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PALEOCEANOGRAPHY, VOL. 5, NO. 3, PAGES 433-445, JUNE 1990 

VARIABILITY IN UPWELLING FIELDS IN THE 

NORTHWESTERN INDIAN OCEAN 

1. MODEL EXPERIMENTS FOR THE PAST 18,000 YEARS 

Mark E. Luther I and James J. O'Brien 

Mesoscale Air-Sea Interaction Group, Florida State 

University, Tallahassee 

Warren L. Prell 

Department of Geological Sciences, Brown 
University, Providence, Rhode Island 

Abstract. A nonlinear reduced gravity ocean model is used 
to assess the effects of changes in the monsoon winds during 
glacial and interglacial conditions on the seasonal circulation 
in the northwestern Indian Ocean. Winds from the National 

Center for Atmospheric Research Community Climate Model 
simulations for 18 kyr B.P. (the most recent glacial maximum 
and a period of weaker monsoon winds), 9 kyr B.P. (near the 
beginning of the present interglacial and a period of stronger 
monsoon winds), and present-day (0 kyr B.P.) conditions are 

used to drive the model to a steady seasonal cycle. Strength of 
upwelling fields are inferred in each case by integrating upward 
displacements of the model pycnocline over the prim• 
upwelling season of mid-April to mid-August. In both the 0 
kyr B.P. and the 9 kyr B.P. cases, a broad band of upwelling 
and decreased model upper layer thickness extends aloag the 
coast of the Arabian Peninsula out 350-500 km offshore 

during the southwest monsoon. This upwelling is driven by 
the strongly positive wind stress curl beneath the cyclonic side 
of the atmospheric Findlater Jet, located to the north and west 

of the jet axis. Farther offshore, in the anticyclonic region to 
the south and east of the jet axis, the negative wind stress curl 
drives downwelling and increased upper layer thickness. In the 
9 kyr B.P. case, the atmospheric jet is much stronger and 
narrower than in the 0 kyr B.P. case, with stronger values of 
both positive and negative curl to the northwest and southeast, 
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respectively, of the jet axis. This drives much stronger 
upwelling to the northwest of the jet axis and downwelling to 
the southeast. In the 18 kyr B.P. case, the Findlater Jet is 

very weak, and upwelling patterns are uniformly weak across 
the basin. The spatial distribution and temporal variation of 
the upwelling fauna in the sediment record is consistent with 

the model upwelling fields in all three cases. The ocean model 
thus provides the link between the climate model and the 
sedimentation data, verifying the hypothesis that variations in 

upwelling driven by variations in the strength of the monsoon 
jet are responsible for the observed variations in the sediment 

1. INTRODUCTION 

The dramatic reversals in the monsoon winds of the Indian 

Ocean drive corresponding reversals in the surface currents. 

Associated with these reversals are regions of strong upwelling 
that drive high rates of primary productivity. A wealth of 
geological evidence from lake levels, pollen profiles and deep- 
sea cores provides paleoclimafic records of monsoon 
variability. In addition, numerous model studies have 

demonstrated variability in the monsoons over geologic time 
(see Hastenrath [1985] or Kutzbach [19871 for a review). Over 
the last glacial-interglacial period, the strength of the monsoon 
winds has varied greatly, due to changes the Earth's orbital 
parameters and in surface boundary conditions, such as in 

albedo over the Tibetian Plateau and in sea surface temperature 
(SST) over the Indian Ocean [Kutzbach and Guetter, 1986; 
Prell and Kutzbach, 1987]. 

The tests of planktonic organisms are deposited in the 
underlying oceanic sediments to preserve a record of changes in 
monsoonal upwelling. The response of modem plankton to 
upwelling has been determined by mapping their distribution 
in surface seafloor sediments and comparing their abundance 
and size gradients to various upwelling-associated gradients 
such as SST [Hutson and Prell, 1980; Prell and Curry, 1981; 
Prell, 1984a,b; Cullen and Prell, 1984]. For example, one 
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assemblage of planktonic foraminifera, characterized by 
Globigerina bulloides, seems particularly well attuned to the 

upwelling environment. Maps of this assemblage reveal high 

abundance along the coast of Arabia and decreased abundance 
toward the central Arabian Sea, where the abundance of the 

normal tropical assemblage increases. This spatial pattern is 

coincident with that of low SST and high phosphate content 

during the summer months, and documents that plankton can 

be associated with the monsoonal upwelling pattern. 
Studies of Late Quaternary sediments of the Owen Ridge 

and the continental margin of Arabia by Prell [1984a] and Prell 

and van Campo [1986] reveal that monsoonal upwelling was 
significantly stronger 9000 years before present (9 kyr B.P.) 
than in modern times (Figure 1). Prell et al. [1980] show that 

monsoonal upwelling was weaker during the last glacial 

maximum at 18 kyr B.P. Such observations are consistent 

with independent records of monsoon variability from data on 
the distribution of pollen in both terrestrial and deep sea 

sediments [van Campo et al., 1982; van Campo, 1983], from 
records of changing lake levels [Street-Perrott and Harrison, 
1984] and from model simulations of past climates [Kutzbach, 
1981; Kutzbach and Otto-Bliesner, 1982; Kutzbach and 

Guetter, 1986; Prell and Kutzbach, 1987]. 

Kutzbach and Guetter [ 1986] and Prell and Kutzbach [1987] 

use the National Center for Atmospheric Research (NCAR) 

Community Climate Model (CCM) to show that the changes 

in the Asian monsoon system between 18 kyr B.P. and 

modern times are due partially to orbital-induced changes in the 

seasonal radiation cycle combined with the different thermal 

properties of land and ocean and the nonlinear relationship 

Fig. 1. Distribution of the upwelling and tropical assemblage for modern and 9 kyr B.P. from sediment cores. 
Stipled areas indicate factor loadings for the upwelling assemblage of greater than 0.6. Hatched areas indicate factor 
loadings for the tropical assemblage of greater than 0.6. There is a large increase in the concentration of the 
upwelling assemblage in the sediments near the Arabian coast at 9 kyr B.P. as compared to modern conditions. The 
position of the boundary between upwelling fauna and tropical fauna shows liule change. 
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between temperature and saturation vapor pressure. During the 
last glacial maximum, about 18 kyr B.P., perihelion occurred 
in northern winter and the tilt of the Earth's axis was a 

minimum. The Tibetian Plateau had increased albedo 

throughout the year, due to increased ice and snow cover. The 

adjacent oceans had areas of SSTs that were both lower and 

higher than at present. The large land-sea temperature 
difference that drives the Asian southwest monsoon system 

was very weak; consequently, the southwesterly monsoon 

winds over the northwestern Indian Ocean were very weak. 

Conversely, by about 9 kyr B.P., perihelion occurred in July 
and the Earth's axial tilt was at a maximum, which enhanced 

summer warming and winter cooling in the northern 

hemisphere. Most of the glacial ice sheets had disappeared and 

SSTs approached present conditions. These factors combined 
to drive monsoon winds that were stronger than those of today. 

Prell and Kutzbach [1987] find good agreement between the 

modelled and observed paleoclimatic records for this period. 
In this paper, variability in upwelling in the northwestern 

Indian Ocean is investigated using the numerical ocean model 

of Luther and O'Brien [1985] and the surface winds computed 
from the NCAR CCM by Kutzbach and Guetter [ 1986] for 0, 

9, and ! 8 kyr B.P. simulations. Part 2 of this paper [Prell et 
al., this issue] describes the sediment data for modem and 9 kyr 
B.P. periods in greater detail in the context of the model 
simulations. 

The ocean model realistically simulates the response of the 
Indian Ocean to observed wind forcing. Previous model 

simulations using both modem climatological winds [Luther 
and O'Brien, 1985; Woodberry et al., 1989] and winds for 
specific years [Luther et al., 1985; Simmons et al., 1988] 

show good agreement with available observations. The model 

reproduces the reversal of the Somali Current during the 
transitions between monsoons as well as the intense eddies and 

upwelling regions along the coasts of Somalia and the Arabian 

Peninsula associated with the northern hemisphere summer 
monsoon. The formation and collapse of the observed two 

gyre system in the summer Somali Current agrees quite well 
with the description by Schott [1983] and by Swallow et al. 
[ 1983]. A southern gyre forms south of 2øN in May, in 
response to the onset of southwesterly winds, and a northern 

gyre, called the great whirl, forms at about 4 ø - 5øN in June, in 

response to the strengthening of the atmospheric Findlater Jet 

[Findlater, 1971] at those latitudes. Strong upwelling occurs 
along the coast of Somalia and Arabia and out at least 400 km 

from the coast, driven by both the alongshore component of 

the winds and by the strong positive wind stress curl beneath 
the cyclonic side of the Findlater Jet, leading to a 

superposition of coastal upwelling and open ocean upwelling 
[Smith and Bottero, 1977]. In mid- to late August, the 

southern gyre migrates northward to merge with the great 
whirl. As the southwest monsoon winds relax, the summer 

Somali Current decays and is replaced by the southward winter 
Somali Current with the onset of the northeast monsoon in 

December (for a review of the physical oceanography of this 
region, see Knox [ 1987]). 

Simmons et al. [1988] perform a model validation study for 

the fall of 1985 and find good agreement between model upper 
layer thickness and observed thermocline depth and SST for the 
dynamically active regions of the northwestern Arabian Sea. 

Luther and O'Brien [1989] demonstrate that variability in the 

model is a direct consequence of variability in the wind field 

and is not due to inherent variability contained in the physics 

of the model. In the present study, we therefore treat the 

model fields as adequately simulating the ocean's response to 

the imposed winds and treat the variability in the model fields 

as an expression of that in the ocean. 

2. TI-tE MODEL 

Information on ocean upwelling is derived from the model 
of Luther and O'Brien [1985]. The model is a nonlinear 

reduced gravity model that covers the Indian Ocean from 40øE 
to 74øE and from 10øS to 26øN at a resolution of 1/8 degree 

longitude and 1/4 degree latitude (Figure 2). This high 

horizontal resolution is necessary to model the highly 
nonlinear flows found in the intense eddies in this region. The 

model geometry follows the 200 m isobath, so that 

glacial/interglacial changes in sea level do not affect the area of 

the model domain. The large shallow banks around Socotra, 

the Seychelles, the Maidives, the Laccadives and the Chagos 
Archipelago appear as land areas in all cases. These banks at 

present sea level are typically less than 30 m deep and are 
dotted with reefs and small islands, so that they effectively 
present solid boundaries to flow. The model simulates the 

response of the upper layer of the ocean to an applied surface 
wind stress. In the reduced gravity approximation, the density 
stratification of the ocean is represented by two hydrostatic, 
Bousinesq fluid layers in the vertical of slightly different 
densities, with the further requirement that the depth-integrated 
transport in the lower layer vanishes. The model dependent 
variables are the upper layer thickness (H), the zonal upper 
layer transport (U), and the meridional upper layer transport 
(V). Boundary conditions are no-slip along land boundaries. 
Open boundary conditions are applied along the southern 
boundary and along a portion of the eastern boundary. 

The model is driven by winds from the NCAR CCM 

computed by Kutzbach and Guetter [ 1986] for present 
conditions (0 kyr B.P.), for 9 kyr B.P. and for 18 kyr B.P. 

Orbital parameters (eccentricity, axial tilt, date of perihelion) 
and lower boundary conditions (sea surface temperature, sea-ice 
limit, snow cover, effective soil moisture) are prescribed to 
their estimated values for each time period. Atmospheric CO2 

is held constant at 330 ppmv in all cases. In each of these 

three cases, Kutzbach and Guetter [1986] provide surface winds 
on a 4.4 ø latitude by 7.5 ø longitude grid from perpetual January 

and perpetual July simulations. The wind fields for these 

simulations represent the means of three 90-day averages from 

450-day model runs. These wind data are interpolated in space 
to the model grid using the natural bicubic spline interpolant 
and in time using a single annual Fourier harmonic. Wind 

stress is computed using the standard bulk aerodynamic 

formula with a drag coefficient of 1.5 x 10 -3 and an air density 
of 1.2 kg m -3. This drag coefficient is chosen so that the 
magnitude of the maximum stresses in the 0 kyr B.P. control 

case are within the range of modem observed values used in 

previous studies [Luther et al., 1985; Simmons et al., 1988]. 
Wind stress fields for July of each case are shown in Plate 1. 

Values of model parameters used are the reduced gravity 

coefficient, gt=0.03 m s -2, and a kinetic eddy viscocity, 
Av=750 m 2 s -1. For each case, the model is initialized to a 
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Fig. 2. Model geometry. The model geometry simulates the northwestern Indian Ocean form 40øE to 74øE and 

from 10øS to 26øN. The southern boundary and a portion of the eastern boundary are open. The shallow banks 
around Socotra, the Seychelles, the Maidives, the Laccadives, and the Chagos Archipelago are parameterized as land 
areas, since they are typically less than 30 m deep. 

state of rest, with U=V--0 and H=200 m. The model is 

integrated forward in time for 3 years, with the annual wind 
cycle repeating each year. By the third year, the model 
produces a steady, repeating seasonal cycle. Results from the 
third year of each case are presented. 

The initial value of H together with the value of g' 
determine the mean stratification. While it is likely that the 

mean stratification of the oceans has changed over the past 

18,000 years, it would be difficult to estimate reasonable 
stratification parameters for past climates. The same values of 
these parameters are used in each case in order to focus on the 
variability in upwelling due solely to changes in wind forcing. 

We treat the model upper layer thickness (H) fields as a 
surrogate variable for thermocline (or pycnocline) depth. A 
thinning of the upper layer implies upwelling and cooler SST, 
while a thickening upper layer implies downwelling and 
warmer SST. Variations in H are thus indicative of variations 

in heat content of the upper layer of the ocean and are thus 

expected to be positively correlated with SST variations. 
Additionally, a thinner upper layer enhances the effect of wind- 
driven entrainment in lowering SST and increasing primary 
productivity by bringing cooler, nutrient-rich water nearer the 
surface where it can be more easily mixed upward, while a 

thicker upper layer reduces the efficiency of entrainment m•d 

allows local heating to more effectively increase SST. The 
model does not explicitly include thermodynamic effects, and 
in some instances, thermodynamic effects will dominate the 

SST response; however, in the dynamically active regions of 

the Arabian Sea, variability in model upper layer thickness is 
highly correlated with SST variability, especially on longer 
time an space scales [Simmons et al., 1988]. 

As an indicator of upwelling strength, we compute the 
integrated, rectified upward interface displacement over the 
primary upwelling season of mid-April to mid-August. This 
time frame includes the onset and mature stages of the 
southwest monsoon and is the period of most active upwelling 
along the Arabian peninsula. Waters above the thermocline 
are typically nutrient depleted, while the waters below the 

thermocline are relatively nutrient-rich. We integrate only 
upward motions of the model interface, ignoring downward 
motions, since upward motions of the interface bring nutrient- 
rich waters closer to the surface, where they can be mixed into 
the euphotic zone and sustain primary productivity, while 
downward motions of the interface do not remove these 

nutrients. This is admittedly a crude index of upwelling 
strength. This index has the negative properties that it 
rectifies small-amplitude oscillations so that they may appear 
as large upwelling signals and that it does not account for the 

initial depth of the interface (for example, an upward 
displacement from an initial depth of 80 m would be more 
effective in bringing nutrients toward the euphotic zone than 
the same displacement from an initial depth of 200 m). It does 
capture the upwelling driven by the mechanisms of upward 
Ekman pumping and coastal Ekman divergence, which are 
shown to be the dominant mechanisms off the Arabian 

Peninsula [Smith and Bottero, 1977]. It is sufficient therefore 
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for the purpose of investigating long-term climate variability 
in upwelling panems in this region. 

3. WIND FORCING 

The wind fields used to drive the model are shown in Plate 

1 for mid-July for each of the three cases. We focus on the 

July (the peak of the southwest monsoon) winds only, since it 
is these winds that are responsible for the primary upwelling 
season. An important forcing mechanism for the ocean 
circulation is the wind stress curl. Beneath the Findlater Jet, it 

is the spatial gradient of the curl that is important for the 
ocean's response [Luther et al., 1985]. The strong horizontal 
shear of the surface winds in the jet lead to a differential 
Elanan pumping, with upward Ekman pumping in the 
cyclonic shear region to the northwest of the Jet axis and 

downward pumping in the anticyclonic shear region to the 
southeast. The upward pumping lifts the pycnocline (or the 
model interface), while the downward pumping depresses it. 
The line of zero curl, which delineates the axis of the Findlater 

Jet, thus represents a line of pivot for the pycnocline. As the 
pycnocline slopes, an oceanic jet forms along the slope 
through geostrophic adjustment. Since the time scale of the 

onset and decay of the monsoon winds is short compared to the 
Rossby wave adjustment time scale, the oceanic response 
remains localized beneath the Findlater Jet until after the decay 
of the winds, when westward propagation and instability 
processes become important. 

The southwest monsoon winds over the northern 

hemisphere and their associated curl are stronger in the 9 kyr 
B.P. case and weaker in the 18 kyr B.P. case than in the 

control. In both the 9 and 18 kyr B.P. cases, the axis of the 
Findlater Jet is located farther to the north than in the control. 

The regions of cyclonic and anticyclonic curl on either side of 

the Jet axis are as much as 35-50% stronger in the 9 kyr B.P. 

case than in the control and approximately 60% weaker in the 

18 kyr B.P. case. Equatorial winds have a weak westerly (i.e. 
from the west) zonal component in the 0 kyr B.P. case but an 

easterly zonal component in both 9 and 18 kyr B.P. cases. 
The southern hemisphere winds and their curl are strongest in 

the 18 kyr B.P. case and weaker in the control case, with the 9 
kyr B.P. case being intermediate to the two (for a complete 
discussion of the wind fields, see Kutzbach and Guetter [1986] 

and Prell and Kutzbach [1987]]. 

The time resolution of the CCM winds is exceedingly 

coarse, having only perpetual July and perpetual January 
simulations. For the model winds, these are fitted with a 

single Fourier harmonic (a sine function with an annual 
period) to simulate the seasonal cycle of the monsoon winds. 
There is some evidence to support the importance of the abrupt 

onset of the monsoon winds in the development of the Somali 
Current [Schott, 1983; Swallow et al., 1983], which requires 
higher harmonics in the representation of the winds; however, 

for the purposes of this study, the use of the single annual 
harmonic appears to be sufficient to model the overall features 
of the ocean circulation. 

The spatial structure of the winds used here is much 
smoother than those derived from modem observations that are 

used in previous studies [Luther and O3rien, 1985; Luther et 

al., 1985; Simmons et al., 1988; Woodberry et al., 1989]. 

This is due to the coarse resolution of the original CCM winds 

from which they are interpolated. The observed strength and 

position of the Findlater Jet are reasonably well represented in 
the control case, given the coarse resolution of the CCM 
winds; however, there are notable differences. The axis of the 
Findlater Jet takes a more zonal direction in the 0 and in the 9 

kyr B.P. cases than in the July winds from modem 
climatologies and from some individual years ( see, for 
instance, Luther et al. [1985, Figures 16 and 17]); however, 

there is large interannual variability in the position and 

strength of the jet in the modem observations [Cadet and 
Diehi, 1984], and there are years in which the jet axis follows 
a path more like the 0 kyr B.P. case. These observed wind 
fields are in a sense individual realizations, or ensembles of 

realizations, of the true climate. In the terminology of chaos 

theory, these wind fields are each individual orbits on an 

attractor, with that attractor being the true climate. It is 

assumed that the climate model is simulating this attractor, 

since it includes the relevant physical mechanisms controlling 

climate (E. Lorentz, personal communication, 1989). 
Although individual orbits or realizations will not match 

exactly any particular observed state of the atmosphere, the 

modeled atmosphere should approach the true climate in a 
statistical sense. The winds from the climate model are 

therefore sufficient to model the ocean's response to long-term, 
climate scale variability in atmospheric forcing. 

4. UPPER LAYER CIRCULATION 

In each case, a steady, repeating seasonal cycle is 

established in the model fields by the third year of integration, 

with the strongest upwelling occurring in the northwestern 

basin during the months between the transition from northeast 

to southwest monsoon in mid-April and the beginning of the 

decay phase of the southwest monsoon in mid-August. The 
model fields for mid-August (the end of the upwelling season) 
for each of the three cases are shown in Plate 2. In the 0 kyr 

B.P. control case, the summer Somali Current develops much 
as in previous simulations using modem winds. At 0 kyr 
B.P., a two gyre system forms in late May, with a collapse in 

early August. Smaller eddies are left in the wake of northward- 
moving southern gyre after the collapse and are seen in Plate 
2a. Little recirculation occurs at the equator after the southern 
gyre moves northward. A single large eddy is located to the 

north of Socotra, with southward flow through the channel to 
the west of Socotra. This is due to the position of the 
Findlater Jet axis, which remains to the south of Socotra in 

this case, as is often found in modem observations. The 

position of the line of zero wind stress curl, which defines the 

jet axis, is a strong constraint on the position of the great 
whirl, and of the southwest monsoon current (SMC) which 
flows out of the great whirl toward the northeast. The Socotra 

eddy forms in the S MC to the east of Socotra in late August 
and remains there until the onset of the northeast monsoon. 

The equatorial jets that form during the monsoon transitions 
are weak, and litfie equatorial wave activity occurs throughout 
the year. The southwestward winter Somali Current is 

established by early December. During the winter monsoon, 
the northward flowing East African Coastal Current (EACC) 
meets the winter Somali Current at 5øS, where they turn 
offshore and meander into the interior. 
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Plate 1. July winds from the NCAR Community Climate Model for (a) the control case (0 kyr B.P.); Co) 9 kyr 
B.P.; (c) 18 kyr B.P. Arrows indicate wind stress and color indicates wind stress curl, with yellow to magenta 
indicating positive values and green to blue indicating negative values. Brown indicates land areas. The core of the 
Findlater Jet is indicated by the zero line of the curl. Bofl• the Findlater Jet and its associated curl field are much 
stronger in the 9 kyr B.P. case than in the 0 kyr B.P. case and much weaker in the 18 kyr B.P. case. 
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Lb) 9 kyr B.P.; (c) 18 kyr B.P. Arrows indicate velocity (m s -1) and color indicates upper layer thickness (m), with 
scales given at the bottom of the figure. Velocities greater than 1.0 m s'l are truncated, while velocities less than 
0.05 m s '1 are suppressed. The Somali Current and the Southwest Monsoon Current are much stronger in the 
9 kyr B.P. case than in the 0 kyr B.P. case and much weaker in the 18 kyr B.P. case. 
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In the 9 kyr B.P. case, both winter and summer Somali 
Currents are much stronger than in the control case. A two 

gyre system is evident by late May. There is no evidence of 
collapse of the two gyre system; however, smaller eddies form 
between the great whirl and the southern gyre and are absorbed 

by the great whirl. This case resembles the blocking case 

described by Luther and Obrien [1989], wherein stronger than 
normal southern hemisphere winds drive a strong recirculation 

in the EACC that becomes trapped at the equator as seen in 

Plate 2b. A strong warm eddy lies to the north of Socotra, 

with northward flow through the channel forming by mid-July. 

In this case, the axis of the Findlater Jet is slightly to the 

north of Socotra, which allows the flow from the great whirl 
to surround the island. The SMC and the Socotra Eddy are 

much stronger, owing to the stronger Findlater Jet with its 

increased curl gradient. Two large cold eddies are located off 
the coast of Arabia that formed under the influence of the 

strongly positive wind stress curl to the northwest of the jet 
axis. During the fall and winter months, the Socotra Eddy 
moves between these two cold eddies toward the Arabian 

Coast. The winter Somali Current is established in mid- to 

late November. The EACC is stronger and meets the winter 
Somali Current at 2-3øS. The circulation across the southern 

hemisphere basin is stronger throughout the year due to the 
stronger wind stress and wind stress curl. Very strong 
equatorial jets with very large amplitude equatorial waves are 
present during the winter monsoon and the spring transition. 

The equatorial jets are driven by the zonal component of the 
equatorial winds [Wyrtki, 1973; O'Brien and Hurlbun, 1974], 
while the equatorial waves are generated by the eddy activity at 
the western boundary [Kindle and Thompson, 1989; 

Woodberry et al., 1989], which is in turn driven by the 
increased southern hemisphere winds. 

The 18 kyr B.P. case is marked by a very weak summer 

Somali Current driven by the weak southwest monsoon winds. 

There is no SMC or Socotra Eddy and no cold eddies along the 
Arabian Peninsula, only a weak clockwise warm eddy the 
surrounds the island of Socotra (Plate 2c). The winter Somali 

Current, on the other hand, is much stronger than in the 
control case, and is driven by the increased northwest monsoon 

winds. There are strong equatorial oscillations during the 
winter monsoon, with strong southern hemisphere circulation 

throughout the year. The EACC flows offshore at 2øS 

throughout the year, with a strong recirculation in summer. 

5. UPWELLING PATTERNS 

Upwelling patterns for each case are inferred from upward 
movements of the model interface as described in section 2. 

For comparison of upwelling strength among the three cases, 
we integrate upward motions of the interface at each model grid 

point over the upwelling season of April 16 to August 16. 
These integrated fields are shown in Plate 3 for the northern 
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Plate 3. Model upward interface displacement (m) summed over the upwelling season of April 16 to August 16 for 
(a) the control case (0 kyr B.P.); Co) 9 kyr B.P.; (c) 18 kyr B.P. Color scale is given below each figure. 
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hemisphere portion of the model basin. The upwelling off the 

coast of Arabia is much stronger in the 9 kyr B.P. case than in 

the control case and much weaker in the 18 kyr B.P. case. The 

majority of the upwelling in all three cases is open ocean (or 

wind stress curl driven) upwelling, as opposed to coastal 

upwelling. 

The focus of this study is on the area of high upwelling in 
the northwestern Arabian Sea. In the control case, the broad 

band of upwelling extends along the Arabian Peninsula from 

51øE to 65øE and out approximately 450-500 km from the 

coast, with upward displacements of 40-70 m. Values of 

upward displacement in the central Arabian Sea are on the order 
of 12 m. In the 9 kyr B.P. case, the pattern is similar, but the 

effects of the stronger wind stress curl and of the 
northwestward displacement of the Jet axis are apparent. The 
band of upwelling extends 350-400 km offshore, with a much 
sharper gradient at its offshore edge. This sharp gradient 
coincides with the line of zero wind stress curl in Plate lb. 

The line of zero wind stress curl should mark the boundary 

between upwelling fauna and more tropical mid-ocean fauna. 
Maximum upward displacements are greater than 80 m in the 
upwelling band, while values in the central Arabian Sea are 
less than 3 m. In contrast, at 18 kyr B.P. values of upward 

displacement are uniformly less than 15 m over most of the 
Arabian Sea, except for a narrow (less than one grid point) 
band of coastal upwelling along the boundary. 

The patchiness of the upward displacement field in the 9 kyr 
B.P. case is due to the increased nonlinearity of the flow field 

resulting from the increased amplitude of the forcing. It is not 
expected that this patchiness would be preserved in the 
sediment record, since year to year variability in the wind 
forcing and the subsequent location of the eddies, as is seen in 
modem times [Simmons et al., 1988; Luther and O'Brien, 

1989], would tend to smooth the long-term upwelling 

signature. 
Sediment cores from the northwestern Indian Ocean indicate 

that upwelling rates were much higher 9 kyr B.P. than at 
present and were much lower 18 kyr B.P. The spatial 
distribution and temporal variation of the upwelling fauna in 
the sediment record, such as Globigerina bulloides, are 
consistent with that of the model upwelling fields in all three 

cases. Upwelling fauna are concentrated in a band from the 
coast of Oman out to 60øE between 15 ø and 20øN and show a 

maximum in abundance at 9 kyr (Figure 1). Farther offshore, 
more tropical fauna are found, indicating warmer waters and a 
deeper thermocline, again with an increased abundance at 9 kyr 
B.P. At 18 kyr, the abundance of upwelling species is much 

reduced throughout the region. The boundary between 

upwelling fauna and tropical fauna is similar to that inferred 
from the model upwelling fields. The 100 km northwestward 
shift of the line of zero wind stress curl seen in the wind fields 

from the control to the 9 kyr B.P. case, and reflected in the 
model upwelling fields, is not reflected in the sediment data; 

however, this distance is much less than the original 

resolution of the NCAR CCM winds and approaches the 
resolution of the sediment data and of the ocean model. It is 

not clear what significance should be attributed to this 

discrepancy. 

A band of high upward displacement values is found along 
the equatorial wave guide in the 9 and 18 kyr B.P. cases. This 

is due to the combined effects of Ekman divergence at the 

equator and the rectification of equatorial waves but does not 
result in low values of upper layer thickness (Plate 2b and 2c). 

The easterly zonal component of the equatorial winds in these 

two cases drives an Ekman divergence, and hence upwelling, 

along the equator, while the westerly zonal winds in the 
control case drive an Ekman convergence and equatorial 

downwelling. The narrow band of upwelling around the 
boundaries in the 9 and 18 kyr B.P. cases is due to the 
rectification of coastal Kelvin waves. The difference between 

these two cases and the control case is in the excitation of 

equatorial waves. The enhanced southern hemisphere 

circulation as well as the increased amplitude of the wind 

forcing in the equatorial region at 9 and at 18 kyr B.P. leads to 

an increase in the amplitude and number of equatorial waves 

(primarily Kelvin, Rossby and mixed Rossby-gravity waves) 
as seen in Moore and McCreary [1990], Kindle and Thompson 

[1989], and Woodberry et al. [1989]. The eastward 
propagating Kelvin waves and the short Rossby waves and 

mixed Rossby-gravity waves that have eastward group 
propagation, generate coastal Kelvin waves when they reach 
the eastern boundary of the model. These waves propagate 

counterclockwise around the northern portion of the basin, 

leading to the increased values of upward displacement in the 

narrow coastal band. The equatorial Kelvin waves generated by 

the easterly component of the winds in the 9 and 18 kyr B.P. 
cases are upwelling disturbances and generate upwelling coastal 
Kelvin waves at the eastern boundary, while those generated by 

the westerly winds in the control are downwelling 
disturbances. 

The sediment data do not indicate an increase in equatorial 

upwelling at 9 and at 18 kyr B.P. The indication of stronger 
equatorial upwelling seen in the band of high upward 
displacement values near the equator in these two cases is 

suspect for the following reasons. The use of only a single 
annual harmonic to approximate the seasonal variability in the 
wind fields is not valid at the equator, as there is a strong 
semiannual oscillation in the equatorial winds over the Indian 
Ocean in modem observations [see Knox, 1987]. These 

semiannual oscillations generate both upwelling and 
downwelling equatorial waves, as well as the equatorial jets 
that are observed during the monsoon transitions. 

Additionally, the observed modern winds display large 
interannual variability in the strength and direction of the 

equatorial winds. This interannual variability may be as large 
as the climate variability in the CCM winds. As discussed in 
section 3, the CCM winds used to drive the ocean model are 

only one particular realization (actually an ensemble of 
realizations) of the modelled climate, which is assumed to 

mimic the true climate. The addition of interannual variability 
may increase or decrease the upwelling in the equatorial region 
in the cases considered. This caveat does not apply to the 
region off the Arabian peninsula, since the interannual 
variability in modern winds observed there is much lower than 

the climate scale variability seen in the CCM winds. The 
equator is also a strong wave guide where high-frequency, low- 
amplitude oscillations are ubiquitous. As mentioned above, 
the rectification of high frequency oscillations in the chosen 

upwelling index may lead to over estimation of the magnitude 
of upwelling along the equator. 



Luther et al.: Modeling of Indian Ocean Upwelling 

6. CONCLUSIONS 

Using a numerical ocean model driven by paleoclimatic 
model wind fields, we have shown that changes in monsoon 
winds over the past 18,000 years drive corresponding changes 
in upwelling rates in the northwestern Arabian Sea. The 

stronger southwest monsoon winds of 9 kyr B.P. drive higher 
upwelling rates and a more energetic oceanic circulation, 
primarily through the increased wind stress curl. The weak 

southwest monsoon winds of 18 kyr B.P. drive 
correspondingly weak upwelling and circulation patterns in the 

northwest Arabian Sea. The temporal variations and spatial 
patterns of the model upwelling fields are consistent with 
sediment data from this region. The ocean model thus 
provides a link between the paleoclimate model and the 
sedimentation data, verifying the hypothesis that variations in 
upwelling driven by variations in the strength of the monsoon 
are responsible for the observed variations in the sediment 

There are obvious limitations to this modelling approach. 
The most fundamental is in the coarse spatial and temporal 
resolution of the model winds used to drive the ocean 

simulations. The wind stress curl depends crucially on the 
width of the Findlater Jet, which in turn depends how well the 
Jet is resolved. Other studies have suggested that the abrupt 
onset of the southwest monsoon winds is important in the 
development of the oceanic response. This abrupt onset is not 
captured by a single annual harmonic as is used in the present 
approach. The preferred approach is to use monthly averaged 
winds as are used by Luther and O;Srien [1985] and subsequent 
studies. Still, the generally good agreement between the 
control.case and previous simulations using modern 
climatological monthly mean winds suggests that these are not 
serious deficiencies. The ocean model does not explicitly 
simulate upwelling, since no mass is exchanged between the 
surface layer and the deep layer of the model ocean. Rather, 
upwelling is inferred from upward motions of the model 
pycnocline. Additionally, the model does not include the 
effects of thermodynamic processes such as turbulent 
entrainment, which are shown to be important in some 
aspects of the Arabian Sea circulation by McCreary and Kundu 
[1988,1989]. For the purposes of the present study, however, 
the model is quite sufficient. The gross aspects of the 
upwelling variability on interglacial time scales are adequately 
represented. 
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