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Abstract 

 

We investigate the seasonal variability in freshwater inputs to the Marguerite Bay region 

(Western Antarctic Peninsula) using a time series of oxygen isotopes in seawater from samples 

collected in the upper mixed layer of the ocean during 2002 and 2003. We find that meteoric 

water, mostly in the form of glacial ice melt, is the dominant freshwater source, accounting for up 

to 5% of the near-surface ocean during the austral summer. Sea ice melt accounts for a much 

smaller percentage, even during the summer (maximum around 1%). The seasonality in meteoric 

water input to the ocean (around 2% of the near-surface ocean) is not dissimilar to that of sea ice 

melt (around 2% in 2002 and 1% in 2003), contradicting the assumption that sea ice processes 

dominate the seasonal evolution of the physical ocean environment close to the Antarctic 

continent. Three full-depth profiles of oxygen isotopes collected in successive Decembers (2001, 

2002 and 2003) indicate that around 4 m of meteoric water is present in the water column at this 

time of year, and around 1 m of sea ice formed from this same water column. The predominance 

of glacial melt is significant, since it is known to be an important factor in the operation of the 

ecosystem, for example by providing a source of nutrients and modifying the physical 

environment to control the spatial extent and magnitude of phytoplankton blooms.  

 

The Western Antarctic Peninsula is undergoing a very rapid change in climate, with 

increasing ocean and air temperatures, retreating glaciers and increases in precipitation associated 

with changes in atmospheric circulation. As climate change continues, we expect meteoric water 

inputs to the adjacent ocean to rise further. Sea ice in this sector of the Antarctic has shown a 

climatic decrease, thus we expect a reduction in oceanic sea ice melt fractions if this change 

continues. Continued monitoring of the oceanic freshwater budget at the western Peninsula is 
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needed to track these changes as they occur, and to better understand their ecological 

consequences. 

 

 

 

Keywords:  Antarctic Peninsula, Southern Ocean, Freshwater, Oxygen Isotopes, Sea Ice, Glacial 

Ice, Precipitation
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1. Introduction 

 

During the second half of the twentieth century, the Western Antarctic Peninsula (WAP; Figure 

1) underwent the most dramatic warming of any region in the Southern Hemisphere (Vaughan et 

al., 2003). Mean annual air temperatures here increased by nearly 3ºC during this period, with the 

warming concentrated predominantly in the austral fall and winter (King and Harangozo, 1998; 

Turner et al., 2005). Whilst some studies have linked a warming in this region to a change in the 

large-scale atmospheric circulation (in particular, a strengthening of the polar vortex, e.g. 

Thompson and Solomon (2002), an explanation for the full magnitude and seasonality of the 

observed warming remains elusive.  

 

A paucity of reliable information on atmospheric circulation prior to the availability of satellite 

temperature sounder data in the late 1970s has hampered studies seeking to elucidate the causes 

and nature of the WAP warming. However, recent data have shown a strong correlation between 

atmospheric circulation in this region and WAP temperatures. Anomalously cyclonic conditions 

have been observed to be associated with warmer WAP winters as a result of increased warm air 

advection. Conversely, anomalously anticyclonic conditions have been observed to be associated 

with colder WAP winters caused by a decrease in warm air advection (Turner et al., 1997). 

Accordingly, it seems likely that the trend toward higher WAP temperatures has been 

accompanied by a shift toward more cyclonic atmospheric circulation. The observed increase in 

precipitation at WAP stations during the period 1956-1992 is consistent with such a shift (Turner 

et al., 1997). 
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The warming over the Antarctic Peninsula has had a profound influence on the ice sheet. A recent 

study showed that the majority of glaciers retreated during the past 50 years, and that average 

retreat rates are accelerating (Cook et al., 2005). It has also been shown that the annual duration 

of melting conditions has increased markedly on the Antarctic Peninsula (Vaughan, 2006). 

Whilst the majority of the increased meltwater will be refrozen within the ice sheet, there are 

indications that the increased runoff will make a significant contribution to global sea level rise 

(Vaughan, 2006). 

 

Significant changes have also been observed in sea ice adjacent to the WAP. A long-term 

reduction in sea ice extent in the Bellingshausen Sea has been inferred, based on comparisons of 

modern data with earlier (sparse) data from ship observations during the middle of the twentieth 

century (King and Harangozo, 1998). The Bellingshausen Sea has also undergone a shortening of 

the sea ice season during the satellite era (Jacobs and Comiso, 1993; Parkinson, 2002).  

 

Relatively little is known concerning the role of the ocean in this WAP climate change. There are 

indications of a large-scale warming of the deep waters of the Southern Ocean (Gille, 2002), 

some of which intrude onto the shelf in modified form, and studies have shown that melt rates of 

glaciers can depend strongly upon the temperature of marine waters impacting on them 

(Shepherd et al., 2004). However, the hypothesised link between changing ocean and glacial 

conditions is not yet proven. Observations of changing properties in the WAP and Bellingshausen 

Sea regions during the second half of the twentieth century have shown a profound warming of 

the summer ocean surface, of sufficient magnitude to have ecological consequences (Meredith 
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and King, 2005). There has also been a marked salinification of the summer ocean surface, 

caused by mixed layer processes driven by reduced sea ice formation (Meredith and King, 2005). 

 

It is important to develop an understanding of the freshwater budget of the upper ocean adjacent 

to the WAP. At temperatures near the freezing point, seawater density depends almost entirely 

upon salinity. Accordingly, freshwater supplied to the ocean surface will act to strongly stabilise 

the water column, whilst sea ice formation (extraction of freshwater from the ocean surface) will 

destabilise the upper ocean and lead to deeper mixed layers (Meredith et al., 2004; Smith and 

Klinck, 2002). Research in the WAP region has shown that water column stability and a shallow 

mixed layer are essential to phytoplankton bloom development (Mitchell and Holm-Hansen, 

1991). Seasonal variability in the amount and spatial extent of glacial meltwater supplied to the 

ocean plays a critical role in oceanic ecosystem processes, and particularly primary production 

(Dierssen et al., 2002). For example, adding a thin lens of freshwater to the ocean surface will 

greatly increase its stability, hence enabling phytoplankton to remain within a favourable light 

environment by preventing mixing to depths where light is a limiting factor. It should also be 

noted that glacial meltwater can be enriched in iron and other micronutrients, resulting from the 

glacial scouring of underlying rock surfaces and accumulation from atmospheric deposition 

(Dierssen et al., 2002). It has been argued that increased runoff from melting glaciers as the 

Antarctic Peninsula continues to warm could lead to an increase in biomass in coastal waters, and 

a shift in phytoplankton assemblage composition (Dierssen et al., 2002). It is known that in the 

WAP region, lower salinities are associated with a transition from a diatom-dominated system to 

one dominated by smaller cryptophytes, with potential consequences for the abundance of 

zooplankton populations (Moline et al., 2000).  
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As well as being sensitive to climate variability itself, changes in the region west of the WAP can 

also drive variability in ocean properties at lower latitudes. Results from climate modelling 

studies have shown that the Bellingshausen Sea area, when “hosed” with additional freshwater 

inputs, can induce variability in ocean properties in the tropical Atlantic on decadal timescales, 

with oceanic advection being a key process (Hickey and Weaver, 2004). 

 

Given the importance of freshwater to both physical and ecological dynamics west of the WAP 

and beyond, it is clearly desirable to maintain systematic monitoring capable of distinguishing the 

changing inputs to the ocean of freshwater from different sources, so that their effects (separately 

and combined) can be properly ascertained. In this paper, we present initial results from such a 

study, and comment on the implications of the observed levels and variability of the different 

freshwater inputs. 

 

2. Background 

2.1 Oceanographic context 

 

The Southern Ocean Global Ocean Ecosystem Dynamics (SO GLOBEC) fieldwork area is 

centred on the central section of the WAP shelf, including Marguerite Bay (Figures 1, 2). 

Marguerite Bay is open to the west, bounded to the north and south by Adelaide Island and 

Alexander Island respectively, and closed to the east by the Antarctic Peninsula. The WAP shelf 

is typically around 450 m deep, with a deep trough, dubbed the Marguerite Trough, running into 
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Marguerite Bay from the shelf edge. Maximum depths of around 1600 m are found close to 

Alexander Island (Figure 2). 

 

The water mass structure over the WAP continental shelf and in Marguerite Bay is relatively 

straightforward, and has been described in detail previously (Hofmann et al., 1996; Klinck et al., 

2004; Meredith et al., 2004; Smith et al., 1999). The oceanic source for all other water masses 

found here is Circumpolar Deep Water (CDW). This is the voluminous, mid-depth water mass of 

the Antarctic Circumpolar Current (ACC), the southern boundary of which flows northeastward 

close to the WAP shelf slope. CDW can intrude onto the WAP shelf in certain locations, and it is 

believed that deep troughs that cross the shelf break (e.g. the Marguerite Trough) are important 

for this transfer. Unlike many other Antarctic shelf regions, there is no Antarctic Slope Front at 

the outer shelf break and slope (Jacobs, 1991; Whitworth et al., 1998); consequently there is no 

dynamic barrier to the flow of CDW onto the shelf (Talbot, 1988). Momentum advection and 

curvature of the shelf break are important in driving CDW onto the shelf, following which the 

general shelf circulation can draw the CDW into the interior (Dinniman and Klinck, 2004). In a 

study of CDW intrusion onto the shelf along Marguerite Trough, it was deduced that the inflow is 

episodic, and that 4-6 events can occur in a year (Klinck et al., 2004). 

 

CDW typically has potential temperatures of 1.0-2.0ºC and salinities of 34.60-34.74. It is usually 

considered as being comprised of two separate water masses, namely Upper CDW (UCDW), 

characterised by a relative maximum in potential temperature at a potential density of 27.72, and 

Lower CDW (LCDW), characterised by a relative maximum in salinity at a potential density of 

27.80. UCDW is the form of CDW that dominates the deeper layers of the WAP shelf, though 
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LCDW has been observed in the deepest parts of some of the troughs (Klinck et al., 2004). The 

mechanisms by which LCDW intrudes onto the shelf are presently not well known.  

 

A pycnocline separates the UCDW from the overlying Antarctic Surface Water (AASW). In 

winter, AASW is a relatively thick layer (typically 50-100 m) of cold water, with temperatures 

close to the freezing point and salinities around 33.5-34.0. During summer, ice melt freshens the 

very surface of this layer, which is also warmed by insolation. This warmer, fresher layer is 

undercut by the remnant of the deep winter mixed layer; this is termed Winter Water (WW) 

(Mosby, 1934; Toole, 1981), and is characterised by a minimum in potential temperature. 

 

Modification of the shelf UCDW can be explained by a combination of across-shelf diffusion of 

heat and salt from offshore UCDW and vertical diffusion of heat and salt across the permanent 

pycnocline into the WW layer (Smith et al., 1999); this does not, however, preclude variability in 

the advective transfer of UCDW onto the shelf. Diffusive-convective instability is thought to be 

important for the upward heat flux across the pycnocline, and it is believed that the UCDW 

intrusions onto the shelf are important in both the heat and salt budgets of the area (Smith and 

Klinck, 2002). They are also likely to be ecologically important. 

 

Circulation on the WAP shelf includes a coastal current that flows southwest along the west coast 

of Adelaide Island and into Marguerite Bay, then around the bay before exiting near Alexander 

Island (Beardsley et al., 2004; Klinck et al., 2004; Moffat et al., 2007). Its pathway through 

Marguerite Bay is, however, difficult to trace (Moffat et al., 2007). It is believed that this coastal 
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current may result from seasonal buoyancy forcing, primarily due to the input of coastal runoff at 

the western flank of the WAP (Moffat et al., 2007).  

 

There is marked interannual variability in water mass properties in the region. For example, it has 

been shown that ocean properties in northern Marguerite Bay show variability in response to 

atmospheric and cryospheric forcing associated with the El Niño / Southern Oscillation (ENSO) 

phenomenon (Meredith et al., 2004). An especially deep winter mixed layer was observed in 

response to the strong 1997/98 El Niño event. This produced a deep (~150 m) and saline (~34.0) 

variety of WW that persisted into the following summer, with putative biogeochemical and 

ecological consequences (see Meredith et al. (2004) and Clarke et al. (2007) for discussion). 

Consideration of the forcings indicated that the scale of the ocean response to El Niño covered a 

broader spatial area than just the northern part of Marguerite Bay, though it was not possible to 

determine its full extent.  

 

2.2 Sea ice characteristics 

 

The northern part of Marguerite Bay is a seasonally ice covered region. Observations of ice cover 

available from passive microwave satellite sensors, such as the SSM/I, show Marguerite Bay 

typically ice-free (or with low concentrations) from December to March, although the start and 

end dates of the ice-free period can vary from November to January and March to May 

respectively. The presence of Rothera Research Station on Adelaide Island at the northern head 

of Marguerite Bay (Figures 1, 2) facilitates year-round in situ observations of sea ice 

concentration and type. Observations have been archived since 1997, and are summarised in 
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Figure 3. They are split into several subsidiary bays: Ryder Bay (where the oceanographic time 

series is taken) being the most comprehensively archived, although observations for Jenny Bay, 

South Cove and Hanger Cove are also available. Ryder Bay is typically largely covered in fast ice 

from June to September. There are typically periods of weeks where the fast ice cover is 

10/10ths, interspersed with periods of a few days of lower concentration where there is clear 

water or brash ice. Ice free conditions and days with small concentrations of brash ice dominate 

the rest of the year; it is unusual for there to be multi-year ice.  

 

There are sporadic measurements of ice thickness available for Ryder Bay, though by logistical 

necessity these are only made on “safe” areas of fast sea ice. Depths are typically 0.5 m during 

the late winter. In heavy ice years, such as 2002, the fast ice can last from May to November, 

whereas in light ice years, such as 1998, the periods of persistent fast ice can be as short as a few 

days. Meredith et al. (2004) show time series of monthly-mean sea ice fraction (independent of 

ice type) for 1998 to 2002 (their Figure 9). They also describe calculations of ice production, 

based on a simple 1-dimensional surface energy balance model, which uses primarily in situ 

meteorological and sea ice observations to calculate ice production amounts. Their Figures 12 

and 17 illustrate that around 0.01 m of sea ice per day are produced during the freezing season; 

accumulating to (on average) 1.9 m per year.     

 

2.3 Oxygen isotopes as oceanographic tracers 

 

Whilst measurements of salinity are often sufficient to quantify total freshwater input to the 

ocean, they cannot elucidate the relative contributions from different freshwater sources: other 
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tracers are required for this. The ratio of oxygen isotopes in seawater (H2
18

O to H2
16

O) is 

especially useful in this context (Craig and Gordon, 1965). In general, δ18
O (the sample ratio of 

H2
18

O to H2
16

O referenced to the international standard, Vienna Standard Mean Ocean Water 

(VSMOW)) at the surface of the ocean is increased by evaporation and decreased by 

precipitation. Away from the surface, δ18
O is a conservative tracer. In these contexts, it is similar 

to salinity as an ocean tracer. Indeed, it is well known that the surface of much of the world ocean 

shows a quasi-linear relationship between salinity and δ18
O, with the slope depending on the 

evaporation/precipitation characteristics of the regions under study.  

 

Unlike salinity, however, δ18
O in precipitation decreases with increasing latitude due to its 

correlation with temperature. High-latitude precipitation is isotopically light (i.e. depleted in the 

heavier H2
18

O molecule), with δ18
O values as low as –50‰ reported (Weiss et al., 1979). The 

isotopically light nature of glacial ice (which is formed from high-latitude precipitation) has 

proved valuable in tracing the input of glacial ice melt to the Antarctic Bottom Water that forms 

on the shelves of the continent (e.g. Schlosser et al., 1990; Schlosser et al., 1991; Weiss et al., 

1979; Weppernig et al., 1996). A second important difference between salinity and δ18
O is their 

behaviours during sea ice formation and melting. Ocean salinity is strongly affected by these 

processes, as a result of brine rejection or freshwater addition. However, δ18
O is only very 

marginally affected by these processes, with the fractionation factor for ice in equilibrium with 

seawater being of order 1.0026 to 1.0035 (Lehmann and Siegenthaler, 1991; Macdonald et al., 

1995; Majoube, 1971). The small isotope difference between sea ice and the surface water from 

which it formed has been used in various studies to distinguish sea ice melt from meteoric 

freshwater input (i.e. from freshwater deriving from the atmosphere), which is isotopically much 
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lighter at high latitudes (e.g. Bauch et al., 1995; Jacobs et al., 1985; Meredith et al., 1999; 

Meredith et al., 2001; Schlosser et al., 1994). We use δ18
O data here in this context. 

 

3. Methods 

 

Since late 1997, the British Antarctic Survey (BAS) has been conducting the Rothera 

Oceanographic and Biological Time Series (RaTS) project in Ryder Bay, close to the BAS 

Research Station at Rothera on Adelaide Island (Figure 2). As part of RaTS, a Chelsea 

Instruments Aquapack Conductivity-Temperature-Depth (CTD) instrument was used to profile 

the upper-ocean characteristics up to the end of 2002. The instrument package was lowered and 

raised using a hand-cranked winch, with casts limited to a maximum depth of 200 m by the 

pressure rating of the instrument (water depth at the sampling site is approximately 400 m). In 

early 2003, this instrument was replaced by a SeaBird SBE19, the higher pressure rating of which 

has enabled profiling that approaches the seabed. Both instruments were operated in self-

recording mode, with data downloaded immediately after collection at Rothera. Casts were 

conducted from an inflatable boat during the ice-free months of the austral summer, and through 

a hole cut in the sea ice during the austral winter.  

 

Precision of the CTD data was maintained by performing concurrent casts with SeaBird 911plus 

CTDs during the regular visits of RRS James Clark Ross and ARSV Laurence M. Gould to 

Rothera. The SeaBird salinity data were themselves calibrated using discrete samples measured 

on a Guildine Autosal 8400B salinometer, standardised with International Association for the 
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Physical Sciences of the Ocean (IAPSO) P-series standard seawater. Offsets to the Aquapack and 

SBE19 salinity data were applied to reconcile them with the calibrated SeaBird 911plus data.  

 

In addition to the RaTS CTD casts, discrete water samples were taken from 15 m depth at the 

RaTS site using a Niskin bottle closed with a brass messenger. These samples have been used for 

a range of purposes, including measurements of size-fractionated chlorophyll and macronutrient 

concentrations. Since early 2002, samples from these Niskin bottles have also been drawn for 

oxygen isotope analysis; here we use data from the years 2002 and 2003. These samples were 

stored in 150 ml medical flat bottles with rubber inserts in the caps; these were sealed with 

Parafilm to prevent evaporation. Batches of oxygen isotope samples were transported annually 

(held at +4ºC in the dark) to the Natural Environment Research Council Isotope Geosciences 

Laboratory (NIGL, Keyworth, U.K.). The waters were analysed for isotopes using the 

equilibration method for oxygen (Epstein and Mayeda, 1953) and a VG Isoprep 18 and Sira 10 

mass spectrometer. During CTD casts performed from RRS James Clark Ross, the opportunity 

was taken to collect several samples from different depth levels, to better elucidate the vertical 

distribution of the different freshwater components; these vertical profiles of δ18
O were obtained 

in successive Decembers of 2001, 2002 and 2003. These samples were stored and transported in 

an identical fashion to the RaTS time series samples. All samples were analysed in triplicate to 

ensure data integrity; average precision of these samples is better than ± 0.02‰. Data are 

available upon request by contacting the authors. 

 

4. Results 

4.1 Profiles and time series 
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Figure 4 shows the vertical profiles of salinity and δ18
O obtained during the Decembers of 2001, 

2002 and 2003. The profiles show a broadly similar structure, with the deepest water present 

representing the upper layer of CDW. This is saline compared with the overlying waters 

(approximately 34.62), and relatively isotopically heavy (i.e. relatively enriched in the heavier 

H2
18

O molecule) with δ18
O values of approximately –0.08‰. Above this, the profiles become 

fresher and isotopically lighter toward the surface, where values are around 33.7 to 33.8 in 

salinity, and –0.55 to –0.60‰ in δ18
O. That the surface waters are both fresh and isotopically 

light compared with CDW indicates that these waters contained significant meteoric water, not 

solely sea ice melt. The similarity of the profiles might be taken to suggest minimal interannual 

variability over this period; however, data with a higher frequency of sampling are needed to 

avoid aliassing problems. 

 

The RaTS CTD time series of salinity, potential temperature and density for the upper 200 m of 

the water column are shown in Figure 5. For reference, the deeper CTD profiles with full-depth 

δ18
O data (conducted from RRS James Clark Ross and shown in Figure 4) were performed at the 

start, middle and end of the sequence shown in Figure 5. The data show seasonal progressions of 

properties that are relatively typical of this location (e.g. Meredith et al., 2004), with freshest 

surface water during January-March (around 32.0 to 33.0), and most saline surface water during 

the austral fall and winter (August-October, around 33.5 to 33.9). Potential temperature is highest 

during December-February (typically 1-3˚C), reaching the surface freezing point by June and 

remaining there until October/November. Density strongly resembles salinity, as a consequence 

of the equation of state being dominated by salinity at low temperatures. There is some evidence 
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of difference between the two years, particularly in the depth of the winter mixed layer, which is 

considerably deeper in 2003 compared with 2002. We believe this is due to variability in the 

large-scale atmospheric forcing of the system, and will discuss this separately. 

 

Time series of salinity and potential temperature from 15 m depth in the RaTS CTD data during 

2003 and 2003 are shown in Figure 6 (upper and middle panel). The seasonality is again obvious, 

with freshest and warmest waters during the austral summer, and high salinities and freezing-

point temperatures during the austral winter. Figure 6 (lower panel) shows the corresponding 

series of δ18
O from samples collected at 15 m depth. This also shows a marked seasonal signal, 

with isotopically lightest values (down to –0.8 to –0.9‰) during the austral summer, and 

isotopically heaviest values (up to around –0.5‰) during the austral winter. This seasonality in 

δ18
O is a strong indication of seasonality in the meteoric water input to northern Marguerite Bay, 

since sea ice processes alone would induce seasonality in salinity, but not significantly in δ18
O. 

Note that, even during winter, the δ18
O value at 15 m is still much lower than that of the 

underlying CDW (Figure 4), indicating that significant meteoric water remains in the upper 

layers of Marguerite Bay throughout the year.  

 

4.2 Seasonal freshwater loci 

 

Freshwater loci (the evolution in time of the salinity/δ18
O relationship) form a useful way of 

determining the dominant processes and the temporal variability of their influence. The locus for 

the 2002 data from the RaTS sampling site is shown in Figure 7. For this diagram, data points 

have been colour-coded and labelled according to the time of year. Extrapolations between the 
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endpoint of CDW and the meteoric water endmembers (precipitation and glacial meltwater) are 

marked (dashed lines), along with an approximate median line. (Section 4.3 details the isotope 

characteristics of these freshwater sources in more detail). In Figure 7, mixing of Marguerite Bay 

surface water with CDW would move the data points diagonally upward, along the line toward 

CDW. Conversely, mixing with meteoric water would move the points diagonally downward, 

along the line toward fresher, isotopically lighter waters. Sea ice processes would move the data 

points almost horizontally on this diagram. 

 

The cluster of data points for January (yellow) have salinities of around 33.0-33.4, and δ18
O 

values mostly between –0.6 and –0.7‰. If we consider the November/December 2002 conditions 

(black data points) to be broadly indicative of the likely conditions in late 2001 (for which we 

have no δ18
O data), the shift in the salinity- δ18

O characteristics from November/December to 

January would be partly horizontal (to the left) and partly diagonal (toward isotopically light 

freshwater), and thus a combination of addition of sea ice melt and an addition of meteoric water. 

The next cluster of points on the locus (February-May; green) represents the freshest and 

isotopically lightest data in the sequence, with salinities as low as 32.9 and δ18
O less than 

-0.85‰. The shift to this cluster is indicative of the addition of substantial quantities of meteoric 

water, but significantly no sea ice melt is involved (there is no extra horizontal shift relative to 

the meteoric water envelope lines). The transition to the next cluster (June/July; red) sees data 

points moving toward higher salinities and higher δ18
O values. The cluster moves horizontally 

out of the meteoric water envelope, thus we infer both that both freezing and mixing with CDW 

(as the mixed layer deepens) are important for this transition. The following transition to August-

October (blue points) sees generally higher salinities (around 33.75) with little change in δ18
O: 
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this mainly horizontal shift is indicative of the effect of sea ice formation. During 

November/December (black points), salinities and δ18
O values are concurrently at their highest 

(approximately 33.8 and –0.5‰ respectively). 

 

The corresponding locus for 2003 in shown in Figure 8. Whilst there are strong similarities with 

that of 2002 (Figure 7), there are also clear differences. The locus is clustered much more tightly 

to the meteoric water envelope (dashed lines), indicating less variability in the prevalence of sea 

ice melt at 15 m throughout the year. Indeed, only parts of the August-October and 

November/December clusters lie outside the envelope. From November/December 2002 (Figure 

7) there is a small, predominantly horizontal shift toward January 2003 (yellow cluster, Figure 8), 

indicative of small quantities of sea ice melt. Conversely, during the transition to February-May, 

the cluster of points remains close to the middle of the meteoric water envelope. This indicates 

addition of meteoric water, and minimal influence of sea ice processes. The locus between 

June/July and August-October 2003 (red and blue, Figure 8) lies predominantly (but not 

exclusively) within the meteoric water envelope, indicating mixing with CDW to be dominant 

process, but with some sea ice formation occurring also. More mixing with the underlying CDW 

in 2003 compared with 2002 is not unexpected, given the deeper winter mixed layer in 2003.  

 

It is important to note that the tighter clustering of the data points to the meteoric water envelope 

in 2003, compared with 2002, indicates only that the sea ice prevalence was less variable at 15m 

depth during this year, it does not indicate that it was less significant in the water column as a 

whole. Given the deeper mixed layer in winter 2003, sea ice melt integrated over the mixed layer 

 18



could well be more significant in 2003. To fully address this, it is useful to first quantify the 

relative contributions from the freshwater sources. 

  

4.3 Quantification of freshwater components 

 

To quantify the relative prevalence of the respective freshwater contributors, we solved the three-

component mass balance for each isotope sample collected: 

 

fcdw + fsim + fmet = 1     (1) 

Scdw.fcdw + Ssim.fsim + Smet.fmet = S    (2) 

δcdw.fcdw + δsim.fsim + δmet.fmet = δ    (3) 

 

where: 

fcdw, (sim), [met] is the derived fraction of UCDW, (sea ice melt), [meteoric water],  

Scdw, (sim), [met] is the salinity of the UCDW, (sea ice melt), [meteoric water] endmember, 

δcdw. (sim), [met] is the δ18
O of the UCDW, (sea ice melt), [meteoric water] endmember, 

S is the measured salinity, 

δ is the measured δ18
O value. 

 

The choice of values for characteristics of the endmembers (i.e. the undiluted sources prior to 

their being mixed to form the waters that were sampled) is important in determining realistic 

fractions for the freshwater contributors. Most of these are already clearly established, but others 

(such as the average δ18
O of meteoric water) are less well known. We have instigated a program 
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of measuring these endmembers more thoroughly, but for the purposes of the present paper we 

have adopted the following values (summarized in Table 1). The meteoric water endmember 

salinity is set to 0. The CDW endmember salinity is set to 34.62; this is the deepest value 

obtained during the vertical profiling at the RaTS site. Note that this value does not represent 

“pure” CDW in the ACC, but rather best depicts the local variety to which freshwater is added. 

The CDW δ18
O is set to –0.08‰; again, this is the deepest value obtained during the vertical 

profiling at the RaTS site, and is used for the same reasons given above. The sea ice melt salinity 

endmember is set to 7, which is a representative value for the region under study. The δ18
O 

endmember value for sea ice is set to +2.1‰, derived as a realistic δ18
O value of the surface 

water for this area plus an offset to account for fractionation upon freezing.  

 

The largest uncertainties are associated with the choice of δ18
O value for the meteoric water 

endmember. This is because it is a combination of local precipitation (which can have a large 

degree of variability if measured directly), and glacial ice melt. Glacial ice melt itself can be in 

the form of surface runoff, or melt from a glacier or ice shelf in direct contact with the ocean. 

Precipitation and glacial ice melt can have different δ18
O values, since precipitation that is 

incorporated into glaciers may have accumulated at different surface elevations and/or can have 

fallen during a time of different climatic conditions. The isotope values of the different terms in 

the mass balance of the northern end of George VI ice shelf (which calves into Marguerite Bay) 

were discussed previously by (Potter and Paren, 1985). They observed that the ice flux into the 

shelf had a δ18
O value of around –20‰, whereas direct accumulation onto the northern part of the 

ice shelf in the form of precipitation had a much higher δ18
O value, around –13‰. Accordingly, 

we have adopted a value of –17‰ as a reasonable mean δ18
O value of the meteoric endmember 
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in our freshwater balance, though with large associated uncertainty. Errors in the derived 

freshwater percentages resulting from uncertainty in choice of endmember (determined through 

sensitivity studies) and measurement error are typically around ± 1%. 

 

The results of these calculations are shown in Figure 9, the upper curve of which shows the 

temporal evolution of the meteoric water percentage at 15 m depth, and the lower curve of which 

shows the corresponding sea ice melt percentages. Note that the sea ice melt percentages are 

frequently negative; this indicates that at the time of sampling, there had been a net sea ice 

formation from these waters. Meteoric water percentages vary between nearly 5% during the late 

austral summer and fall to less than 3% during the austral winter. Sea ice melt percentages vary 

between 0-1% during the austral summer, to –1 to –2% during the austral winter.  

 

It should be noted that the meteoric water prevalence is always higher than the sea ice prevalence, 

demonstrating clearly the importance of meteoric water inputs at this location. The seasonality in 

the meteoric water is comparable to that in the sea ice melt (around 2% range in both years, 

compared with ~2% and 1% for sea ice melt in 2002 and 2003 respectively). This indicates that 

assumptions of freshwater seasonality being controlled predominantly by sea ice formation and 

melting in Antarctic coastal waters are not necessarily valid. We note that Ryder Bay, although 

being fairly open, is surrounded by glaciers which may have increased the glacial meltwater input 

at the RaTS site above that typical for the WAP shelf as a whole. 

 

As observed above, the sea ice melt at 15 m is much less variable in 2003 compared with 2002. 

In particular, during the months July through October, the values for sea ice melt are around –0.5 
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to –1.0% in 2003, compared with around –1.5% in 2002. However, the mixed layer was much 

deeper in 2003, down to around 180 m in August and averaging around 120 m for July to 

October (Figure 5). During 2002, the mixed layer for the same period was approximately one 

third as deep, around 40 m. If we assume momentarily that the freshwater fractions derived for 

15 m depth are spread equally over the full depth of the mixed layer, then the integrated sea ice 

melt percentages in 2003 become comparable to those in 2002, and very possibly larger. 

 

We should note that the above calculation makes a number of assumptions, for example it ignores 

the possibility of changes in freshwater content beneath the mixed layer in the underlying 

pycnocline. With data from just one level (15 m), we cannot fully quantify the separate integrated 

freshwater components in the upper ocean as a function of time. However, using the full-depth 

profiles of δ18
O obtained from RRS James Clark Ross during the Decembers of 2001, 2002 and 

2003, we can at least calculate the freshwater inventories at these times. To do this, we first 

calculated the relative freshwater percentages for these profiles using Equations 1-3 above. The 

results of this are shown in Figure 10, from which it can be seen that the meteoric water content 

greatly exceeds the sea ice melt content. Meteoric water content reaches 3% at the surface, whilst 

sea ice melt content at the surface is between –0.5 and –1.0%. To quantify the total freshwater 

components present in the water column at the time of sampling, we integrated the derived 

fractions with depth: 

 

∫=
0

Z

met met

max

dzf  H      (4) 
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dz f H

0

Z

simsim

max

∫=      (5) 

 

where  Hmet is the column inventory of meteoric water, 

 Hsim is the column inventory of sea ice melt, 

 Zmax is the deepest level over which the profile is integrated. 

 

The results of these calculations are shown in Figure 10. Meteoric water inventories were 

between around 4.0 and 4.5 m, with uncertainty of around 1 m. Sea ice melt inventories were 

around –1 m, with similar uncertainty. Accounting for the difference in density between water 

and ice (ratio of around 0.9), this would indicate that a net amount of around 1.1 m of sea ice had 

been formed from the water column at the time of sampling, although the uncertainty in this 

estimate is large. Note that this does not imply that sea ice of this thickness of existed in 

Marguerite Bay at the time; rather it is indicative of the net thickness of sea ice that had formed 

from the water column up to the time it was sampled. 

 

It is also important to note that the quantified prevalences of sea ice melt and meteoric water are 

from just one location, and previous observations (Meredith et al., 2004) indicate that oceanic 

advection is important in controlling the temporally-evolving properties in northern Marguerite 

Bay. The importance of advection to the freshwater budget of this area is seen further from 

calculations of local ice production per unit area, made with a one-dimensional model and using 

forcings derived from meteorological and sea-ice observations collected at the nearby Rothera 

Research Station. Details of the ice production model and its application to the Marguerite Bay 

region have been described previously (Meredith et al., 2004; Renfrew et al., 2002).  
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Annual ice production derived using this model was 2.97m in 2001, 0.98m in 2002, and 2.80m in 

2003. The lower ice production in 2002 was primarily due to a generally high sea ice fraction 

during the winter months, which cut off further sea ice production, and also contributed to the 

relatively shallow mixed-layer (Figure 5) by limiting wind-induced oceanic mixing.  Whilst the 

2002 value agrees well with the isotope-derived value for ice formation of 1m, especially given 

the significant uncertainty in this value, the 2001 and 2003 values do not. The discrepancy arises 

because the model quantifies ice production at a single location, whereas the isotope-derived 

value inherently includes waters that are advected through the sampling area, and which may 

have received freshwater inputs at significant distances from the RaTS site. It has been 

demonstrated already that the RaTS hydrographic data show variability in response to changes in 

large-scale forcing and climate variability (Meredith et al., 2004), rather than changes in purely 

local conditions, and clearly this is equally significant for more exotic tracers such as oxygen 

isotopes. It is important to bear this in mind when interpreting the results presented here. 

 

6. Discussion and Conclusions 

 

Whilst the tracers we have used (salinity, δ18
O) are not capable of distinguishing glacial ice melt 

separately from direct precipitation into the ocean, there are good reasons to suspect that the 

glacial ice melt component is the largest contributor to the meteoric water. For example, during 

2002, there is a phase difference between the peak freshwater prevalences (Figure 9). The sea ice 

melt percentage peaked in late January, whereas the meteoric water did not peak until March. 

This indicates that the meteoric water was not dominated by snow that had accumulated on top of 
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the sea ice during winter, else they would have peaked at the same time. The difference in the 

times of peaking therefore reflects the time for maximum glacial runoff to reach the RaTS 

sampling site. 

 

A further indication of the relative importances of glacial ice melt and precipitation in the 

meteoric water input to the ocean is provided from meteorological analyses. Note that 

measurements of precipitation in this region are sparse, and it is difficult to distinguish incident 

precipitation from blowing snow. Therefore, we instead examined the output of a regional 

atmospheric model, integrated for 7 years with a horizontal grid spacing of 14 km and 

realistically forced at the boundaries (Van Lipzig et al., 2004). Figure 11 shows the precipitation 

averaged over Marguerite Bay; it can be seen that average precipitation into Marguerite Bay is of 

order 0.1 m per month (around 1.2 m annual average), with a significant semiannual term 

superposed. Whilst there is uncertainty concerning the rate at which this precipitation is mixed to 

deeper layers in the ocean or advected away from the region of input, this is significantly less 

than the column inventory of meteoric water measured at the RaTS site in December (around 

4 m). This again suggests glacial ice melt to be the dominant source of meteoric water input.  

 

The significant amounts of glacial ice melt input to the ocean has important consequences for 

both the physical and biological systems. The freezing point of water is a function of salinity, 

thus the input of glacial ice melt will act to influence further sea ice production. This will 

subsequently impact on local processes such as air-sea fluxes of heat, momentum, and so on. 

There are large-scale consequences also; for example, studies with coupled climate models have 

indicated that enhanced freshwater inputs to the region west of the Antarctic Peninsula can, over 
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long periods, induce changes in ocean temperature, salinity and isopycnal depth in the tropical 

Atlantic (Hickey and Weaver, 2004). Indeed, this mechanism was put forward as a possible 

explanation for an observed decadal mode of tropical Atlantic variability. 

 

Glacial ice inputs are known to be important for ecosystem dynamics in Antarctic waters. Glacial 

meltwater can by enriched in iron and other micronutrients, and thereby constitute a source of 

essential trace micronutrients for offshore waters, with consequences for primary production 

there (Dierssen et al., 2002). Release of glacial meltwater will also act to stabilise the water 

column. This will have the action of retaining phytoplankton within a favourable light 

environment by reducing the depth of mixing, and it is known that water column stability and a 

shallow mixed layer are critical for phytoplankton bloom development in this region (Mitchell 

and Holm-Hansen, 1991). There will also be secondary consequences of a shallower mixed layer 

and larger concentrations of phytoplankton. For example, these factors will tend to restrict heat 

input from the atmosphere to shallower depths, by blocking the downward penetration of 

radiation and restricting the depth of mixing of warmed surface waters. This will tend to produce 

warmer surface waters, again with impacts on sea ice production and associated biogeochemical 

and ecological functions. 

 

The seasonal cycles of meteoric water and sea ice melt fractions that we have derived represent 

the present-day situation at the western Peninsula, following at least 50 years of rapid regional 

climate change. As this change continues, the mean prevalence and seasonality in the freshwater 

fractions will undoubtedly change also. For example, the majority of glaciers on the Peninsula are 

retreating, and this retreat is accelerating (Cook et al., 2005). It is also known that the annual 
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melting period has been increasing at the Peninsula, at a rate of around half a day per year 

(Torinesi et al., 2003). These changes will act to increase the prevalence of meteoric water, and 

are also likely to increase the magnitude of its seasonality (c.f. Figure 9).  

 

Although data from the pre-satellite era are sparse, indications are that the sea ice extent in the 

Bellingshausen Sea has decreased significantly since the 1950s (King and Harangozo, 1998). For 

the satellite era, various studies have shown geographically-significant patterns of sea ice 

changes. It has been shown that sea ice duration in the region west of the Peninsula has decreased 

in duration by around 1-2 days per year (Parkinson, 2002; Vaughan et al., 2003). It is worth 

noting that the atmospheric warming trend at the Peninsula is strongest during April-September, 

coinciding with the time of strongest sea ice formation. Overall, these changes (if continued) are 

likely to be represented as a “flattening” of the seasonal sea ice melt curve (c.f. Figure 9), with 

less positive sea ice melt during summer and less negative sea ice melt during winter. This 

accords well with observations of previous changes in surface ocean salinity in the 

Bellingshausen Sea during the second half of the last century (Meredith and King, 2005), where a 

strong summer salinification was observed, driven by mixed layer processes associated with 

reduced sea ice production. This summer salinification is equivalent to a long-term reduction in 

the summer prevalence of sea ice melt, and would be seen as a reduction in the seasonality of the 

sea ice melt curve (Figure 9). 

 

It has been shown previously that winter mixed layer depths in the region of Marguerite Bay and 

the WAP depend critically on the rate of sea ice production (Meredith et al., 2004; Smith and 

Klinck, 2002). The changes that have been observed at the WAP include a reduction in sea ice 

 27



formation; this will act to reduce the mixed layer depths, with likely impacts on biogeochemical 

processes and primary production. 

 

Unlike many regions around Antartica, the region west of the Antarctic Peninsula is not one 

where appreciable quantities of dense water are formed on the shelf. Consequently, for example, 

there are no major sources of Antarctic Bottom Water (AABW) in this sector of the Southern 

Ocean. However, downslope convection of dense water from the shelf has been observed 

occurring in front of Elephant Island, at the very tip of the Peninsula (Meredith et al., 2003), with 

subsequent ventilation of the deep CDW and AABW layers. Sea ice production is believed to be 

important to the production of this dense water, by adding salt to the shelf waters during winter. 

If the climate change continues in this region, extending to the tip of the Antarctic Peninsula, this 

mode of ventilating the deep Southern Ocean may be shut off. 

 

We note that our time series reflects the temporal evolution of freshwater characteristics at just 

one location. However, it has been seen previously (and is reiterated here) that this location is 

sensitive to large-scale climate change and variability (Meredith et al., 2004), and we believe it is 

likely to give indications of conditions and processes at broader scales than purely local. The 

wintertime data we are able to acquire from this location makes the series especially valuable in 

monitoring the evolving physical and ecological systems, since this is when some of the key 

processes occur (sea ice production, mixed layer deepening, mixing with CDW etc.). As climate 

change continues at the WAP, monitoring programs such as RaTS will continue to track the 

ecosystem’s response. Continued time series measurements of oxygen isotopes, using the 
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measurements presented here as a baseline, will enable determination of the changes in 

freshwater forcings, and the ecosystem changes that are induced in response. 
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Figure legends 

 

Figure 1. Location of Marguerite Bay on the Western Antarctic Peninsula. The 1000, 2000 and 

3000 m isobaths are marked. 

 

Figure 2. Bathymetry of Marguerite Bay, from the recently compiled SO GLOBEC bathymetric 

dataset. Shading denotes depths deeper than 1500 m (darkest), 1500-500 m, 500-250 m and 

shallower than 250 m (lightest). Marked are the British Antarctic Survey research station at 

Rothera on Adelaide Island, and the location of the Rothera Time Series (RaTS) sampling site in 

Ryder Bay. 

 

Figure 3. Winter fast-ice in Ryder Bay, northern Marguerite Bay, 1997-2006. Ice score ranges 

from 0 (open water) to 10 (complete fast ice cover). Data are plotted for the calendar year, so that 

winter lies in the centre of the plot. Figure reproduced from Clarke et al. (2007). 

 

Figure 4: Vertical profiles of δ18
O and salinity obtained by CTD casts at the RaTS site conducted 

from RRS James Clark Ross during December 2001 (red), December 2002 (black) and December 

2003 (blue).  

 

Figure 5: Time series of salinity, potential temperature (˚C) and density (σ0; kg/m
3
) for the upper 

200 m of the water column during 2002 and 2003, from CTD casts conducted at the RaTS site. 
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Figure 6: Time series of salinity, potential temperature and δ18
O from 15 m depth at the RaTS 

site during 2002 and 2003. 

 

Figure 7. Locus of freshwater characteristics at the RaTS sampling site in salinity/δ18
O space for 

2002. Data points have been colour-coded according to time of year. Extrapolations between 

CDW and precipitation (δ18
O ≈ –13‰) and glacial meltwater (δ18

O ≈ –20‰) are marked, along 

with an approximate median line. Mixing of Marguerite Bay surface water with CDW would 

move the data points diagonally upward, along the line toward CDW. Mixing with meteoric 

water would move the points diagonally downward, along the line toward fresher, isotopically 

lighter waters. Sea ice processes (melting “M” and freezing “F”) would move the data points 

almost horizontally on this diagram.  

 

Figure 8: As Figure 7, except for 2003. 

 

Figure 9. Time series of percentages of meteoric water and sea ice melt for 15 m depth at the 

RaTS sampling site. Series were derived using δ18
O and salinity data processed according to 

equations 1-3. Note that the sea ice melt values are frequently negative; this indicates that a net 

sea ice formation had occurred from the waters sampled at these times. 

 

Figure 10: Profiles of freshwater content (%) at the RaTS site derived from oxygen isotope and 

salinity data collected by RRS James Clark Ross during December 2001 (red), December 2002 

(black) and December 2003 (blue). Dashed lines indicate meteoric water percentages, and solid 

lines indicate sea ice melt percentages. Note that negative sea ice melt percentages denote a net 
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sea ice formation had occurred from these waters. Total column inventories (Hmet, Hsim) are 

shown for each year. 

 

Figure 11: Seasonal progression of Precipitation (square), Evaporation (open circle) and 

Precipitation minus Evaporation (solid circle) averaged over Marguerite Bay (Van Lipzig et al., 

2004).  
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Figures 

 
Figure 1. Location of Marguerite Bay on the Western Antarctic Peninsula. The 1000, 2000 and 

3000 m isobaths are marked. 
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Figure 2. Bathymetry of Marguerite Bay, from the recently compiled SO GLOBEC bathymetric 

dataset. Shading denotes depths deeper than 1500 m (darkest), 1500-500 m, 500-250 m and 

shallower than 250 m (lightest). Marked are the British Antarctic Survey research station at 

Rothera on Adelaide Island, and the location of the Rothera Time Series (RaTS) sampling site in 

Ryder Bay. 
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Figure 3. Winter fast-ice in Ryder Bay, northern Marguerite Bay, 1997-2006. Ice score ranges 

from 0 (open water) to 10 (complete fast ice cover). Data are plotted for the calendar year, so that 

winter lies in the centre of the plot. Figure reproduced from Clarke et al. (2007). 
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Figure 4: Vertical profiles of δ18

O and salinity obtained by CTD casts at the RaTS site conducted 

from RRS James Clark Ross during December 2001 (red), December 2002 (black) and December 

2003 (blue).  
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Figure 5: Time series of salinity, potential temperature (˚C) and density (σ0; kg/m

3
) for the upper 

200 m of the water column during 2002 and 2003, from CTD casts conducted at the RaTS site. 
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Figure 6: Time series of salinity, potential temperature and δ18
O from 15 m depth at the RaTS 

site during 2002 and 2003. 
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Figure 7. Locus of freshwater characteristics at the RaTS sampling site in salinity/δ18
O space for 

2002. Data points have been colour-coded according to time of year. Extrapolations between 

CDW and precipitation (δ18
O ≈ –13‰) and glacial meltwater (δ18

O ≈ –20‰) are marked, along 

with an approximate median line. Mixing of Marguerite Bay surface water with CDW would 

move the data points diagonally upward, along the line toward CDW. Mixing with meteoric 

water would move the points diagonally downward, along the line toward fresher, isotopically 

lighter waters. Sea ice processes (melting “M” and freezing “F”) would move the data points 

almost horizontally on this diagram.  
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Figure 8: As Figure 7, except for 2003. 
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Figure 9. Time series of percentages of meteoric water and sea ice melt for 15 m depth at the 

RaTS sampling site. Series were derived using δ18
O and salinity data processed according to 

equations 1-3. Note that the sea ice melt values are frequently negative; this indicates that a net 

sea ice formation had occurred from the waters sampled at these times. 
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Figure 10: Profiles of freshwater content (%) at the RaTS site derived from oxygen isotope and 

salinity data collected by RRS James Clark Ross during December 2001 (red), December 2002 

(black) and December 2003 (blue). Dashed lines indicate meteoric water percentages, and solid 

lines indicate sea ice melt percentages. Note that negative sea ice melt percentages denote a net 

sea ice formation had occurred from these waters. Total column inventories (Hmet, Hsim) are 

shown for each year. 
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Figure 11: Seasonal progression of Precipitation (square), Evaporation (open circle) and 

Precipitation minus Evaporation (solid circle) averaged over Marguerite Bay (Van Lipzig et al., 

2004).  
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Table 1. Values for endmembers used in mass balance calculations. Derivation of values is 

explained in the text. 

 

 CDW Sea ice melt Meteoric Water 

Salinity 34.62 7 0 

δ18
O (‰) -0.08 2.1 -17 
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