
 

1 

Variability in the analysis of a single neuroimaging dataset by many teams 

Rotem Botvinik-Nezer1,2,3, Felix Holzmeister4, Colin F. Camerer5, Anna Dreber6,7, Juergen Huber4, 
Magnus Johannesson6, Michael Kirchler4, Roni Iwanir1,2, Jeanette A. Mumford8, R. Alison Adcock9,10, 

Paolo Avesani11,12, Blazej M. Baczkowski13, Aahana Bajracharya14, Leah Bakst15,16, Sheryl Ball17,18, 
Marco Barilari19, Nadège Bault20, Derek Beaton21, Julia Beitner22,23, Roland G. Benoit24, 

Ruud M.W.J. Berkers24, Jamil P. Bhanji25, Bharat B. Biswal26,27, Sebastian Bobadilla-Suarez28, 
Tiago Bortolini29, Katherine L. Bottenhorn30, Alexander Bowring31, Senne Braem32,33, 

Hayley R. Brooks34, Emily G. Brudner25, Cristian B. Calderon32, Julia A. Camilleri35,36, 
Jaime J. Castrellon37,9, Luca Cecchetti38, Edna C. Cieslik35,36, Zachary J. Cole39, Olivier Collignon19,40, 

Robert W. Cox41, William A. Cunningham42, Stefan Czoschke43,Kamalaker Dadi44, 
Charles P. Davis45,46,47, Alberto De Luca48, Mauricio R. Delgado25, Lysia Demetriou49,50, 

Jeffrey B. Dennison51, Xin Di26,52, Erin W. Dickie53,54, Ekaterina Dobryakova55, Claire L. Donnat56, 
Juergen Dukart35,36, Niall W. Duncan57,58, Joke Durnez59, Amr Eed60, Simon B. Eickhoff35,36, 
Andrew Erhart34,Laura Fontanesi61, G. Matthew Fricke62, Shiguang Fu63,64, Adriana Galván65, 

Remi Gau19, Sarah Genon35,36, Tristan Glatard66, Enrico Glerean67, Jelle J. Goeman68, 
Sergej A. E. Golowin57, Carlos González-García69, Krzysztof J. Gorgolewski70, 

Cheryl L. Grady71, Mikella A. Green9,37, João F. Guassi Moreira65, Olivia Guest28,72, Shabnam Hakimi9, 
J. Paul Hamilton73, Roeland Hancock46,47, Giacomo Handjaras38, Bronson B. Harry74, Colin Hawco75, 
Peer Herholz76, Gabrielle Herman75, Stephan Heunis77,78, Felix Hoffstaedter35,36, Jeremy Hogeveen79, 
Susan Holmes80, Chuan-Peng Hu81, Scott A. Huettel82, Matthew E. Hughes83,84, Vittorio Iacovella12, 
Alexandru D. Iordan85, Peder M. Isager86, Ayse I. Isik87, Andrew Jahn88, Matthew R. Johnson39,89, 

Tom Johnstone90, Michael J. E. Joseph91, Anthony C. Juliano92, Joseph W. Kable93,94, 
Michalis Kassinopoulos95, Cemal Koba38, Xiang-Zhen Kong96, Timothy R. Koscik97, 

Nuri Erkut Kucukboyaci55,98, Brice A. Kuhl99, Sebastian Kupek100, Angela R. Laird101, Claus Lamm102,103, 
Robert Langner35,36, Nina Lauharatanahirun104,105, Hongmi Lee106, Sangil Lee93, Alexander Leemans48, 

Andrea Leo38, Elise Lesage32, Flora Li107,108, Monica Y.C. Li45,46,47,109, Phui Cheng Lim39,89, 
Evan N. Lintz39, Schuyler W. Liphardt110, Annabel B. Losecaat Vermeer102, Bradley C. Love28,111, 
Michael L. Mack42, Norberto Malpica112, Theo Marins29, Camille Maumet113, Kelsey McDonald37, 
Joseph T. McGuire15,16, Helena Melero112,114,115, Adriana S. Méndez Leal65, Benjamin Meyer116,117, 
Kristin N. Meyer118, Glad Mihai119,120, Georgios D. Mitsis121, Jorge Moll29, Dylan M. Nielson122, 

Gustav Nilsonne123,124, Michael P. Notter125, Emanuele Olivetti11,12, Adrian I. Onicas38, Paolo Papale38,126, 
Kaustubh R. Patil35,36, Jonathan E. Peelle14, Alexandre Pérez76, Doris Pischedda127,128,129, 

Jean-Baptiste Poline76,130, Yanina Prystauka45,46,47, Shruti Ray131, Patricia A. Reuter-Lorenz85, 
Richard C. Reynolds132, Emiliano Ricciardi38, Jenny R. Rieck71, Anais M. Rodriguez-Thompson118, 

Anthony Romyn133, Taylor Salo134, Gregory R. Samanez-Larkin9,37, Emilio Sanz-Morales112, 
Margaret L. Schlichting42, Douglas H. Schultz39,89, Qiang Shen63,64, Margaret A. Sheridan135, 

Jennifer A. Silvers65, Kenny Skagerlund136,137, Alec Smith138, David V. Smith51, Peter Sokol-Hessner34, 
Simon R. Steinkamp139, Sarah M. Tashjian65, Bertrand Thirion140, John N. Thorp141, Gustav Tinghög142,143, 

Loreen Tisdall144,145, Steven H. Tompson104, Claudio Toro-Serey15,16, Juan Jesus Torre Tresols140, 
Leonardo Tozzi146, Vuong Truong57,58, Luca Turella12, Anna E. van 't Veer147, Tom Verguts32, 

Jean M. Vettel148,149,150, Sagana Vijayarajah42, Khoi Vo151,152, Matthew B. Wall153,154,155, 
Wouter D. Weeda147, Susanne Weis35,36, David J. White156, David Wisniewski32, Alba Xifra-Porxas95, 

Emily A. Yearling45,46,47, Sangsuk Yoon157, Rui Yuan158, Kenneth S.L. Yuen81,116, Lei Zhang102, 
Xu Zhang46,47,159, Joshua E. Zosky39,89, Thomas E. Nichols31,*, Russell A. Poldrack145,*, Tom Schonberg1,2,* 

 
* Corresponding authors 
1Sagol School of Neuroscience, Tel Aviv University, Israel; 2Faculty of Life Sciences, Department of Neurobiology, 
Tel Aviv University, Israel; 3Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, 
USA; 4Department of Banking and Finance, University of Innsbruck, Innsbruck, Austria; 5HSS and CNS, California 
Institute of Technology, Pasadena CA, USA; 6Department of Economics, Stockholm School of Economics, 
Stockholm, Sweden; 7Department of Economics, University of Innsbruck, Innsbruck, Austria; 8Center for Healthy 



 

2 

Minds, University of Wisconsin - Madison, WI, USA; 9Center for Cognitive Neuroscience, Duke University, 
Durham, NC, USA; 10Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA; 
11Neuroinformatics Laboratory, Fondazione Bruno Kessler, Trento, Italy; 12Center for Mind/Brain Sciences - 
CIMeC, University of Trento, Rovereto, Italy; 13Department of Neurology, Max Planck Institute for Human 
Cognitive and Brain Sciences, Leipzig, Germany; 14Department of Otolaryngology, Washington University in Saint 
Louis, Saint Louis, MO, USA;  15Department of Psychological and Brain Sciences, Boston University, Boston, MA, 
USA;  16Center for Systems Neuroscience, Boston University, Boston, MA, USA;  17Department of Economics, 
Virginia Tech, Blacksburg, VA, USA; 18School of Neuroscience, Virginia Tech, Blacksburg, VA, USA; 
19Crossmodal perception and plasticity laboratory, Institutes for research in Psychology (IPSY) and Neurosciences 
(IoNS), UCLouvain, Louvain-la-neuve, Belgium; 20School of Psychology, University of Plymouth, Plymouth, UK; 
21Rotman Research Institute, Baycrest Health Sciences, Toronto, Canada; 22Department of Psychology, 
Psychological Methods, University of Amsterdam, Amsterdam, The Netherlands; 23Department of Psychology, 
Scene Grammar Lab, Goethe University, Frankfurt am Main, Germany; 24Max Planck Research Group: Adaptive 
Memory, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; 25Department of 
Psychology, Rutgers University-Newark, Newark, NJ, USA; 26Department of Biomedical Engineering, New Jersey 
Institute of Technology, Newark, NJ, USA; 27School of Life Science and Technology, University of Electronic 
Science and Technology of China, Chengdu, China; 28Department of Experimental Psychology, University College 
London, London, UK; 29D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil; 30Department of 
Psychology, Florida International University, Miami, Florida, USA; 31Oxford Big Data Institute, Li Ka Shing Centre 
for Health Information and Discovery, Nuffield Department of Population Health, University of Oxford, UK; 
32Department of Experimental Psychology, Ghent University, Ghent, Belgium; 33Department of Psychology, Vrije 
Universiteit Brussel, Brussels, Belgium; 34Department of Psychology, University of Denver, Denver, CO, USA;  
35Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Juelich, Juelich, 

Germany; 36Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Duesseldorf, 

Duesseldorf, Germany; 37Department of Psychology and Neuroscience, Duke University, Durham, NC, USA; 
38MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Lucca, Italy; 39Department of Psychology, 

University of Nebraska-Lincoln, Lincoln, NE, USA; 40Center for Mind and Brain Science, University of Trento, 

Trento, Italy; 41NIMH/NIH, Bethesda, MD, USA; 42Department of Psychology, University of Toronto, Toronto, ON, 

Canada; 43Institute of Medical Psychology, Goethe University, Frankfurt am Main, Germany; 44 Inria, CEA, 

Université Paris-Saclay, Palaiseau, 91120, France; 45Department of Psychological Sciences, University of 

Connecticut, Storrs, CT, USA; 46Brain Imaging Research Center, University of Connecticut, Storrs, CT, USA; 
47Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, USA; 
48PROVIDI Lab, Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands; 49Section 

of Endocrinology & Investigative Medicine, Faculty of Medicine, Imperial College London, London, UK; 
50Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK; 51Department of 

Psychology, Temple University, Philadelphia, PA, USA; 52School of Life Sciences and Technology, University of 

Electronic Science and Technology of China, Chengdu, Sichuan, China; 53Krembil Centre for Neuroinformatics, 

Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada; 
54Department of Psychiatry, University of Toronto, Canada; 55Center for Traumatic Brain Injury Research, Kessler 

Foundation, East Hanover, NJ, USA; 56Department of Statistics, Stanford University, Stanford, CA, USA; 
57Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei, Taiwan; 58Brain and 

Consciousness Research Centre, TMU-ShuangHo Hospital, New Taipei City, Taiwan; 59Department of Psychology 

and Stanford Center for Reproducible Neuroscience, Stanford University, Stanford, 94305, California, USA; 
60Instituto de Neurociencias, CSIC-UMH, Spain; 61Faculty of Psychology, University of Basel, Basel, Switzerland; 
62Computer Science Department, University of New Mexico, Albuquerque, NM, USA; 63School of Management, 

Zhejiang University of Technology, Hangzhou, China; 64Institute of Neuromanagement, Zhejiang University of 

Technology, Hangzhou, China; 65Department of Psychology, University of California, Los Angeles, Los Angeles, 

CA, USA; 66Department of Computer Science and Software Engineering, Concordia University, Montreal, QC, 

Canada; 67Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; 
68Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands; 
69Department of Experimental Psychology, Ghent University, Belgium; 70Department of Psychology, Stanford 

University, CA, USA; 71Rotman Research Institute, Baycrest Health Sciences Centre, Toronto, Ontario, Canada; 



 

3 

72Research Centre on Interactive Media, Smart Systems and Emerging Technologies - RISE, Nicosia, Cyprus; 
73Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping 

University, Sweden; 74The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, 

Sydney, NSW, Australia; 75Campbell Family Mental Health Research Institute, Centre for Addiction and Mental 

Health, Toronto, Canada; 76McConnell Brain Imaging Centre, The Neuro (Montreal Neurological Institute-

Hospital), Faculty of Medicine, McGill University, Montreal, QC, Canada; 77Department of Electrical Engineering, 

Eindhoven University of Technology, Eindhoven, The Netherlands; 78Department of Research and Development, 

Epilepsy Centre Kempenhaeghe, Heeze, The Netherlands; 79Department of Psychology & Psychology Clinical 

Neuroscience Center, University of New Mexico, Albuquerque, NM, USA; 80Statistics Department, Stanford 

University, Stanford, CA, USA; 81Leibniz-institut für Resilienzforschung (LIR), Mainz, Germany; 82The Department 

of Psychology and Neuroscience, Duke University, Durham, NC, USA; 83School of Health Sciences, Swinburne 

University of Technology, Hawthorn, Australia; 84Australian National Imaging Facility (NIF), Australia; 
85Department of Psychology, University of Michigan, Ann Arbor, MI, USA; 86Department of Industrial Engineering 

& Innovation Sciences, Eindhoven University of Technology, Eindhoven, The Netherlands; 87Neuroscience 

Department, Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany; 88fMRI Laboratory, 

University of Michigan, Ann Arbor, MI, USA; 89Center for Brain, Biology and Behavior, University of Nebraska-

Lincoln, Lincoln, NE, USA; 90School of Health Sciences, Swinburne University of Technology, Hawthorn, VIC, 

Australia; 91Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, 

ON, Canada; 92Center for Neuropsychology and Neuroscience Research, Kessler Foundation, East Hanover, NJ, 

USA; 93Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA; 94MindCORE, University 

of Pennsylvania, Philadelphia, PA, USA; 95Graduate Program in Biological and Biomedical Engineering, McGill 

University, Montreal, QC, Canada; 96Language and Genetics Department, Max Planck Institute for 

Psycholinguistics, Nijmegen, The Netherlands; 97University of Iowa Carver College of Medicine, Department of 

Psychiatry, Iowa City, IA, USA; 98Department of PM&R, Rutgers New Jersey Medical School, Newark, NJ; 
99Department of Psychology, University of Oregon, Eugene, OR, USA; 100Faculty of Economics and Statistics, 

University of Innsbruck, Innsbruck, Austria; 101Department of Physics, Florida International University, Miami, 

Florida, USA; 102Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University 

of Vienna, Vienna, Austria; 103Vienna Cognitive Science Hub, University of Vienna, Vienna, Austria; 104U.S. CCDC 

Army Research Laboratory, Human Research and Engineering Directorate, Aberdeen Proving Ground, MD, USA; 
105University of Pennsylvania, Annenberg School for Communication, Philadelphia, PA, USA; 106The Department 

of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA; 107Fralin Biomedical 

Research Institute, Roanoke, VA, USA; 108Economics Experimental Lab, Nanjing Audit University, Nanjing, China; 
109Haskins Laboratories, New Haven, CT, USA; 110Biology Department, University of New Mexico, Albuquerque, 

NM, USA; 111The Alan Turing Institute, London, UK; 112Laboratorio de Análisis de Imagen Médica y Biometría 

(LAIMBIO), Universidad Rey Juan Carlos, Madrid, Spain; 113Inria, Univ Rennes, CNRS, Inserm, IRISA UMR 

6074, Empenn ERL U 1228, Rennes, France;  114Departamento de Psicobiología, División de Psicología, CES 

Cardenal Cisneros, Madrid, Spain; 115Northeastern University Biomedical Imaging Center, Northeastern University, 

Boston, MA, USA;  16Neuroimaging Center (NIC), Focus Program Translational Neurosciences (FTN), Johannes 

Gutenberg University Medical Center Mainz, Germany; 117Leibniz-Institut für Resilienzforschung (LIR), Mainz, 

Germany; 118Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, 

NC, USA; 119Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany;  120Technische 

Universität Dresden, Germany; 121Department of Bioengineering, McGill University, QC, Canada; 122Data Science 

and Sharing Team, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA; 
123Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; 124Department of Psychology, 

Stockholm University, Stockholm, Sweden; 125The Laboratory for Investigative Neurophysiology (The LINE), 

Department of Radiology, University Hospital Center and University of Lausanne, Switzerland; 126Department of 

Vision & Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, The 

Netherlands; 127Bernstein Center for Computational Neuroscience and Berlin Center for Advanced Neuroimaging 

and Clinic for Neurology, Charité Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt 



 

4 

Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; 128Cluster of Excellence Science of 

Intelligence, Technische Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany; 129NeuroMI - 

Milan Center for Neuroscience, Milan, Italy; 130Henry H. Wheeler, Jr. Brain Imaging Center, Helen Wills 

Neuroscience Institute, University of California Berkeley, CA, USA; 131Department of Biomedical Engineering, 

New Jersey Institute of Technology, Newark, NJ, USA; 132Scientific and Statistical Computing Core, National 

Institute of Mental Health, NIH, Bethesda, MD, USA; 133Department of Psychology, University of Toronto, Canada; 
134Department of Psychology, Florida International University, Miami, FL, USA; 135Department of Psychology and 

Neuroscience, University of North Carolina, Chapel Hill, NC, USA; 136Department of Behavioural Sciences and 

Learning, Linköping University, Linköping, Sweden; 137Center for Social and Affective Neuroscience, Department 

of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden; 138Department of Economics and 

School of Neuroscience, Virginia Tech, Blacksburg, VA USA; 139Cognitive Neuroscience, Institute of Neuroscience 

and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany; 140Inria, CEA, Université Paris-Saclay, France; 
141Department of Psychology, Columbia University, New York, NY, USA; 142Department of Management and 

Engineering, Linköping University, Linköping, Sweden; 143Department of Health, Medicine and Caring Sciences, 

Linköping University, Linköping, Sweden; 144Center for Cognitive and Decision Sciences, University of Basel, 

Basel, Switzerland; 145Department of Psychology, Stanford University, Stanford, CA, USA; 146Department of 

Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA; 147Methodology and Statistics Unit, 

Institute of Psychology, Leiden University, Leiden, The Netherlands; 148US Combat Capabilities Development 

Command Army Research Laboratory, USA; 149University of California Santa Barbara, CA, USA; 150University of 

Pennsylvania, PA, USA; 151Department of Psychology and Neuroscience, Duke University, NC, USA; 152Center for 

Cognitive Neuroscience, Duke University, NC, USA; 153Invicro, London, UK; 154Faculty of Medicine, Imperial 

College London, London, UK; 155Clinical Psychopharmacology Unit, University College London, London, UK; 
156Centre for Human Psychopharmacology, Swinburne University, Hawthorn, VIC, Australia; 157Department of 

Management and Marketing, School of Business, University of Dayton, Dayton, OH, USA; 158Department of 

Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA; 159Biomedical 

Engineering Department, University of Connecticut, Storrs, CT, USA  



 

5 

Data analysis workflows in many scientific domains have become increasingly complex and 

flexible. To assess the impact of this flexibility on functional magnetic resonance imaging 

(fMRI) results, the same dataset was independently analyzed by 70 teams, testing nine ex-

ante hypotheses1. The flexibility of analytic approaches is exemplified by the fact that no two 

teams chose identical workflows to analyze the data. This flexibility resulted in sizeable 

variation in hypothesis test results, even for teams whose statistical maps were highly 

correlated at intermediate stages of their analysis pipeline. Variation in reported results was 

related to several aspects of analysis methodology. Importantly, a meta-analytic approach 

that aggregated information across teams yielded significant consensus in activated regions 

across teams. Furthermore, prediction markets of researchers in the field revealed an 

overestimation of the likelihood of significant findings, even by researchers with direct 

knowledge of the dataset2–5. Our findings show that analytic flexibility can have substantial 

effects on scientific conclusions, and demonstrate factors possibly related to variability in 

fMRI. The results emphasize the importance of validating and sharing complex analysis 

workflows, and demonstrate the need for multiple analyses of the same data. Potential 

approaches to mitigate issues related to analytical variability are discussed.  

 

Data analysis workflows in many areas of science have a large number of analysis steps that 

involve many possible choices (i.e., “researcher’s degrees of freedom”6,7). Simulation studies show 

that variability in analytic choices can have substantial effects on results8, but its degree and impact 

in practice has not been clear. Recent work in psychology addressed this through a “many analysts” 

approach9, in which the same dataset was analyzed by a large number of groups, uncovering 

substantial variability in behavioral results across analysis teams. In the Neuroimaging Analysis 
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Replication and Prediction Study (NARPS), we applied a similar approach to the domain of 

functional magnetic resonance imaging (fMRI), where analysis workflows are complex and highly 

variable. Our goal was to assess, with the highest possible ecological validity, the degree and 

impact of analytic flexibility on fMRI results in practice. In addition, we estimated the beliefs of 

researchers in the field regarding the degree of variability in analysis outcomes using prediction 

markets to test whether peers in the field could predict the results2–5. 

Variability of results across teams 

The first aim of NARPS was to assess the real-world variability of results across independent 

teams analyzing the same dataset. The dataset included fMRI data from 108 individuals, each 

performing one of two versions of a task previously used to study decision-making under risk10. 

The two versions were designed to address a debate regarding the impact of gain/loss distributions 

on neural activity in this task10–12. A full description of the dataset is available in a Data 

Descriptor1; the dataset is openly available at DOI:10.18112/openneuro.ds001734.v1.0.4.  

Seventy teams (69 of whom had prior fMRI publications) were provided with the raw data, and an 

optional preprocessed data (with fMRIprep13). They were asked to analyze the data to test nine ex-

ante hypotheses (Extended Data Table 1), each consisting of a description of significant activity 

in a specific brain region in relation to a particular feature of the task. They were given up to 100 

days to report whether each hypothesis was supported based on a whole-brain corrected analysis 

(yes / no). In addition, each team submitted a detailed report of the analysis methods they had used 

alongside unthresholded and thresholded statistical maps supporting each hypothesis test 

(Extended Data Table 2 and Extended Data Table 3a). In order to perform an ecologically valid 

study testing sources of variability that contribute to published literature “in the wild”, instructions 

to the team were as minimal as possible. The only instructions were to perform the analysis as they 
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usually would in their own research and report the binary decision based on their own criteria for 

a whole-brain corrected result for the specific region described in the hypothesis. The dataset, 

reports and collections were kept private until after the prediction markets were closed.  

Overall, the rates of reported significant findings varied across hypotheses (Extended Data Table 

1 and Figure 1). Only one hypothesis (#5) showed a high rate of significant findings (84.3%), 

whereas three other hypotheses showed consistent non-significant findings across teams (5.7% 

significant findings). For the remaining five hypotheses, the results were variable, with 21.4% to 

37.1% of teams reporting a significant result. The extent of the variation in results across teams 

was quantified by the fraction of teams reporting a different result than the majority of teams (i.e. 

the absolute distance from consensus). On average across the 9 hypotheses, 20% of teams reported 

a result that differs from the majority of teams; given that the maximum possible variation is 50%, 

the observed fraction of 20% divergent results thus falls midway between complete consistency 

across teams and completely random results, demonstrating that analytic choices have a major 

effect on reported results. 

Figure 1: Fraction of teams reporting a 

significant result and prediction market 

beliefs. The figure depicts final market prices 

for the “team members” (blue dots; N = 83 

active traders) and the “non-team members” 

(green dots; N = 65 active traders) markets 

as well as the as well as the observed fraction 

of teams reporting significant results 

(fundamental value, pink dots; N = 70 

analysis teams), and the corresponding 95% 

confidence intervals for each of the nine 

hypotheses (note that the hypotheses are 

sorted based on the fundamental value). 

Confidence intervals were constructed by 

assuming convergence of the binomial 

distribution towards the normal. 
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Factors related to analytic variability 

To examine the sources of the analytic variability in the reported binary results, we analyzed the 

pipelines used by the teams as well as the unthresholded and thresholded statistical maps they 

provided. There were no two teams with identical analysis pipelines. After exclusions (Extended 

Data Table 3b), thresholded maps of 65 teams and unthresholded (z / t) maps of 64 teams were 

included in the analyses. Fully reproducible code for all analyses of the data reported here are 

available at DOI: 10.5281/zenodo.3709273. 

Variability of reported results. A set of mixed effects logistic regression models identified 

several analytic variables and image features that were associated with reported outcomes 

(Extended Data Table 3c). The strongest factor was spatial smoothness; higher estimated 

smoothness of the unthresholded statistical maps (estimated using FMRIBs Software Library 

[FSL] smoothest function) was associated with greater likelihood of significant outcomes (p < 

0.001, delta pseudo-R² = 0.04; mean FWHM 9.69 mm, range 2.50 - 21.28 mm across teams). 

Interestingly, while estimated smoothness was related to the width of the applied smoothing kernel 

(r = 0.71; median applied smoothing 5 mm, range 0-9 mm across teams), the applied smoothing 

value itself was not significantly related to positive outcomes in a separate analysis, suggesting 

that the relevant smoothness arose from analytic steps beyond explicit smoothing (such as 

modeling of head motion, p = 0.014). An effect on outcomes was also found for the software 

package used (p = 0.004, delta pseudo-R² = 0.04; N = 23 [SPM], 21 [FSL], 7 [AFNI], 13 [Other]), 

with FSL being associated with a higher likelihood of significant results across all hypotheses 

compared to SPM; odds ratio = 6.69), and for the effect of different multiple test correction 

methods (p = 0.024, delta pseudo-R² = 0.02: N = 48 [parametric], 14 [nonparametric], 2 [other]), 

with parametric correction methods leading to higher rates of detection than nonparametric 
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methods. No significant effect was detected for use of standardized preprocessed data versus 

custom preprocessing pipelines (48% of included teams used fMRIprep; p = 0.132) or the 

modeling of head motion parameters (used by 73% of the teams; p = 0.281). Nonparametric 

bootstrap analyses confirmed the significant effect of spatial smoothness, but provided inconsistent 

support for the effects of multiple testing and software package; because of low power, these 

results should be interpreted with caution. 

Variability of thresholded statistical maps. The nature of analytic variability was further 

explored by analyzing the submitted statistical maps. The thresholded maps were highly sparse. 

Binary agreement between thresholded maps over all voxels was relatively high (median percent 

agreement ranged from 93% to 99% across hypotheses), largely reflecting agreement on which 

voxels were not active. However, when restricted to voxels showing activation for any team, 

overlap was very low (median similarity ranging from 0.00 to 0.06 across hypotheses). This may 

have reflected variability in the number of activated voxels found by each team; for every 

hypothesis, the number of active voxels ranged across teams from zero to tens of thousands 

(Extended Data Table 4a). Analysis of overlap between activated voxels showed that the 

proportion of teams with activation in the most frequently activated voxel for a given hypothesis 

ranged between 0.23 and 0.77 (Extended Data Figure 1). 

Variability of unthresholded statistical maps. Analysis of correlation between unthresholded Z-

statistic maps across teams demonstrated for each hypothesis a large cluster of teams whose 

statistical maps were strongly positively correlated with one another (Figure 2 and Extended Data 

Figure 2). Mean Spearman correlation between all pairs of unthresholded maps (Extended Data 

Table 4b) was moderate (mean correlation range 0.18-0.52 across hypotheses), with higher 

correlations within the main cluster of analysis teams (range 0.44-0.85 across hypotheses). An 
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analysis of voxelwise heterogeneity across unthresholded maps (equivalent to tau-squared) 

demonstrated that inter-team variability was large, in many cases several times the variability 

expected across different datasets (Extended Data Figure 3a).  

 
Figure 2. Analytic variability in whole-brain statistical results for Hypothesis 1. Top panel: 

Spearman correlation values between whole-brain unthresholded statistical maps for each team 

(N = 64) were computed and clustered according to their similarity (using Ward clustering on 

Euclidean distances). Row colors (left) denote cluster membership, while column colors (top) 

represent hypothesis decisions (green: Yes, red: No). Brackets represent clustering. Bottom 

panel: Average statistical maps (thresholded at uncorrected z > 2.0) for each of the three 

clusters depicted in the left panel. The probability of reporting a positive hypothesis outcome 

(pYes) is presented for each cluster. Images can be viewed at 

https://identifiers.org/neurovault.collection:6048. 
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For Hypotheses #1 and #3, there was a subset of seven teams whose unthresholded maps were 

anticorrelated with those of the main cluster of teams. A comparison of the average map for the 

anticorrelated cluster for Hypotheses #1 and #3 confirmed this map was highly correlated (r=0.87) 

with the overall task activation map as previously reported1. Further analysis showed that four of 

these teams used models that did not properly separate the parametric effect of gain from overall 

task activation; because of the anticorrelation of value system activations with task activations14, 

this model mis-specification led to an anticorrelation with the parametric effects of gain. In two 

cases, the model included multiple regressors that were correlated with the gain parameter, which 

modified the interpretation of the primary gains regressor; for one additional team, modeling 

details were not available.  

The discrepancy between overall correlations of unthresholded maps and divergence of reported 

binary results (even within the highly correlated cluster) suggested that the variability in regional 

results might be due to procedures related to statistical correction for multiple comparisons and 

the subjective decision of teams on the anatomical specification of regions of interest (ROIs). To 

test this, we applied a consistent thresholding method and ROI specification on the unthresholded 

maps across all teams for each hypothesis. This showed that even using a correction method known 

to be liberal and a standard anatomical definition for all regions, the degree of variability across 

results was qualitatively similar to that of the actual reported decisions (Extended Data Figure 4). 

We assessed the consistency across teams using an image-based meta-analysis (accounting for 

correlations due to common data), which demonstrated significant active voxels for all hypotheses 

except for #9 after false discovery rate correction (Extended Data Figure 3b) and confirmatory 

evidence for Hypotheses 2, 4, 5, and 6. These results show that inconsistent results at the individual 

team level underlie consistent results when all team’s results are combined. 



 

12 

Prediction markets 

The second aim of NARPS was to test whether peers in the field could predict the results, using 

prediction markets in which researchers trade on the outcomes of scientific analyses and receive 

monetary payouts based on performance. Prediction markets have been used to assess the 

replicability of scientific hypotheses in the social sciences, revealing correlations between market 

prices and actual scientific outcomes2–5. We performed two separate prediction markets: one 

involving members from analysis teams (“team members” market) and an additional independent 

market for researchers who had not participated in the analysis (“non-team members” market). 

The markets were open for 10 consecutive days approximately 1.5 months after all analysis teams 

had submitted their results (which were kept confidential). On each market, traders were endowed 

with tokens worth $50 and traded via an online market platform on the fraction of teams reporting 

a significant result for each hypothesis (i.e. the fundamental values). The market prices serve as 

measures of the aggregate beliefs of traders for the fraction of teams reporting a significant result 

for each hypothesis. Overall, n = 65 traders actively traded in the “non-team members” market and 

n = 83 traded in the “team members” market. After the markets closed, traders were paid based on 

their performance in the markets. The analysis of the markets was pre-registered on OSF 

(https://osf.io/59ksz/). Note that since some analyses were performed on the final market prices 

(i.e., the markets’ predictions), for which there is one value per hypothesis per market, the number 

of observations for each of the markets was low (N = 9), leading to limited statistical power. 

Therefore, the results should be interpreted cautiously. 

The market’s predictions ranged from 0.073 to 0.952 (m = 0.599, sd = 0.325) in the “team 

members” market and from 0.476 to 0.882 (m = 0.690, sd = 0.137) in the “non-team members” 

market. Except for Hypothesis #7 in the “team members” market, all predictions were outside the 
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95% confidence intervals of the fundamental values (Figure 1 and Extended Data Table 5a).  

Spearman correlation between the fundamental values and the markets’ predictions was significant 

for the “team members” market (r = 0.962, p < 0.001, n = 9) but not for the “non team members” 

market (r = 0.553, p = 0.122, n = 9) nor between the predictions of both markets (r = 0.500, p = 

0.170, n = 9).  

Wilcoxon signed-rank tests suggested that traders in both markets systematically overestimated 

the fundamental values (“team members”: z = 2.886, p = 0.004, n = 9; “non-team members”: z = 

2.660, p = 0.008, n = 9). The result in the “team members” prediction market was not driven by 

over-representation of teams reporting significant results (Supplementary Materials). Predictions 

in the “team members” market did not significantly differ from those of the “non-team members” 

(Wilcoxon signed-rank test, z = 1.035, p = 0.301, n = 9), but as mentioned above, statistical power 

for this test was limited. Team members generally traded in the direction consistent with their own 

team’s results (Extended Data Table 5b), which may explain why their collective predictions were 

more accurate than those of non-team members (Figure 1). Additional results are presented in the 

Supplementary Materials (see also Extended Data Figure 5 and Extended Data Table 5). 

Discussion 

The analysis of a single functional neuroimaging dataset by 70 independent analysis teams, all of 

whom used different analysis pipelines, revealed substantial variability in reported binary results, 

with high levels of disagreement across teams on a majority of tested hypotheses. For every 

hypothesis one could find at least four different analysis pipelines used in practice by research 

groups in the field that resulted in a significant outcome. Our findings highlight the fact that it is 

hard to estimate the reproducibility of single studies that are performed using a single analysis 

pipeline. Importantly, analyses of the underlying statistical parametric maps on which the 
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hypothesis tests were based revealed greater consistency than expected from those inferences, with 

significant consensus in activated regions across groups observed via meta-analysis. Teams with 

highly correlated underlying unthresholded statistical maps nonetheless reported divergent 

hypothesis outcomes (Figure 2). Detailed analysis of the workflow descriptions and statistical 

results submitted by the analysis teams identified several common analytic variables that were 

related to differential reporting of significant outcomes, including the spatial smoothness of the 

data (a result of multiple factors beyond the applied smoothing kernel), choices of analysis 

software and correction method; however, the last two were not consistently supported by 

nonparametric bootstrap analyses. In addition, we identified model specification errors for several 

analysis teams leading to statistical maps that were anticorrelated with the majority. Prediction 

markets that were performed on the outcomes of analyses demonstrated that researchers generally 

overestimated the likelihood of significant results across hypotheses, even by those researchers 

who had analyzed the data themselves, reflecting substantial optimism bias by researchers in the 

field. 

The substantial amount of analytic variability, leading to variability of reported hypothesis results 

with the same data, demonstrates that steps need to be taken to improve the reproducibility of data 

analysis outcomes. First, we suggest that unthresholded statistical maps should be shared as a 

standard practice alongside thresholded statistical maps using tools such as NeuroVault15. In the 

long run, the shared maps will allow the use of image-based meta-analysis, which we found to 

provide converging results across laboratories. In addition, publicly sharing data and analysis code 

should become common practice, to enable others to run their own analysis with the same data or 

validate the code used. These practices alongside the use of pre-registration16 or registered 

reports17 will reduce researchers’ degrees of freedom but would not prevent analytic variability as 
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demonstrated here; however, they would ensure that the impact of variability can be assessed. All 

of the data and code used in the current study are publicly available with a fully reproducible 

execution environment for all figures and results. We believe that this can serve as an example for 

future studies. 

Foremost, we propose that complex datasets should be analyzed using multiple analysis pipelines, 

preferably by more than one research team. Achieving such “multiverse analysis” at scale will 

require the development of automated statistical analysis tools (e.g.18) that can run a broad range 

of pipelines and assess their convergence. Different versions of such “multiverse analysis” have 

been suggested in other fields19–21, but are not widely used. Analysis pipelines should also be 

validated using simulated data in order to assess their validity with regard to ground truth , and 

assessed for their effects on predictions with new data22. 

Our findings emphasize the urgent need to develop new practices and tools to overcome the 

challenge of variability across analysis pipelines and its effect on analytic results. Nonetheless, we 

maintain that fMRI can provide reliable answers to scientific questions, as strongly demonstrated 

in the meta-analytic results across teams along with numerous large-scale studies in the literature 

and replication of many findings using fMRI. Moreover, although the present investigation was 

limited to the analysis of a single functional neuroimaging dataset, it seems highly likely that 

similar variability will be present for other fields of research where the data are high-dimensional 

and the analysis workflows are complex and varied. The “multiverse” approach combined with 

meta-analysis is suggested as a promising solution. Importantly, transparent community-wide self-

assessment scientific projects, such as the current one, are definitive evidence of the researchers’ 

awareness of reproducibility concerns and desire to assess their impact and improve practices 

accordingly (for additional discussion see Supplementary Discussion). 
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Methods 

fMRI dataset 

In order to test the variability of neuroimaging results across analysis pipelines used in practice in 

research laboratories, we distributed a single fMRI dataset to independent analysis groups from 

around the world, requesting them to test nine pre-defined hypotheses. The full dataset is publicly 

available in the Brain Imaging Data Structure (BIDS)23 on OpenNeuro (DOI: 

10.18112/openneuro.ds001734.v1.0.4) and is described in detail in a Data Descriptor1. 

Shortly, the fMRI dataset consisted of data from 108 participants performing a mixed gambles 

task, which is often used to study decision-making under risk. In this task, participants are asked 

on each trial to accept or reject a presented prospect. The prospects consist of an equal 50% chance 

of either gaining a given amount of money or losing another, similar or different, amount of money. 

Participants were divided into two groups: in the “equal indifference” group (N = 54), the potential 

losses were half the size of the potential gains10 (reflecting the “loss aversion” phenomenon, where 

people tend to be more sensitive to losses compared to equal-sized gains24); in the “equal range” 

group (N = 54), the potential losses and the potential gains were taken from the same scale11,12. 

The two groups were used to resolve inconsistencies of previous published results. 

The dataset was distributed to the teams via Globus (https://www.globus.org/). The distributed 

dataset included raw data of 108 participants (N = 54 for each experimental group), as well as the 

same data after preprocessing with fMRIprep version 1.1.4 [RRID:SCR_016216]13. The fMRIprep 

preprocessing mainly included brain extraction, spatial normalization, surface reconstruction, head 

motion estimation and susceptibility distortion correction. Both the raw and the preprocessed 

datasets underwent quality assurance (described in detail in the Data Descriptor1). 
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MRI data collection was approved by the Helsinki committee at Sheba Tel Hashomer Medical 

Center and the ethics committee at Tel Aviv University, and all participants gave written informed 

consent (as described in the Scientific Data Descriptor of this dataset1). The Board for Ethical 

Questions in Science at the University of Innsbruck approved the data collection in the prediction 

markets, and certified that the project is in correspondence with all requirements of the ethical 

principles and the guidelines of good scientific practice. The Stanford University IRB determined 

that the analysis of the submitted team results did not meet the definition of human subject 

research, and thus no further IRB review was required. We have complied with all relevant ethical 

regulations. 

Pre-defined hypotheses 

Previous studies with the mixed gambles task suggested that activity in the vmPFC and ventral 

striatum, among other brain regions, is related to the magnitude of the potential gain10. A 

fundamental open question in the field of decision-making under risk is whether the magnitude of 

the potential loss is coded by the same brain regions (through negative activation), or by regions 

related to negative emotions, such as the amygdala10–12. The specific hypotheses included in 

NARPS were chosen to address this open question, using two different designs that were used in 

those previous studies (i.e., equal indifference versus equal range). Each analysis team tested nine 

pre-defined hypotheses (Extended Data Table 1). Each hypothesis predicted fMRI activations in a 

specific brain region, in relation to a specific aspect of the task (gain / loss amount) and a specific 

group (equal indifference / equal range, or a comparison between the two groups). Therefore, for 

each hypothesis, the maximal sample size was 54 participants (Hypotheses #1-8) or 54 participants 

per group in the group comparison (Hypothesis #9). Although the hypotheses referred to specific 
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brain regions, analysis teams were instructed to report their results based on a whole-brain analysis 

(and not on a region of interest based analysis, as sometimes used in fMRI studies). 

Analysis teams recruitment and instructions 

We recruited analysis teams via social media, mainly Twitter and Facebook, as well as during the 

2018 annual meeting of The Society for Neuroeconomics. Ninety-seven teams registered to 

participate in the study. Each team consisted of up to three members. To ensure independent 

analyses across teams, and to prevent influencing the subsequent prediction markets, all team 

members signed an electronic nondisclosure agreement that they would not release, publicize, or 

discuss their results with anyone until the end of the study. All team members of 82 teams signed 

the nondisclosure form. They were offered co-authorship on the present publication in return for 

their participation. 

Analysis teams were provided with access to the full dataset. They were asked to freely analyze 

the data with their usual analysis pipeline to test the nine hypotheses and report a binary decision 

for each hypothesis on whether it was significantly supported based on a whole-brain analysis. 

While the hypotheses were region specific, we clearly requested a whole-brain analysis result to 

avoid the need of teams to create and share masks of regions of interest. Each team also filled in a 

full report of the analysis methods used (following COBIDAS guidelines25) and created a 

collection on NeuroVault15 [RRID:SCR_003806] with one unthresholded and one thresholded 

statistical maps for each hypothesis, on which their decisions were based (teams could optionally 

include additional maps in their collection; see Extended Data Table 3a for collections’ links). For 

each result (i.e., the binary decision on whether a given hypothesis was supported by the data or 

not), teams further reported how confident they were in this result and how similar they thought 

their result was to the results of the other teams (each measure was an integer between 1 [not at 
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all] to 10 [extremely]). These measures are presented in Extended Data Table 1 and Extended Data 

Table 2. In order to measure variability of results in an ecological manner, instructions to the 

analysis teams were minimized and the teams were asked to perform the analysis as they usually 

would in their own laboratory and to report the binary decision based on their own criteria. 

Seventy of the 82 teams submitted their results and reports by the final deadline (March 15th, 

2019; overall teams were given up to 100 days, varying based on the date they joined, to complete 

and report their analysis). The dataset, reports and collections were kept private until the end of 

the study and closure of the prediction markets. In order to avoid identification of the teams, each 

team was provided with a unique random 4-character team ID. 

Overall, 180 participants were part of NARPS analysis teams. Out of 70 analysis teams, five teams 

consisted of one member, 20 teams consisted of two members and 45 teams consisted of three 

members. Out of the 180 team members, there were 62 principal investigators (PIs), 43 post-

doctoral fellows, 53 graduate students and 22 members from other positions (e.g. data scientists or 

research analysts). 

Factors related to analytic variability 

In order to explore the factors related to the variability in results across teams, the reports of all 

teams were manually annotated to create a table describing the methods used by each team. Code 

for all analyses of the reports and statistical maps submitted by the analysis teams is openly shared 

in GitHub (https://github.com/poldrack/narps). Analyses reported in this manuscript were 

performed using code release v2.0.3 (DOI: 10.5281/zenodo.3709273). We performed exploratory 

analyses of the relation between the reported hypothesis outcomes and several analytic choices 

and image features using mixed effects logistic regression models implemented in R, with the lme4 

package26. The factors included in the model were: Hypothesis number, estimated smoothness 
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(based on FSL’s smoothest function), use of standardized preprocessing, software package, 

method of correction for multiple comparisons and modeling of head movement. The teams were 

modeled as a random effect. One team submitted results that were not based on a whole brain 

analysis as requested, and therefore their data were excluded from all analyses. 

Inferences using logistic regression models were confirmed using nonparametric bootstrap 

analysis, resampling data team-wise to maintain random effect structure. For the continuous or 

binary regressors (smoothness, movement modeling, and use of fMRIPrep data), we computed 

bootstrap confidence intervals and, as an approximate hypothesis test, tested whether the 

confidence interval includes zero. For the factorial variables (hypothesis, software package and 

multiple testing method), this was not possible because there is not a single coefficient for the 

factor; in addition, for software package and multiple testing methods, some bootstrap samples did 

not contain all values of the factor. For these variables we instead performed model comparison 

between the full model and a reduced model excluding each factor, and computed the proportion 

of times the full model was selected based on the model selection criterion (using both Bayesian 

information criterion and Akaike information criterion) being numerically lower in the full 

model27. 

In addition, we performed exploratory analyses to explore the variability across statistical maps 

submitted by the teams. The unthresholded and thresholded statistical maps of all teams were 

resampled to common space (FSL MNI space, 91x109x91, 2mm isotropic) using nilearn28 

[RRID:SCR_001362]. For unthresholded maps, we used 3rd order spline interpolation; for 

thresholded maps, we used linear interpolation and then thresholded at 0.5, to prevent artifacts that 

appeared when using nearest neighbor interpolation. Of the 69 teams included in the analyses, 

unthresholded maps of five teams and thresholded maps of four teams were excluded from the 
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image-based analyses (see Extended Data Table 3b for details). Since some of the hypotheses 

reflected negative activations, which can be represented by either positive or negative values in 

the statistical maps, depending on the model used, we asked the teams to report the direction of 

the values in their maps for the relevant hypotheses (#5, #6, and #9). Unthresholded maps were 

corrected to address sign flips for reversed contrasts as reported by the analysis teams. In addition, 

t values were converted to z values with Hughett's transform29. All subsequent analyses of the 

unthresholded maps were performed only on voxels that contained non-zero data for all teams 

(range across hypotheses: 111,062-145,521 voxels). 

We assessed the agreement between thresholded statistical maps using percent agreement, i.e. the 

percent of voxels that have the same binary value. Because the thresholded maps are very sparse, 

these values are necessarily high when computed across all voxels. Therefore, we also computed 

the agreement between pairs of statistical maps only for voxels that were nonzero for at least one 

member of each pair. To further test the agreement across teams, we performed a coordinate-based 

meta-analysis with activation likelihood estimation (ALE; see Supplementary Materials)30,31. 

We further computed the correlation between the unthresholded images of the 64 teams. The 

correlation matrices were clustered using Ward clustering; the number of clusters was set to three 

for all hypotheses based on visual examination of the dendrograms. A separate mean statistical 

map was then created for the teams in each cluster (see Figure 2 and Extended Data Figure 2). 

Drivers of map similarity were further assessed by modeling the median correlation distance of 

each team from the average pattern as a function of several analysis decisions (e.g. smoothing, 

whether or not the data preprocessed with fMRIprep were used, etc.).  

To assess the impact of variability in thresholding methods and anatomical definitions across 

teams, unthresholded Z maps for each team were thresholded using a common approach.  Z maps 
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for each team were translated to p-values, which were then thresholded using two approaches: a 

heuristic correction (known to be liberal32), and a voxelwise false discovery rate correction. Note 

that it was not possible to compute the commonly-used familywise error correction using Gaussian 

random field theory because residual smoothness was not available for each team. We then 

identified whether there were any suprathreshold voxels within the appropriate anatomical region 

of interest for each hypothesis. The regions of interest for the ventral striatum and amygdala were 

defined anatomically based on the Harvard-Oxford anatomical atlas. Since there is no anatomical 

definition for the ventromedial prefrontal cortex, we defined the region using a conjunction of 

anatomical regions (including all anatomical regions in the Harvard-Oxford atlas that overlap with 

the ventromedial portion of the prefrontal cortex) and a meta-analytic map obtained from 

neurosynth.org33 for the search term “ventromedial prefrontal”. 

An image-based meta-analysis (IBMA) was used to quantify the evidence for each hypothesis 

across analysis teams (Extended Data Figure 3b), accounting for the lack of independence due to 

the use of a common dataset across teams. See Supplementary Materials for a description of the 

image-based meta-analysis method. 

Prediction markets 

The second main goal of the Neuroimaging Analysis Replication and Prediction Study (NARPS) 

was to test the degree to which researchers in the field can predict results, using prediction 

markets2–5,34. We invited team members (researchers that were members of one of the analysis 

teams) and non-team members (researchers that were neither members of any of the analysis teams 

nor members of the NARPS research group) to participate in a prediction market2,35 to measure 

peer beliefs about the fraction of teams reporting significant whole-brain corrected results for each 

of the nine hypotheses. The prediction markets were conducted 1.5 months after all teams had 
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submitted their analysis of the fMRI dataset. Thus, team members had information about the 

results of their specific team, but not about the results of any other team.  

Similar to previous studies2–5, participants in the prediction markets were provided with monetary 

endowments (100 Tokens, worth $50) and traded on the outcome of the hypotheses via a dedicated 

online market platform. Each hypothesis constitutes one asset in the market, with asset prices 

predicting the fraction of teams reporting significant whole-brain corrected results for the 

corresponding ex-ante hypothesis examined by the analysis teams using the same dataset. Trading 

on the prediction markets was incentivized, i.e., traders were paid based on their performance in 

the markets. 

Recruitment. For the “non-team members” prediction market, we invited participants via social 

media (mainly Facebook and Twitter) and e-mails. The invitation contained a link to an online 

form on the NARPS website (www.narps.info) where participants could sign up using their email 

address. 

Participants for the “team members” prediction market were invited, after all teams submitted their 

results, via email directing them to an independent registration form (with identical form fields) to 

separate participants for the two prediction markets already at the time of registration. Note that 

team members initially were not aware that they would be invited to participate in a separate 

prediction market after they had analyzed the data. The decision to implement a second market, 

consisting of traders with partial information about the fundamental values (i.e., the team 

members) was made after the teams obtained access to the fMRI dataset. Thus, team members 

were only invited to participate in the market after all teams had submitted their analysis results. 

Once the registration for participating in the prediction markets had been closed, we reconciled the 
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sign-ups with the list of team members to ensure that team members did not mistakenly end up in 

the “non-team members” prediction market and vice versa. 

In addition to their email addresses, which were used as the only key to match registrations, 

accounts in the market platform, and the teams’ analysis results, registrants were required to 

provide the following information during sign-up: (i) name, (ii) affiliation, (iii) position (PhD 

candidate, Post-doctoral researcher, Assistant Professor, Senior Lecturer, Associate Professor, Full 

Professor, Other), (iv) years since PhD, (v) gender, (vi) age, (vii) country of residence, (viii) self-

assessed expertise in neuroimaging (Likert scale ranging from 1 to 10), (ix) self-assessed expertise 

in decision sciences (Likert scale ranging from 1 to 10), (x) preferred mode of payment 

(Amazon.de voucher, Amazon.com voucher, PayPal payment), and (xi) whether they are a team 

member of any analysis team (yes / no). The invitations to participate in the prediction markets 

were first distributed on April 9, 2019; the registration closed on April 29, at 4pm UTC. Upon 

closure of the registration, all participants received a personalized email containing a link to the 

web-based market software and their login-credentials. The prediction markets opened on May 2, 

2019 at 4pm UTC and closed on May 12, 2019 at 4pm UTC. 

Information available to participants. All participants had access to detailed information about 

the data collection, the experimental protocol, the ex-ante hypotheses, the instructions given to the 

analysis teams, references to related papers, and detailed instructions about the prediction markets 

via the NARPS website (www.narps.info).  

Implementation of prediction markets. To implement the prediction markets, we used a newly 

developed web-based framework dedicated for conducting continuous-time online market 

experiments, inspired by the trading platform in the Experimental Economics Replication Project 

(EERP3) and the Social Sciences Replication Project (SSRP4). Similar to these previous 
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implementations, there were two main views on the platform: (i) the market overview and (ii) the 

trading interface. The market overview showed the nine assets (i.e., one corresponding to each 

hypothesis) in tabular format, including information on the (approximate) current price for buying 

a share and the number of shares held (separated for long and short positions) for each of the nine 

hypotheses. Via the trading interface, which was shown after clicking on any of the hypotheses, 

the participant could make investment decisions and view price developments for the particular 

asset. 

Note that initially, there was an error in the labelling of two assets (i.e., hypotheses) in the trading 

interface and the overview table of the web-based trading platform (the more detailed hypothesis 

description available via the info symbol on the right hand side of the overview table contained 

the correct information): Hypotheses 7 and 8 mistakenly referred to negative rather than positive 

effects of losses in the Amygdala. One of the participants informed us about the inconsistency 

between the information on the trading interface and the information provided on the website on 

May 6. The error was corrected immediately on the same day and all participants were informed 

about the mistake on our part via a personal email notification (on May 6, 2019, 3:28pm UTC), 

pointing out explicitly which information was affected and asking them to double-check their 

holdings in the two assets to make sure that they are invested in the intended direction. 

Trading and market pricing. In both prediction markets, traders were endowed with 100 Tokens 

(the experimental currency unit). Once the markets opened, these Tokens could be used to trade 

shares in the assets (i.e., hypotheses). Unlike prediction markets on binary outcomes (e.g., the 

outcomes of replications as in previous studies3,4), for which market prices were typically 

interpreted as the predicted probability of the outcome to occur36 (though see37 and38 for caveats), 

the prediction markets accompanying the team analyses in the current study were implemented in 
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terms of vote-share-markets. Hence, the prediction market prices serve as measures of the 

aggregate beliefs of traders for the fraction of teams reporting that the hypotheses were supported 

and can fluctuate between 0 (no team reported a significant result) and 1 (all teams reported a 

significant result). 

Prices were determined by an automated market maker implementing a logarithmic market scoring 

rule39. At the beginning of the markets, all assets were valued at a price of 0.50 Tokens per share. 

The market maker calculated the price of a share for each infinitesimal transaction and updated the 

price based on the scoring rule. This ensured both that trades were always possible even when 

there was no other participant with whom to trade and that participants had incentives to invest 

according to their beliefs40. The logarithmic scoring rule uses the net sales (shares held - shares 

borrowed) the market maker has done so far in a market to determine the price for an infinitesimal 

trade as 𝑝	 = 	 𝑒%/'	/	(𝑒%/' 	+ 	1). The parameter b determines the liquidity provided by the market 

maker and controls how strongly the market price is affected by a trade. We set the liquidity 

parameter to b = 100, implying that by investing 10 Tokens, traders could move the price of a 

single asset from 0.50 to about 0.55.  

Investment decisions for a particular hypothesis were made from the market’s trading interface. In 

the trading overview, participants could see the (approximate) price of a new share, the number of 

shares they currently held (separated for long and short positions), and the number of Tokens their 

current position was worth if they liquidated their shares. The trading page also contained a graph 

depicting previous price developments. To make an adjustment to their current position, 

participants could choose either to increase or decrease their position by a number of Tokens of 

their choice. The trading procedures and market pricing are described in more detail in Camerer et 

al.3. 
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Incentivization. Once the markets had been closed, the true “fundamental value” (FV) for each 

asset (i.e., the fraction of teams that reported a significant result for the particular hypothesis) was 

determined and gains and losses were calculated as follows: If holdings in a particular asset were 

positive (i.e., the trader acted as a net buyer), the payout was calculated as the fraction of analysis 

teams reporting a significant result for the associated hypothesis multiplied by the number of 

shares held in the particular asset; If a trader’s holdings were negative (i.e., the trader acted as a 

net seller), the (absolute) amount of shares held was valued at the price differential between 1 and 

the fraction of teams reporting a significant result for the associated hypothesis. 

Any Tokens that had not been invested into shares when the market closed were voided. Any 

Tokens awarded as a result of holding shares were converted to USD at a rate of 1 Token = $0.5. 

The final payments were transferred to participants during the months May to September 2019 in 

form of Amazon.com giftcards, Amazon.de giftcards, or PayPal payments, depending on the 

preferred mode of payment indicated by the participants upon registration for participating in the 

prediction markets. 

Participants. In total, 96 “team members” and 91 “non-team members” signed up to participate 

in the prediction markets. N = 83 “team members” and N = 65 “non-team members” actively 

participated in the markets. The number of traders active in each of the assets (i.e., hypotheses) 

ranged from 46 to 76 (m = 56.4, sd = 8.9) in the “team members” set of markets and from 35 to 58 

(m = 47.1, sd = 7.9) in the “non-team members” set of markets. See Extended Data Table 5c for 

data about trading volume on the prediction markets. 

Of the participants, 10.2% did not work in academia (but hold a PhD), 34.2% were PhD students, 

43.3% were post-docs or assistant professors, 7.5% were lecturers or associate professors, and 

4.8% were full professors. 27.8% of the participants were female. The average time spent in 
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academia after obtaining the PhD was 4.1 years. The majority of the participants resided in Europe 

(46.3%) and North America (46.3%). 

Pre-Registration. All analyses of the prediction markets data reported were pre-registered at 

https://osf.io/pqeb6/. The pre-registration was completed after the markets opened, but before the 

markets closed. Only one member of the NARPS research group, Felix Holzmeister, had any 

information about the prediction market prices before the markets closed (as he monitored the 

prediction markets). He was not involved in writing the pre-registration. Only two members of the 

NARPS research group, Rotem Botvinik-Nezer and Tom Schonberg, had any information about 

the results reported by the 70 analyses teams before the prediction markets closed. Neither of them 

were involved in writing the pre-registration either.  

For additional details on the prediction markets, see the Supplementary Materials. 

 

Data and code availability 

The full fMRI dataset is publicly available on OpenNeuro (DOI: 

10.18112/openneuro.ds001734.v1.0.4) and is described in details in a Data Descriptor1. 

Code for all analyses of the reports and statistical maps submitted by the analysis teams is openly 

shared in GitHub (https://github.com/poldrack/narps). Image analysis code was implemented 

within a Docker container, with software versions pinned for reproducible execution 

(https://cloud.docker.com/repository/docker/poldrack/narps-analysis - tag:paper_analysis). 

Python code was automatically tested for quality using the flake8 static analysis tool and the 

codacy.com code quality assessment tool, and the results of the image analysis workflow were 

validated using simulated data. Imaging analysis code was independently reviewed by an expert 

who was not involved in writing the original code. Prediction market analyses were performed 
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using R v3.6.1; packages were installed using the checkpoint package, which reproducibly installs 

all package versions as of a specified date (August 13th, 2019). Analyses reported in this 

manuscript were performed using code release v2.0.3 (DOI: 10.5281/zenodo.3709273). 

The results reported by all teams are presented in Extended Data Table 2. A table describing the 

methods used by the analysis teams is available with the analysis code. NeuroVault collections 

containing the submitted statistical maps are available via the links provided in Extended Data  

Table 2a. 

Interested readers may obtain access to the data and run the full analysis stream on the team 

submissions by following the directions at: 

https://github.com/poldrack/narps/tree/master/ImageAnalyses.  

Access to the raw data requires specifying a URL for the dataset, which is: 

https://zenodo.org/record/3528329/files/narps_origdata_1.0.tgz  

Results (automatically generated figures, results, and output logs) for imaging analyses are 

available for anonymous download at DOI:10.5281/zenodo.3709275.   

Although not required to, several analysis teams also publicly shared their analysis code. Extended 

Data Table 3d includes these teams along with the link to their code. 
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Extended Data Figures 

 
Extended Data Figure 1 | Voxels overlap. Maps showing at each voxel the proportion of teams (out of N 
= 65 teams) reporting significant activations in their thresholded statistical map, for each hypothesis 
(labeled H1 - H9), thresholded at 10% (i.e., voxels with no color were significant in fewer than 10% of 
teams). +/- refers to direction of effect, gain/loss refers to the effect being tested, and equal indifference 
(EI) / equal range (ER) refers to the group being examined or compared. Hypotheses #1 and #3, as well as 
hypotheses #2 and #4, share the same statistical maps as the hypotheses are for the same contrast and 
experimental group, but for different regions (see Extended Data Table 1). Images can be viewed at 
https://identifiers.org/neurovault.collection:6047 

H1 + H3: +gain, equal indifference

H2 + H4: +gain, equal range

H5: -loss, equal indifference

H6: -loss, equal range

H7: +loss, equal indifference

H8: +loss, equal range

H9: +loss, ER > EI
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Extended Data Figure 2 | Variability of whole-brain unthresholded maps for hypotheses 2, 4 - 9. For 
each hypothesis, we present a heatmap based on Spearman correlations between unthresholded statistical 
maps (N = 64), clustered according to their similarity, and the average of unthresholded images for each 
cluster (cluster colors in titles refer to colors in left margin of heatmap).  Green / red at the columns represent 
binary results (significant / not significant, respectively) reported by the analysis teams; row colors 
represent cluster membership. Maps are thresholded at an uncorrected value of Z >  2 for visualization. 
Unthresholded maps for Hypothesis #2 and Hypothesis #4 are identical (as they both relate to the same 
contrast and group, but different regions), and the colors represent reported results for Hypothesis #2. For 
Hypotheses #1 and #3 see Figure 2. 
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Extended Data Figure 3 | Variability and consensus of unthresholded statistical maps (N = 64). (a) 
Maps of estimated between-team variability (tau) at each voxel for each hypothesis. Images can be viewed 
at https://identifiers.org/neurovault.collection:6050. (b) Image-based meta-analysis (IBMA) results. A 
consensus analysis was performed on the unthresholded statistical maps to obtain a group statistical map 
for each hypothesis, accounting for the correlation between teams due to the same underlying data (see 
Methods). Maps are presented for each hypothesis showing voxels (in color) where the group statistic was 
significantly greater than zero after voxelwise correction for false discovery rate (p < 0.05). Color bar 
reflects statistical value (Z) for the meta-analysis. Images can be viewed at 
https://identifiers.org/neurovault.collection:6051. 
Hypotheses #1 and # 3, as well as Hypotheses #2 and #4, share the same unthresholded maps, as they relate 
to the same contrast and group but for different regions (see Extended Data Table 1).  

H1 + H3: +gain, equal indifference

H5: -loss, equal indifference

H6: -loss, equal range

H7: +loss, equal indifference

H8: +loss, equal range

H9: +loss, ER > EI

H2 + H4: +gain, equal range

H1 + H3: +gain, equal indifference

H2 + H4: +gain, equal range

H5: -loss, equal indifference

H6: -loss, equal range

H7: +loss, equal indifference

H8: +loss, equal range

H9: +loss, ER > EI

a Estimated between-team variability (tau)

Image-based meta-analysis (IBMA) resultsb
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Extended Data Figure 4 | Results of the consistent thresholding and ROI selection analysis (N = 64). 

(a) Activation for each hypothesis as determined using consistent thresholding (black: p < 0.001 and cluster 

size > 10 voxels; blue: FDR correction with p < 0.05) and ROI selection across teams (y-axis), versus actual 
proportion of teams reporting activation (x-axis). Numbers next to each symbol represent the hypothesis 
number for each point. (b) Results from re-thresholding of unthresholded maps using uncorrected (p < 
0.001, cluster size k > 10) and false discovery rate correction (pFDR < 5%) and common anatomical regions 
of interest for each hypothesis. A team is recorded as having an activation if one or more significant voxels 
are found in the ROI. Results for image-based meta-analysis (IBMA) for each hypothesis are also presented, 
thresholded at pFDR < 5% as well. 

a

b

Hypothesis N voxels in ROI
Proportion of teams 

reporting activation

Proportion of teams

with activation
(p < 0:001, k > 10)

Proportion of teams

with activation
(FDR)

IBMA

(n voxels in ROI)

1 3402 0.371 0.734 0.594 0

2 3402 0.214 0.391 0.766 7

3 173 0.229 0.156 0.344 0

4 173 0.329 0.234 0.609 7

5 3402 0.843 0.906 0.859 2101

6 3402 0.329 0.562 0.359a 39

7 672 0.057 0.062 0.172 0

8 672 0.057 0.016 0.125 0

9 672 0.057 0.047 0.094 0
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Extended Data Figure 5 | Prediction markets over time (N = 240 observations [10 days X 24 hours]). 

(a). Panel regressions. The table summarizes the results of pre-registered fixed-effects panel regressions of 
the predictions absolute errors (i.e., the absolute deviation of the market price from the fundamental value) 
on an hourly basis (average price of all transactions within an hour) on time and prediction market 
indicators. Standard errors are computed using a robust estimator. (b) Market prices for each of the nine 
hypotheses separated for the team members (green) and non-team members (blue) prediction markets. The 
figure shows the average prediction market prices per hour separated for the two prediction markets for the 
time the markets were open (10 days, i.e., 240 hours). The gray line indicates the actual share of analysis 
teams reporting a significant result for the hypothesis (i.e., the fundamental value). 

  

Effect
Beta (full

model)

t (full

model)

p (full

model)

Beta (no

interaction)

t (no

interaction)

p (no

interaction)

Intercept 0.44 64.12 0.00 0.41 74.61 0.00

Time 0.00 3.38 0.00 0.00 12.48 0.00

Teams -0.29 -29.50 0.00 -0.22 -45.35 0.00

Time X Teams 0.00 7.78 0.00

-------

Adjusted R-squared 0.35 0.34
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Extended Data tables 

 

 
Extended Data Table 1 | Hypotheses and results 
Each hypothesis is described along with the fraction of teams reporting a whole-brain corrected significant 
result (out of N = 70 teams) and two measures reported by the analysis teams for the specific hypothesis 
(both rated 1-10): (1) How confident are you about this result? (2) How similar do you think your result is 
to the other analysis teams? For these ordinal measures, median values are presented along with the median 
absolute deviation in brackets. See Supplementary Materials for analysis of the confidence level and 
similarity estimation. 

 

Hypothesis description
Fraction of teams

reporting a significant result

Median 

confidence level

Median similarity 

estimation

#1
Positive parametric effect of gains in the vmPFC

(equal indifference group)
0.371

7

(2)

7

(1.5)

#2
Positive parametric effect of gains in the vmPFC

(equal range group)
0.214

7

(1.5)

7

(1)

#3
Positive parametric effect of gains in the ventral striatum

(equal indifference group)
0.229

6

(1)

7

(1)

#4
Positive parametric effect of gains in the ventral striatum

(equal range group)
0.329

6

(1)

7

(1)

#5
Negative parametric effect of losses in the vmPFC

(equal indifference group)
0.843

8

(1)

8

(1)

#6
Negative parametric effect of losses in the vmPFC

(equal range group)
0.329

7

(1)

7

(1)

#7
Positive parametric effect of losses in the amygdala

(equal indifference group)
0.057

7

(1)

8

(1)

#8
Positive parametric effect of losses in the amygdala

(equal range group)
0.057

7

(1)

8

(1)

#9
Greater positive response to losses in amygdala

(equal range group vs. equal indifference group)
0.057

6

(1)

7

(1)
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Extended Data Table 2 | Results submitted by analysis teams* 
For each team, the left section of the table represents the reported binary decision (green = yes, red = no) 
and how confident they were in their result (from 1 [not at all] to 10 [extremely]) for each hypothesis (H1-
H9). The right section displays the information included for each team in the statistical model for hypothesis 
decisions. Estimated (est.) smoothing values represent full width at half-maximum (FWHM; teams with a 
blank value were excluded from further analysis). 
* Three teams changed their decisions after the end of the project. Team L3V8 changed their decision 
regarding Hypothesis #6 from “yes” to “no”. Team VG39 changed their decisions regarding Hypotheses 
#3, #4 and #5 from “yes” to “no”. Team U26C changed their decision regarding Hypothesis #5 from “yes” 
to “no”. Results along the paper and in this table reflect the final results as they were reported at the end of 
the project (i.e., before this change), as prediction markets were based on those results. 

Team ID H1 H2 H3 H4 H5 H6 H7 H8 H9 Est. smoothing Package fMRIPrep Testing Movement 
08MQ 8 6 8 6 7 7 7 7 6 13.14 FSL No Non-parametric Yes
0C7Q 7 7 8 8 8 7 10 10 9 8.68 Other Yes Non-parametric Yes
0ED6 7 9 8 7 8 8 9 9 6 7.86 SPM No Parametric Yes
0H5E 4 7 7 6 8 5 8 7 1 14.17 SPM No Parametric No
0I4U 4 7 6 8 9 9 9 9 9 8.69 SPM No Parametric Yes
0JO0 7 5 5 5 5 5 5 5 5 8.12 Other Yes Parametric Yes
16IN 8 7 6 6 8 7 8 6 6 Other Yes Other No
1K0E 7 9 6 6 8 7 7 6 9 Other No Non-parametric Yes
1KB2 6 6 8 8 5 5 8 8 7 13.06 FSL No Parametric Yes
1P0Y 8 8 1 1 8 8 5 5 5 9.13 SPM No Parametric No
27SS 4 6 7 7 7 7 6 8 4 11.37 AFNI No Parametric Yes
2T6S 8 9 6 6 10 9 7 8 10 14.93 SPM Yes Parametric Yes
2T7P 8 8 8 8 8 8 8 8 8 7.66 Other No Other Yes
3C6G 6 7 7 5 8 8 8 8 8 14.26 SPM No Parametric Yes
3PQ2 9 8 7 7 7 8 8 8 7 5.79 FSL No Parametric Yes
3TR7 2 2 3 4 8 5 8 6 5 17.4 SPM Yes Parametric Yes
43FJ 3 3 5 5 10 10 10 10 10 10.66 FSL No Parametric Yes
46CD 9 8 5 8 9 8 9 9 5 10.92 Other No Parametric Yes
4SZ2 7 5 6 6 9 9 7 8 7 6.65 FSL Yes Parametric No
4TQ6 7 9 10 9 7 8 10 10 9 14.88 FSL Yes Non-parametric No
50GV 10 10 10 10 10 10 10 10 10 10.26 FSL Yes Parametric No
51PW 8 8 8 8 8 8 6 6 7 11.15 FSL Yes Parametric Yes
5G9K 7 7 7 7 7 7 7 7 7 SPM Yes Parametric Yes
6FH5 9 2 8 8 10 8 8 9 9 12.22 SPM No Parametric Yes
6VV2 8 8 8 6 9 7 8 7 6 7.2 AFNI No Parametric Yes
80GC 9 9 8 4 3 9 6 5 4 4.02 AFNI Yes Parametric Yes
94GU 8 8 8 8 8 8 8 8 8 11.19 SPM No Parametric Yes
98BT 9 7 7 8 9 7 8 8 8 11.48 SPM No Parametric Yes
9Q6R 10 10 10 10 10 10 8 8 8 10.28 FSL No Parametric Yes
9T8E 5 5 5 5 5 5 5 5 4 9.85 SPM Yes Non-parametric Yes
9U7M 7 9 9 9 9 7 9 7 7 14.78 Other No Parametric Yes
AO86 7 7 7 7 7 7 7 7 7 7.49 Other Yes Non-parametric Yes
B23O 6 6 7 7 8 7 6 6 8 3.32 FSL Yes Non-parametric No
B5I6 10 10 5 5 10 6 8 7 6 9.84 FSL Yes Non-parametric Yes
C22U 8 7 5 8 9 8 8 8 8 11.16 FSL No Parametric No
C88N 7 8 7 4 9 7 8 8 6 11.62 SPM Yes Parametric No
DC61 5 1 5 2 9 5 5 5 5 9.58 SPM Yes Parametric Yes
E3B6 3 7 6 6 8 8 7 7 7 12.8 SPM Yes Parametric Yes
E6R3 5 5 7 3 4 4 7 7 7 9.28 Other Yes Other Yes
I07H 3 3 3 3 9 9 9 9 9 5.59 Other Yes Non-parametric No
I52Y 8 8 8 8 8 8 8 8 8 11.42 FSL No Non-parametric Yes
I9D6 7 7 7 7 1 7 7 6 7 6.21 AFNI No Parametric Yes
IZ20 7 7 7 7 7 7 7 6 6 21.28 Other No Parametric No
J7F9 9 8 9 7 9 7 9 9 9 14.88 SPM Yes Parametric Yes
K9P0 10 10 10 5 10 8 9 9 10 8.05 AFNI Yes Parametric Yes
L1A8 8 5 7 7 8 8 3 8 3 SPM No Parametric Yes
L3V8 9 9 9 9 9 9 9 9 9 14.74 SPM No Parametric No
L7J7 10 9 9 5 8 8 8 9 8 11.76 SPM Yes Parametric Yes
L9G5 5 4 4 6 10 10 9 9 7 7.22 FSL No Parametric No
O03M 3 8 8 2 8 7 7 7 7 3.47 AFNI Yes Non-parametric Yes
O21U 8 8 8 8 8 8 8 8 8 8.26 FSL Yes Parametric Yes
O6R6 8 8 8 8 8 8 8 8 8 3.06 FSL Yes Non-parametric No
P5F3 3 5 7 7 4 4 6 6 7 12.94 FSL No Parametric Yes
Q58J 9 9 9 9 9 9 9 9 9 16.24 FSL No Parametric No
Q6O0 7 8 8 9 9 8 8 6 7 14.58 SPM Yes Parametric Yes
R42Q 5 5 6 6 6 6 7 8 8 12.73 Other No Parametric Yes
R5K7 6 8 8 7 9 7 8 8 7 12.06 SPM No Parametric Yes
R7D1 4 7 5 5 9 5 8 9 8 8.93 Other Yes Non-parametric Yes
R9K3 5 3 2 5 8 5 3 4 5 11.77 SPM Yes Parametric Yes
SM54 5 9 5 8 8 6 8 8 8 7.05 Other Yes Parametric Yes
T54A 5 9 2 6 9 9 5 5 5 12.28 FSL Yes Non-parametric No
U26C 8 8 8 8 10 8 8 8 9 10.38 SPM Yes Parametric Yes
UI76 10 6 10 10 10 6 10 10 5 6.6 AFNI Yes Parametric Yes
UK24 4 4 4 4 4 4 4 4 4 10.76 SPM No Parametric No
V55J 4 5 7 7 4 7 5 7 7 12.85 SPM No Parametric No
VG39 6 7 8 8 10 7 9 6 5 SPM Yes Parametric No
X19V 6 7 8 5 9 6 9 9 9 8.48 FSL Yes Parametric Yes
X1Y5 6 6 7 7 8 6 8 8 8 8.69 Other Yes Non-parametric Yes
X1Z4 8 6 4 4 9 5 4 4 4 Other No Non-parametric Yes
XU70 4 5 8 9 9 9 6 8 8 7.17 FSL No Parametric Yes
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Extended Data Table 3 | Data links and analysis related tables 
(a) Numbers of public NeuroVault collections of all analysis teams (full link: 
https://neurovault.org/collections/<insert collection number here>/). (b) Description of teams excluded 
from the analyses of statistical maps. (c) Summary of mixed-effects logistic regression modeling of decision 
outcomes (N = 64 per hypothesis) as a function of different factors including the hypothesis (1-9) and 
various aspects of statistical modeling (for modeling details see 
https://github.com/poldrack/narps/blob/master/ImageAnalyses/DecisionAnalysis.Rmd). (d) Links to 
shared analysis code of some of the analysis teams. 

Team ID Collection Team ID Collection

08MQ 4953 C88N 4812

0C7Q 5652 DC61 4963

0ED6 4994 E3B6 4782

0H5E 4936 E6R3 4959

0I4U 4938 I07H 5001

0JO0 4807 I52Y 4933

16IN 4927 I9D6 4978

1K0E 4974 IZ20 4979

1KB2 4945 J7F9 4949

1P0Y 5649 K9P0 4961

27SS 4975 L1A8 5680

2T6S 4881 L3V8 4888

2T7P 4917 L7J7 4866

3C6G 4772 L9G5 5173

3PQ2 4904 O03M 4972

3TR7 4966 O21U 4779

43FJ 4824 O6R6 4907

46CD 5637 P5F3 4967

4SZ2 5665 Q58J 5164

4TQ6 4869 Q6O0 4968

50GV 4735 R42Q 5619

51PW 5167 R5K7 4950

5G9K 4920 R7D1 4954

6FH5 5663 R9K3 4802

6VV2 4883 SM54 5675

80GC 4891 T54A 4876

94GU 5626 U26C 4820

98BT 4988 UI76 4821

9Q6R 4765 UK24 4908

9T8E 4870 V55J 4919

9U7M 4965 VG39 5496

AO86 4932 X19V 4947

B23O 4984 X1Y5 4898

B5I6 4941 X1Z4 4951

C22U 5653 XU70 4990

a

Team ID Exclusion reason
Unthresholded

maps excluded

Thresholded

maps excluded

1K0E
Used surface-based analysis

(only provided data for cortical ribbon)
X X

L1A8 Not in MNI standard space X X

VG39
Performed small volume corrected 

instead of whole-brain analysis
X X

X1Z4
Used surface-based analysis

(only provided data for cortical ribbon)
X X

16IN
Values in the unthresholded images

are not z / t stats
X

5G9K
Values in the unthresholded images

are not z / t stats
X

2T7P

Used a method which does not create

thresholded images (and are therefore
not included in the analyses of the
thresholded images)

X

b

Effects Chi-squared P value Delta R2

Hypothesis 185.390 0.000 0.350

Estimated smoothness 13.210 0.000 0.040

Used fMRIPprep data 2.270 0.132 0.010

Software package 13.450 0.004 0.040

Multiple correction method 7.500 0.024 0.020

Movement modeling 1.160 0.281 0.000

c

Team ID Link to shared analysis codes

16IN https://github.com/jennyrieck/NARPS

2T7P https://osf.io/3b57r

E3B6 doi.org/10.5281/zenodo.3518407

Q58J https://github.com/amrka/NARPS_Q58J

d
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Extended Data Table 4 | Variability of statistical maps across teams 

(a) Variability in the number of significantly (sig.) activated voxels reported across teams (N = 65 teams). 
(b) Mean Spearman correlation between the unthresholded statistical maps for all pairs of teams and 
separately for pairs of teams within each cluster, for each hypothesis (N = 64 teams). 

 

a

Hypothesis Minimum sig. voxels Maximum sig. voxels Median sig. voxels N empty images

1 0 118181 1940 8

2 0 135583 8120 2

3 0 118181 1940 8

4 0 135583 8120 3

5 0 76569 6527 11

6 0 72732 167 25

7 0 147087 9383 8

8 0 129979 475 16

9 0 49062 266 29

Hypothesis
Correlation

(mean)

Cluster1 Cluster2 Cluster3

Correlation Cluster size Correlation Cluster size Correlation Cluster size

1+3 0.394 0.670 50 0.680 7 0.095 7

2+4 0.521 0.736 43 0.253 14 0.659 7

5 0.485 0.777 41 0.329 20 0.342 3

6 0.259 0.442 47 0.442 12 0.156 5

7 0.487 0.851 31 0.466 25 0.049 8

8 0.302 0.593 36 0.256 23 -0.044 5

9 0.205 0.561 47 0.568 8 0.106 9

b
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Extended Data Table 5 | Prediction markets results and additional data 

(a). A summary of the prediction market results. FV indicates the fundamental value, i.e., the actual fraction 
of teams (out of N = 70 teams) reporting significant results for the hypothesis. 95% CI refers to the 95% 
confidence interval corresponding to the fundamental value (estimated with a normal approximation to the 
binomial distribution). Values marked with an asterisk are not within the corresponding 95% CI. (b) 
Consistency of traders’ holdings and team results. The top section of the table reports two-sided Spearman 
rank correlations between traders’ final holdings and the binary result reported by their team and the 
corresponding p-value for each hypothesis. The lower section reports the share of traders’ holdings that are 
consistent with the results reported by their team. Consistent refers to positive (negative) holdings if the 
team reported a significant (non-significant) result. Z- and p-values refer to Wilcoxon signed-rank tests for 
the share of consistent holdings being equal to 0.5. Average holdings if (in)consistent refer to the mean 
final holdings, separated for consistent and inconsistent traders. (c) The table depicts additional data for 
each of the nine hypotheses. Tokens invested indicates the average number of tokens invested per 
transaction and Volume (Shares) refers to the mean number of shares bought or sold per transaction. 
Transactions describes the overall number of transactions recorded and # Traders refers to the number of 
traders who bought or sold shares of the particular asset at least once. 
 

a

Hypothesis FV CI Non-teams market prediction Teams market prediction

1 0.37 [0.26-0.48] 0.727 * 0.814 *

2 0.21 [0.12-0.31] 0.73 * 0.753 *

3 0.23 [0.13-0.33] 0.881 * 0.743 *

4 0.33 [0.22-0.44] 0.882 * 0.789 *

5 0.84 [0.76-0.93] 0.686 * 0.952 *

6 0.33 [0.22-0.44] 0.685 * 0.805 *

7 0.06 [0.00-0.11] 0.563 * 0.073 

8 0.06 [0.00-0.11] 0.584 * 0.274 *

9 0.06 [0.00-0.11] 0.476 * 0.188 *

Hypothesis 1 2 3 4 5 6 7 8 9

Spearman rho 0.58 0.56 0.58 0.64 0.47 0.74 0.23 0.37 0.31

p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.01 0.02

Share of consistent holdings 0.71 0.68 0.70 0.80 0.89 0.74 0.80 0.80 0.75

Z (signed rank test) 3.40 2.78 2.82 4.24 6.81 3.24 4.34 4.34 3.64

p-value (signed rank test) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Average holdings if consistent 5.61 21.14 25.80 13.11 -115.50 7.31 34.61 24.23 23.54

Average holdings if inconsistent 1.04 -6.90 -8.03 0.03 18.26 1.58 -14.63 -8.29 -11.61

b

Hypothesis
Tokens invested

(Non-teams)

Volume

(Non-teams)

# Traders

(Non-teams)

# Transactions 

(Non-teams)

Tokens invested 

(Teams)

Volume 

(Teams)

# Traders 

(Teams)

# Transactions 

(Teams)

1 8.568 20.175 55 139 12.643 25.671 64 213

2 10.51 22.544 53 98 11.632 22.908 58 171

3 12.818 24.709 58 132 7.773 15.837 52 141

4 11.134 20.397 49 112 8.126 15.479 52 127

5 6.873 14.636 38 71 14.48 30.76 76 244

6 6.806 12.663 35 72 8.097 16.676 46 134

7 7.99 15.209 41 98 7.131 15.864 52 160

8 8.791 19.072 45 91 7.085 14.598 52 141

9 10.427 21.118 50 131 9.506 18.812 56 178

c


