Kabbedijk, J., S. Jansen, and S. Brinkkemper (2012). “A Case Study of the Variability

Consequences of the CQRS Pattern in Online Business Software”. In: Proceedings of the

17th European Conference on Pattern Languages of Programs. EuroPLoP ’12. Irsee,

Germany: ACM, 2:1–2:10.

Nijboer, G., J. Kabbedijk, and S. Jansen (2012). “The Adoption of Software Patterns

in the Dutch Software Industry”. In: Proceedings of the 17th European conference on

Pattern Languages of Programs (EuroPLoP 2012).

Angeren, J. v., J. Kabbedijk, S. Jansen, S. Brinkkemper, and K. Popp (2011). “A Survey

of Associate Models used within Large Software Ecosystems”. In: Advances in Software

Business. Books on Demand. Chap. 8, pp. 76–95.

Angeren, J. v., J. Kabbedijk, S. Jansen, and K. Popp (2011). “A Survey of Associate

Models used within Large Software Ecosystems”. In: Proceedings of the 3rd Interna-

tional Workshop on Software Ecosystems. Brussels, pp. 1–13.

Kabbedijk, J. and S. Jansen (2011a). “Steering Insight: An Exploration of the Ruby

Software Ecosystem”. In: Proceedings of the 2nd International Conference on Software

Business. Vol. Lecture Notes in Business Information Processing. Springer. Brussels:

Springer, pp. 44–55.

– (2011b). “Variability in Multi-Tenant Environments: Architectural Design Patterns

from Industry”. In: Proceedings of the 30th international conference on Advances in

Appendix D Personal Publication List 243

conceptual modeling: recent developments and new directions (ER‘11). Springer, pp. 151–

160.

Kabbedijk, J., K. Wnuk, B. Regnell, and S. Brinkkemper (2010). “What Decision Char-

acteristics Influence Decision Making in Market-Driven Large-Scale Software Product

Line Development?” In: Proceeding of the 16th International Working Conference on

Requirements Engineering: Foundation for Software Quality. Vol. Proceedings of the

Product Line Requirements Engineering and Quality Workshop. Duisburg, Germany,

pp. 42–53.

Kabbedijk, J., S. Brinkkemper, S. Jansen, and B. van der Veldt (2009). “Customer In-

volvement in Requirements Management: Lessons from Mass Market Software Devel-

opment”. In: Proceedings of the 17th IEEE International Requirements Engineering

Conference. IEEE Publishing. Atlanta, GA: IEEE Publishing, pp. 281–286.

Appendix E

Summary

Enterprise Software Applications (ESAs) have changed significantly over the last

decades. A trend is going on in which fewer software products are deployed at

the customer’s premises and more software is deployed in a central location to be

accessed through the internet. Currently the multi-tenancy paradigm is a popular

way to offer functionality of a software product through the internet to numerous

customers, offering many advantages to software vendors and customers. Major

advantages include easy maintenance for software vendors and low total cost of

ownership for customers. One of the biggest disadvantages of multi-tenant soft-

ware, however, is the limited way in which varying requirements can be catered for,

without losing one of the aforementioned advantages. Software companies are in-

dividually trying to solve this disadvantage and an increasing number of potential

solutions are introduced. The plethora of solutions, however, is largely unstruc-

tured and trade-offs between the optimally fitting solutions are lacking. Without

blueprints for solving challenges in multi-tenancy with well-defined consequences,

software producing organizations tend to implement sub-optimal solutions, lim-

iting maintainability, scalability (i.e. growth), and performance of their software

products and services.

Problems and solutions in software engineering are typically communicated using

software patterns. Patterns are proven solutions to commonly occurring problems,

often not only identifying the solution, but also potential uses and consequences.

In this dissertation patterns are presented that help implementing variability in

245

246 Appendix E Summary

online ESAs. The goal of these patterns is to structure the currently available

solutions and document them in a way that allows for comparison of the solutions.

Using these patterns, software architects can more easily find the appropriate way

to implements variability in online software systems and improve system design.

Main Research Question — How can variability in multi-tenant enterprise

software be realized?

This dissertation consists of two major parts. The first part focusses on variability

and multi-tenancy in software systems. It presents a structured mapping

study on multi-tenancy, giving insight in what multi-tenancy is and how it can

be used within the domain of software architecture. It also shows the lack of

consensus on the definition of multi-tenancy and the consequences of this lack on

the communication between academia and industry and research topics related to

multi-tenancy. In addition, the first part explains the concept of variability and

illustrates how software patterns play an important role in runtime variability in

software. The emphasis of this part is on the significance of variability in complying

with customer’s needs. In addition, patterns are presented contributing to the

variability of online ESAs. An example of one of such patterns presented is the

Command Query Responsibility Separation (CQRS) pattern, prescribing the strict

differentiation between commands and queries in a system implementation. The

fragmented nature of this pattern leads to a high number of variability options.

The second part focusses mainly on selecting the appropriate software pat-

terns in system design. A collection of twelve multi-tenant architecture patterns

is presented, and the Multi-tenant Architecture Assessment Model (MAAM) is in-

troduced. Using this model, software architects can more easily and accurately

decide on the most appropriate multi-tenant architecture solutions for their soft-

ware product. Also additional variability patterns are presented, which are com-

pared to each other based on quality attributes like scalability and performance.

Finally, a method is proposed which enables decision makers to compare different

patterns in a structured way. In this method, focus groups are used to evaluate

the potential solutions.

Appendix E Summary 247

This dissertation provides insight in the concepts of multi-tenancy, variability and

patterns in the domain of online ESAs. All results are gathered from case studies

at software companies and evaluated by experts from the software domain. The

results support software architects and decision makers in structuring the deci-

sion making process by providing a collection of multi-tenant architecture and

variability patterns, the MAAM, and a method to setup pattern evaluation and

comparison sessions (i.e. SPEM). With these artifacts in hand, software architects

can make well-informed decisions and find appropriate patterns for their specific

situation, solving the challenges involved in selecting an architecture that support

multi-tenant online Enterprise Software Applications. Also, these research results

contribute to academia by reporting on numerous case studies in an emerging

domain and presenting a vocabulary for further and more extensive research.

Appendix F

Samenvatting

Bedrijfssoftware is aanzienlijk veranderd in de afgelopen decennia. Er is een trend

gaande, waarin steeds minder softwareproducten worden geïnstalleerd op locatie

bij klanten, en steeds meer software op een centrale locatie wordt geïnstalleerd, die

toegankelijk is via het internet. Momenteel is het toepassen van multi-tenancy een

veelgebruikte manier om een softwareproduct aan te bieden via het internet aan

een groot aantal klanten. Dit zorgt voor vele voordelen voor zowel de klant als het

softwarebedrijf. Makkelijk onderhoud van de software voor het softwarebedrijf en

lage aanschaf- en onderhoudskosten voor klanten zijn een aantal van de belangrijk-

ste voordelen. Echter, een van de grootste nadelen van multi-tenant software is de

beperkte manier waarop verschillende programma-eisen aangeboden kunnen wor-

den aan klanten, zonder de eerder genoemde voordelen te verliezen. Verschillende

softwarebedrijven zijn individueel bezig om dit nadeel op te lossen en een groeiend

aantal mogelijke oplossingen komen momenteel op de markt. De overvloed aan

mogelijke oplossingen is echter grotendeels ongestructureerd en een overzicht van

de voor- en nadelen van de oplossingen ontbreekt vaak. Zonder duidelijke blauw-

drukken voor het oplossen van problemen binnen het domein van multi-tenancy,

inclusief duidelijk gevolgen van de oplossing, zullen softwarebedrijven sub-optimale

beslissingen blijven maken. Deze sub-optimale beslissingen kunnen leiden tot een

slechte onderhoudbaarheid, schaalbaarheid en algehele prestaties van hun soft-

wareproducten en -diensten.

249

250 Appendix F Samenvatting

Problemen en oplossingen binnen het domein van softwareontwikkeling worden

doorgaans gecommuniceerd door het gebruik van patronen. Patronen zijn bewezen

oplossingen voor veelvoorkomende problemen, die vaak niet alleen de oplossing

bieden, maar ook mogelijke manieren om de oplossing toe te passen en gevolgen

hiervan. In dit proefschrift worden patronen gepresenteerd die softwarebedrijven

kunnen ondersteunen bij het implementeren van variabiliteit in online bedrijfs-

software. Het doel van deze patronen is het structureren van de huidige, beschik-

bare, oplossingen en deze oplossingen vast te leggen op een manier die het mo-

gelijk maakt de verschillende oplossingen te vergelijken. Op deze manier kunnen

software-architecten makkelijker variabiliteit implementeren in online softwaresys-

temen en het algehele software-ontwerp verbeteren.

Hoofdonderzoeksvraag — Hoe kan variabiliteit worden gerealiseerd in multi-

tenant bedrijfssoftware?

Dit proefschrift bestaat uit twee hoofddelen. Het eerste deel legt de focus op vari-

abiliteit en multi-tenancy in softwaresystemen. Het bevat een ‘structured

mapping study’ op het gebied van multi-tenancy, waar inzicht mee wordt gegeven

in wat multi-tenancy is en hoe het gebruikt kan worden binnen het domain van

software-architectuur. Tevens wordt het gebrek aan overeenstemming omtrent de

definitie van multi-tenancy blootgelegd en de gevolgen hiervan op de communi-

catie tussen de wetenschap en het bedrijfsleven. Ook wordt in het eerste deel

het begrip ‘variabiliteit’ uitgelegd en wordt geschetst hoe patronen een belangri-

jke rol spelen in het implementeren van variabiliteit in online softwareproducten.

Het eerste deel benadrukt het belang van variabiliteit bij het aanbieden van spec-

ifieke klantwensen. Verschillende patronen worden gepresenteerd die helpen bij

het implementeren van variabiliteit. Een voorbeeld van een dergelijk patroon is

het Command Query Responsibility Separation (CQRS)-patroon, wat een strikte

scheiding voorschrijft tussen ‘commands’ en ‘queries’ in een systeemimplemen-

tatie. Het gefragmenteerde karakter van dit patroon leidt tot meer flexibiliteit in

het verschaffen van variabele oplossingen voor klanten.

Het tweede deel legt de focus vooral op het selecteren van het meest toepas-

selijke softwarepatroon bij systeemontwerp. Een verzameling van twaalf

Appendix F Samenvatting 251

multi-tenant architectuurpatronen wordt gepresenteerd en de Multi-tenant Archi-

tecture Assessment Model (MAAM) wordt geïntroduceerd. Door gebruik te maken

van dit model kunnen software-architecten makkelijker beslissen omtrent de beste

multi-tenant architectuuroplossingen for hun softwareproduct. Ook worden addi-

tionele variabiliteitspatronen gepresenteerd, die met elkaar vergeleken worden op

basis van kwaliteitsattributen zoals schaalbaarheid en prestatie. Het deel sluit af

met een methode die het voor besluitvormers mogelijk maakt zelf verschillende

patronen te vergelijken op een gestructureerde manier. In deze methode wordt

gebruikt gemaakt van focusgroepen om de potentiele oplossingen te evalueren.

Dit proefschrift geeft inzicht in de concepten multi-tenancy, variabiliteit en pa-

tronen binnen het domein van online bedrijfssoftware. Alle resultaten zijn verza-

meld door middel van ‘case studies’ bij softwarebedrijven en geëvalueerd door

experts binnen het softwaredomein. De resultaten ondersteunen architecten en

besluitvormers in het gestructureerd maken van besluiten door het ter beschikking

stellen van een verzameling multi-tenant architectuur- en variabiliteitspatronen.

Ook MAAM en een methode om patroonevaluaties uit te voeren (i.e. SPEM)

dragen hier aan bij. Door gebruik te maken van deze artefacten kunnen software-

architecten weloverwogen besluiten nemen en de best passen patronen vinden voor

hun specifieke situatie. Ook dragen de resultaten in proefschrift bij aan de weten-

schap door het rapporteren van case studies binnen een opkomend domein en een

vocabulaire te presenteren voor vervolgonderzoek.

Appendix G

SIKS Dissertation Series

2009

2009-01 Rasa Jurgelenaite (RUN)

Symmetric Causal Independence Models.

2009-02 Willem Robert van Hage (VU)

Evaluating Ontology-Alignment Techniques.

2009-03 Hans Stol (UvT)

A Framework for Evidence-based Policy Making Using IT

2009-04 Josephine Nabukenya (RUN)

Improving the Quality of Organisational Policy Making using Collaboration Engineering.

2009-05 Sietse Overbeek (RUN)

Bridging Supply and Demand for Knowledge Intensive Tasks.

2009-06 Muhammad Subianto (UU)

Understanding Classification.

2009-07 Ronald Poppe (UT)

Discriminative Vision-Based Recovery and Recognition of Human Motion.

2009-08 Volker Nannen (VU)

Evolutionary Agent-Based Policy Analysis in Dynamic Environments.

2009-09 Benjamin Kanagwa (RUN)

Design, Discovery and Construction of Service-oriented Systems.

2009-10 Jan Wielemaker (UVA)

Logic programming for knowledge-intensive interactive applications.

2009-11 Alexander Boer (UVA)

Legal Theory, Sources of Law & the Semantic Web.

2009-12 Peter Massuthe (TUE, Humboldt-Universitaet zu Berlin)

perating Guidelines for Services.

2009-13 Steven de Jong (UM)

Fairness in Multi-Agent Systems.

2009-14 Maksym Korotkiy (VU)

From ontology-enabled services to service-enabled ontologies

2009-15 Rinke Hoekstra (UVA)

Ontology Representation - Design Patterns and Ontologies that Make Sense.

2009-16 Fritz Reul (UvT)

New Architectures in Computer Chess.

2009-17 Laurens van der Maaten (UvT)

253

254 Appendix G SIKS Dissertation Series

Feature Extraction from Visual Data.

2009-18 Fabian Groffen (CWI)

Armada, An Evolving Database System.

2009-19 Valentin Robu (CWI)

Modeling Preferences, Strategic Reasoning and Collaboration.

2009-20 Bob van der Vecht (UU)

Adjustable Autonomy: Controling Influences on Decision Making.

2009-21 Stijn Vanderlooy (UM)

Ranking and Reliable Classification.

2009-22 Pavel Serdyukov (UT)

Search For Expertise: Going beyond direct evidence.

2009-23 Peter Hofgesang (VU)

Modelling Web Usage in a Changing Environment.

2009-24 Annerieke Heuvelink (VUA)

Cognitive Models for Training Simulations.

2009-25 Alex van Ballegooij (CWI)

RAM: Array Database Management through Relational Mapping.

2009-26 Fernando Koch (UU)

An Agent-Based Model for the Development of Intelligent Mobile Services.

2009-27 Christian Glahn (OU)

Contextual Support of social Engagement and Reflection on the Web.

2009-28 Sander Evers (UT)

Sensor Data Management with Probabilistic Models.

2009-29 Stanislav Pokraev (UT)

Model-Driven Semantic Integration of Service-Oriented Applications.

2009-30 Marcin Zukowski (CWI)

Balancing vectorized query execution with bandwidth-optimized storage.

2009-31 Sofiya Katrenko (UVA)

A Closer Look at Learning Relations from Text.

2009-32 Rik Farenhorst (VU) and Remco de Boer (VU)

Architectural Knowledge Management: Supporting Architects and Auditors.

2009-33 Khiet Truong (UT)

How Does Real Affect Affect Affect Recognition In Speech?

2009-34 Inge van de Weerd (UU)

Advancing in Software Product Management: An Incremental Method Engineering Approach.

2009-35 Wouter Koelewijn (UL)

Privacy en Politiegegevens; Over geautomatiseerde normatieve informatie-uitwisseling.

2009-36 Marco Kalz (OUN)

Placement Support for Learners in Learning Networks.

2009-37 Hendrik Drachsler (OUN)

Navigation Support for Learners in Informal Learning Networks.

2009-38 Riina Vuorikari (OU)

Tags and self-organisation: a metadata ecology for learning resources in a multilingual context.

2009-39 Christian Stahl (TUE, Humboldt-Universitaet zu Berlin)

Service Substitution – A Behavioral Approach Based on Petri Nets.

2009-40 Stephan Raaijmakers (UvT)

Multinomial Language Learning: Investigations into the Geometry of Language.

2009-41 Igor Berezhnyy (UvT)

Digital Analysis of Paintings.

2009-42 Toine Bogers

Recommender Systems for Social Bookmarking.

2009-43 Virginia Nunes Leal Franqueira (UT)

Finding Multi-step Attacks in Computer Networks using Heuristic Search and Mobile Ambients.

2009-44 Roberto Santana Tapia (UT)

Assessing Business-IT Alignment in Networked Organizations.

2009-45 Jilles Vreeken (UU)

Making Pattern Mining Useful.

2009-46 Loredana Afanasiev (UvA)

Appendix G SIKS Dissertation Series 255

Querying XML: Benchmarks and Recursion.

2010

2010-01 Matthijs van Leeuwen (UU)

Patterns that Matter.

2010-02 Ingo Wassink (UT)

Work flows in Life Science.

2010-03 Joost Geurts (CWI)

A Document Engineering Model and Processing Framework for Multimedia documents.

2010-04 Olga Kulyk (UT)

Do You Know What I Know? Situational Awareness of Co-located Teams.

2010-05 Claudia Hauff (UT)

Predicting the Effectiveness of Queries and Retrieval Systems.

2010-06 Sander Bakkes (UvT)

Rapid Adaptation of Video Game AI

2010-07 Wim Fikkert (UT)

Gesture interaction at a Distance.

2010-08 Krzysztof Siewicz (UL)

Towards an Improved Regulatory Framework of Free Software.

2010-09 Hugo Kielman (UL)

A Politiele gegevensverwerking en Privacy, Naar een effectieve waarborging.

2010-10 Rebecca Ong (UL)

Mobile Communication and Protection of Children.

2010-11 Adriaan Ter Mors (TUD)

The world according to MARP: Multi-Agent Route Planning.

2010-12 Susan van den Braak (UU)

Sensemaking software for crime analysis.

2010-13 Gianluigi Folino (RUN)

High Performance Data Mining using Bio-inspired techniques.

2010-14 Sander van Splunter (VU)

Automated Web Service Reconfiguration.

2010-15 Lianne Bodenstaff (UT)

Managing Dependency Relations in Inter-Organizational Models.

2010-16 Sicco Verwer (TUD)

Efficient Identification of Timed Automata, theory and practice.

2010-17 Spyros Kotoulas (VU)

Scalable Discovery of Networked Resources: Algorithms, Infrastructure, Applications.

2010-18 Charlotte Gerritsen (VU)

Caught in the Act: Investigating Crime by Agent-Based Simulation.

2010-19 Henriette Cramer (UvA)

People’s Responses to Autonomous and Adaptive Systems.

2010-20 Ivo Swartjes (UT)

Whose Story Is It Anyway? How Improv Informs Agency and Authorship of Emergent Narrative.

2010-21 Harold van Heerde (UT)

Privacy-aware data management by means of data degradation.

2010-22 Michiel Hildebrand (CWI)

End-user Support for Access to. Heterogeneous Linked Data.

2010-23 Bas Steunebrink (UU)

The Logical Structure of Emotions.

2010-24 Dmytro Tykhonov

Designing Generic and Efficient Negotiation Strategies.

2010-25 Zulfiqar Ali Memon (VU)

Modelling Human-Awareness for Ambient Agents: A Human Mindreading Perspective.

2010-26 Ying Zhang (CWI)

256 Appendix G SIKS Dissertation Series

XRPC: Efficient Distributed Query Processing on Heterogeneous XQuery Engines.

2010-27 Marten Voulon (UL)

Automatisch contracteren.

2010-28 Arne Koopman (UU)

Characteristic Relational Patterns.

2010-29 Stratos Idreos(CWI)

Database Cracking: Towards Auto-tuning Database Kernels.

2010-30 Marieke van Erp (UvT)

Accessing Natural History - Discoveries in data cleaning, structuring, and retrieval.

2010-31 Victor de Boer (UVA)

Ontology Enrichment from Heterogeneous Sources on the Web.

2010-32 Marcel Hiel (UvT)

An Adaptive Service Oriented Architecture: Automatically solving Interoperability Problems.

2010-33 Robin Aly (UT)

Modeling Representation Uncertainty in Concept-Based Multimedia Retrieval.

2010-34 Teduh Dirgahayu (UT)

Interaction Design in Service Compositions.

2010-35 Dolf Trieschnigg (UT)

Proof of Concept: Concept-based Biomedical Information Retrieval.

2010-36 Jose Janssen (OU)

Paving the Way for Lifelong Learning.

2010-37 Niels Lohmann (TUE)

Correctness of services and their composition.

2010-38 Dirk Fahland (TUE)

From Scenarios to components.

2010-39 Ghazanfar Farooq Siddiqui (VU)

Integrative modeling of emotions in virtual agents.

2010-40 Mark van Assem (VU)

Converting and Integrating Vocabularies for the Semantic Web.

2010-41 Guillaume Chaslot (UM)

Monte-Carlo Tree Search.

2010-42 Sybren de Kinderen (VU)

Needs-driven service bundling in a multi-supplier setting - the computational e3-service approach.

2010-43 Peter van Kranenburg (UU)

A Computational Approach to Content-Based Retrieval of Folk Song Melodies.

2010-44 Pieter Bellekens (TUE)

An Approach towards Context-sensitive and User-adapted Access.

2010-45 Vasilios Andrikopoulos (UvT)

A theory and model for the evolution of software services.

2010-46 Vincent Pijpers (VU)

e3alignment: Exploring Inter-Organizational Business-ICT Alignment.

2010-47 Chen Li (UT)

Mining Process Model Variants: Challenges, Techniques, Examples.

2010-48 Milan Lovric (EUR)

Behavioral Finance and Agent-Based Artificial Markets.

2010-49 Jahn-Takeshi Saito (UM)

Solving difficult game positions.

2010-50 Bouke Huurnink (UVA)

Search in Audiovisual Broadcast Archives.

2010-51 Alia Khairia Amin (CWI)

Understanding and supporting information seeking tasks in multiple sources.

2010-52 Peter-Paul van Maanen (VU)

Adaptive Support for Human-Computer Teams.

2010-53 Edgar Meij (UVA)

Combining Concepts and Language Models for Information Access.

Appendix G SIKS Dissertation Series 257

2011

2011-01 Botond Cseke (RUN)

Variational Algorithms for Bayesian Inference in Latent Gaussian Models.

2011-02 Nick Tinnemeier(UU)

Organizing Agent Organizations.

2011-03 Jan Martijn van der Werf (TUE)

Compositional Design and Verification of Component-Based Information Systems.

2011-04 Hado van Hasselt (UU)

Insights in Reinforcement Learning.

2011-05 Base van der Raadt (VU)

Enterprise Architecture Coming of Age - Increasing the Performance of an Emerging Discipline.

2011-06 Yiwen Wang (TUE)

Semantically-Enhanced Recommendations in Cultural Heritage.

2011-07 Yujia Cao (UT)

Multimodal Information Presentation for High Load Human Computer Interaction.

2011-08 Nieske Vergunst (UU)

BDI-based Generation of Robust Task-Oriented Dialogues.

2011-09 Tim de Jong (OU)

Contextualised Mobile Media for Learning.

2011-10 Bart Bogaert (UvT)

Cloud Content Contention.

2011-11 Dhaval Vyas (UT)

Designing for Awareness: An Experience-focused HCI Perspective.

2011-12 Carmen Bratosin (TUE)

Grid Architecture for Distributed Process Mining.

2011-13 Xiaoyu Mao (UvT)

Airport under Control. Multiagent Scheduling for Airport Ground Handling.

2011-14 Milan Lovric (EUR)

Behavioral Finance and Agent-Based Artificial Markets.

2011-15 Marijn Koolen (UvA)

The Meaning of Structure: the Value of Link Evidence for Information Retrieval.

2011-16 Maarten Schadd (UM)

Selective Search in Games of Different Complexity.

2011-17 Jiyin He (UVA)

Exploring Topic Structure: Coherence, Diversity and Relatedness.

2011-18 Mark Ponsen (UM)

Strategic Decision-Making in complex games.

2011-19 Ellen Rusman (OU)

The Mind ’ s Eye on Personal Profiles.

2011-20 Qing Gu (VU)

Guiding service-oriented software engineering - A view-based approach.

2011-21 Linda Terlouw (TUD)

Modularization and Specification of Service-Oriented Systems.

2011-22 Junte Zhang (UVA)

System Evaluation of Archival Description and Access.

2011-23 Wouter Weerkamp (UVA)

Finding People and their Utterances in Social Media.

2011-24 Herwin van Welbergen (UT)

Behavior Generation for Interpersonal Coordination with Virtual Humans.

2011-25 Syed Waqar ul Qounain Jaffry (VU)

Analysis and Validation of Models for Trust Dynamics.

2011-26 Matthijs Aart Pontier (VU)

Virtual Agents for Human Communication.

2011-27 Aniel Bhulai (VU)

Dynamic website optimization through autonomous management of design patterns.

258 Appendix G SIKS Dissertation Series

2011-28 Rianne Kaptein(UVA)

Effective Focused Retrieval by Exploiting Query Context and Document Structure.

2011-29 Faisal Kamiran (TUE)

Discrimination-aware Classification.

2011-30 Egon van den Broek (UT)

Affective Signal Processing (ASP): Unraveling the mystery of emotions.

2011-31 Ludo Waltman (EUR)

Computational and Game-Theoretic Approaches for Modeling Bounded Rationality.

2011-32 Nees-Jan van Eck (EUR)

Methodological Advances in Bibliometric Mapping of Science.

2011-33 Tom van der Weide (UU)

Arguing to Motivate Decisions.

2011-34 Paolo Turrini (UU)

Strategic Reasoning in Interdependence: Logical and Game-theoretical Investigations.

2011-35 Maaike Harbers (UU)

Explaining Agent Behavior in Virtual Training.

2011-36 Erik van der Spek (UU)

Experiments in serious game design: a cognitive approach.

2011-37 Adriana Burlutiu (RUN)

Machine Learning for Pairwise Data, Applications for Preference Learning.

2011-38 Nyree Lemmens (UM)

Bee-inspired Distributed Optimization.

2011-39 Joost Westra (UU)

Organizing Adaptation using Agents in Serious Games.

2011-40 Viktor Clerc (VU)

Architectural Knowledge Management in Global Software Development.

2011-41 Luan Ibraimi (UT)

Cryptographically Enforced Distributed Data Access Control.

2011-42 Michal Sindlar (UU)

Explaining Behavior through Mental State Attribution.

2011-43 Henk van der Schuur (UU)

Process Improvement through Software Operation Knowledge.

2011-44 Boris Reuderink (UT)

Robust Brain-Computer Interfaces.

2011-45 Herman Stehouwer (UvT)

Statistical Language Models for Alternative Sequence Selection.

2011-46 Beibei Hu (TUD)

Towards Contextualized Information Delivery.

2011-47 Azizi Bin Ab Aziz(VU)

Exploring Computational Models for Intelligent Support of Persons with Depression.

2011-48 Mark Ter Maat (UT)

Response Selection and Turn-taking for a Sensitive Artificial Listening Agent.

2011-49 Andreea Niculescu (UT)

Conversational interfaces for task-oriented spoken dialogues: design aspects influencing interac-

tion quality.

2012

2012-01 Terry Kakeeto (UvT)

Relationship Marketing for SMEs in Uganda.

2012-02 Muhammad Umair(VU)

Adaptivity, emotion, and Rationality in Human and Ambient Agent Models.

2012-03 Adam Vanya (VU)

Supporting Architecture Evolution by Mining Software Repositories.

Appendix G SIKS Dissertation Series 259

2012-04 Jurriaan Souer (UU)

Development of Content Management System-based Web Applications.

2012-05 Marijn Plomp (UU)

Maturing Interorganisational Information Systems.

2012-06 Wolfgang Reinhardt (OU)

Awareness Support for Knowledge Workers in Research Networks.

2012-07 Rianne van Lambalgen (VU)

When the Going Gets Tough: Exploring Agent-based Models of Human Performance.

2012-08 Gerben de Vries (UVA)

Kernel Methods for Vessel Trajectories.

2012-09 Ricardo Neisse (UT)

Trust and Privacy Management Support for Context-Aware Service Platforms.

2012-10 David Smits (TUE)

Towards a Generic Distributed Adaptive Hypermedia Environment.

2012-11 J.C.B. Rantham Prabhakara (TUE)

Process Mining in the Large: Preprocessing, Discovery, and Diagnostics.

2012-12 Kees van der Sluijs (TUE)

Model Driven Design and Data Integration in Semantic Web Information Systems.

2012-13 Suleman Shahid (UvT)

Fun and Face: Exploring non-verbal expressions of emotion during playful interactions.

2012-14 Evgeny Knutov(TUE)

Generic Adaptation Framework for Unifying Adaptive Web-based Systems.

2012-15 Natalie van der Wal (VU)

Social Agents. Agent-Based Modelling of Integrated Internal and Social Dynamics.

2012-16 Fiemke Both (VU)

Ambient Agents supporting task execution and depression treatment.

2012-17 Amal Elgammal (UvT)

Towards a Comprehensive Framework for Business Process Compliance.

2012-18 Eltjo Poort (VU)

Improving Solution Architecting Practices.

2012-19 Helen Schonenberg (TUE)

What’s Next? Operational Support for Business Process Execution.

2012-20 Ali Bahramisharif (RUN)

Covert Visual Spatial Attention, a Robust Paradigm for Brain-Computer Interfacing.

2012-21 Roberto Cornacchia (TUD)

Querying Sparse Matrices for Information Retrieval.

2012-22 Thijs Vis (UvT)

Intelligence, politie en veiligheidsdienst: verenigbare grootheden?

2012-23 Christian Muehl (UT)

Toward Affective Brain-Computer Interfaces: Exploring the Neurophysiology.

2012-24 Laurens van der Werff (UT)

Evaluation of Noisy Transcripts for Spoken Document Retrieval.

2012-25 Silja Eckartz (UT)

Managing the Business Case Development in Inter-Organizational IT Projects.

2012-26 Emile de Maat (UVA)

Making Sense of Legal Text.

2012-27 Hayrettin Gurkok (UT)

Mind the Sheep! User Experience Evaluation & Brain-Computer Interface Games.

2012-28 Nancy Pascall (UvT)

Engendering Technology Empowering Women.

2012-29 Almer Tigelaar (UT)

Peer-to-Peer Information Retrieval.

2012-30 Alina Pommeranz (TUD)

Designing Human-Centered Systems for Reflective Decision Making.

2012-31 Emily Bagarukayo (RUN)

A Learning by Construction Approach for Higher Order Cognitive Skills Improvement.

2012-32 Wietske Visser (TUD)

Qualitative multi-criteria preference representation and reasoning.

260 Appendix G SIKS Dissertation Series

2012-33 Rory Sie (OUN)

Coalitions in Cooperation Networks (COCOON)

2012-34 Pavol Jancura (RUN)

Evolutionary analysis in PPI networks and applications.

2012-35 Evert Haasdijk (VU)

Never Too Old To Learn – On-line Evolution of Controllers in Swarm- and Modular Robotics.

2012-36 Denis Ssebugwawo (RUN)

Analysis and Evaluation of Collaborative Modeling Processes.

2012-37 Agnes Nakakawa (RUN)

A Collaboration Process for Enterprise Architecture Creation.

2012-38 Selmar Smit (VU)

Parameter Tuning and Scientific Testing in Evolutionary Algorithms.

2012-39 Hassan Fatemi (UT)

Risk-aware design of value and coordination networks.

2012-40 Agus Gunawan (UvT)

Information Access for SMEs in Indonesia.

2012-41 Sebastian Kelle (OU)

Game Design Patterns for Learning.

2012-42 Dominique Verpoorten (OU)

Reflection Amplifiers in self-regulated Learning.

2012-44 Anna Tordai (VU)

On Combining Alignment Techniques.

2012-45 Benedikt Kratz (UvT)

A Model and Language for Business-aware Transactions.

2012-46 Simon Carter (UVA)

Exploration and Exploitation of Multilingual Data for Statistical Machine Translation.

2012-47 Manos Tsagkias (UVA)

Mining Social Media: Tracking Content and Predicting Behavior.

2012-48 Jorn Bakker (TUE)

Handling Abrupt Changes in Evolving Time-series Data.

2012-49 Michael Kaisers (UM)

Learning against Learning.

2012-50 Steven van Kervel (TUD)

Ontologogy driven Enterprise Information Systems Engineering.

2012-51 Jeroen de Jong (TUD)

Heuristics in Dynamic Sceduling; a practical framework with a case study in elevator dispatching.

2013

2013-01 Viorel Milea (EUR)

News Analytics for Financial Decision Support.

2013-02 Erietta Liarou (CWI)

MonetDB/DataCell: Leveraging the Column-store Database Technology.

2013-03 Szymon Klarman (VU)

Reasoning with Contexts in Description Logics.

2013-04 Chetan Yadati(TUD)

Coordinating autonomous planning and scheduling.

2013-05 Dulce Pumareja (UT)

Groupware Requirements Evolutions Patterns.

2013-06 Romulo Goncalves(CWI)

The Data Cyclotron: Juggling Data and Queries for a Data Warehouse Audience.

2013-07 Giel van Lankveld (UvT)

Quantifying Individual Player Differences.

2013-08 Robbert-Jan Merk(VU)

Making enemies: cognitive modeling for opponent agents in fighter pilot simulators.

Appendix G SIKS Dissertation Series 261

2013-09 Fabio Gori (RUN)

Metagenomic Data Analysis: Computational Methods and Applications.

2013-10 Jeewanie Jayasinghe Arachchige(UvT)

A Unified Modeling Framework for Service Design.

2013-11 Evangelos Pournaras(TUD)

Multi-level Reconfigurable Self-organization in Overlay Services.

2013-12 Marian Razavian(VU)

Knowledge-driven Migration to Services.

2013-13 Mohammad Safiri(UT)

Service Tailoring: User-centric creation of integrated IT-based homecare services.

2013-14 Jafar Tanha (UVA)

Ensemble Approaches to Semi-Supervised Learning Learning.

2013-15 Daniel Hennes (UM)

Multiagent Learning - Dynamic Games and Applications.

2013-16 Eric Kok (UU)

Exploring the practical benefits of argumentation in multi-agent deliberation.

2013-17 Koen Kok (VU)

The PowerMatcher: Smart Coordination for the Smart Electricity Grid.

2013-18 Jeroen Janssens (UvT)

Outlier Selection and One-Class Classification.

2013-19 Renze Steenhuizen (TUD)

Coordinated Multi-Agent Planning and Scheduling.

2013-20 Katja Hofmann (UvA)

Fast and Reliable Online Learning to Rank for Information Retrieval.

2013-21 Sander Wubben (UvT)

Text-to-text generation by monolingual machine translation.

2013-22 Tom Claassen (RUN)

Causal Discovery and Logic.

2013-23 Patricio de Alencar Silva(UvT)

Value Activity Monitoring.

2013-24 Haitham Bou Ammar (UM)

Automated Transfer in Reinforcement Learning.

2013-25 Agnieszka Anna Latoszek-Berendsen (UM)

Intention-based Decision Support.

2013-26 Alireza Zarghami (UT)

Architectural Support for Dynamic Homecare Service Provisioning.

2013-27 Mohammad Huq (UT)

Inference-based Framework Managing Data Provenance.

2013-28 Frans van der Sluis (UT)

When Complexity becomes Interesting: An Inquiry into the Information eXperience.

2013-29 Iwan de Kok (UT)

Listening Heads.

2013-30 Joyce Nakatumba (TUE)

Resource-Aware Business Process Management: Analysis and Support.

2013-31 Dinh Khoa Nguyen (UvT)

Blueprint Model and Language for Engineering Cloud Applications.

2013-32 Kamakshi Rajagopal (OUN)

The role of Networking in a Lifelong Learner’s Professional Development.

2013-33 Qi Gao (TUD)

User Modeling and Personalization in the Microblogging Sphere.

2013-34 Kien Tjin-Kam-Jet (UT)

Distributed Deep Web Search.

2013-35 Abdallah El Ali (UvA)

Minimal Mobile Human Computer Interaction.

2013-36 Than Lam Hoang (TUe)

Pattern Mining in Data Streams.

2013-37 Dirk Boerner (OUN)

Ambient Learning Displays.

262 Appendix G SIKS Dissertation Series

2013-38 Eelco den Heijer (VU)

Autonomous Evolutionary Art.

2013-39 Joop de Jong (TUD)

A Method for Enterprise Ontology based Design of Enterprise Information Systems.

2013-40 Pim Nijssen (UM)

Monte-Carlo Tree Search for Multi-Player Games.

2013-41 Jochem Liem (UVA)

Supporting the Conceptual Modelling of Dynamic Systems.

2013-42 Léon Planken (TUD)

Algorithms for Simple Temporal Reasoning.

2013-43 Marc Bron (UVA)

Exploration and Contextualization through Interaction and Concepts.

2014

2014-01 Nicola Barile (UU)

Studies in Learning Monotone Models from Data.

2014-02 Fiona Tuliyano (RUN)

Combining System Dynamics with a Domain Modeling Method.

2014-03 Sergio Raul Duarte Torres (UT)

Information Retrieval for Children: Search Behavior and Solutions.

2014-04 Hanna Jochmann-Mannak (UT)

Websites for children: search strategies and interface design.

2014-05 Jurriaan van Reijsen (UU)

Knowledge Perspectives on Advancing Dynamic Capability.

2014-06 Damian Tamburri (VU)

Supporting Networked Software Development.

2014-07 Arya Adriansyah (TUE)

Aligning Observed and Modeled Behavior.

2014-08 Samur Araujo (TUD)

Data Integration over Distributed and Heterogeneous Data Endpoints.

2014-09 Philip Jackson (UvT)

Toward Human-Level Artificial Intelligence.

2014-10 Ivan Salvador Razo Zapata (VU)

Service Value Networks.

2014-11 Janneke van der Zwaan (TUD)

An Empathic Virtual Buddy for Social Support.

2014-12 Willem van Willigen (VU)

Look Ma, No Hands: Aspects of Autonomous Vehicle Control.

2014-13 Arlette van Wissen (VU)

Agent-Based Support for Behavior Change.

2014-14 Yangyang Shi (TUD)

Language Models With Meta-information.

2014-15 Natalya Mogles (VU)

Agent-Based Analysis and Support of Human Functioning in Complex Socio-Technical Systems.

2014-16 Krystyna Milian (VU)

Supporting trial recruitment and design by automatically interpreting eligibility criteria.

2014-17 Kathrin Dentler (VU)

Computing healthcare quality indicators automatically.

2014-18 Mattijs Ghijsen (VU)

Methods and Models for the Design and Study of Dynamic Agent Organizations.

2014-19 Vincius Ramos (TUE)

Adaptive Hypermedia Courses: Qualitative and Quantitative Evaluation and Tool Support.

2014-20 Mena Habib (UT)

Named Entity Extraction and Disambiguation for Informal Text: The Missing Link.

Appendix G SIKS Dissertation Series 263

2014-21 Kassidy Clark (TUD)

Negotiation and Monitoring in Open Environments.

2014-22 Marieke Peeters (UU)

Personalized Educational Games - Developing agent-supported scenario-based training.

2014-23 Eleftherios Sidirourgos (UvA/CWI)

Space Efficient Indexes for the Big Data Era.

2014-24 Davide Ceolin (VU)

Trusting Semi-structured Web Data.

2014-25 Martijn Lappenschaar (RUN)

New network models for the analysis of disease interaction.

2014-26 Tim Baarslag (TUD)

What to Bid and When to Stop.

2014-27 Rui Jorge Almeida (EUR)

Conditional Density Models Integrating Fuzzy and Probabilistic Representations of Uncertainty.

2014-28 Anna Chmielowiec (VU)

Decentralized k-Clique Matching.

2014-29 Jaap Kabbedijk (UU)

Variability in Multi-Tenant Enterprise Software.

	Preface
	1 Introduction
	1.1 Motivation
	1.2 Scientific Relevance
	1.3 Positioning the Research
	1.3.1 Enterprise Software
	1.3.2 Software as a Service
	1.3.3 Software Architecture
	1.3.4 Software Quality
	1.3.5 Software Patterns
	1.3.6 Variability

	1.4 Research Approach
	1.4.1 Research Questions
	1.4.2 Research Methods
	1.4.3 Validation and Evaluation

	1.5 Dissertation Outline

	I Variability and Multi-tenancy
	2 Defining Multi-Tenancy
	2.1 Introduction
	2.2 Research Method
	2.2.1 Academic Literature Collection
	2.2.2 Industrial Literature Collection

	2.3 Classification
	2.3.1 Academic Literature Classification
	2.3.2 Industrial Literature Classification

	2.4 Observations
	2.4.1 Academic Paper Results
	2.4.2 Blog Post Results

	2.5 Definition
	2.6 Research Agenda
	2.7 Threats to Validity
	2.8 Conclusion

	3 The Role of Variability Patterns
	3.1 Introduction
	3.2 Concepts
	3.2.1 Tenant-based Variability
	3.2.2 Variability Patterns

	3.3 Conceptual Model
	3.3.1 Application Example

	3.4 Discussion
	3.5 Conclusion

	4 Variability in Multi-tenant Systems
	4.1 Introduction
	4.2 Research Approach
	4.2.1 Validation

	4.3 Related Work and Definitions
	4.3.1 Multi-tenancy
	4.3.2 Variability
	4.3.3 Software Patterns

	4.4 User-Variability Trade-off
	4.5 Variability Patterns
	4.5.1 Customizable Data Views
	4.5.2 Module Dependent Menu
	4.5.3 Pre/Post Update Hooks

	4.6 Conclusion and Future Research

	5 Variability Consequences of the CQRS Pattern
	5.1 Introduction
	5.2 Related Work
	5.3 Research Approach
	5.3.1 Research Questions
	5.3.2 Validation

	5.4 cqrs Implementation
	5.5 cqrs Sub Patterns
	5.5.1 Event Sourcing
	5.5.2 Event Store
	5.5.3 Aggregate Root
	5.5.4 Command Handler
	5.5.5 Query Model Builder
	5.5.6 Query Handler
	5.5.7 Snapshotting

	5.6 Variability Influences
	5.7 Discussion and Future Research
	5.8 Conclusion

	II Selecting Patterns in Systems Design
	6 Multi-Tenant Architecture Assessment
	6.1 Introduction
	6.2 Research Approach
	6.2.1 Structured Literature Research
	6.2.2 Expert Validation

	6.3 Multi-Tenant Architecture Assessment Model
	6.4 Multi-tenant Architectures
	6.4.1 Expert Validation

	6.5 MTA Assessment Criteria
	6.5.1 Expert Evaluation

	6.6 MTA Decision Matrix
	6.7 Discussion and Conclusion

	7 Comparing Dynamical Adaptation Patterns
	7.1 Introduction
	7.2 Related Work
	7.3 Research Approach
	7.3.1 Validation

	7.4 Pattern Description Method
	7.5 Dynamic Functionality Adaptation Patterns
	7.5.1 Problem Statement
	7.5.2 Component Interceptor Pattern
	7.5.3 Event Distribution Pattern
	7.5.4 Pattern Comparison
	7.5.4.1 Security
	7.5.4.2 Performance
	7.5.4.3 Scalability
	7.5.4.4 Maintainability
	7.5.4.5 Implementation Effort

	7.6 Dynamic Data Model Extension Patterns
	7.6.1 Problem Statement
	7.6.2 Datasource Router Pattern
	7.6.3 Custom Property Object Pattern
	7.6.4 Pattern Comparison
	7.6.4.1 Security
	7.6.4.2 Performance
	7.6.4.3 Scalability
	7.6.4.4 Maintainability
	7.6.4.5 Implementation Effort

	7.7 Conclusion

	8 Software Pattern Evaluation Method
	8.1 Introduction
	8.2 Related Work
	8.3 Research Approach
	8.4 SPEM - Software Pattern Evaluation Method
	8.5 Method Evolution
	8.5.1 Initial Method Construction
	8.5.2 Method Evaluation

	8.6 SPEM Impementation
	8.7 Conclusion

	9 Conclusion
	9.1 Contributions and Evaluations
	9.2 Implications
	9.3 Reflection
	9.4 Limitations and Future Research

	Bibliography
	A Pattern Catalogue
	Customizable Data Views Pattern
	Context
	Problem
	Solution
	Consequences

	Module Dependent Menu Pattern
	Context
	Problem
	Solution
	Consequences

	Pre/Post Update Hooks Pattern
	Context
	Problem
	Solution
	Consequences

	CQRS Pattern
	Context
	Problem
	Solution
	Consequences

	Event Sourcing Pattern
	Context
	Problem
	Solution
	Consequences

	Event Store Pattern
	Context
	Problem
	Solution
	Consequences

	Aggregate Root Pattern
	Context
	Problem
	Solution
	Consequences

	Command Handler Pattern
	Context
	Problem
	Solution
	Consequences

	Query Manager Pattern
	Context
	Problem
	Solution
	Consequences

	Snapshotting Pattern
	Context
	Problem
	Solution
	Consequences

	Dedicated Application and Database Server Pattern
	Context
	Problem
	Solution
	Consequences

	Shared Application Server / Dedicated Database Server Pattern
	Context
	Problem
	Solution
	Consequences

	Shared Instance / Dedicated Database Server Pattern
	Context
	Problem
	Solution
	Consequences

	Dedicated Application Server / Shared Database Server Pattern
	Context
	Problem
	Solution
	Consequences

	Shared Application and Database Server Pattern
	Context
	Problem
	Solution
	Consequences

	Shared Instance and Database Server Pattern
	Context
	Problem
	Solution
	Consequences

	Dedicated Application Instance / Shared Database Pattern
	Context
	Problem
	Solution
	Consequences

	Shared Application Server and Database Pattern
	Context
	Problem
	Solution
	Consequences

	Shared Instance and Database Pattern
	Context
	Problem
	Solution
	Consequences

	Dedicated Application Server / Shared Schema Pattern
	Context
	Problem
	Solution
	Consequences

	Shared Application Server and Database Schema Pattern
	Context
	Problem
	Solution
	Consequences

	Shared Instance and Database Schema Pattern
	Context
	Problem
	Solution
	Consequences

	Component Interceptor Pattern
	Context
	Problem
	Solution
	Consequences

	Event Distribution Pattern
	Context
	Problem
	Solution
	Consequences

	Datasource Router Pattern
	Context
	Problem
	Solution
	Consequences

	Custom Property Object Pattern
	Context
	Problem
	Solution
	Consequences

	B Publications used in the Structured Mapping Study
	C List of Acronyms
	D Personal Publication List
	E Summary
	F Samenvatting
	G SIKS Dissertation Series
	Bibliography

