
Variability Management with Feature-Oriented
Programming and Aspects

Mira Mezini, Klaus Ostermann
Darmstadt University of Technology

D-64283 Darmstadt, Germany

{mezini,ostermann}@informatik.tu-darmstadt.de

ABSTRACT
This paper presents an analysis of feature-oriented and aspect-
oriented modularization approaches with respect to variabil-
ity management as needed in the context of system families.
This analysis serves two purposes. On the one hand, our
analysis of the weaknesses of feature-oriented approaches
(FOAs for short) emphasizes the importance of crosscutting
modularity as supported by the aspect-oriented concepts of
pointcut and advice. On the other hand, by pointing out
some of AspectJ’s weaknesses and by demonstrating how
Caesar, a language which combines concepts from both As-
pectJ and FOAs, is more effective in this context, we also
demonstrate the power of appropriate support for layer mod-
ules.

Categories and Subject Descriptors
D.3.3 [Software]: Programming Languages—Language Con-
structs and Features; D.2.11 [Software]: Software Engi-
neering—Software Architectures

General Terms
Design, Languages

Keywords
Variability Management, Product Lines, Aspect-Oriented,
Feature-Oriented

1. INTRODUCTION
Classes as the traditional units of organization of object-

oriented software have proved to be insufficient to capture
entire features of the software in a modular way. As a result,
the last decade has seen quite a number of approaches that
concentrate on a more appropriate representation of features
in the source code. In this paper, we analyze two families of
such approaches, with the goal of illustrating their strengths
and weaknesses and emphasizing that a best-of combination
of their concepts is needed.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSOFT’04/FSE-12,Oct. 31–Nov. 6, 2004, Newport Beach, CA, USA.
Copyright 2004 ACM 1-58113-855-5/04/0010 ...$5.00.

On the one hand, there is a class of approaches that con-
centrate on encapsulating features as increments over an
existing base program, together with a mechanism for com-
bining different features on demand. Approaches in this
class include GenVoca [2], mixin layers [28], delegation lay-
ers [25], and AHEAD [3] and will be referred to as feature-
oriented approaches in the reminder of this paper (FOAs for
short). On the other hand, a number of aspect-oriented ap-
proaches have been proposed that deal with the localization
and modularization of crosscutting concerns [12, 30, 13, 4].
Due to their diversity, we will not discuss aspect-oriented
approaches as a homogeneous family. We will only consider
AspectJ [11], the most mature approach today, and Caesar
[22, 23], a language which combines concepts from both As-
pectJ and FOAs. The discussion of other aspect-oriented
approaches is postponed until we present related work at
the end of the paper.

FOAs are superior to framework technology since they
introduce a layer module with two distinctive capabilities.
First, a layer encapsulates multiple abstractions, respec-
tively deltas of them, which together pertain to the defini-
tion of a feature, into a single modular unit. A layer nicely
localizes the definition of a feature that would otherwise be
scattered around the definition of several classes into a sin-
gle code unit. Second, a layer is a mixin-like module, i.e.,
it abstracts over the concrete variant of the base definition
it applies to. Individual abstractions encapsulated within a
layer are defined as mixins to their respective base abstrac-
tions and the layer plays a similar role to them as classes
play to their method definitions. This is the key to FOAs’
support for variability management: Variants of a base be-
havior can be composed in a plug-and-play fashion.

The analysis in this paper shows, however, that FOAs
are weak with regard to capturing crosscutting features in
a modular way. They require the definition of a feature
delta to be ”purely hierarchical” to the base definition1 -
the delta is a refinement of the base. With FOAs, we are
forced to express features in terms of the basic hierarchical
structure by mapping the abstractions of a given feature to
existing base classes via refinements. However, there might
be features that rather crosscut the modular structure of the
base. There are two forms of such crosscutting, static and
dynamic.

Static crosscutting means that several feature abstractions
may map to the same base abstraction, or vice versa, that
there might be feature abstractions that do not have any

1We will also use the term “basic modular structure” to refer
to the modular structure chosen for the base.

direct correspondence to abstractions in the basic modular
structure. We will discuss that it is hard to encode such
features as refinements in a modular manner.

Dynamic crosscutting refers to the specification of how
the feature interacts with the dynamic control flow of the
base program. The “join points” that can be expressed with
FOAs are limited to individual method calls: A feature can
join the execution by overriding method calls. There are no
means to specify general sets of related join points that may
crosscut the given module structure. We will show that this
damages the scalability of the divide-and-conquer technique
underlying FOAs.

Due to the notions of join points and advice, as exem-
plified by AspectJ, the interaction of a feature with the
base program can be expressed much more conveniently than
with method overriding only as in FOAs. However, we will
argue that there are also some important deficiencies of As-
pectJ when considered from the perspective of feature mod-
eling, namely limited means to structure the aspect itself
and little support for variants of a program.

We also discuss disadvantages that are shared by both
FOAs and AspectJ. First, both features and aspects are en-
coded relative to a fixed base program; hence, it is hard
to reuse these implementations in a different program. Sec-
ond, there is only little support for dynamic configuration of
software. In most FOAs (except [25]), once instantiated, the
configuration of a product line does not change at runtime.
On the other side, aspects in AspectJ are activated at com-
pile time. This is not appropriate for features whose most
specific variant to use cannot be determined before runtime.

Recognizing that neither FOAs nor AspectJ is fully satis-
factory, we show how Caesar [22, 23] copes with the outlined
problems. Caesar actually combines the best of both worlds:
It is an advancement over both existing feature-oriented and
aspect-oriented approaches in that it combines their relative
strengths and also provides solutions to the common prob-
lems stated above.

To summarize, the contribution of this paper is an analysis
of feature-oriented and aspect-oriented modularization ap-
proaches with respect to variability management as needed
in the context of system families. This analysis serves two
purposes. On the one hand, it is our goal to emphasize the
importance of crosscutting modularity as supported by the
aspect-oriented concepts of pointcut and advice. To this
end, we hope to shed light on the applicability of AOP be-
yond traditional examples of logging, debugging, authoriza-
tion control, and the like. On the other hand, by pointing
out some of AspectJ’s weaknesses and by demonstrating how
Caesar, which combines concepts from both AspectJ and
FOAs, is more effective in this context, we also demonstrate
the power of appropriate support for layer modules.

Our analysis will be driven by the example of a soft-
ware for requesting stock information, whose simplified class
structure is shown in Fig. 1. The central abstraction in Fig. 1
is the class StockInformationBroker that implements two
methods. When called, the method collectInfo receives a
StockInfoRequest, looks up the information for all stocks
in the request by using the DBBroker database and wraps
all collected information into a StockInfo object, which it
returns. In the remainder of the paper, we will use the
abbreviation SIB to refer to the stock information broker
application. We will discuss variability by means of a par-
ticular feature of this software, namely pricing : Clients of

StockInformationBroker

StockInfo

StockInfoRequest

collectInfo(StockInfoRequest): StockInfo

getQuote(String)
addQuote(String,float)

getStocks()

Client

getName()
run()

DBBroker

getStock(String)

<<creates>>

<<creates>>

<<uses>>

<<uses>>

Figure 1: Stock information broker (SIB)

the SIB application are supposed to pay for using this ser-
vice. We will discuss different requirements that may arise
in the context of the pricing feature and discuss how they
are addressed by both FOAs and aspects.

The remainder of this paper is structured as follows. Sec. 2
analyzes feature-oriented approaches. In Sec. 3, we sketch
the alternative designs possible with AspectJ and analyze
their strengths and weaknesses. In Sec. 4, we show how
Caesar can be used to realize the scenario described before
and how it addresses the problems of FOAs and AspectJ.
Sec. 5 discusses related work. Sec. 6 summarizes the paper
and outlines areas of future work.

2. VARIABILITY WITH FOA
With FOAs, a feature is encoded as a delta over an ex-

isting base structure. This delta is usually expressed in a
subclass/mixin-like style. Using FOA in our example, we
basically have two different options: (a) implement pricing
functionality as a layer on top of SIB, or (b) implement
SIB as a layer on top of pricing. Hence, either the pric-
ing functionality has to be encoded in terms of the modular
structure of the SIB, or vice versa. Since we assume that we
already have a running version of the SIB application, we
will discuss the first case. In the second case, the problems
we identify are basically the same, hence, this choice does
not affect the discussion.

Choosing the first approach for illustration means that we
consider the SIB software as the base element (a constant in
terms of [3]) and define the pricing feature as a delta on top
of it, as shown in Fig. 2 and 3. The delta definition in Fig. 3,
which uses the syntax of AHEAD [3], contains extensions
of Client, StockInfoRequest, and StockInformationBro-

ker2. The first two refinements map pricing abstractions
to base types, while the refinement for StockInformation-

Broker is needed to integrate the pricing feature into the
control flow of the base. The refinement for StockInforma-
tionBroker actually contains an error because the original
signature of the overridden method collectInfo does not
declare a parameter of type Client. We will later discuss
this point further.

2In AHEAD [3], the modifier refine denotes extensions.

class Client {...}
class StockInformationBroker {...}
class StockInfo {...}
class DBBroker {...}
class StockInfoRequest {...}

Figure 2: Base layer

refines class Client {
float balance;
public float balance() { return balance; }
void charge(StockInfoRequest r) { balance -= r.price(); }

}

refines class StockInfoRequest {
float price() { return basicPrice() + calculateTax(); }
float basicPrice() { return 5 + getStocks().length*0.2; }
float calculateTax() { ... }

}

refines class StockInformationBroker {
StockInfo collectInfo(Client c, StockInfoRequest r) {

super.collectInfo(c, r);
c.charge(r);

}

}

Figure 3: Pricing delta

Class refinements are similar to subclasses (we can add
fields like in Client or override methods like in StockIn-

formationBroker) with the additional flexibility that differ-
ent layers can be freely combined. For example, we could
have another layer that adds a security feature to the SIB
application and combine it with the pricing layer. Every
combination of features can be made available in a separate
namespace3, hence it is possible to have multiple different
configurations of a product line in the same application.

Now, let us consider our claim that “FOAs are purely hier-
archical”. In our example, pricing is defined in terms of ab-
stractions dictated by the basic modular structure, such as
Client, StockInfoRequest, etc., although it would be more
naturally organized in terms of abstractions such as Prod-

uct and Customer. For example, the implicit pricing ab-
straction Product is mapped to the base abstraction Stock-

InfoRequest by encoding the product-specific properties as
a refinement of StockInfoRequest; similarly, the implicit
pricing abstraction Customer is mapped to Client.

The problem with this encoding is that hierarchical mod-
ularity encoded by refinement is not appropriate to modu-
larizing features whose modular structures are not in a hi-
erarchical relationship to each other. This is the case in our
example: The modular structure of pricing is not a refine-
ment of a modular structure of a SIB software. This makes
the mapping difficult to express and maintain. There are
two facets of the problem.

The first facet concerns the structural mapping between
feature and base abstractions when there is static crosscut-
ting between the two: There is no one-to-one relation be-
tween the respective abstractions, e.g., there is no class in
the base to which we can map an abstraction in the feature
as a subclass.

3This means that we would have classes like base.Client,
base.DBBroker, . . . , as well as pricing.Client, . . . , secu-
rity.Client, . . . , pricingsecurity.Client, . . . etc.

Figure 4: Scalability problem of refinement

It could be possible that the SIB software consults differ-
ent databases that must be paid separately; hence, we would
like to apply the Customer role to a pair consisting of a client
and a database. There is no abstraction in the SIB layer to
which we could map such a role, i.e., from which to inherit.
One possibility to work around this problem is as follows.
We could add a separate class that stores the current balance
for a client/database pair. But now we need an additional
structure to maintain the relation between client/database
pairs and instances of this class; this adds more accidental
complexity to the system.

The second facet concerns the integration of a feature into
the control flow of the base, which in general involves dy-
namic crosscutting. We first consider the problem as it ap-
pears in our example; subsequently, we generalize. In Fig. 3,
we shadowed the definition of StockInformationBroker to
express the crosscutting structure of pricing. In our sim-
plified world, pricing is triggered in a single point in the
execution of SIB, namely after the call to collectInfo; in
general, it is easily conceivable that triggering the execution
of a feature has to be performed in several places, which
requires the redefinition of the base layer in various places.

In fact, Fig. 3 contains an error which was introduced de-
liberately: The original version of collectInfo does not
have a parameter of type Client. Such an argument is
needed, though, in order to call charge on it. Some workaround
is needed to get a reference to the Client instance calling
StockInformationBroker.collectInfo. We could try to
override all callers of collectInfo inside Client and else-
where in order to get hold of this reference.

In general, FOAs do not scale when crosscutting is in-
volved, because in the worst case the effort required to en-
code a dynamic crosscut grows linearly with the program
size. Consider, e.g., a feature like logging that affects large
parts of the system. All affected classes and methods would
have to be shadowed in order to trigger the logging feature.
With FOAs, we can refine a whole hierarchy of entities (lay-
ers, classes, methods). But, in order to encode a crosscutting
feature, we have to shadow all parts of the hierarchy above
the nodes involved in triggering the crosscutting feature at
runtime. This is illustrated in Fig. 4. The bar affecting
methods m1, m2, and m3, stands for a crosscut that needs to
be refined in order to integrate a feature in the bottom layer.
To override the respective definitions, however, a large part
of the given hierarchy has to be ”shadowed” in the bottom
layer.

An encoding of the dynamic crosscutting by overriding in-
dividual methods has serious problems with respect to main-
tenance and evolution. Since the specification of the shadow
is not modularized, a change becomes necessary in several
places of the feature delta, whenever we add to the base a
class with methods that, when invoked, should trigger the
execution of the pricing functionality, or eventually when we
modify the methods that in the current structure trigger an
execution of the pricing feature.

Besides of being ”purely hierarchical”, a further problem
of FOAs is lack of appropriate support for reuse. One can
easily envisage other usage scenarios of pricing in other ap-
plication families, or even within the same application fam-
ily. Unfortunately, we cannot reuse the algorithm encoded
in the implementation of the pricing functionality in Fig. 3.
This is because the algorithm does actually not exist in its
own, but is tangled with the issues of its particular deploy-
ment for SIB pricing. Again, the problem boils down to the
lack of what could be called ”crosscutting modularity” that
would allow the definition of a generic “pricing feature” in
terms of its own abstractions, which could then be superim-
posed over the basic modularity structure in different ways
by means of some mechanism to express the crosscut be-
tween independent modular structures.

Finally, the last problem with FOAs is the lack of sup-
port for dynamic configuration. For illustration, consider
that there are different pricing policies such as “flat rate”,
“volume-based”, etc., that are implemented as separate lay-
ers. Every user of the system may have chosen a different
pricing policy. This kind of dynamic configurability is not
supported by the FOAs we are aware of.

3. VARIABILITY WITH ASPECTJ
In this section we consider how the same problem could

be addressed in AspectJ [11]. We have two main options:

• We encode the complete pricing semantics in methods
and state of the aspect using the pointcut and advice
constructs only. Pricing is triggered by means of an
advice that intercepts calls to collectInfo. This op-
tion is illustrated in Fig. 5.

• We add the pricing related methods and state to the
module structure of the base program by means of
inter-type declarations. This option is illustrated in
Fig. 6.

An advantage of the AspectJ solutions is their support
for expressing crosscutting by means of pointcuts and ad-
vice. In contrast to the FOA solution, no shadowing is nec-
essary in order to trigger pricing in the base application.
Also, it is not a problem that the collectInfo method does
not have a Client parameter; we can use the call point-
cut designator in order to retrieve the caller of the request.
Even if the client would not call collectInfo directly but
via some intermediate objects, we could still retrieve the
source of the request by means of the cflow pointcut desig-
nator. With more advanced mechanisms such as wildcards,
field getters/setters, cflow, etc., a pointcut definition also
becomes more stable with respect to changes in the base
structure than the corresponding set of overridden methods
in FOAs. The use of pointcuts instead of shadowing parts
of an inherited base structure avoids the scalability problem
mentioned in the FOA discussion. The key point is that

aspect Pricing {
HashMap clientBalance = new HashMap();

void charge(Client c, StockInfoRequest r) {
clientBalance.put(c,

new Integer(
((Integer) clientBalance.get(c)).intValue()

- price(r))
);

}

int balance(Client c) {
return ((Integer) clientBalance.get(c)).intValue();

}

int price(StockInfoRequest r) {
... // analogous to charge-method

}

after(Client c, StockInfoRequest request):
(call (StockInfo collectInfo(StockInfoRequest))
&& this(c) && args(request)) {
charge(c,request);

}
}

Figure 5: Pricing with pointcuts and advice

aspect Pricing {

private float Client.balance;

float Client.balance() { return balance; }

void Client.charge(StockInfoRequest r) {
balance -= r.price();

}

float StockInfoRequest.price() { ... }

after(Client c, StockInfoRequest request):
(call (StockInfo collectInfo(StockInfoRequest))
&& this(c) && args(request)) {
c.charge(request);

}
}

Figure 6: Pricing with inter-type declarations

with pointcuts we can abstract over details in the control
flow that are irrelevant to the feature integration. Equiva-
lent abstraction mechanisms are missing in FOAs.

Now, we discuss the weaknesses of AspectJ solutions. A
major disadvantage of the first option is that the whole con-
ceptual structure of the pricing functionality and its map-
ping to the SIB application is defined in a flat ”global”
method-space; furthermore, clumsy hashtable-like workarounds
are needed to associate state with the pricing abstractions
(see the clientBalance hashtable in Fig. 5). The second
option in Fig. 6 is similar to the FOA solution in that pric-
ing functionality is superimposed on the existing modular
structure of the base application. Compared to the first op-
tion, this second option is less attractive with respect to the
principle of independent extensibility [29], as argued in [23].

A problem of AspectJ-like aspects, in general, is their lack
of support for variability. We can either compile the pricing
aspect and have the pricing functionality in all instances
of the SIB application, or not use it at all; in contrast to
FOAs, it is not possible to have different variants of the
SIB application in the same system. Adding a FOA layer
is similar to creating a subclass: it does not change the

semantics of existing code, and instances of both the class
and the subclass can co-exist in the same system.

The same semantics is not directly supported in AspectJ:
An AspectJ aspect, when compiled, changes the semantics of
the affected classes in an invasive way. A more fine-grained
control is actually possible by the following pattern. One can
define (empty) subclasses of the classes to be affected and
apply aspects only to these subclasses; another aspect can
then be defined that redirects the creation of the original
classes. This pattern also enables some form of dynamic
configuration: The aspect controlling the instantiation can
decide on a per-object basis whether an aspect applies or
not by instantiating the appropriate class.

However, there are two problems with this pattern. First,
as any pattern and idiom, it requires some effort to imple-
ment it correctly and consistently; furthermore, its correct
and consistent use cannot be verified. Second, it is not ob-
vious how to combine different aspects that apply to the
same classes because both aspects apply only to separate
subclasses that would somehow need to be combined.

Another disadvantage which AspectJ shares with FOAs is
the lack of support for reuse - aspects are defined in terms
of the base code. To this end, AspectJ’s mechanism for
specifying effects on the inheritance structure of a base ap-
plication (the declare parents construct) ought to be men-
tioned. Following the coding pattern for AspectJ used in [8]
to define a reusable publish-subscriber protocol, one might
be able to define a reusable pricing implementation in an
abstract aspect. The latter could then be bound to a con-
crete base modular structure by means of declare parent

statements in a concrete sub-aspect. In [23], we show that
this implementation pattern suffers from basically the same
problems with regard to the structure of the aspect as the
first option discussed above.

4. VARIABILITY WITH CAESAR
In this section, we analyze how features are modeled in

the programming language Caesar [23].

4.1 Crosscutting Layers
The Caesar implementation4 of a simple pricing policy

for SIB is shown in Fig. 7. In Caesar, the concept of a
class is generalized to serve also as a layer module capable
of encapsulating the definition of multiple interdependent
types (nested classes) contributing to a feature, in such a
way that these types constitute a family [7].

The layer SimpleSIBPricing in Fig. 7 defines two nested
classes, ClientCustomer and StockInfoRequestProduct. These
classes wrap SIB Clients into customer, respectively Stock-

InfoRequests into product functionality, as needed for the
price calculation. The declaration ClientCustomer wraps

Client states that any instance of ClientCustomer has a
reference to an instance of Client assigned at object cre-
ation and available via the special keyword wrappee. As
can be seen from this example, arbitrary pricing specific
state and behavior can be associated with the abstractions
from SIB.

It should be noted that ClientCustomer and StockIn-

foRequestProduct are virtual classes [7], i.e., they are fea-
tures of an object of the enclosing class SimpleSIBPricing,

4The Caesar compiler and the source code for the example
can be downloaded from http://caesarj.org

class SimpleSIBPricing {

class ClientCustomer wraps Client {
float _balance;
float balance() { return _balance; }
void charge(StockInfoRequestProduct p) {

_balance -= p.price();
}
public String getInfo() { wrappee.getName(); }

}

class StockInfoRequestProduct wraps StockInfoRequest {
float price() {

return basicPrice() + calculateTax(); }
float basicPrice() { return 5 +
wrappee.getStocks().length * 0.2; }}

float calculateTax() { ... }
}

after(Client c, StockInfoRequest r):
(call (StockInfo collectInfo(StockInfoRequest))
&& this(c) && args(r)) {

ClientCustomer(c).charge(StockInfoRequestProduct(r));
}

}

Figure 7: An implementation of Pricing for SIB

can be redefined in subclasses of SimpleSIBPricing, and are
subject of late binding, just as methods are. Virtual classes
already provide a good framework to encode refinements of
related groups of classes, as supported by FOAs. Since Cae-
sar also supports propagating class composition [6, 1], it is
also possible to encode the semantics of FOAs’ mixin-like
composition of layers.

To define how a particular feature interacts with a base
system at runtime, pointcuts and advice constructs are avail-
able in Caesar. Currently, Caesar uses the same pointcut
model as AspectJ, hence, the pointcut definition in Fig. 7 is
the same in the AspectJ solution in Fig. 6. However, the ad-
vice definitions in the respective solutions are different. The
expression ClientCustomer(c) in the advice - syntactically
similar to a constructor call without the new keyword - is a
so-called lifting. Its semantics is different from a construc-
tor: Lifting ensures that there is a unique canonical wrapper
instance for every “wrappee”. In particular, we do not want
to create a new wrapper every time we need to navigate to
a wrapper; otherwise, we would lose the state and identity
of a previously created wrapper. Our lifting calls do exactly
this: The expression ClientCustomer(c) will always yield
the same instance of ClientCustomer for a given instance c

of type Client.
Lifting expressions serve as a translator between the SIB-

and the pricing world. After we have lifted the client c

to its customer role, we can call the charge method on
it. Since the method expects an instance of StockInfoRe-
questProduct as a parameter, we do the same kind of trans-
formation (from StockInfoRequest to StockInfoRequest-

Product) with the parameter r. Lifting fulfills in Caesar a
role similar to pertarget and perthis declarations together
with aspectOf calls in AspectJ, but with a more fine-grained
control over how state is associated with object identifiers.

The discussion so far shows how Caesar combines a layer
module concept similar to that of FOAs with pointcut/advice
constructs similar to those of AspectJ, thereby inheriting
their respective strengths. Due to the layer concept, As-
pectJ’s problem with the flat structure of the aspect code is

avoided. At the same time advice/pointcut constructs allow
to express the interaction of the features at runtime in a
modular way, avoiding the scalability problem of FOAs.

In contrast to FOAs, in Caesar the relation between a
layer and the base is not purely hierarchical, i.e., the rela-
tion between class definitions in a layer and the classes in
the base does not need to be a one-to-one relation. In the
example in Fig. 7, every nested class of SimpleSIBPricing
happens to have a single wrappee class. In general, however,
zero or more wrappees are allowed in Caesar. For example,
our application could have multiple different abstractions
that play the product role in the pricing feature; wrapping
them into a product role adds a uniform interface to these
potentially very different abstractions5.

On the other hand, if there is no abstraction in the base
application to which we can map a feature role via the wraps
clause, Caesar offers the possibility to define arbitrarily com-
plex mappings via user-defined constructors instead of wraps
clauses (the wraps clause is just syntactic sugar for creating
a single-argument constructor). For example, if we liked to
map the customer role to a Client/DBBroker pair (as dis-
cussed in Sec. 2), we could create our own constructor that
takes two parameters, namely a Client and DBBroker, re-
spectively, and stores them in its own fields, instead of using
the wraps clause (see [23] for more details).

4.2 Support for Variability
Caesar’s pointcut/advice concept comes with a more ex-

pressive deployment mechanism, which address the variabil-
ity problem of AspectJ. The advice definition in Fig. 7 makes
sense only in conjunction with an instance of the class within
which the advice is defined, hence, we need a mechanism to
specify in which context the advice definitions are activated
with respect to which instance of the class. This mechanism
is called deployment in Caesar. An instance of a class that
contains pointcuts and advice has to be deployed in order
to activate its pointcuts and advice. Two different types of
deployment are available: static (load-time) and dynamic
(runtime) deployment.

Static deployment is expressed by the deployed class mod-
ifier; it means that a singleton instance of the class is cre-
ated at load-time (explicit creation via new is not allowed),
and all advice definitions refer to this singleton instance.
The instance itself is available as a static field THIS of the
class. Fig. 8 illustrates static deployment and the use of the
singleton. The expression p.ClientCustomer(cl) is again
a lifting, this time called outside the enclosing class. The
type declaration p.ClientCustomer in Fig. 8 is related to
the type system of Caesar, which uses virtual classes [16]
and family polymorphism [7] in order to retain static type
safety. Details of the type system are described elsewhere
[22, 1]; for this paper it is sufficient to understand that
p.ClientCustomer denotes the variant of the type Client-

Customer valid inside the instance p of the enclosing pric-
ing class. Similar to aspects in AspectJ, the activation of
statically deployed aspects can only be controlled by their
presence or absence in the build.

Dynamic deployment, denoted by the keyword deploy

5One can define an abstract nested class Product which
implements price(), while leaving abstract the function-
ality depending on the wrappee, e.g., basicPrice(). Dif-
ferent subclasses can refine Product wrapping different base
classes.

deployed class SimpleSIBPricing { ... };
...
Client cl;
SimpleSIBPricing p = SimpleSIBPricing.THIS;
p.ClientCustomer cu = p.ClientCustomer(cl);
float f = cu.balance();

Figure 8: Static Aspect Deployment

...
Client c = ...; SIBPricing p = null;
if (...) p = new SimpleSIBPricing();
if (...) p = new DiscountSIBPricing();

deploy(p) { c.run(); }
...

Figure 9: Dynamic aspect deployment

used as a block statement, allows to determine which vari-
ant of an aspect should be applied (or whether we need
the aspect at all) at runtime. For illustration, assume a
slightly different design of our pricing functionality, consist-
ing of an abstract layer class SIBPricing with an abstract
nested wrapper StockInfoRequestProduct, and two refine-
ments of it, SimpleSIBPricing and DiscountSIBPricing,
which implement the simple pricing policy from Fig. 7 and
some discount pricing policy, respectively.

Now, consider the requirement that every client can sub-
scribe to a different pricing policy. With dynamic deploy-
ment, we can choose one of these variants at runtime and
deploy them during the execution of a block, as illustrated
by the code in Fig. 9. The meaning of deploy(p) is that the
aspect p is active during the execution of c.run(). Later
or concurrent executions of Client.run are not affected. In
other words, the advice is lately bound, similarly to late
method binding; hence, we call this kind of polymorphism
aspectual polymorphism. Note that null is also a possible
value that can be deployed, denoting no pricing at all.

If our SIB application is supposed to be completely inde-
pendent of pricing, the deployment code in Fig. 9 should not
be part of the base application. In Caesar, this is achieved
by using another, statically deployed, helper aspect whose
purpose is to deploy the correct pricing policy at the appro-
priate points in the dynamic control flow. For illustration,
consider Fig. 10: This aspect intercepts calls to Client.run

and continues the execution (proceed statement) in the con-
text of a dynamically chosen pricing policy.

After having shortly presented the deployment mechanism

deployed class PricingDeployment {

static Map pricingMap = new HashMap();

static { // User <-> Pricing Mapping
pricingMap.put("Klaus", new SimpleSIBPricing());
pricingMap.put("Mira", new DiscountSIBPricing());

}

void around(Client c) :
(execution(void Client.run()) && this(c)) {

deploy(pricingMap.get(c.getName())) { proceed (c); }
}

}

Figure 10: A deployment aspect

interface Pricing {

interface Customer {
provided void charge(Product p);
provided float balance();

}

interface Product {
expected float basicPrice();
expected float calculateTax();

}
}

Figure 11: Pricing interface

of Caesar, let us close this subsection by a short discussion
of how it address the variability issues of AspectJ and FOAs.
FOAs support variability by enabling the free composition
of layers representing features of a product line. AspectJ
supports only limited variability in that only one variant can
exist in a system. In Caesar, features can be freely composed
by instantiating and deploying instances of the compound
classes representing a bound feature. With dynamic deploy-
ment and sub-typing, we can choose one variant of a feature
at runtime and use it in a polymorphic way. An equivalent
dynamic configurability is not possible with FOAs.

4.3 Multi-Model Decomposition and Reuse
As argued in Sec. 2 and 3, FOAs and AspectJ force the

programmer to implement all features in terms of a primary
decomposition as illustrated in Fig. 3 and Fig. 6. Hence, the
programmer of a feature needs to know about the structure
of the base in order to squeeze in the additions necessary
for the feature. This is also the case with the Caesar imple-
mentation discussed so far.

However, Caesar also supports reusable features encoded
in their own model and ontology and provides language con-
structs to express combinations of these different models. A
central concept is the notion of bidirectional interfaces (BI
for short) [22]. A BI serves to specify the abstractions that
together make up an feature/aspect independent of the con-
text in which the feature/aspect will be deployed6. BIs differ
from standard interfaces in two ways. First, BIs exploit in-
terface nesting in order to express the abstractions of an
aspect and their interplay. Second, BIs divide methods into
provided and expected contracts. Provided methods de-
scribe what every component that is described in terms of
this model (i.e., implements the BI), must implement. Ex-
pected methods represent variation points of the model that
are used to integrate features into a concrete system.

For illustration, the BI Pricing that bundles the defini-
tion of the generic pricing functionality is shown in Fig. 11.
As an example for the reification of provided and expected
contracts, consider Customer.charge and Product.basicPrice

in Fig. 11. The ability to charge a customer for a product is
at the core of pricing; hence, Customer.charge is marked as
provided. The calculation of the basic price of a product,
on the other hand, is specific to the context of usage which
determines what will be the products to charge for; hence,
Product.basicPrice is marked as expected.

The categorization of the operations into expected and
provided comes with a new model of what it means to imple-

6In the following, we will use the terms feature and aspect
equivalently.

class SimplePricing implements Pricing {

class Customer {
float _balance;
float balance() { return _balance; }
void charge(Product p) { _balance -= p.price();}

}

class Product {
float price() {return basicPrice()+calculateTax();}

}

}

Figure 12: A sample implementation of Pricing

ment a BI7: We explicitly distinguish between implementing
a BI’s provided contract and binding the same BI’s expected
contract. Two different keywords are used for this purpose,
implements, respectively binds. In the following, we refer
to classes that are declared with the keyword implements,
respectively binds, as aspect implementations, respectively
aspect bindings.

An implementation must (a) implement all provided meth-
ods of the BI and (b) provide an implementation class for
each of the BI’s nested interfaces. In doing so, it is free to use
respective expected methods. Furthermore, an implemen-
tation may or may not add methods and state to the BI’s
abstractions it implements. Fig. 12 shows a sample pric-
ing implementation. The class Customer, which is identified
with the interface of the same name in Pricing, implements
the respective provided operations from the BI. The nested
class Product adds a method price that computes the total
price of a product. It calls expected methods from the BI
for this purpose.

An aspect binding must provide zero or more nested bind-
ing classes (declared via binds clauses) for each of the BI’s
nested interfaces (we may have multiple bindings of the same
interface). In these binding classes, all expected methods
have to be implemented. Just as implementation classes can
use their respective expected facets, the implementation of
the expected methods of a BI and its nested interfaces can
call methods declared in the respective provided facets.

The process of binding a BI instantiates its nested types
for a concrete usage scenario. Hence, it is natural that in
addition to their provided facets, binding classes also use the
interface of abstractions from that concrete usage scenario.
We say that bindings wrap abstractions from the world of
the concrete usage scenario and map them to abstractions
from the generic aspect world. The class SIBPricing in
Fig. 13 shows an example of binding the interface Pricing

from Fig. 11 for the concrete SIB usage scenario. Consider
e.g., the binding of Product in the nested class StockInfor-
RequestProduct. The latter implements all expected meth-
ods of Product by using the interface of the class StockIn-

foRequest.
Both classes defined in Fig. 12 and 13 are not opera-

tional, i.e., cannot be instantiated; the respective contracts
implemented by them are only parts of a whole and make
sense only within a whole. Operational classes that com-
pletely implement an interface are created by composing an

7BIs also have consequences from a static typing point of
view, but this is out of the scope of this paper (see [23] for
details).

class SIBPricing binds Pricing {

class ClientCustomer binds Customer wraps Client { }

class StockInfoRequestProduct binds Product
wraps StockInfoRequest {

float basicPrice() {
return 5 + wrappee.getStocks().length*0.2;

}
float calculateTax() { ... }

}

after(Client c, StockInfoRequest r):
(call (StockInfo collectInfo(StockInfoRequest))
&& this(c) && args(r)) {

ClientCustomer(c).charge(StockInfoRequestProduct(r));
}

}

Figure 13: Binding of Pricing for SIB

class SimpleSIBPricing extends
Pricing<SimplePricing, SIBPricing>;

...
SimpleSIBPricing p = new SimpleSIBPricing();

Figure 14: Combining implementation and binding

implementation and a binding class, syntactically denoted
as aBI <anImpl,aBinding >. This is illustrated by Simple-

SIBPricing in Fig. 14, which composes SimplePricing and
SIBPricing. Combining two classes as in Fig. 14 means that
we create a new compound class within which the respec-
tive implementations of expected and provided methods are
combined. The combination also takes place recursively for
the nested classes: All nested classes with a binds declara-
tion are combined with the corresponding implementation
from the compound class. Only compound classes can be
instantiated, as illustrated by the constructor call in Fig. 14.

To summarize, in Caesar every feature can be implemented
with respect to its own model as described by the corre-
sponding BI. This model can then be composed with other
crosscutting models by creating an appropriate binding that
describes how the two models interact which each other.
The bindings describe how the abstractions of the models
relate to each other structurally by creating adapters such
as StockInfoRequestProduct in Fig. 13. This structural
mapping is then used in the behavioral mapping (pointcuts
and advice) that describe how the models interact in the
dynamic control flow.

Since every feature can be implemented in terms of its
own model, it is independent of any possible binding of the
feature, hence, the implementation of a feature is reusable.
This is in contrast to FOAs and AspectJ, where a feature,
respectively an aspect, is tightly coupled to a specific base
application. For example, the pricing algorithm indicated
in Fig. 12 is reusable whereas the code in Fig. 3 can only be
used in the context of the stock information broker software.

Furthermore, since aspect bindings as in Fig. 13 are in-
dependent of concrete implementations of the aspect inter-
face, these bindings are reusable, too: They can, similarly
to Fig. 14, be combined with a different implementation of
Pricing. The separation of the two contracts, and their in-
dependent implementation allows to reuse implementations
of the two contracts in arbitrary compositions.

5. RELATED WORK
Caesar is related to Hyper/J and its notion of multi-

dimensional separation of concerns (MDSOC) [30]. Our
aspect bindings, which serve as a translator from one do-
main to another domain, allow to view and use a system
from many different perspectives. This is similar to the MD-
SOC idea of having multiple concern dimensions such that
the program can be projected on each concern hyperplane.
Apart from that, Caesar is very different from Hyper/J. In
Hyper/J, one can define an independent component in a
hyperslice. Hyperslices are independent of their context of
use; context dependencies are declared as abstract meth-
ods. A hyperslice is integrated into an existing application
by means of composition rules specified in a hypermodule.
As the result, new code is generated by mixing the hyper-
slice code into the existing code. Hyper/J [30] has no notion
of bidirectional interfaces and the reuse of bindings related
to it: Either the modules to be composed are not indepen-
dent due to the usage of the “merge-by-name” composition
strategy or the modules are independent but then the non-
reusable composition specification gets very complex. Simi-
lar to APPC and Aspectual Component models, Hyper/J’s
approach is class-based: it is not possible to add the func-
tionality defined in a hyperslice to individual objects. Fur-
thermore, Hyper/J’s sublanguage for mapping specifications
from different hyperslices is fairly complex and not well in-
tegrated into the common OO framework.

Adaptive Plug and Play Components (APPCs) [21] and
Aspectual Components [13] are related to our work in that
both approaches support the definition of multi-abstraction
features/aspects and have a vague definition of expected and
provided interfaces. However, the latter feature was not in-
tegrated well with the type system. Recognizing this defi-
ciency, the successor model of Pluggable Composite Adapters
(PCAs) [24] even dropped this notion and reduced the decla-
ration of the expected interface to a set of standard abstract
methods. With the notion of bidirectional interfaces, Caesar
represents a qualitative improvement over all three models,
as far as support for multi-abstraction aspects is concerned.
Due to the lack of a BI notion, connectors and adapters in
these models cannot be reused. In addition, [21] and [13]
rely on a dedicated mapping sub-language that is less pow-
erful than our object-oriented wrappers with lifting. Finally,
the lack of the notion of virtual types is another drawback of
these approaches compared to Caesar. Similar observations
can be made about the aspectual collaborations and Ob-
ject Teams approaches [14, 9], both successors of aspectual
components [13].

Some aspect-oriented approaches like Prose [26] support
asynchronous dynamic activation of aspects but we believe
that it is very hard or even impossible to reconcile these
approaches to dynamic aspects with multi-threading. Dy-
namic deployment is directly supported on the virtual ma-
chine layer in the Steamloom VM [5], thereby enabling a
very efficient execution of dynamic deployment.

Lasagne [31] is a runtime architecture that features aspect-
oriented concepts. An aspect is implemented as a layer of
wrappers. Aspects can be composed at run-time, enabling
dynamic customization of systems, and context-sensitive se-
lection of aspects is offered, enabling client-specific customiza-
tion of systems. Support for crosscutting models and inde-
pendence of features is not in the scope of this work, though.

Hölzle [10] analyses some problems that occur when com-

bining independent components. Our proposal can be seen
as an answer to the problems and challenges discussed in
[10]. Mattson et al [18] also indicate the problems with
framework composition, analyze reasons for these problems
and investigate the state of the art of available solutions.

Our work is also related to architecture description lan-
guages (ADL) [27], for example Rapide [15], Darwin [17],
C2 [20], and Jiazzi [19]. The building blocks of an archi-
tectural description are components, connectors, and archi-
tectural configurations. A component is a unit of computa-
tion or data store, a connector is an architectural building
block used to model interactions among components and
rules that govern those interactions, and an architectural
configuration is a connected graph of components and con-
nectors that describe an architectural structure. Compared
to our approach, ADLs are less integrated into the common
OO framework and do not have a dedicated notion of cross-
cutting models in order to provide a new virtual interface to
a system.

We think that bidirectional interfaces might also prove
very useful in the context of ADL. In ADL, components also
describe their functionality and dependencies in the form
of required and provided methods (so-called ports). The
goal of these ports is to render the components reusable and
independent of other components. However, although the
components are syntactically independent, there is a subtle
semantic coupling between the components, because a com-
ponent A that is to be connected with a component B has to
provide the exact counterpart interface of B. The situation
becomes even worse if we consider multiple components that
refer to the same protocol. This problem could be adressed
by bidirectional interfaces.

6. SUMMARY AND FUTURE WORK
In this paper, we argued that support for crosscutting

modularity is crucial for variability management. We showed
how the lack of such support in most feature-oriented ap-
proaches today leads to code scattering, with the effect that
the divide-and-conquer technique underlying these approaches
does not scale with the increased complexity of the product
line. Furthermore, we also pointed out that joinpoint in-
terception as the mechanism for expressing crosscutting in
aspect-oriented languages of the AspectJ family is not suf-
ficient, since it lacks module support for capturing multi-
abstraction slices of behavior, an important prerequisite for
modularizing features whose definition generally involves sev-
eral cooperating abstractions. In addition, we pointed out
some problems that feature-oriented and aspect-oriented ap-
proaches have in common. Finally, we showed how Caesar
supports both multi-abstraction modules and joinpoint in-
terception and solves the problems outlined in this paper.

There are several areas of future work. First, we are work-
ing on an advanced joinpoint model for expressing the inten-
tion of a crosscut more precisely than it is the case with the
more syntax-based model of Caesar today. This will make
the bindings less fragile with respect to potential changes in
the syntax of the base definition. Second, we are working
on a formal definition of Caesar’s dependent type system [1].
Finally, in the context of the TOPPrax project8, we will use
Caesar for a large-scale real-world case study.

8www.topprax.de

Acknowledgment
This work is supported by the TOPPrax project financed by
the German Ministry of Education and Research (BMBF).
We would like to thank the anonymous reviewers for their
very valuable comments.

7. REFERENCES
[1] C. Anderson, S. Drossopoulou, E. Ernst, and

K. Ostermann. Virtual classes with dependent types.
In preparation, 2004.

[2] D. Batory and S. O’Malley. The design and
implementation of hierarchical software systems with
reusable components. ACM Transactions on Software
Engineering and Methodology, 1(4):355–398, 1992.

[3] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling
step-wise refinement. International Conference on
Software Engineering (ICSE ’03), 2003.

[4] L. Bergmans and M. Aksit. Composing multiple
concerns using composition filters, 2001. Available at
trese.cs.utwente.nl/composition filters/.

[5] C. Bockisch, M. Haupt, M. Mezini, and K. Ostermann.
Virtual Machine Support for Dynamic Join Points. In
AOSD 2004 Proceedings. ACM Press, 2004.

[6] E. Ernst. Propagating class and method combination.
In Proceedings ECOOP’99, LNCS 1628, pages 67–91.
Springer-Verlag, 1999.

[7] E. Ernst. Family polymorphism. In Proceedings
ECOOP ’01, LNCS 2072, pages 303–326. Springer,
2001.

[8] J. Hannemann and G. Kiczales. Design pattern
implementation in Java and AspectJ. In Proceedings
OOPSLA ’02. ACM SIGPLAN Notices 37(11), pages
161–173. ACM, 2002.

[9] S. Herrmann. Object teams: Improving modularity for
crosscutting collaborations. In Proceedings of
Net.ObjectDays, Erfurt, Germany, 2002.

[10] U. Hölzle. Integrating independently-developed
components in object-oriented languages. In
Proceedings ECOOP ’93, LNCS 707, pages 36–56.
Springer, 1993.

[11] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An overview of
AspectJ. In Proceedings of ECOOP ’01, 2001.

[12] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In Proceedings
ECOOP’97, LNCS 1241, pages 220–242. Springer,
1997.

[13] K. Lieberherr, D. Lorenz, and M. Mezini.
Programming with aspectual components. Technical
Report NU-CCS-99-01, Northeastern University,
March 1999.

[14] K. Lieberherr, D. Lorenz, and J. Ovlinger. Aspectual
collaborations – combining modules and aspects.
Journal of British Computer Society, 2003.

[15] D. C. Luckham, J. L. Kenney, L. M. Augustin,
J. Vera, D. Bryan, and W. Mann. Specification and
analysis of system architecture using Rapide. IEEE
Transactions on Software Engineering, 21(4):336–355,
1995.

[16] O. L. Madsen and B. Møller-Pedersen. Virtual classes:

A powerful mechanism in object-oriented
programming. In Proceedings of OOPSLA ’89. ACM
SIGPLAN Notices 24(10), pages 397–406, 1989.

[17] J. Magee and J. Kramer. Dynamic structure in
software architecture. In Proceedings of the ACM
SIGSOFT ’96 Symposium on Foundations of Software
Engineering (FSE), 1996.

[18] M. Mattson, J. Bosch, and M. E. Fayad. Framework
integration problems, causes, solutions.
Communications of the ACM, 42(10):80–87, October
1999.

[19] S. McDirmid, M. Flatt, and W. Hsieh. Jiazzi: New
age components for old fashioned Java. In Proceedings
of OOPSLA ’01, ACM SIGPLAN Notices 36(11),
pages 211–222, 2001.

[20] N. Medvidovic, P. Oreizy, and R. N. Taylor. Reuse of
off-the-shelf components in C2-style architectures. In
Proceedings of International Conference on Software
Engineering (ICSE) ’97, pages 692–700. IEEE
Computer Society, 1997.

[21] M. Mezini and K. Lieberherr. Adaptive plug-and-play
components for evolutionary software development. In
Proceedings OOPSLA ’98. ACM SIGPLAN Notices
33(10), pages 97–116, 1998.

[22] M. Mezini and K. Ostermann. Integrating
independent components with on-demand
remodularization. In Proceedings OOPSLA ’02, ACM
SIGPLAN Notices 37(11), pages 52–67, 2002.

[23] M. Mezini and K. Ostermann. Conquering aspects
with Caesar. In Proceedings Conference on
Aspect-Oriented Software Development (AOSD) ’03,
pages 90–99. ACM, 2003.

[24] M. Mezini, L. Seiter, and K. Lieberherr. Component
integration with pluggable composite adapters. In
M. Aksit, editor, Software Architectures and
Component Technology: The State of the Art in
Research and Practice. Kluwer, 2001.

[25] K. Ostermann. Dynamically composable
collaborations with delegation layers. In Proceedings of
ECOOP ’02. LNCS 2374, pages 89–110. Springer,
2002.

[26] A. Popovici, T. Gross, and G. Alonso. Dynamic
weaving for aspect-oriented programming. In
Proceedings AOSD ’02, pages 141–147. ACM, 2002.

[27] M. Shaw and D. Garlan. Software Architecture:
Perspectives on an Emerging Discipline. PrenticeHall,
1996.

[28] Y. Smaragdakis and D. Batory. Implementing layered
designs with mixin-layers. In Proceedings of ECOOP
’98, LNCS 1445, pages 550–570, 1998.

[29] C. Szyperski. Independently extensible systems –
software engineering potential and challenges. In
Proceedings 19th Australian Computer Science
Conference. Australian Computer Science
Communications, 1996.

[30] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton. N
degrees of separation: Multi-dimensional separation of
concerns. In Proceedings International Conference on
Software Engineering (ICSE) ’99, pages 107–119.
ACM Press, 1999.

[31] E. Truyen, B. Vanhaute, W. Joosen, P. Verbaeten,
and B. N. Joergensen. Dynamic and selective

combination of extensions in component-based
applications. In Proceedings of the International
Conference on Software Engineering (ICSE) ’01,
pages 233–242. IEEE Computer Society, 2001.

