
1

Variability Mining: Consistent Semiautomatic
Detection of Product-Line Features

Christian Kästner, Alexander Dreiling, and Klaus Ostermann

✦

Abstract—Software product line engineering is an efficient means to

generate a set of tailored software products from a common implementa-

tion. However, adopting a product-line approach poses a major challenge

and significant risks, since typically legacy code must be migrated toward

a product line. Our aim is to lower the adoption barrier by providing

semiautomatic tool support—called variability mining—to support de-

velopers in locating, documenting, and extracting implementations of

product-line features from legacy code. Variability mining combines prior

work on concern location, reverse engineering, and variability-aware type

systems, but is tailored specifically for the use in product lines. Our work

pursues three technical goals: (1) we provide a consistency indicator

based on a variability-aware type system, (2) we mine features at a

fine level of granularity, and (3) we exploit domain knowledge about the

relationship between features when available. With a quantitative study,

we demonstrate that variability mining can efficiently support developers

in locating features.

Keywords—Variability, reverse engineering, mining, feature, software

product line, LEADT, feature location.

1 INTRODUCTION

S
OFTWARE PRODUCT LINE ENGINEERING is an efficient

means to generate a set of related software products (a.k.a.

variants) in a domain from common development artifacts [4].

Success stories of software product lines report an order-of-

magnitude improvement regarding costs, time to market, and

quality, because development artifacts such as code and designs

are systematically reused [4], [49].

Variants in a product line are distinguished in terms of fea-

tures; domain experts analyze the domain and identify common

and distinguishing features, such as transaction, recovery, and

different sort algorithms in the domain of database systems.

Subsequently, developers implement the product line such that

they can derive a variant for each feature combination; for

example, we can derive a database variant with transactions and

energy-saving sort mechanisms, but without recovery. Typically,

variant derivation is automated with some generator [17]. Over

the recent years, software product line engineering has matured

and is widely used in production [4], [49].

Despite this acceptance, adopting a product-line approach

is still a major challenge and risk for a company. Typically,

legacy applications already exist that must be migrated to

• C. Kästner is with the School of Computer Science at Carnegie Mellon

University; A. Dreiling is with the University of Magdeburg and Deutsche

Bank AG, Germany; K. Ostermann is with the Department of Mathematics

and Computer Science at Philipps University Marburg, Germany.

the product line. Often companies halt development of new

products for months in order to migrate from existing (isolated)

implementations toward a software product line [14]. Hence,

migration support seems crucial for the broad adoption of

product-line technology. Currently, even locating, documenting,

and extracting the implementation of a feature that is already

part of a single existing implementation is a challenge [25],

[28], [42], [43], [60].

Our aim is to lower the adoption barrier of product-line

engineering by supporting the migration from legacy code

toward a software product line. We propose a system that semi-

automatically detects feature implementations in a code base

and extracts them. For example, in an existing implementation

of an embedded database system, we might want to identify

and extract all code related to the transaction feature to make

transactions optional (potentially to create a slim and resource-

efficient variant, when transactions are not needed). We name

this process variability mining, because we introduce variability

into a product line by locating features and making them

variable. Variability mining is one important building block in

a larger research context of supporting product-line adoption for

legacy applications, others being reengineering of existing vari-

ability from if and #ifdef statements and from program deltas

(e.g., branches in a version control system) [21], [23], [35].

A main challenge of variability mining is to locate a

feature consistently in its entirety, such that, after location

and extraction, all variants with and all variants without this

feature work as expected. In our database example, removing

transactions from the system must introduce errors neither in

existing variants with transactions nor in new variants without

transactions. Unfortunately, full automation of the process

seems unrealistic due to the complexity of the task [8]; hence,

when locating a feature’s implementation, domain experts still

need to confirm whether proposed code fragments belong to the

feature. We have developed a semiautomatic variability-mining

tool that recommends probable code fragments and guides

developers in looking in the right location. It additionally

automates the tasks of documenting and extracting features.

Mining variability in software product lines is related to

research on concept/concern location [8], [19], [22], feature

identification [19], [53], reverse engineering and architecture

recovery [13], [20], impact analysis [3], [48], and many

similar fields. However, there is a significant difference in

that variability mining identifies the entire extent of optional

(or alternative) features for production use in a product line

instead of locating a concern for (one-time) understanding

or maintenance tasks. Detecting features in a product line

contributes additional opportunities and challenges, including

the following:

1) All variants generated with and without the feature must be

correct. We use well-typedness as a consistency indicator.

2) Features must be identified at a fine level of granularity,

because the results of the mining process are used to

extract the feature’s implementation.

3) Often, developers have domain knowledge about existing

features and their relationships. If available, this knowl-

edge can be used to improve the mining process.

We implemented and evaluated our variability-mining ap-

proach with a tool LEADT for Java code. In a quantitative

analysis, we identified 97 % of the code of 19 features in four

small product lines. All located features were consistent.

In summary, we contribute: (a) a process to semiauto-

matically locate, document and extract variable product-line

features in a legacy application, (b) a tool for Java code to

support the process, (c) a novel use of a variability-aware type

system as consistency indicator, (d) an extension of existing

concern-location techniques with domain knowledge and fine

granularity required in the product-line setting, and (e) a

quantitative evaluation with 19 features from 4 product lines.

2 VARIABILITY MINING

We define variability mining as the process of identifying

features in legacy code and rewriting them as optional (or

alternative) features in a product line. We assume that we extract

features from a single code base. However, it is not uncommon

that, before adopting a product-line approach eventually,

developers have already introduced variability in some ad-hoc

way that should be migrated as well. For example, developers

might have used a clone-and-own approach or branches in a

version control system, might have introduced variations with

command-line parameters or #ifdef directives. In such scenario,

other complementary migration and reengineering strategies

are necessary [1], [21], [23], [35]. Here, we focus only on

locating and extracting features from a single legacy-code base

(not from deltas between branches). It is difficult to quantify

how often locating variability in a single code base is needed in

practice. In academia, it is a standard approach to create case

studies [16], [25], [28], [42], [43], [58], [60]. From industry,

we have anecdotal evidence of similar adoption potential. We

do not claim that this adoption strategy is prevalent in practice,

but argue that it is a relevant building block in a larger tool

box.

Consider the following setting: A company has developed an

application and now wants to turn it into a product line. In the

product line, several features—that previously existed hidden in

the application—should become optional, so that stakeholders

can derive tailored variants of the application (with and without

these features). In a typical scenario, the company wants to sell

variants at different prices, wants to optimize performance and

footprint for customers that do not need the full feature set, or

wants to implement alternatives for existing functionality.

For illustration purposes, we use a trivial running example of

a stack implementation in Java, listed in Figure 1, from which

1 class Stack {

2 int size = 0;

3 Object[] elementData = new Object[maxSize];

4 boolean transactionsEnabled = true;

5

6 void push(Object o) {

7 Lock l = lock();

8 elementData[size++] = o;

9 unlock(l);

10 }

11 Object pop() {

12 Lock l = lock();

13 Object r = elementData[--size];

14 unlock(l);

15 return r;

16 }

17 Lock lock() {

18 if (!transactionsEnabled) return null;

19 return Lock.acquire();

20 }

21 void unlock(Lock lock) { /*...*/ }

22 String getLockVersion() { return "1.0"; }

23 }

24 class Lock { /*...*/ }

Fig. 1. Example of a stack implementation in Java with

feature locking (corresponding lines highlighted).

domain expert

1 2 3 4

developer

with tool support
domain expert /
developer / tool

developer /

tool

features and
their dependencies

(variability model)

seeds located fragments refactored product‐line
implementation

Fig. 2. The feature-mining process.

we want to extract the feature locking (highlighted), such that

we can generate variants with and without locking.

The variability-mining process consists of four steps as

illustrated in Figure 2:

1) A domain expert models the domain and describes the

relevant features and their relationship in a variability

model (the optional and independent feature locking in

our example).

2) A domain expert, a developer, or some tool identifies

initial seeds for each feature in the legacy code base.

Seeds are code fragments that definitely belong to the

feature, such as methods lock and unlock in our example.

3) For each feature, developers iteratively expand the iden-

tified code until they consider the feature consistent and

complete. Starting from known feature code, the developer

searches for further code that belongs to the same feature

(all highlighted code in our example).

4) In a final step, developers or tools rewrite (or extract)

the located code fragments, so variants with and without

these code fragments can be generated.

Of course, the process can be executed in an iterative and

interleaved fashion. For example, we could start mining a

single feature and later continue with additional features, we

could add additional seeds later, and we can expand several

features in parallel.

Within this process, we focus on the third step of finding

all code of a feature. The remaining steps are far from trivial,

2

but are already well supported by existing concepts and tools.

In contrast, actually finding the entire implementation of a

feature in legacy code currently is a tedious and error-prone

task, which we aim to ease with tool support that guides the

developer.

We envision a variability-mining tool that recommends code

fragments at which the developers should look next. The

recommendations are updated whenever additional information

is available, such as changes to features and their relationships,

seeds, or when developers expand the identified code fragments.

2.1 Existing Support for Variability Mining

While we focus on the third step of finding feature code in

this article, we can reuse existing work for the remaining steps

of the variability mining process.

Deciding which features to extract (Step 1) is a typical

task in product-line engineering that requires communication

with many different stakeholders. The decision depends on

many influence factors, including many business and process

considerations discussed elsewhere [5], [7], [27], [49], [55],

[56]. Recently, She et al. even explored extracting variability

models from legacy code and other sources [54].

To determine seeds (Step 2), often developers or domain

experts can provide hints. Although they might not know

the entire implementation, they can typically point out some

starting points. Furthermore, search facilities, from simple tools

like grep to sophisticated information-retrieval mechanisms,

such as LSI [44], Portfolio [45], SNIFF [12], and FLAT3 [53],

and analysis tools for configuration parameters [50] can

support determining seeds.

Regarding rewrites (Step 4), a simple form of rewriting

identified feature code for a product-line setting is to guard

located code fragments with conditional-compilation directives,

such as the C preprocessor’s #ifdef and #endif directives.

Experience has shown that this can usually be done with

minimal local rewrites of the source code [29], [58]. More

sophisticated approaches refactor the code base and move

feature code into a plug-in, an aspect, or a feature module of

some form [30], [42], [47]. In prior work, we have shown that

such refactoring can be even entirely automated, once features

are located in the source code [30].

2.2 Product-Line Context and Design Goals

Finding all code of a feature (Step 3) is related to concern-

location techniques and code search engines (e.g., [8], [15],

[19], [22], [48], [52], [53]; see Sec. 5 for a more detailed

discussion). There is a huge design space for concern-location

approaches, many with goals overlapping with ours. In the

following, we describe the characteristics of our product-line

context and the corresponding design goals for our approach.

Binary and permanent mapping. In a product line, a

mapping between features and code fragments is used to drive

variant generation. That is, for a given feature selection, a

product-line generator automatically derives the corresponding

implementation by composing or removing code fragments

related to features [17].

The mapping needs to be binary in the sense that the mapping

between features and code fragments denotes a belongs-to

relationship, on which we can rely for variant generation. A

binary mapping can be used by the generator decide whether

to include or exclude a code fragment from a variant; it can

also be used as basis for refactorings (Step 4 in Fig. 2). In the

product-line context, we speak of annotations: a code fragment

is annotated with a feature. In contrast, a mere is-related-to

relationship, possibly with a weight, at method or class level

(e.g., “method push is likely related to the locking concern”)

is not sufficient for automated variant generation and must be

reduced to a binary decision by a developer.

The mapping is permanent in the sense that it is not just

mere documentation, but actually an integral part of the product

line’s implementation. Using the mapping between features and

code fragments during variant generation is a strong incentive

for developers to later update the mapping when evolving

the implementation, preventing erosion often associated with

documentation and architecture descriptions.

Due to the goal of binary and permanent mappings, our

process is incremental and relies heavily on developer feedback

to make the final decisions. However, it also characterizes

mining variability as a long-term investment.

Consistency. In a product-line context, whenever we extract

a feature, we expect that all variants generated with and

without that feature must execute correctly. This property

gives rise to a consistency indicator. When we locate a feature,

we need to continue mining, until the feature is located

consistently. As a lower bound for a consistency indicator,

we require that all variants compile, which we can determine

statically. Additionally, we could run a test suite or use some

validation or verification methods.

In this paper, we define that a feature is identified consistently

if all variants are well-typed. For example, if we annotated the

declaration of unlock in Figure 1, but not the corresponding

method invocations, then, variants without feature locking

would be ill-typed and, hence, inconsistent.

Note that consistency does not imply completeness. For

example, not annotating class Lock would be incomplete

but consistent: All variants compile; class Lock is just never

referenced in variants without locking.

Granularity. To achieve consistent and binary mappings,

we need to map code fragments at a fine level of granularity.

Feature implementations in product lines often consist of

small code fragments scattered over multiple classes and

methods [29], [40], [48]. This means that we need to be able

to annotate even individual statements as we did in Figure 1

(and possibly smaller code fragments).

Domain knowledge. In a product line, domain experts

may know some features and their relationship (see Step 1

above). Typical relationships between features are that one

feature requires another feature (implication) or that two

features are mutually exclusive. During variability mining,

we can exploit such information if available. For example,

after identifying feature locking, we could identify a mutually

exclusive feature snapshot isolation (not listed in Fig. 1);

during snapshot isolation’s identification we can restrict the

3

recommendation

engines

list of
recommendations

manual decision

TS

TA

TC

E

R

M⇒
A

Nunderlying

model

Fig. 3. Recommendation process (part of Step 3)

search space and exclude locking code.1 Similarly, we can

exploit implications between features (including parent-child

relationships) to reduce the search space or to derive additional

seeds. For example, before identifying the locking feature, we

could have already identified a subfeature dynamicLocking

(ability to disable locking at runtime; Lines 4 and 18 in Fig. 1);

when subsequently identifying locking, we do not need to

identify these lines again and can even use them as seeds.

Knowing relationships between features is not necessary

for variability mining, but can improve results if available, as

we will demonstrate.2 Describing domain knowledge about

variability in variability models and reasoning about it with

automated analysis techniques is state of the art in product-line

engineering [6], [27].

The four goals—binary and permanent mapping, consistency,

fine granularity, and exploiting domain knowledge about feature

dependencies—characterize our product-line context. In a sense,

variability mining is a process (Steps 1–4) based on concern-

location techniques (in Steps 2 and 3), tailored for the need

of product-line adoption and the information available in this

context.

3 RECOMMENDATION MECHANISM

To support Step 3 of the variability-mining process, we provide

tool support for consistently locating code fragments of a

feature. Unfortunately, a full automation of the mining process

is unrealistic, so involvement of domain experts is essential. Our

semiautomatic variability-mining tool recommends probable

code fragments. It guides developers in looking in the right

location.

We illustrate the recommendation process in Figure 3. Given

domain knowledge (features and their dependencies) and

previously located feature code (seeds), our tool builds an

internal model of the source code structures, features, and

their mappings. Based on that internal model, recommendation

engines recommend code fragments that the developer should

look at next. Our tool consolidates the recommendations into

one prioritized list. Now developers have to decide how to

proceed. Developers may reject or accept a recommendation

1. In a legacy application that was not developed as a product line, mutually
exclusive features are less common. They are typically encoded with dynamic
decisions, for example, with if-else statements or the strategy design pattern.
When migrating the legacy application toward a product line, we can replace
the dynamic decisions with compile-time feature selections. The exact process
is outside the scope of this paper, but it is important to notice that domain
knowledge about mutually exclusive features can be useful conceptually for
variability mining nevertheless.

2. Dependencies usually cover domain dependencies, but may also include
known implementation dependencies. Implementation dependencies between
features are often discussed as the optional-feature problem and avoided since
they reduce variability of the product line [33], [42].

(in a graphical frontend), may change the source code, or

may decide to end the location process. After each developer

interaction, our tool updates the recommendations to reflect

successfully located code fragments, rejected recommendations,

changed implementations, and updated domain knowledge.

Since variability mining is a form of concern location tailored

for software product lines, we combine existing complementary

approaches and enhance them in a product-line–specific way.

Each recommendation engine returns a list of recommendations

each with a corresponding priority w (range [0, 1], reflecting

how confident the tool is in the recommendation). Specifically,

we develop a mechanism based on a variability-aware type

system (to achieve consistency; Sec. 3.2) and combine it with

two complementary concern-location mechanisms, topology

analysis (Sec. 3.3) and text comparison (Sec. 3.4), known

from the literature. The three recommendation mechanisms

are complementary; we find more feature code than with each

mechanism in isolation, as we will exemplify with our example

(Sec. 3.5) and demonstrate empirically (Sec. 4). All mechanisms

are based on a variability model and a fairly common, but

fine-grained graph of the target program’s structure (Sec. 3.1).

3.1 Underlying Model

Before we describe the recommendation mechanisms, we

briefly introduce the underlying representation, which repre-

sents code elements, features, and relationships between them.

Code elements. To represent code fragments and their

relationships, we use a standard graph representation of the

source code’s structure and dependencies (working on the

code’s structure instead of textual lines of code). Whereas many

concern-location tools (such as Suade [52] and Cerberus [22])

use rather lightweight models and cover only entire methods

and fields, we need fine granularity at intraprocedural level,

as argued above. For Java, we model compilation units, types,

fields, methods, statements, local variables, parameters, and

import declarations (we discussed suitable granularity for

product lines in prior work [29], [40]; in languages other

than Java, we could chose similar structures [32]). Technically,

we automatically extract elements from abstract syntax trees

provided by Eclipse. We denote the set of all code elements

in a program as E.

Between these code elements, we extract relationships

(R ⊆ E× E). Containment relations describe the hierarchical

structure of the code base: a compilation unit contains import

declarations and types, a type contains fields and methods,

and a method contains statements. References cover method

invocations, field access, and references to types (as in the

return type of a method). Finally, usage relationships cover

additional relationships when two elements do not directly

reference each other, but are used together; examples are

assignments, instanceof expressions, and casts.

We extract code elements and relationships from the target

code. All relationships mentioned above are based on structural

information, type information, and control-flow graph from

a compiler frontend that are cheap and precise to compute

without data-flow analysis. Also, we explicitly exclude external

libraries and assume that the target code is well-typed (although

partial models would be possible if necessary [18]).

4

Features. Our product-line setting provides additional do-

main knowledge that we encode in our model. We describe

domain knowledge as a set of features F and relationships

between features, extracted from a variability model VM.

Although further analysis would be possible, we are interested

in two kinds of relationships, mutual exclusion (M ⊆ F× F)

and implications (⇒⊆ F × F). As explained above, mutual

exclusion allows us to discard code fragments that already

belong to a mutually exclusive feature and implications (in the

form “feature f is included in all variants in which feature g is

included”) are useful to provide seeds and because we do not

need to reconsider code elements that are already annotated

with an implied feature. Implications are especially typical in

hierarchical decompositions, in which a child feature always

implies the parent feature. We denote the reflexive transitive

closure of ⇒ by ⇒∗. We can either model relationships directly

or exact them from other variability model notations (plenty

of modeling notations and efficient reasoning techniques have

been developed in the product-line community, usually using

SAT solvers [6], [46], [57]; in our implementation, we reuse

the feature-model editor and the reasoning techniques from

FeatureIDE [57]).

Annotations. Finally, we need to model annotations, that is,

the mapping between code elements and features. Annotations

relate code elements to features (A ⊆ E×F) when assigned by

a developer as seed or during the mining process. Additionally,

developers can explicitly mark a code fragment as not belonging

to the feature, denoted as negative annotation (N ⊆ E × F),

typically used to discard a recommendation in the mining

process.3 Annotations are always propagated to all children of

a code element in the hierarchical code structure. Annotations

are used for variant generation in the product line (see binary

mapping above) and to derive recommendations, whereas

negative annotations are used solely as additional input for

our recommendation mechanism. Each code element can be

annotated with multiple features; in that case, the code element

is only included in variants in which all these features are

selected (equivalent to nested #ifdef directives). In contrast,

code used jointly by multiple features is annotated with a

separate feature required by the other features through an

implication (typically a common parent feature in the variability

model).

To consider annotations across multiple features, including

available domain knowledge about relationships between

features (M and ⇒), we introduce the extent and the exclusion

of a feature:

• The extent of a feature f is the set of all elements for which

we know, from annotations or from domain knowledge,

that they belong to f directly or indirectly. An element is

in the extent of f, if it is annotated with f or with any

feature implied by f.

• The exclusion of a feature f is the set of all elements

for which we know, from negative annotations or domain

3. An annotation always maps a feature to an element. If only part of the
element belongs to the feature (e.g., a statement in a method or part of an
expression in an if statement), only those subelements are annotated. If the
used granularity does not expose them as separate elements, the user needs to
rewrite the source code as explored elsewhere [31].

knowledge, that they cannot be annotated with f. An

element is in the exclusion of f, if (1) there is a negative

annotation with f or any feature implied by f or (2) it is

annotated with a feature that is mutually exclusive to f.

All code elements that belong neither to the extent of f nor to

its exclusion are undecided yet and are candidates for further

mining of f.4

We define the extent and exclusion of a feature as

extent(f) = {e |(e, f) ∈ A⇒}

exclusion(f) = {e |(e, f) ∈ N⇒} ∪
⋃

(g,f)∈M

extent(g)

where A⇒ = {(e, f)|(e,g) ∈ A,g ⇒∗ f} and N⇒ =

{(e, f)|(e,g) ∈ N, f ⇒∗ g} are the closures of A and N with

respect to implications.

All recommendation mechanisms use these definitions of

extent and exclusion; hence, they automatically reason about

negative annotations and dependencies between features as well.

This is the key mechanism to incorporate domain knowledge

into recommendations. Like negative annotations, the extent

and exclusion of a feature improve recommendations, but are

not used for deciding which code fragments to include when

generating a variant. When generating variants, we use only

annotations (A).

We use the definitions in the remainder of this section to

illustrate each recommendation mechanism. In particular, we

model each recommendation as a tuple (e, f,w): code element

e ∈ E recommended for feature f ∈ F with priority w ∈ [0, 1].

Each recommendation mechanisms returns a set of prioritized

recommendations: recommend ⊆ E× F× [0, 1].

3.2 Type System

The type system is our key recommendation mechanism

and was the driving factor behind our variability-mining

approach. The type system ensures consistency, works at

fine granularity, and incorporates domain knowledge about

relationships between features.

The underlying idea is to look up references within the prod-

uct line’s implementation as a type system does—references

such as from method invocation (source) to method declaration

(target), from variable access (source) to variable declaration

(target), and from type reference (source) to type declaration

(target). We look up references using the relationships R in our

model (both at intraprocedural and interprocedural level). If the

target of such a reference is annotated with a feature f, but the

source of the reference is not part of the extent of f, the type

system issues a highly prioritized recommendation to annotate

the source—otherwise there are variants without f that include

the source but not the target of the reference, hence resulting in

a type error (i.e., a violation of our consistency criterion). For

example, if method declaration lock in our running example

4. In principle, inconsistent annotations are possible. For example, extent(f)
and exclusion(f) overlap if a code element is annotated with two mutually
exclusive features. Recommendations by the variability-mining tool will not
lead to such inconsistencies, but a developer could provoke them manually
(by adding incorrect annotations or changing dependencies in the variability
model). Our tool could issue a warning in case that happens, so a developer
can fix the annotations manually.

5

(target element) is annotated with feature locking whereas the

corresponding method invocation in Line 7 (source element)

is not annotated, a variant without feature locking would result

in a method invocation that cannot be resolved.5

Already when first experimenting with early versions of the

type system over five years ago, we found using type errors

for variability mining almost obvious. When annotating a

code fragment, say method lock in Figure 1, with a feature,

the type system immediately reports errors at all locations

at which lock is invoked without the same feature annotation

(Lines 7 and 12 in Fig. 1). We would then look at these errors

and decide to annotate the entire statements Lock l = lock(),

which immediately leads to new type errors regarding local

variable l (Lines 9 and 14)—note how the type system detects

errors even at the fine grained intraprocedural level. This way,

with only the type system, we incrementally fix all type errors

with additional annotations (or by rewriting code fragments

if necessary). With all type errors fixed, we have reached—by

our definition—a consistent state.

With the type system, we locate feature code (not common

code) similar to a low-tech approach: Starting with a compiling

implementation that includes the feature, we would comment

out all known feature code and compile the remaining imple-

mentation. The Java compiler would report type errors regarding

unresolvable method invocations and similar errors. We could

then comment out (or rewrite) the corresponding locations as

well, until the remaining code without the feature compiles

(i.e., until we reached consistency). All code we commented

out in the process belongs to the feature. Having a type system

integrated as a recommender of a variability-mining process

improves over the low-tech approach as it can quickly and

incrementally recommend additional code fragments, switch

between features, and reason about multiple features (and their

relationships) at the same time.

We have already implemented such variability-aware type

systems for Java and C in prior work (and, for a subset,

formally proved that it ensures well-typedness for all variants

of the product line) [31], [36]. For variability mining, we

reimplemented these checks as recommendation mechanism.

Note how we include domain knowledge about feature

relationships by using the extent of a feature, which includes

all code elements annotated with implied features: If method

declaration and invocation are annotated by different features

X and Y, we do not issue a type error if the invocation’s feature

X implies the declaration’s feature Y.

We assign the highest priority 1 to all recommendations of

the type system, because these recommendations have to be

followed in one form or the other to reach a consistent state.

Still, in isolation, the type system is not enough for variability

mining. It ensures consistency, but is usually insufficient to

reach completeness; more on this in Section 3.5.

5. In fact, type checking is more complicated when language features such
as inheritance, method overriding, method overloading, and parameters are
involved. Also feature dependencies beyond implications can be considered.
For such cases, we adjusted the type system’s lookup functions and check
implications between the variability model and annotations using a SAT solver.
To understand the recommendation mechanism, the simple model described
here is sufficient; for details, we refer the interested reader to our formal
discussions in [31].

Conceptually, we can formalize our type checker as a

function that takes the type relationships R in a program and

returns recommendations with priority 1 for all code elements e

and features f that are referenced by other annotated elements:

recommendTS =
{

(e, f, 1) | (e, e ′) ∈ R ∧

e /∈ extent(f) ∧ e ′
∈ extent(f)

}

3.3 Topology Analysis

Next, we adopt Robillard’s topology analysis [52] and ad-

just it for the product-line setting (fine granularity, domain

knowledge). The underlying idea of topology analysis is to

follow the graph representation of the system from the current

extent to all structural neighbors, such as called methods,

structural parents, or related variables in an assignment. Then,

the algorithm derives priorities and ranks the results using

the metrics specificity and reinforcement. The intuition behind

specificity is that elements that refer to (or are referred from)

only a single element are ranked higher than elements that refer

to (or are referred from) many elements. The intuition behind

reinforcement is that elements that refer to (or are referred

from) many annotated elements are ranked higher; they are

probably part of a cluster of feature code.

The algorithm follows all relationships R in our model. For

example, it recommends a method such as lock in Figure 1,

when the method is mostly invoked by annotated statements

(reference relationship in R); it recommends a local-variable

declaration such as l in Figure 1, when the variable is only

assigned from annotated code elements (usage relationship in

R); and it recommends an entire class, when the class contains

mostly annotated children (containment relationship in R).

We calculate the priority with weightTA, closely following

Robillard’s algorithms. We adapt it only for the product-

line setting: First, we determine relationships at all levels of

granularity supported by our model (i.e., down to the level of

statements and local variables), whereas Robillard considered

methods and fields only. Second, we consider relationships

between features (domain knowledge, if available) by using

the entire extent of a feature (which includes annotations

of implied features, cf. Sec. 3.1) instead of only directly

annotated code fragments. In addition, we reduce the priority of

a recommendation if an element refers to (or is referred from)

elements that are known as not belonging to the target feature

(negative annotations) or that belong to mutually excluded

features: We simply calculate the priority regarding all excluded

elements exclusion(f) and subtract the result from the priority

regarding the extent:

recommendTA =
{

(e, f,w) |e ∈ neighbors(extent(f)),
w = weightTA(e, extent(f)) − weightTA(e, exclusion(f))

}

The definition of weightTA can be found in the appendix.

3.4 Text Comparison

Finally, we use text comparison to derive recommendations be-

tween declarations of methods, fields, local variables, and types.

Text comparison is not restricted to neighboring elements as our

type system and the topology analysis are. The general idea is to

6

tokenize declaration names [11] and to calculate the importance

of each substring regarding the feature’s vocabulary. The vocab-

ulary of a feature consists of all tokens in extent(f). Intuitively,

if many annotated declarations contain the substring “lock” (and

this substring does not occur often in exclusion(f)), we rec-

ommend also other code fragments that contain this substring.

We use an ad-hoc algorithm to calculate a relative weight

for every substring in our vocabulary. We count the relative

occurrences of each substring (i.e., occurrences of a token

divided by the overall number of tokens) in declarations in

extent(f) and subtract the relative occurrences in exclusion(f).
That is, negative annotations and annotations of mutually

exclusive features (see definition of exclusion above) give

negative weights to words that belong to unrelated features.

By using extent(f) and exclusion(f), we again consider do-

main knowledge for calculating recommendation priorities (if

available).

We implemented our own mechanisms, because it was

sufficient to experiment with an additional text-based recom-

mendation mechanism. Our simple implementation was already

able to improve recommendations. Nevertheless, for future

versions, we intend to investigate tokenization, text comparison,

and information retrieval more systematically and potentially

use ontologies and additional user input to characterize a

feature’s vocabulary more accurately.

recommendTC =

{(e, f, weightTC(e, vocb(extent(f)), vocb(exclusion(f))))}

Additional explanations for weightTC and vocb can be found

in the appendix.

3.5 Putting the Pieces Together

For each code element, we derive an overall recommendation

priority w∗ by merging the priorities wTS, wTA, and wTC of

the three complementary recommendation mechanisms for this

code fragment (we assume a priority of 0 if a recommendation

engine does not recommend this code fragment). Following

Robillard [52], we use the operator x⊎y = x+y−x·y to merge

priorities in a way that gives higher priority to code fragments

recommended by multiple mechanisms; the operator yields

a result that is greater than or equal to the maximum of its

arguments (in the range [0, 1]). For an element recommended

by all three mechanisms, we calculate the overall priority

based on the three priorities of the respective recommendations:

w∗ = wTS ⊎wTA ⊎wTC.

To illustrate the complementary nature of the three compari-

son mechanisms, consider our initial stack example in Figure 1

once more.

• The type system recommends many code fragments

that are critical by definition, because they must be

annotated (or rewritten) to achieve consistency. In our

example, the type system recommends the invocations

of method lock in Lines 7 and 12 with priority 1, once

the corresponding method declaration (Lines 17–20) is

annotated; the invocation would also be identified by the

topology-analysis mechanism and text comparison, but

with lower confidence.

• In contrast, the type system would not be able to identify

the field declaration of transactionsEnabled in Line 4,

because removing the reference without removing the

declaration would not be a type error; it just results in

dead code.6 In this case, also text comparison would fail

without additional ontologies, because it would not detect

the semantic similarity between the tokens transaction

and locking. Nevertheless, topology analysis contributes a

recommendation, because the field is only referred to from

annotated code fragments leading to a high reinforcement

score.

• Finally, neither type system nor topology analysis would

recommend the method declaration getLockVersion that

is part of the interface but never called from within the

implementation; here, our text comparison provides a

suitable recommendation.

This example illustrates the synergies of combining the three

complementary recommendation mechanisms, where each

mechanism can recommend additional code fragments that

another mechanism might not find. In addition, our tool is

extensible; so, we could easily integrate additional recommen-

dation mechanisms, for example recommendations based on

dynamic execution traces or data-flow properties.

4 EVALUATION

Our goal is to evaluate to which degree recommendations from

our tool guide developers to consider code fragments that are

actually part of a feature’s implementation.7

4.1 Implementation

We have implemented our variability-mining solution—system-

dependency model, type system, topology analysis, and text

comparison—as an Eclipse plug-in called LEADT (short for

Location, Expansion, And Documentation Tool) for Java, on

top of our product-line environment CIDE [29]. LEADT reuses

CIDE’s infrastructure for variability modeling and reasoning

about dependencies, for the mapping between features and

code fragments, and for extraction facilities, once code is

annotated (see Sec. 2.1). Code elements and their relationships

are extracted from Eclipse’s standard JDT infrastructure.

LEADT and CIDE are available online at http://fosd.net/ and

can be combined with other tools on the Eclipse platform.

Product-line developers using LEADT follow the four steps

outlined in Section 2 (Fig. 2):

1) Modeling features and their relationships (as far as known)

in CIDE’s variability-model editor.

2) Manually annotating selected seeds, possibly with the help

of other tools in the Eclipse ecosystem.

3) Expanding feature code, possibly following LEADT’s

recommendations. LEADT provides a list of prioritized

6. Technically, the field is unused code but not dead in the sense that a
compiler would report, because the field is visible outside the class and is
part of the class’ interface.

7. Initially, we considered also a comparison with other concern-location
tools (see Sec. 5). However, since the tools were designed for different settings
and use different levels of granularity, such comparison would always be
biased by the setting and the different goals of the individual tools.

7

recommendations for each feature. Developers are free

to explore and annotate any code (or undo annotations

in case of mistakes), but will typically investigate the

recommendations with the highest priority and either

annotate a corresponding code fragment or discard the

recommendation by adding a negative annotation (or even

annotate the code fragment with a different feature). After

each added annotation, LEADT immediately updates the

list of recommendations. Since LEADT can only judge

consistency but not completeness, developers continue

until they determine that a feature is complete. We will

discuss reasonable stop criteria below.

4) Rewriting the annotated code (optional), possibly using

CIDE’s facilities for automated exports into conditional

compilation and feature modules [30].

Again, the process supports iteration and interleaving. Devel-

opers can stop at any point, add a feature or dependency, undo

a change, rewrite the source code, or continue expanding a

different feature. In each case, LEADT updates its internal

model on the fly and provides recommendations for the current

context.

4.2 Case Studies

Before quantitatively evaluating the quality of LEADT’s

recommendations, we briefly summarize experience from two

qualitative case studies. First, using a think-aloud protocol, we

observed a developer while he mined variability in the database

management system HyperSQL (160 000 lines of Java code).

Second, replicating a previous decomposition, we performed

variability mining for four features from the diagramming

application ArgoUML (305 000 lines of Java code). To us, the

case studies serve two purposes: (a) they provide insights in

how developers interact with LEADT in practice and (b) they

informally explore benefits and limitations of variability mining.

Even though we attempt to take a neutral approach, case studies

provide insights into individual cases and are not suited or

meant as objective generalizable evaluation.

In the HyperSQL case study, we observed how a developer

interacts with the tool during variability mining, mining three

features with 248 to 2819 lines of code over four hours.

The developer, an experience PhD student in databases, was

familiar with the domain, but not with the particular code base.

We could observe that the developer easily understood the

recommendation mechanism and appreciated tool support for

such repetitive tasks. He quickly trusted the recommendations.

He mostly followed the recommendations but looked also at the

broader context of recommended code, sometimes using also

the search function within a file. He still always came back to

the recommendations eventually. In the process he refactored 5

local code fragments. As most interesting insights in usability

we learned that we should provide functionality to postpone

the decision on a recommendation that is currently not obvious

and to sort recommendations not only by priority but also by

locality, so that a user can investigate all recommendations

within a file before jumping to the next file.

In the ArgoUML case study, we had a different focus. We

selected ArgoUML because it was previously decomposed

manually by others [16] and because it allowed us to explore

variability mining at large scale. Without looking at the previous

decomposition beyond feature names, we extracted four features

with up to 1245 annotations and up to 37 649 lines of code. In

the process, we made errors, reverted changes, and continued

without problems; during the mining process, we switched back

and forth between features as convenient and refactored 4 code

fragments. In an ex-post analysis, comparing to the previous

manual decomposition, we discovered that we identified exactly

the same set of elements for one feature and a superset for the

other three features. It is not always easy to draw the line when

code should belong to a feature, and different domain experts

could defend different opinions. All additional code that we

identified was left as dead code in the previous decomposition

(for which topology analysis and text comparison provide

recommendations, see Sec. 3.5). That is, depending on the

interpretation, we found more feature code or made a different

judgment; we argue that our tool-supported decomposition

yielded a better result. More details on both case studies,

including a closer analysis of the differences between our and

the previous decomposition, can be found in an accompanying

technical report [34].

To check consistency, we compiled all resulting variants. In

addition, we also executed the applications and their existing

test suites on selected variants. All variants were well-typed

(i.e., consistent) and all tested variants passed all test cases,

except for test cases that specifically addressed the removed

feature (for example, 141 out of 1192 test cases in ArgoUML

referred to activity diagrams and could not be executed when

the feature was not selected).

Although the case studies provide some interesting insights

about how developers use our tool, it is difficult to measure

the quality, impact, or completeness of recommendations

objectively. Different developers may have different opinions

about the scope of a feature, which again might easily be

influenced by a wide range of observer-expectancy effects.

Such human influence can easily lead to biased results and

reduce internal validity. Therefore, we restricted our report of

the case studies here to the essential experience and focus on

a controlled quantitative evaluation that we describe next.

4.3 Quantitative Evaluation

To evaluate the quality of LEADT’s recommendations quantita-

tively, we measure recall and precision in a controlled setting.

Recall is the percentage of found feature code, compared to

the overall amount of feature code in the original implementa-

tion. Precision is the percentage of correct recommendations

compared to the number of inspected recommendations.

4.3.1 Study Setup and Measurement

The critical part of an experiment measuring recall and

precision is to find a suitable oracle that defines ground truth

for the correct mapping between code fragments and features.

An incorrect oracle would lead to incorrect results for both

recall and precision.

To combat experimenter’s bias, we do not design the oracle

ourselves or rely on domain experts that might be influenced

8

by the experimental setting. Instead, to find oracles, we

followed two strategies: (a) we searched for programs that

were previously decomposed by other researchers and (b)

we use existing product lines, in which the original product-

line developers already established a mapping between code

fragments and features using #ifdef directives (independently

of our analysis). In existing product lines, we use the code

base without any annotations as starting point to re-discover

all features.

Our strategies exclude experimenter bias, but limit us in

our selection of oracles. Already in concern-location research,

realistic and reliable oracles are rare [19]; in the product-line

context existing oracles are even harder to find. We cannot

simply use any large scale Java application, as we did when

locating new features in HyperSQL (see case studies), because

they do not have oracles available. Similarly, we cannot use any

previous case studies that were created with an early version

of the type system in CIDE, such as BerkeleyDB [29]. The

resulting trade-off between internal validity (excluding bias)

and external validity (many and large studies) is common

for decisions in experimental design. Even though that meant

resorting to comparably small systems with only few domain

dependencies, after our case studies, we decided to emphasize

internal validity in our quantitative evaluation.

After selecting the oracles, the evaluation proceeds as follows,

following the process illustrated in Figure 2. As first step, we

create a variability model in LEADT, reusing the names and

dependencies from the oracle. As second step, we add seeds

for each feature (see below). The third step performs the actual

iterative expansion process, one feature at a time: We take the

recommendation with the highest priority (in case of equal

priority, we take the recommendation that suggests the larger

code fragment). If, according to the oracle, the recommended

code fragment belongs to the feature, we add an annotation;

otherwise, we add a negative annotation.8 We iteratively repeat

this process until there are no further recommendations or

until we reach some stop criteria (see below). Instead of

actually extracting code in a fourth step, we determine recall

by comparing the resulting annotations with the oracle and

precision by comparing the numbers of correct and incorrect

recommendations. Finally, we continue the process with the

next feature.

With this process, we exclude all human influence. With

the oracle, we emulate a developer that always makes perfect

decisions for the given recommendations, thus eliminating the

problem of human judgment errors and misinterpretations of

8. Actually, mirroring human behavior (experienced in HyperSQL and
others), when a specific recommendation is correct, we also look at the
directly surrounding code elements and annotate the largest possible connected
fragment of feature code. For example, if the tool correctly recommends a
statement and the oracle indicates that the entire method belongs to the feature,
we assume that a developer would notice this and annotate the entire method.
Technically, we recursively consider siblings and parents of the recommended
code element up to compilation-unit level. In addition to the described “greedy”
approach, we measured also a conservative one in which we annotate only the
recommended element. Compared to the conservative approach, our greedy
approach improves overall recall from 84 to 97 %, decreases precision from
65 to 42 %, and requires 3.7 times less iterations. We argue that the greedy
approach is more realistic; hence, we do not further discuss results from the
conservative approach.

recommendations. While this is not entirely realistic (external

validity), it makes measurement objective, repeatable, and

automatable.

There are different strategies to determine seeds. To exclude

experimenter bias, we use a conservative strategy based on an

existing tool—the information retrieval engine of FLAT3 [53]

(essentially a sophisticated text search; cf. Sec. 5). To determine

a single seed per feature, we start a query with the feature’s

name (assuming the name reflects the domain abstraction).

FLAT3 returns a list of methods and fields, of which we use

the first result that is correct according to our oracle (a field, a

method, or all feature code inside a found method). We discuss

the influence of different or more seeds in Section 4.3.4.

Deciding when to stop the mining process for a feature (stop

criterion) is difficult, as the developer cannot compare against

an oracle. Possible indicators for stopping are (a) low priority

of the remaining recommendations and (b) many incorrect

recommendations in a row. In our evaluation, we stop the

mining process after ten consecutive incorrect recommendations.

We discuss alternative stop criteria in Section 4.3.4.

To understand the subtleties of our metrics for recall and

precision, it is important to keep the evaluation process in

mind. The tool always recommends a single code element at a

time, but potentially at different granularity, such as an entire

class or a single statement. In our process, deciding whether a

recommendation is correct is a binary decision, there is no

partial credit for recommending a class of which only two

statements belong to a feature. Since developer decisions are

emulated to be objective, the process will always annotate

a subset of the oracle’s feature code, never too much. We

measure recall in lines of code, based on the original layout of

the source code, which generally follows the Java conventions

in all projects. In contrast, we measure precision by counting

recommendations considered in our iterative process: Which

percent of recommendations was accepted as correct before

the stop criterion has been reached. The exact definitions are:

Recall =
Lines of code annotated when stop criterion reached

Lines of code annotated in the oracle

Precision =
Correct recommendations

All recommendations investigated before stop criterion

4.3.2 Oracles

We selected four different oracles developed by others, cov-

ering academic and industrial systems, and covering systems

developed with and without product lines in mind.

• Prevayler. The open-source object-persistence library Pre-

vayer (8009 lines of Java code, 83 files) was not originally

developed as a product line, but has been manually de-

composed into features at least three times [25], [42], [58].

Prevayler makes a perfect oracle for variability mining,

because all previous decompositions agree almost perfectly

on the extent of each feature and because Prevayler

was not developed as a product line. We use a version

that was annotated, independent of our variability-mining

research, by de Oliveira at the University of Minas Gerais,

Brazil (PUC Minas) with five features: Censor, Gzip,

Monitor, Replication, and Snapshot, with the dependency

9

Feature Size Mining Results

Project Feature LOC FR FI IT Recall Prec.

Prevayler Censor 105 (1 %) 10 5 32 100 % 41 %
Gzip 165 (2 %) 4 4 27 100 % 18 %
Monitor 240 (3 %) 19 8 53 100 % 42 %
Replication 1487 (19 %) 37 28 64 100 % 67 %
Snapshot 263 (3 %) 29 5 47 81 % 46 %

MobileM. Copy Media 79 (2 %) 18 6 33 97 % 26 %
Sorting 85 (2 %) 20 6 36 96 % 46 %
Favourites 63 (1 %) 18 6 31 100 % 43 %
SMS Transfer 714 (15 %) 26 14 44 100 % 62 %
Music 709 (15 %) 38 16 51 99 % 59 %
Photo 493 (11 %) 35 13 55 99 % 49 %
Media Transfer 153 (3 %) 4 3 25 99 % 13 %

Lampiro Compression 5155 (12 %) 33 20 42 100 % 66 %
TLS Encryption 86 (0 %) 13 6 24 81 % 29 %

Sudoku Variable Size 44 (2 %) 5 4 24 100 % 29 %
Generator 172 (9 %) 9 7 29 98 % 42 %
Solver 445 (23 %) 40 12 46 100 % 58 %
Undo 39 (2 %) 5 4 29 100 % 21 %
States 171 (9 %) 26 7 43 99 % 52 %

LOC: lines of code (and percentage of feature code in project’s code base);

FR: Number of distinct code fragments; FI: Number of files; IT: Number of iterations

TABLE 1

Feature characteristics and mining results.

Censor→Snapshot. In the search for additional oracles,

we investigated several manual decompositions of other

projects (including AgroUML discussed above), but none

of them had similar quality; none were verified or repeated

independently.

• MobileMedia. Developed from scratch as medium-size

product line at the University of Lancester, UK with

4653 lines of Java ME code (54 files) [24], MobileMedia

contains six features, Photo, Music, SMS Transfer, Copy

Media, Favourites, and Sorting, with the following de-

pendencies: Photo ∨ Music and SMS Transfer → Photo.9

We added a feature Media Transfer and the dependency

Media Transfer ↔ (SMS Transfer ∨ Copy Media) to

the variability model, which are used later to annotate

code common to the two transfer features (which is

implemented in the original implementation with #ifdef

SMS || Copy). Unfortunately, FLAT3 would not find any

feature code for Media Transfer, but thanks to domain

knowledge about feature dependencies, we could mine it

without seeds (cf. Sec. 4.3.4). Despite being a medium-

sized academic case study, MobileMedia makes a suitable

oracle, because its Java ME code is well maintained

and peer reviewed [24] and used in many other studies.

The analyzed version was implemented with conditional

compilation; so, we derived a base version by removing

all preprocessor directives.

• Lampiro. The open-source instant-messaging client Lam-

piro, developed by Bluendo s.r.l. with 44 584 lines of

9. Source code: http://mobilemedia.cvs.sf.net, version 6_OO, last revision
Oct. 2009. We use the feature names published in [24], which abstract
from the technical feature names used for implementation, just as a domain
expert would. For example, it uses “Music” instead of the implementa-
tion flag “includeMMAPI”. Furthermore, we added a missing dependency
SMSTransfer → Photo to the variability model, which we detected
in prior work [31].

Java ME code (147 files),10 provides variability using con-

ditional compilation, like MobileMedia. Of ten features,

we selected only two: Compression and TLS Encryption

(without dependencies), because the remaining features

were mere debugging features or affected only few code

fragments in a single file each (finding a seed would

be almost equivalent to finding the entire extent of the

feature). Lampiro is interesting as oracle for an industrial

product line, in which features were implemented by the

original developers with conditional compilation.

• Sudoku. The small Sudoku implementation (1975 lines of

Java code, 26 files), result of a student project at the Uni-

versity of Passau in Germany, contains five features: States

(for saving and restoring games), Undo, Solver, Generator,

and Variable Size. The project was designed and imple-

mented as a product line, but using a composition-based

approach [2], from which we reconstructed a common base

version and corresponding annotations. Despite the small

size, we selected Sudoku for a particular characteristic

of its implementation: the features have dependencies

and incrementally extend each other. Specifically, there

are the following dependencies: Generator → Solver,

Solver → Undo, and Undo → States.

In Table 1, we list some statistics regarding lines of code,

code fragments and affected files for each of the 19 features, to

give an impression of their complexity and their scattered nature.

Overlapping between features (corresponding to nested #ifdef)

is quite common, but unproblematic; we simply need to locate

such code fragments for each feature. All oracles are available

(e.g., for replication or comparison) in LEADT’s repository.

4.3.3 Variability-Mining Results

In Table 1, we list the number of iterations (i.e., number of

considered recommendations) and the measured recall and

precision for each feature. On average, we could locate 97 %

of all code per feature, with an average precision of 42 %. The

results are stable, independent of the kind of oracle (academic

vs. industrial, legacy application vs. existing product line).

The high recall shows that we can find most features

almost entirely, even with our conservative single seed per

feature. Although not all features have been located entirely, all

identified features are still consistent; we successfully compiled

all variants (40 in MobileMedia, 24 in Prevayler, 4 in Lampiro,

and 10 in Sudoku). When manually investigating all missing

feature code, we found that it is usually not connected to the

remaining feature code. Specifically we found the following

common scenarios:

• Connected only by string literal. In MobileMedia, menu

options and event processing are connected only by string

literals: An event loop dispatches events depending on

the caption of the menu option. For example, although

our algorithm recommended the event processing code

for “Copy” in feature Media Transfer, it did not find the

corresponding button declaration with the same string

literal. In principle our text-comparison recommender

10. http://lampiro.bluendo.com/; Lampiro version 9.6.0 (June 19th, 2009)
available at http://lampiro.googlecode.com/svn/!svn/bc/30/trunk/.

10

could handle such cases, but it currently compares only

identifiers, no literals.

• Extended interface. In several cases a feature adds addi-

tional functionality to the public interface of the program,

which might be called by other programs using the code as

library. The corresponding methods are never called from

within the feature or from any other code in the program.

For example, in feature Snapshot in Prevayler, the feature

stores an extra value in a field and provides three additional

public methods to the database’s API. Although the field

is initialized by feature code, the priority was too low to

be detected before our stop criterion. Similarly, feature

Generator in Sudoku adds a public method setInitial which

makes internal program state shared by all variants mutable

to external users.

• Independent change. Feature Photo changes the label of

a menu option from “Exit” to “Back” by reassigning the

caption in an extra constructor statement. The changed

caption then triggers different behavior in the event loop

(a different interaction mode with dialogs). There is

no visible trace in the source code that could map the

constructor statement to the feature; not even the assigned

string “Back” gives a hint.

Investigating the missing feature code, we found that it is

usually not connected to the remaining feature code (dead code

of the feature or isolated methods) or connected only by string

literals (text comparison currently only compares definitions

not literals).

At first sight, the precision of our approach appears to be

quite low. However, considering our goal to guide developers

to probable candidates, the results illustrate that following

recommendations by LEADT is by far better than searching

at random (which would yield a precision equal to the relative

amount of feature code shown in the LOC column; differences

are strongly significant according to a t-test for paired samples).

In addition, keep in mind that our stop criterion demands

at least ten incorrect recommendations, because developers

would not necessarily know that they found the entire feature

after few correct steps. For example, the 29 % precision of

feature Variable Size results from four correct recommendations,

which find the entire feature code, followed by 10 incorrect

recommendations to reach the stop criterion. Not considering

the last ten incorrect recommendations would improve the

overall average precision from 42 to 76 %.

4.3.4 Further Measures

Beyond our default setting, we investigated the influence of

several parameters more closely. Due to space limitations, we

provide only a brief overview and omit details.

Influence of domain knowledge. Although not directly

visible from Table 1, domain knowledge about dependencies

between features can have a significant impact on the results of

the mining process.11 The influence of knowing dependencies

11. The influence of domain knowledge about mutually exclusive features
conceptually also has an influence. However, we could not evaluate that
influence in our setup, because none of the oracles had mutually exclusive
features. Also, mining mutually exclusive features typically requires to rewrite
code fragments during the mining process, which does not fit with our
automated evaluation in which we excluded all human experimenter bias.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

avg. precision

a
v
g

.
re

c
a

ll

{TS, TA, TC}

{TS, TA}

{TS, TC}

{TA, TC}

{TS}

{TA}

{TC}

TS: Type System

TA: Topology Analysis

TC: Text Comparison

Fig. 4. Combining recommendation mechanisms.

becomes apparent when mining features in isolation or in a

different order. For features without dependencies, the order

does not influence the results at all, but for features with

dependencies it does. We selected the order in Table 1 such

that, in case of a dependency A → B, feature A is mined before

B. As explained in Sections 2 and 3.1, known dependencies

can increase the extent (or exclusion) of a feature and improve

the mining results. The influence is visible for all features

with dependencies. Mining those features in isolation leads

to lower precision for Snapshot (34 %), Photo (33 %), States

(30 %), Undo (12 %), and Solver (35 %) and leads to lower

recall for States (68 %). In addition, for features implied from

other features, we can yield similar results without providing

seeds at all. This was especially convenient for feature Media

Transfer, for which we could not determine seeds with FLAT3,

but which we could still mine because of known dependencies.

Importance of the recommendation mechanisms. The rec-

ommendation mechanisms contribute to the results to different

degrees. By rerunning the evaluation in different configurations,

we explored different combinations of the recommendation

mechanisms and plot the resulting average recall and precision

over all case studies in Figure 4. Especially type system and

text comparison are not effective on their own. As predicted in

Section 3.5, the mechanisms are complementary—combining

them improves performance.

Although we cannot provide a fair direct comparison to

other concern-location tools (since the tools were developed

for different purposes and evaluated with different measures,

the setup would always introduce bias toward one solution), the

comparison of recommendation mechanisms gives an insight

into conceptual differences between tools that use different

recommendation mechanisms (see Sec. 5).

For instance just using the type system achieves only a com-

parably low recall; it benefits significantly from combination

with other recommenders. A simple low-tech approach that

relies purely on compiler errors while removing feature code

(see Sec. 3.2) would achieve a similarly poor performance

as the type system in isolation. The dead code found in a

prior manual decomposition of our ArgoUML case study (see

Sec. 4.2) can be interpreted as confirmation.

We might interpret the results as showing that topology

analysis and text comparison are sufficient and that the type

system contributes very little beyond them. This would however

discard a noticeable quality difference hidden in the aggregated

numbers: Recommendations of the type system are made with

11

higher confidence and are always actionable. The type system

in isolation nearly reaches a precision of 100 %, limited only

by incorrectly recommending code of dependent features (that

is, for feature f with f ⇒ c, the system recommends a not-

yet-annotated code fragment that actually belongs to a feature

c; a developer would probably recognize the problem and

annotate the code with the correct feature). In the context of

our mechanically evaluated quantitative study, the type system’s

higher precision has only a minimal effect when combined with

topology analysis, because the type system issues a smaller

number of recommendations (101 recommendations, 19 % of

all recommendations) and because the topology analysis makes

similar recommendations eventually. Still, we conjecture that

the different recommendation confidence influences developers

when reasoning about a given recommendation, because

the type system’s high-confidence recommendations typically

represent obvious cases violating the consistency criterion that

are easy to decide.

More or other seeds. In principle, the selection of seeds can

have a strong influence on the performance of the variability-

mining process. However, we found that already with a single

seed, we can achieve very good results. In addition, we found

that the results are quite stable when selecting other seeds.

Using the second, third, fourth, or fifth search result from

FLAT3, instead of the first, hardly changes the result. Only few

seeds from FLAT3 (about one out of ten) lead to a significantly

worse result, otherwise recall is mostly the same and also

precision deviates only slightly. Using the five first results

combined as seed, yields similar or slightly better results than

those in Table 1. Also handpicking larger seeds, as a domain

expert might do, leads to a similar recall, usually found in

less steps. This shows that the recommendation mechanisms

are quite efficient finding connected fragments of feature code,

almost independent of where the mechanisms start.

Stop criterion. Finally, we have a closer look at the stop

criterion. Note that we selected our stop criterion before our

evaluation; although we could determine a perfect criterion

ex-post, we could not generalize such criterion. In Figure 5, we

plot the average recall and precision for mining all 19 features

with different stop criteria. We can observe that up to five

incorrect recommendations in a row are quite common and

should not stop the mining process, whereas continuing after

more than eight incorrect recommendations hardly improves

recall further (at the cost of lowered precision). In addition,

we checked an alternative stop criterion based on the priority

of the next recommendation. We can observe that only looking

at recommendations with the highest priority 1.0 already is

sufficient for 70 % recall, but even recommendations with

priority 0.3 contribute to the mining process. Of course a

combination of both criteria is possible, but we conclude that

already the simple “10 consecutive incorrect recommendations”

seems to be a suitable (slightly conservative) stop criterion.

4.4 Threats to Validity

Our case studies explore feature mining in a realistic setting,

but may be biased regarding the experimenter’s and subject’s

decisions and knowledge about the system. Hence, we do not

●

●

●
●

●

● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

unsuccessful recommendations

●
●●●●

●●●

●●●●●●●

1.0 0.8 0.6 0.4

0.0

0.2

0.4

0.6

0.8

1.0

priority bound

● avg. recall

avg. precision

Fig. 5. Alternative Stop Criteria.

attempt to generalize, but interpret the results as encouraging

experience report only.

In our quantitative evaluation, we attempted to maximize

internal validity and exclude bias as far as possible by selecting

neutral oracles. Regarding external validity, the selection of

four rather small oracles with few features each still does

not allow generalizing to other software systems. Furthermore,

the selection of some existing product lines as oracles could

introduce new bias: Potentially, because the system was

already implemented as a product line, it might use certain

implementation patterns for product lines. We are not aware

of any confounding pattern in the analyzed systems though

and results of all case studies, including Prevayler, align well.

None of our oracles contained mutually exclusive features. We

determined small seeds conservatively and mechanically using

FLAT3, which may not reflect a developer’s strategy, and we

set an artificial stop criteria, but evaluated the impact of each.

Also, in our evaluation setting, we emulated developers to

always make perfect decisions, greedily annotating the largest

possible code fragments but not too much (see above), whereas

in practice developers will sometimes make mistakes and revert

annotations.

Regarding internal and construct validity, the common

measures recall and precision both depend on the quality of the

oracles. We have carefully selected oracles as discussed above

(e.g., Prevayler was decomposed several times independently),

but the oracles may still contain errors. Our definition of

recall measures lines of code of Java code (default formating)

instead of counting structural elements. Lines of code are

more intuitive to interpret than measures of the codes internal

hierarchical structure. Because our tool works on code elements

(see Sec. 3.1) but our recall metric measures lines of code,

technically, there is the possibility for inaccuracy in which

multiple code fragments share a single line, of which only

some are annotated. This corner case never occurred in our

evaluation.

5 RELATED WORK

Variability mining is related to asset mining, architecture

recovery, concern location, and their related fields; it tries

to establish stable traceability links to high-level features

for extraction and variant generation and combines several

existing approaches. However, variability mining is tailored

to the specific challenges and opportunities of product lines

(consistency indicator, fine granularity, domain knowledge).

12

The process of migrating features from legacy applications

to a product line is sometimes named asset mining [5], [7],

[55], [56]. Whereas we focus on technical issues regarding

locating, documenting, and extracting source code of a feature,

previous work on asset mining focused mostly on process and

business considerations: when to mine, which features to mine,

or whom to involve. Therefore, they weight costs, risks, and

business strategy, and conduct interviews with domain experts.

Their process and business considerations complement our

technical contribution.

Architecture recovery has received significant attention [20].

Architecture recovery extracts traceability links for redoc-

umentation, understanding, maintenance, and reuse-related

tasks; usually with a long-term perspective. It typically creates

traces for coarse-grained components and can handle different

languages. Fine-grained location of features is not in the scope

of these approaches.

Work on aspect mining searches crosscutting concerns in the

source code and aims to extract them into separate aspects [38].

In the location phase, aspect mining often focuses more on

finding repeating structures in the source code (homogeneous

crosscutting, clone detection), though it also employs concern-

location techniques (see below). Once concerns are identified,

the extraction is similar to our approach, and in fact, we could

use existing aspect-oriented refactorings [47] as subsequent

rewrite techniques as mentioned in Sec. 2.1.

Code search engines like Google Code Search and more

sophisticated tools, such as LSI [44], Portfolio [45], SNIFF [12],

and FLAT3 [53] use various techniques to find code fragments

related to a user query. Developers may search for code

fragments in different context, for example, when trying to

understand a code fragment, when searching for a reusable

code fragment for a specific problem, or when identifying code

of a specific concern. Sophisticated code search engines use

information retrieval techniques often enhanced by reasoning

about the underlying structure of a code fragment and about

its context, similarly to some of our recommendation engines;

McMillan et al. provide a good overview of different technical

approaches [45]. Overall, code search engines typically return

(a list of) individual code fragments (‘snippets’), which often

are a starting point for further investigation. In contrast, the

goal of variability mining is to find the entire extent of a feature,

typically consisting of many code fragments, as described in

Sec. 2.2, wherein code search engines may be a good starting

point to determine seeds. In our evaluation, we used FLAT3 as

neutral seed generator.

There is a vast amount of research on (semi-)automatic

techniques to locate concerns, features, or bugs in source code,

known as concept assignment [8], concern location [22], feature

location [53], impact analysis [48], or similar. Throughout the

paper, we have used the term concern location to refer to all

of these related approaches. A typical goal is to understand

an (often scattered) subset of the implementation for a

maintenance task. Examples are locating the code responsible

for a bug or determining the impact of a planned change.

Similar to architecture recovery, concern location approaches

establish traceability links between the implementation and

some concepts that the developer uses for a specific task.

Many different techniques for concern location exist: there

are static [8], [48], [52] as well as dynamic [15], [59] and

hybrid [22], [53] techniques, and techniques that employ textual

similarity [22], [53] as well as techniques that analyze static

dependencies or call graphs [8], [22], [45], [48], [52] and

program traces [15], [22], [53], [55]. Many approaches work

at method granularity [22], [45], [52], [53], but also fine-

grained approaches have been investigated [48], [59]. For a

comprehensive overview, see recent surveys [15], [19]. Many

approaches complement ours and can be extended for a product-

line setting. Due to space restrictions, we focus on four static

concern-location approaches that are closely related to our

approach: Suade, JRipples, Cerberus, and Gilligan.

We adopted Robillard’s topology analysis in Suade [52] for

variability mining. Topology analysis uses static references

between methods and fields to determine which other code ele-

ments might belong to the same concern. Suade uses heuristics,

such as “methods often called from a concern’s code probably

also belong to that concern,” and derives a ranking of potential

candidates. As explained in Section 3.3, we extended Suade’s

mechanism with domain knowledge and use a more fine-grained

model to include also statements and local variables.

Petrenko and Rajlich’s ripple analysis in JRipples similarly

uses a dependency graph to determine all elements related to

given seeds [48]. A user investigates neighboring edges of the

graph manually and incrementally (investigated suggestions can

lead to new suggestions). JRipples lets the user switch between

different granularities from class level down to statement level.

In that sense, JRipple’s granularity matches that of variability

mining, but JRipple has no notion of consistency or domain

knowledge.

Cerberus combines different techniques including execution

traces and information retrieval, but introduces an additional

concept called prune-dependency analysis to find the complete

extent of a concern [22]. Prune-dependency analysis assigns

all methods and fields that reference code of a concern to

that concern. For example, if a method invokes transaction

code, this method is assigned to the transaction concern

as well. The process is repeated until concern code is no

longer referenced from non-concern code. Gilligan combines

a similar prune-dependency analysis with Suade’s topology

analysis [26]. Gilligan is tailored specifically for reuse

decisions, to locate and copy code excerpts from legacy code.

This scenario is similar but requires different decisions. A

key decision in Gilligan is when not to follow a dependency

and replace a method call with a stub in the extracted code.

For instance, if the code of a located concern calls a library

function, the Gilligan user decides whether the library should

be extracted together with the concern’s code or whether

to extract incomplete code, which will be completed in the

context where the extracted code will be reused. In contrast,

in a product line, we would decide whether the library should

be always included as part of the common base program or

whether it should belong to the feature code (in which case

no other nonfeature code is allowed to call the library). When

considering only a single concern at a time, prune-dependency

analysis in Cerberus and Gilligan is similar to a simple form

of our variability-aware type system (and similar to a low-tech

13

approach depending on compiler errors, see Sec. 3.2). However,

our type system is more fine-grained and additionally considers

domain knowledge about relationships between features.

Beyond traditional concern-location techniques, CIDE+ is

the closest to our variability-mining concept [58]. In parallel to

our work, the authors pursued the same goals of finding feature

code at fine granularity in a single code base. They even built

upon the same tool infrastructure (CIDE [29]). In contrast to our

approach, they solely use a type-system-like mechanism, along

the lines of Cerberus’ prune-dependency analysis [22], but do

not connect their work with additional concern-location tech-

niques and do not exploit knowledge about feature dependen-

cies. Instead, they focus more on automation and propose few

but large change sets, whereas we provide many atomic recom-

mendations to developers. They have evaluated their approach

measuring precision and recall on Prevayler and AgroUML, but

the reported numbers are not comparable, because CIDE+ uses

a different interaction model and large seeds (> 80 % of the

feature code for most features in Prevayler, instead of a single

field or method as seed in our work). In Section 4.3.4, we

have shown how our integration of concern-location techniques

(a) yields better results than using only a type system and

(b) renders the process less fragile to the selection of seeds.

Instead of a tool comparison, we evaluated different con-

ceptual strategies in Section 4.3.4 (Fig. 4). A low-tech manual

approach iteratively using only compiler errors would probably

be less convenient (see Sec. 3.2) and achieve a result concep-

tually similar {TS}, but would require many invocations of

the compiler in different steps and different variants. CIDE+

is conceptually equivalent to that approach but essentially

automates the manual interaction with the compiler. Suade is

conceptually similar to {TA} and Gilligan to {TS, TA}.

Finally, there have been many efforts of migrating legacy

applications to product lines. Where we start with a single

legacy application and identify features that have already

been implemented but not made optional, others have focused

on reengineering existing variability from program deltas

(e.g., branches in version control systems) [21], [23] and

reengineering existing variability from #ifdef directives [1],

[35]. We argue that variability mining is one important

complementary building block in a larger tool set of adoption

and migration strategies for product-line technology in the

presence of legacy applications.

6 CONCLUSION

Software product lines are of strategic value for many compa-

nies. Because of a high adoption barrier with significant costs

and risks, variability mining supports a migration scenario

in which features are extracted from a legacy code base, by

providing semiautomatic tool support to locate, document, and

extract features. Although we use existing concern-location

techniques, we tailor them to the needs of software product lines

(consistency indicator, fine granularity, domain knowledge). We

have demonstrated that variability mining can effectively direct

a developer’s attention to a feature’s implementation.

In future work, we intend to explore synergies with further

recommendation mechanisms. Especially, it would be inter-

esting to investigate recommendation engines based on data-

flow and information-flow properties that have been recently

explored for product lines [9], [10], [41]. Our evaluation

setup also enables to study robustness of our approach

against incorrect user inputs, especially incorrect decisions

on a recommendation. Another interesting direction is to use

consistency criteria beyond well-typedness, such as running

test suites or verifying specifications for all variants, which

could exploit recent approaches to symbolically execute tests

in all variants of a product line [37], [39], [51].

ACKNOWLEDGMENTS.

We are grateful to Norbert Siegmund for sharing his experience

with HyperSQL, to Eyke Hüllermeier for hints regarding

measures in our experiment, and to Paolo Giarrusso, Sven

Apel, and the anonymous reviewers for helpful comments on

prior drafts of this paper. Käster and Ostermann’s work was

supported in part by ERC grant #203099. Dreiling’s work was

supported by the Metop Research Institute.

REFERENCES

[1] B. Adams, W. De Meuter, H. Tromp, and A. E. Hassan. Can We
Refactor Conditional Compilation into Aspects? In Proc. Int’l Conf.

Aspect-Oriented Software Development (AOSD), pages 243–254. 2009.
[2] S. Apel, C. Kästner, and C. Lengauer. FeatureHouse: Language-

Independent, Automated Software Composition. In Proc. Int’l Conf.

Software Engineering (ICSE), pages 221–231. 2009.
[3] R. S. Arnold. Software Change Impact Analysis. IEEE Computer Society

Press, 1996.
[4] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice.

Addison-Wesley, 1998.
[5] J. Bayer, J.-F. Girard, M. Würthner, J.-M. DeBaud, and M. Apel.

Transitioning Legacy Assets to a Product Line Architecture. In Proc.

Europ. Software Engineering Conf./Foundations of Software Engineering

(ESEC/FSE), pages 446–463. 1999.
[6] D. Benavides, S. Seguraa, and A. Ruiz-Cortés. Automated Analysis

of Feature Models 20 Years Later: A Literature Review. Information

Systems, 35(6):615–636, 2010.
[7] J. Bergey, L. O’Brian, and D. Smith. Mining Existing Assets for Software

Product Lines. Technical Report CMU/SEI-2000-TN-008, SEI, 2000.
[8] T. J. Biggerstaff, B. G. Mitbander, and D. Webster. The Concept

Assignment Problem in Program Understanding. In Proc. Int’l Conf.

Software Engineering (ICSE), pages 482–498. 1993.
[9] E. Bodden. Position Paper: Static Flow-Sensitive & Context-Sensitive

Information-flow Analysis for Software Product Lines. In Workshop on

Programming Languages and Analysis for Security (PLAS), 2012.
[10] C. Brabrand, M. Ribeiro, T. Tolêdo, and P. Borba. Intraprocedural

Dataflow Analysis for Software Product Lines. In Proc. Int’l Conf.

Aspect-Oriented Software Development (AOSD), pages 13–24. 2012.
[11] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp. Improving the

Tokenisation of Identifier Names. In Proc. Europ. Conf. Object-Oriented

Programming (ECOOP), pages 130–154. 2011.
[12] S. Chatterjee, S. Juvekar, and K. Sen. SNIFF: A Search Engine for Java

Using Free-Form Queries. In Proc. Int’l Conf. Fundamental Approaches

to Software Engineering, pages 385–400. 2009.
[13] E. J. Chikofsky and J. H. C. II. Reverse Engineering and Design Recovery:

A Taxonomy. IEEE Software, 7:13–17, 1990.
[14] P. Clements and C. W. Krueger. Point/Counterpoint: Being Proactive

Pays Off/ Eliminating the Adoption Barrier. IEEE Software, 19(4):28–31,
2002.

[15] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and R. Koschke.
A Systematic Survey of Program Comprehension through Dynamic
Analysis. IEEE Trans. Softw. Eng. (TSE), 35(5):684–702, 2009.

[16] M. V. Couto, M. T. Valente, and E. Figueiredo. Extracting Software
Product Lines: A Case Study Using Conditional Compilation. In Proc.

European Conf. on Software Maintenance and Reengineering (CSMR),
pages 191–200. 2011.

[17] K. Czarnecki and U. Eisenecker. Generative Programming: Methods,

Tools, and Applications. ACM Press/Addison-Wesley, 2000.

14

[18] B. Dagenais and L. Hendren. Enabling Static Analysis for Partial Java
Programs. In Proc. Int’l Conf. Object-Oriented Programming, Systems,

Languages and Applications (OOPSLA), pages 313–328. 2008.

[19] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk. Feature Location in
Source Code: A Taxonomy and Survey. Journal of Software: Evolution

and Process, 25(1):53Ű95, 2012.

[20] S. Ducasse and D. Pollet. Software Architecture Reconstruction: A
Process-Oriented Taxonomy. IEEE Trans. Softw. Eng. (TSE), 35:573–
591, 2009.

[21] S. Duszynski, J. Knodel, and M. Becker. Analyzing the Source Code of
Multiple Software Variants for Reuse Potential. In Proc. Working Conf.

Reverse Engineering (WCRE), pages 303–307. 2011.

[22] M. Eaddy, A. V. Aho, G. Antoniol, and Y.-G. Guéhéneuc. CERBERUS:
Tracing Requirements to Source Code Using Information Retrieval,
Dynamic Analysis, and Program Analysis. In Proc. Int’l Conf. Program

Comprehension (ICPC), pages 53–62. 2008.

[23] D. Faust and C. Verhoef. Software Product Line Migration and
Deployment. Software: Practice and Experience, 33(10):933–955, 2003.

[24] E. Figueiredo et al. Evolving Software Product Lines with Aspects:
An Empirical Study on Design Stability. In Proc. Int’l Conf. Software

Engineering (ICSE), pages 261–270. 2008.

[25] I. Godil and H.-A. Jacobsen. Horizontal Decomposition of Prevayler.
In Proc. IBM Centre for Advanced Studies Conference, pages 83–100.
2005.

[26] R. Holmes, T. Ratchford, M. Robillard, and R. Walker. Automatically
Recommending Triage Decisions for Pragmatic Reuse Tasks. In Proc.

Int’l Conf. Automated Software Engineering (ASE), pages 397–408. 2009.

[27] K. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson.
Feature-Oriented Domain Analysis (FODA) Feasibility Study. Technical
Report CMU/SEI-90-TR-21, SEI, 1990.

[28] C. Kästner, S. Apel, and D. Batory. A Case Study Implementing Features
Using AspectJ. In Proc. Int’l Software Product Line Conference (SPLC),
pages 223–232. 2007.

[29] C. Kästner, S. Apel, and M. Kuhlemann. Granularity in Software Product
Lines. In Proc. Int’l Conf. Software Engineering (ICSE), pages 311–320.
2008.

[30] C. Kästner, S. Apel, and M. Kuhlemann. A Model of Refactoring
Physically and Virtually Separated Features. In Proc. Int’l Conf.

Generative Programming and Component Engineering (GPCE), pages
157–166. 2009.

[31] C. Kästner, S. Apel, T. Thüm, and G. Saake. Type Checking Annotation-
Based Product Lines. ACM Trans. Softw. Eng. Methodol. (TOSEM),
21(3):Article 14, 2012.

[32] C. Kästner, S. Apel, S. Trujillo, M. Kuhlemann, and D. Batory.
Guaranteeing Syntactic Correctness for all Product Line Variants: A
Language-Independent Approach. In Proc. Int’l Conf. Objects, Models,

Components, Patterns (TOOLS EUROPE), pages 175–194. 2009.

[33] C. Kästner, S. Apel, S. S. ur Rahman, M. Rosenmüller, D. Batory, and
G. Saake. On the Impact of the Optional Feature Problem: Analysis and
Case Studies. In Proc. Int’l Software Product Line Conference (SPLC),
pages 181–190. 2009.

[34] C. Kästner, A. Dreiling, and K. Ostermann. Variability Mining with
LEADT. Technical Report 01/2011, Department of Mathematics and
Computer Science, Philipps University Marburg, 2011.

[35] C. Kästner, P. G. Giarrusso, T. Rendel, S. Erdweg, K. Ostermann, and
T. Berger. Variability-Aware Parsing in the Presence of Lexical Macros
and Conditional Compilation. In Proc. Int’l Conf. Object-Oriented

Programming, Systems, Languages and Applications (OOPSLA), pages
805–824. 2011.

[36] C. Kästner, K. Ostermann, and S. Erdweg. A Variability-Aware Module
System. In Proc. Int’l Conf. Object-Oriented Programming, Systems,

Languages and Applications (OOPSLA). 2012.

[37] C. Kästner, A. von Rhein, S. Erdweg, J. Pusch, S. Apel, T. Rendel,
and K. Ostermann. Toward Variability-Aware Testing. In Proc. GPCE

Workshop on Feature-Oriented Software Development (FOSD), pages
1–8, 2012.

[38] A. Kellens, K. Mens, and P. Tonella. A Survey of Automated Code-Level
Aspect Mining Techniques. Transactions on Aspect-Oriented Software

Development, 5490(IV):143–162, 2007.

[39] C. H. P. Kim, S. Khurshid, and D. Batory. Shared Execution for
Efficiently Testing Product Lines. In Proc. Int’l Symp. Software Reliability

Engineering (ISSRE), pages 221–230. 2012.

[40] J. Liebig, S. Apel, C. Lengauer, C. Kästner, and M. Schulze. An Analysis
of the Variability in Forty Preprocessor-Based Software Product Lines.
In Proc. Int’l Conf. Software Engineering (ICSE), pages 105–114. 2010.

[41] J. Liebig, A. von Rhein, C. Kästner, S. Apel, J. Dörre, and C. Lengauer.
Scalable Analysis of Variable Software. In Proc. Europ. Software

Engineering Conf./Foundations of Software Engineering (ESEC/FSE),
2013. to appear.

[42] J. Liu, D. Batory, and C. Lengauer. Feature Oriented Refactoring of
Legacy Applications. In Proc. Int’l Conf. Software Engineering (ICSE),
pages 112–121. 2006.

[43] R. Lopez-Herrejon, L. M. Mendizabal, and A. Egyed. Requirements
to Features: An Exploratory Study of Feature-Oriented Refactoring. In
Proc. Int’l Software Product Line Conference (SPLC), pages 181–190.
2011.

[44] A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic. An Information
Retrieval Approach to Concept Location in Source Code. In Proc.

Working Conf. Reverse Engineering (WCRE), pages 214–223. 2004.
[45] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C. Fu. Portfolio:

Finding Relevant Functions and Their Usage. In Proc. Int’l Conf. Software

Engineering (ICSE), pages 111–120. 2011.
[46] M. Mendonça, A. Wąsowski, and K. Czarnecki. SAT-based Analysis of

Feature Models is Easy. In Proc. Int’l Software Product Line Conference

(SPLC), pages 231–240. 2009.
[47] M. P. Monteiro and J. M. Fernandes. Towards a Catalog of Aspect-

Oriented Refactorings. In Proc. Int’l Conf. Aspect-Oriented Software

Development (AOSD), pages 111–122. 2005.
[48] M. Petrenko and V. Rajlich. Variable Granularity for Improving Precision

of Impact Analysis. In Proc. Int’l Conf. Program Comprehension (ICPC),
pages 10–19. 2009.

[49] K. Pohl, G. Böckle, and F. J. van der Linden. Software Product Line

Engineering: Foundations, Principles and Techniques. Springer-Verlag,
2005.

[50] A. Rabkin and R. Katz. Static Extraction of Program Configuration
Options. In Proc. Int’l Conf. Software Engineering (ICSE), pages 131–
140. 2011.

[51] E. Reisner, C. Song, K.-K. Ma, J. S. Foster, and A. Porter. Using Symbolic
Evaluation to Understand Behavior in Configurable Software Systems.
In Proc. Int’l Conf. Software Engineering (ICSE), pages 445–454. 2010.

[52] M. P. Robillard. Topology Analysis of Software Dependencies. ACM

Trans. Softw. Eng. Methodol. (TOSEM), 17(4):1–36, 2008.
[53] T. Savage, M. Revelle, and D. Poshyvanyk. FLAT3: Feature Location

and Textual Tracing Tool. In Proc. Int’l Conf. Software Engineering

(ICSE), pages 255–258. 2010.
[54] S. She, R. Lotufo, T. Berger, A. Wąsowski, and K. Czarnecki. Reverse

Engineering Feature Models. In Proc. Int’l Conf. Software Engineering

(ICSE), pages 461–470. 2011.
[55] D. Simon and T. Eisenbarth. Evolutionary Introduction of Software

Product Lines. In Proc. Int’l Software Product Line Conference (SPLC),
pages 272–282. 2002.

[56] C. Stoermer and L. O’Brien. MAP – Mining Architectures for Product
Line Evaluations. In Proc. Working Conf. Software Architecture (WICSA),
page 35. 2001.

[57] T. Thüm, D. Batory, and C. Kästner. Reasoning about Edits to Feature
Models. In Proc. Int’l Conf. Software Engineering (ICSE), pages 254–264.
2009.

[58] M. T. Valente, V. Borges, and L. Passos. A Semi-Automatic Approach
for Extracting Software Product Lines. IEEE Trans. Softw. Eng. (TSE),
38(4):737–754, 2012.

[59] N. Wilde and M. C. Scully. Software Reconnaissance: Mapping Program
Features to Code. Journal of Software Maintenance: Research and

Practice, 7(1):49–62, 1995.
[60] C. Zhang and H.-A. Jacobsen. Resolving Feature Convolution in

Middleware Systems. In Proc. Int’l Conf. Object-Oriented Programming,

Systems, Languages and Applications (OOPSLA), pages 188–205. 2004.

APPENDIX

We calculate weightTA(e,X) where X is a set of relevant

elements (either the extent or the exclusion of f) as follows:

targets(e) = {e ′|(e, e ′) ∈ R}

sources(e) = {e ′|(e ′, e) ∈ R}

weightTA(e,X) =
1 + |targets(e) ∩ X|

|targets(e)|
·
|sources(e) ∩ X|

|sources(e)|

Functions targets and sources determine the neighboring

elements in the program structure (relation R). The weight

15

is high if a large percentage of sources and targets are within

the set of relevant elements X (i.e., already annotated elements

or elements known to be in conflict). In each fraction, the

denominator describes specificity and tends to lower the

priority if there are many neighboring elements, whereas the

numerator describes reinforcement and increases the priority if

many neighboring elements are already in the set of relevant

elements. The two fractions account for incoming and outgoing

relationships in R. See [52] for a detailed explanation.

Function vocb of the text-comparison mechanism can be

explained conceptually as follows: It receives a set of code

elements and tokenizes their names and removes stop words. It

counts how often each token occurs, relative to the total number

of tokens. Subsequently, weightTC compares the tokens of a

code element with the weighted tokens in both vocabularies:

weightTC(e, v1, v2) =
∑

t∈tokenize(e)

(v1(t) − v2(t)) · ρ(t)

v(t) denotes the lookup of the relative frequency of a token

in a vocabulary and ρ is a weight that we use to give lower

priorities for shorter tokens (0 for length 1, .33 for length 2,

.67 for length 3, and 1 for all longer tokens in our evaluation).

The function cuts off values below 0 and above 1. Since both

vocabularies typically have many tokens with comparably low

weights priorities given by the text-comparison mechanisms

tend to be rather low, which reflects the low confidence we

have in this mechanism.

Christian Kästner Christian Kästner is an assis-
tant professor in the School of Computer Science
at Carnegie Mellon University. He received his
PhD in 2010 from the University of Magdeburg,
Germany, for his work on virtual separation of
concerns. For his dissertation he received the
prestigious GI Dissertation Award. His research
interests include correctness and understanding
of systems with variability, including work on
implementation mechanisms, tools, variability-
aware analysis, type systems, feature interac-

tions, empirical evaluations, and refactoring.

Alexander Dreiling Alexander Dreiling received
a Master’s degree in Business Information Sys-
tems from Otto-von-Guericke University Magde-
burg, Germany in 2010. His research focused
on variability and software product lines, feature-
oriented software development, and feature lo-
cation. Alexander Dreiling currently works as
Assistant Vice President at Deutsche Bank AG,
Group Technology, in post merger integration
projects as project manager.

Klaus Ostermann Klaus Ostermann is a profes-
sor of computer science at the Philipps University
of Marburg, Germany. His main research inter-
ests are in programming languages and software
engineering for modular software development.

16

