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Abstract—Model-driven development of software-intensive
systems aims at designing systems by stepwise model re-
finement. In order to create software product lines by
model-driven development, product variability has to be
represented on every modelling level and preserved under
model refinement. In this paper, we propose ∆-modelling as
an generally applicable variability modelling concept that is
orthogonal to model refinement. Products on each modelling
level are represented by a core model and a set of ∆-
models specifying changes to the core to incorporate product
features. Core and ∆-models can be refined independently
to obtain a more detailed model of the product line. Based
on a formalization of ∆-modelling, we establish conditions
that model refinement and model configuration commute re-
sulting in an incremental model-driven development process.

Keywords-Software Product Lines; Variability Modelling;
Model-driven Development; Model Refinement

I. INTRODUCTION

Model-driven development [1] of software-intensive

systems aims at reducing design complexity by shifting

the focus during system development from implementation

to modelling. A model is an abstraction of a system with

respect to certain system aspects. In model-driven devel-

opment, an initial system model is successively refined

by adding details relevant in particular design phases. A

software product line [2], [3] is a set of systems with

well-defined commonalities and variabilities. In order to

use model-driven development in software product line

engineering, the variability of the different products has

to be represented within the used modelling concepts and

preserved under model refinement.

The variability of products in software product lines is

currently predominantly captured by feature models [4].

Features represent important product characteristics. A

feature model determines a set of products by the set of

valid feature configurations. However, features at the level

of a feature model are merely labels [5]. Hence, feature-

based variability has to be mapped to the modelling

concepts used on each modelling level [6] in order to

design a product line by a model-driven development

process.

Existing approaches to integrate feature-based vari-

ability into modelling languages can be classified in

two main directions [7]. First, negative variability-based
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approaches consider one model for all products of a

product line that is augmented with variant annotations

determining which model elements are present in which

products [8], [9], [10], [11]. Second, positive variability-

based approaches [6], [7], [12], [13], [14] associate model

fragments to features and compose them for a given fea-

ture configuration. However, most approaches only focus

on modelling concepts used on one modelling level and

do not consider how the variability representation can be

preserved under model refinement.
In order to define a seamless model-driven develop-

ment process for software product lines, we propose ∆-

modelling, a general concept integrating variability mod-

elling with model refinement. On each modelling level,

product line variability is represented by a core model and

a set of ∆-models. The core model represents a valid prod-

uct of the product line. ∆-models specify changes of the

core model, i.e., additions, modifications and removals of

model fragments, in order to capture further products. An

application condition attached to a ∆-model determines

for which feature configuration a ∆-model is applicable.

A product model for a feature configuration is obtained

by applying the modifications specified by the ∆-models

with valid application conditions.
For refinement, the core model and every ∆-model are

transformed independently into a more detailed core model

or ∆-model, respectively. The internal structure of the

core and ∆-models, as well as the application conditions

of the ∆-models are preserved. If the specified modifi-

cations in the refined ∆-models satisfy local refinement

compatibility conditions, a refined product model for a

feature configuration can be obtained in two ways: first,

the product model is configured on the higher level of ab-

straction and afterwards transformed to a refined model; or

second, the core and ∆-models are refined and afterwards

configured by applying the modifications of the refined ∆-

models to the refined core model. The commutativity of

model refinement and model configuration builds the basis

for incremental model-driven development of software

product lines.
The ∆-modelling concept provides an integrated vari-

ability modelling approach for model-driven development

of software product lines. Its main characteristics are:

• ∆-modelling is independent of a concrete modelling

or implementation language. It can be instantiated to

concrete modelling or implementation languages by

defining the semantics of ∆-application.
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• Combinations of features can be explicitly captured

by flexible application conditions attached to ∆-

models.

• Modular and evolutionary system development is

facilitated by adding ∆-models to an existing model.

• Model refinement is orthogonal to variability mod-

elling. Core and ∆-models are refined independently

such that variability is expressed by the same struc-

tural concepts on all modelling levels.

• The commutativity of model configuration by ∆-

application and model refinement provides the basis

for an incremental development process by stepwise

refinement of core and ∆-models.

The outline of this paper is as follows: In Section II,

we review related work. In Section III, we explain the

∆-modelling approach at an example of a trading system

product line. In Section IV, we formalize ∆-modelling

and extend this formalization to model refinement in

Section V. SectionVI concludes with an outlook to future

work.

II. RELATED WORK

Model-driven engineering for software product line

development is proposed in [10], [15] in order to re-

solve product variability by model transformations. A

model in the problem domain, usually a feature model,

is transformed into a model in the solution domain, e.g.,

a product model [7], product architecture [16] or product

implementation [17].

The existing approaches to represent feature-based vari-

ability can be classified into two main directions [7].

Annotative approaches specify negative variability. They

consider one model representing all products of a product

line. Variant annotations, e.g., using UML stereotypes [8],

[9], [10], [11], define which parts of the model have to

be removed to derive the model of a concrete product. [5]

associates presence conditions to modelling elements to

be removed in certain feature configurations.

Compositional approaches capture positive variability.

Model fragments are associated with features and com-

posed for a particular feature configuration. A prominent

example is the AHEAD [12] approach. A product is

built by stepwise refinement of a base module with a

sequence of feature modules. In [6], [7], [13], models are

constructed by aspect-oriented modelling techniques. [14]

applies model superposition to compose model fragments.

In [18], a product model is obtained by composition and

refined by model transformation. [19] propose to represent

model variability by a base model and associated vari-

ability and resolution models determining how modelling

elements of the base model have to be replaced for a

particular product model. The base model is similar to the

core model in the ∆-modelling approach while variability

and resolution models correspond to ∆-models, but are

not directly connected product features.

Most of the above approaches only focus on the repre-

sentation of variability on a single modelling layer. In [9],

different modelling levels during system development are

considered, but variability resolution is based on tex-

tual decision models that are separated from the system

models. In contrast, ∆-modelling facilitates a seamless

representation of variability inbetween different modelling

layers.

The notion of program deltas is introduced in [20] to

describe the modification of an object-oriented program,

e.g., by introduction of new fields or extension of methods.

The mapping of collaborative features to models in [6] is

similar to ∆-models. Collaborative features can modify a

core model by additions, removals and modifications, but

require a one-to-one relationship to a feature. In [21], ∆-

modelling is presented as an approach to develop product

line artifacts suitable for automated product derivation.

Feature-oriented model-driven development

(FOMDD) [22] combines feature-oriented programming

(FOP) with model-driven engineering. In FOMDD, a

product can, first, be composed from a base module

and a sequence of feature modules and afterwards

transformed to another product model. Second, the base

module and the feature modules can be transformed and

then composed to a transformed product model. This is

similar to the commutativity between model refinement

and model configuration in ∆-modelling. FOP can be

seen as a special case of ∆-modelling. Feature modules

are always associated to exactly one feature, whereas

∆-models explicitly consider combinations of features.

In feature modules, only additions and modifications can

be specified. In contrast, ∆-models may contain removals

of model parts. While the base module in FOP is fixed

by the mandatory features, in ∆-modelling, any valid

product can be chosen as core model enabling a flexible

product line design.

III. VARIABILITY MODELLING USING ∆-MODELS

Figure 1 shows an overview of the model-based devel-

opment process for software product lines using the ∆-

modelling approach. First, an initial model of the product

line is created that captures the variability of the feature

model. From this initial model on a high level of ab-

straction, successively refined models are constructed that

describe more detailed aspects of the considered products.

On each modelling level, product variability is captured

by a core model and a set of ∆-models. A core model

corresponds to a valid product of the product line. ∆-

models specify changes to the core model by additions,

modifications and removals of model fragments in order

to represent further products. An application condition is

attached to every ∆-model determining for which feature

configurations the specified changes are to be carried

out. In order to obtain a product model for a feature

configuration, the changes specified by ∆-models with

valid application condition are applied to the core. The

concept of ∆-modelling to express variability is indepen-

dent of a concrete modelling language. The modelling

constructs used on each modelling level can be chosen

to appropriately represent the considered system aspects.

The application conditions attached to the ∆-models create
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Figure 1. Model-driven development with ∆-Modelling

the connection between the features in the feature model

and product variability on the different modelling levels.

If the selection of a feature influences the choice of the

modelling language, e.g., if a feature refers to the used

implementation framework, core and the ∆-models can be

seen tuples containing the specifications of the core and

∆-models in the respective modelling formalisms, while

the general variability structure is preserved.

The step from a feature model of a product line to the

initial core model and the set of ∆-models is a creative

process, since product line variability can in general be

represented in different ways. The variability structure pro-

vided by the initial modelling level provides the variability

structure of the lower, more refined modelling levels

(cf. Figure 1). A core model is refined to a more detailed

core model. ∆-models are refined to more detailed ∆-

models with the same application condition. An important

property of the refinement between two modelling levels

is that it commutes with model configuration by ∆-

application. This means that a refined configured prod-

uct model can be obtained in the following two ways.

First, the product model for a feature configuration is

configured from the core model and the applicable ∆-

models and afterwards refined. Second, the core model

and the ∆-models are refined, such that afterwards the

refined product can be configured. This commutativity

property provides the basis for an incremental model-

based development process by stepwise model refinement.

Example We illustrate variability modelling based on

∆-models at the case example of a software product line

of trading systems. The Common Component Modeling

Example (CoCoME) [23] describes a software system

handling payment transactions in supermarkets. It was

extended to a software product line in [24]. The variability

of the products are expressed in the feature diagram [4]

shown in Figure 2. Mandatory features are represented

by a filled circle, optional features with an empty circle.

Alternative features are specified with a filled triangle if at

least one feature has to be selected or by an empty triangle

if exactly one features has to be selected. Constraints

between features are represented by explicit links. A

Figure 2. Feature Model for the CoCoME Software Product Line

product in the trading system product line has different

payment options, i.e., cash payment or payment by credit

card, prepaid card or electronic cash. At least one payment

option has to be chosen for a valid configuration. Product

information can be entered using a keyboard or a scanner,

where at least one option has to be selected. Furthermore,

the system has optional support to weigh goods, either at

the cash desks or at separate facilities. A trading system

can be configured as a single-desk system with only one

cashier or as a multi-desk system with several of cashiers.

A multi-desk system can optionally comprise an express

mode which requires cash payment or a self-service mode

requiring non-cash payment.

A core model represents a product for a valid fea-

ture configuration. Thus, it can be developed by well-

established single application engineering techniques as

a standard product model. In the example, the feature

configuration containing the keyboard, the cash payment

and the single-desk system features is selected as core

configuration.

Component Modelling Level In our example, we start

the model-based development process at the component

level by representing the core model by a UML component

diagram [25] and its variability by component diagram ∆-

models that are an extension of UML component diagrams

with annotations for the specified changes. In a second

step, the component diagrams are refined to UML class

diagrams showing in more detail how the components

are implemented. Figure 3 depicts the component diagram

specifying the core product of the trading system product

line with the keyboard, cash payment and single-desk sys-

tem features. It contains a Cash Desk component dealing

with cash payment and an Inventory component keeping

the store inventory. Every time a product is entered at the

cash desk, the price of the product is requested from the

inventory.

Cash DeskInventory

Inv

Figure 3. Core Component Diagram
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Figure 4. Component Diagram ∆-Model

Figure 4 depicts the component diagram ∆-model con-

taining the modifications of core component diagram to

include credit card functionality. A Bank component has

to be added specified by the + annotation at the Bank

component. Additionally, the Cash Desk component has

to be modified to handle credit card payment which

indicated by ∗ annotation at the Cash Desk component.

In order to realize the communication with the Bank

component, an required interface and a corresponding

connection to the bank component have to be added. The

application condition of this ∆-model (in the top right

hand corner) defines that the modifications are carried

out if the credit card feature is selected. In Figure 5, the

component diagram for a single-desk system containing

keyboard input, cash payment and credit card payment is

depicted that results from applying the ∆-model for credit

card payment (cf. Figure 4) to the core component diagram

(cf. Figure 3).

Class Modelling Level Each component of the trading

system product line can be refined to a class diagram. The

class diagram represents the internal component structure

and can be used as basis for an implementation. The

interactions between the components are not considered on

the class diagram level because they are already captured

on the component modelling level. In the ∆-modelling

approach, core and ∆-models are refined independently. A

refined product model is obtained by applying the refined

∆-models to the refined core model.

Figure 6 shows the class diagram for the Cash Desk

component contained in the core. It comprises a Cash

Desk class implementing the main functionality of the

cash desk, a Keyboard class handling the input from

the keyboard and a Display class providing output to a

display. Figure 7 depicts the class diagram ∆-model spec-

ifying the modifications of the core class diagram Cash

Desk component to incorporate the credit card feature.

In order to provide credit card payment functionality, a

Card Reader class is required. The Cash Desk class is

modified by adding a reference to the bank, by adding

methods to deal with the credit card payment and by

modifying the existing payment methods.

Cash DeskInventory

Inv

Bank

Bank

Figure 5. Product Component Diagram

Cash Desk Keyboard

Display

-Order

Figure 6. Core Class Diagram

Model Refinement and Configuration The class dia-

gram for the configured Cash Desk component with the

basic features and the credit card feature can be obtained

in two different ways. First, the core model and the ∆-

model on the component modelling level (cf. Figure 3

and 4) can refined to a core and ∆-model on the class

diagram level (cf. Figures 6 and 7) and configured to a

class diagram by the standard configuration procedure.

Second, a component diagram including the Cash Desk

component with the basic features and the credit card

feature can be configured on the component diagram level

(cf. Figure 5). Afterwards, the configured Cash Desk

component can be refined to a class diagram specifying

the component’s structure in more detail.

Model refinement and model configuration commute in

the example because the refinement of the component di-

agram ∆-models is compatible with model configuration.

Compatibility requires that for a component added (or

removed) by a component diagram ∆-model, in the class

diagram refinement of this ∆-model, all parts of the class

diagram are specified as added (or removed) as well. If a

component is modified in a component diagram ∆-model,

in the refined class diagram, the parts of the class diagram

Cash Desk

Card Reader

+void enable()

+void disable()

+void enterPinCode()

+

Credit Card 

-Bank

!

+

+void CreditCardScanned(int)
+void CreditCardPinEntered(int)
-connectWithBank()

+

+void startPaymentProcess()

!
+

Figure 7. Class Diagram ∆-Model
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may be specified as added, modified or removed. However,

the change operations resulting from refinement of a

modification operation have to satisfy a local refinement

compatibility condition. This condition requires that the

class diagram obtained by applying the refined component

∆-model to the class diagram of a refined core component

is the same as the class diagram refinement of the same

component configured on the component diagram level.

IV. FORMALIZING ∆-MODELLING

Variability modelling using ∆-models is a general ap-

proach that is not limited to specific modelling concepts,

such as component or class diagrams used in Section

III. ∆-modelling can be applied to any modelling or

implementation language by defining the semantics of

the change operations specified in the ∆-models for the

concrete language. The number of modelling layers also

depends on the concrete application and is not limited by

the ∆-modelling approach. For instance, in Section III,

use case diagrams separated into core and ∆-diagrams

could be used to represent the requirements of the set of

systems under development and subsequently be refined

to component diagrams.

In order to show the general applicability of ∆-

modelling, we base the following formalization on a gen-

eral notion of models. A model contains a set of modelling

elements E that can, for instance, represent components or

classes (by their names). The set of modelling elements

E describes the (domain-specific) concepts used in the

models. Furthermore, a model contains relations between

modelling elements representing correspondences, such as

connections between required and provided interfaces in

component diagrams. For simplicity, we restrict our notion

of a model to contain only one binary relation R over the

set of modelling elements E. This allows us to consider

relations formally while keeping the model and its formal

treatment simple. In a concrete model instantiation, a set of

relations can be defined to express different relationships

between elements.

Definition 1 (Models): Let E be a set of modelling

elements. A model M is a tuple M = (E,R) where

R ⊆ E × E is a relation over the modelling elements.

A core model represents a product for a valid feature

configuration. This allows treating the core model in the

same way as any product model. We define the set of valid

feature configurations as a subset of the powerset of the

set of features.

Definition 2 (Core and Product Models): For a set of

features F = {f1, . . . fn}, let F ⊆ P(F ) denote the

set of valid feature configurations. A core model (product

model) is a triple C = (E,R, f) where f ∈ F is a valid

feature configuration, and (E,R) is a model representing

the feature configuration f .

A ∆-model specifies changes to a core model to model

other products. For a core model C = (E,R, f), a ∆-

model defines additions, modifications and removals of

modelling elements e ∈ E, and additions and removals of

tuples in the relation R. A ∆-model has an application

condition determining under which feature configurations

the specified changes have to be carried out. Application

conditions are logical (e.g., Boolean) constraints over the

features contained in the feature model. A ∆-model does

not necessarily refer to exactly one feature, but potentially

to a combination of features. This allows very flexible

∆-models as combinations of features can be handled

individually. For example, if a feature model contains

two features A and B, the Boolean constraint (A ∧ ¬B)
denotes that the modifications are only carried out for a

feature configuration if feature A is selected and feature

B is not selected. The granularity of the application

conditions determines the number of ∆-models that have

to be created to ensure that all features present in the

feature model are appropriately captured.

Definition 3 (∆-Models): A ∆-model over a model

M = (E,R) is a tuple ∆ = (ϕ, Op) where the appli-

cation condition ϕ is a constraint over the set of features

F = {f1, . . . fn} and Op = {op1, . . . , opm} is a set of

modification operations over the model M with

opi ::= add e | mod e | rem e | add r(e1, e2) | rem r(e1, e2)

In order to obtain a product model for a feature con-

figuration f ∈ F , all ∆-models with valid application

condition for the feature configuration f are applied to

the core model. This can involve different ∆-models that

are applicable for the same feature. To limit the occur-

rence of conflicts between changes targeting the same

modelling elements and relations, first all additions, then

all modifications and finally all removals are performed.

In order to express this ordering formally, we assume

that ∆-models are normalized, i.e., their change opera-

tions contain only additions, only modifications, or only

removals. A ∆-model ∆ = (ϕ, Op) can be normalized by

splitting it into three disjoint normalized ∆-models ∆a =
(ϕ, Opa), ∆m = (ϕ, Opm) and ∆r = (ϕ, Opr) such that

Op = Opa ⊎ Opm ⊎ Opr. We call a set of ∆-models

∆ = {∆1, . . . ,∆n} sorted if and only if there exist i, j

with 1 ≤ i ≤ j ≤ n, such that ∆1, . . . ,∆i contain only

additions, ∆i+1, . . . ,∆j contain only modifications, and

∆j+1, . . . ,∆n contain only removals. The operation ν(∆)
transforms a set of ∆-models into a set of normalized and

sorted ∆-models. The application function apply(M, Op)
modifying a model M by the change operations Op is

defined in Definition 5.

Definition 4 (Configuration): Let C = (E,R, fc)
be a core model and ∆ = {∆1, . . . ,∆n} be a

sequence of normalized and sorted ∆-models with

∆i = (ϕi, Opi) for all i. For a feature configuration

f ∈ F , a product model Pf = (EP , RP , f) is con-

figured by conf ((E,R), {∆1, . . . ,∆n}, f) where for a

model M = (EM , RM ), its configuration is defined by

conf (M, {∆1, . . . ,∆n}, f) =

conf (apply(M,Op1), {∆2, . . . ,∆n}, f) if f |= ϕ1

conf (M, {∆2, . . . ,∆n}, f) otherwise

and conf (M, ∅, f) = (EM , RM , f).
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The ordering in which the change operations specified

in a single ∆-model are applied to a model is not fixed,

which can also be seen as simultaneous application of the

specified changes. The same modelling element can be

added several times, but only occurs once in the model.

Similarly, a tuple in the relation is added only once, if the

related modelling elements are contained in the model.

The modification of a modelling element also causes that

the element is replaced in all relational tuples in which the

original modelling element is contained. If an element is

removed, also all relational tuples containing this element

are removed from the relation. The application of a change

operation is undefined if a modelling element e is modified

that is not contained in the core or added before by another

∆-model, or if a modelling element or a relational tuple is

removed, that is not contained in the core or added before

by another ∆-model.

Definition 5 (∆-Application): The application of a set

of change operations Op = {op1, ..., opn} to a model

M = (E,R) is defined by the application function apply:

• apply(M, ∅) = M

• apply(M,Op) = apply(apply(M,opi), Op \ {opi})
• apply(M, add e) = (E ∪ {e}, R)
• apply(M, mod e) = (E \ {e} ∪ {e′}, R′), if e ∈ E

where e′ ∈ E is the result of the modification of

e ∈ E and R′ = {(e1, e2) | (e1, e2) ∈ R,

e1, e2 6= e} ∪ {(e′, e2) | (e, e2) ∈ R, e2 6= e}
∪ {(e2, e

′) | (e2, e) ∈ R, e2 6= e}
∪ {(e′, e′) | (e, e) ∈ R}

• apply(M, rem e) = (E \ {e}, R′) , if e ∈ E where

R′ = {(e1, e2) | (e1, e2) ∈ R ∧ e1, e2 6= e}
• apply(M, add r(e1, e2)) = (E,R ∪ {r(e1, e2)}), if

e1, e2 ∈ E

• apply(M, rem r(e1, e2)) = (E,R \ {r(e1, e2)}), if

e1, e2 ∈ E and r(e1, r2) ∈ R.

Despite using normalized and sorted ∆-models during

configuration, there can still be conflicts between the

change operations specified in different ∆-models. A

conflict occurs if a modelling element or tuple in a relation

is added and removed by two different ∆-models, if a

modelling element is modified and removed by two dif-

ferent ∆-models or if a modelling element is modified by

two different ∆-models. This indicates that the granularity

of the ∆-models and their application conditions is too

coarse. Conflicts can be removed by splitting ∆-models

and refining them to explicitly cover the conflicting feature

combinations.

Definition 6 (Conflicts in ∆-Models): A set of ∆-

models ∆ = {∆1, . . . ,∆n} contains a conflict if for a

feature configuration f ∈ F , there are ∆-models ∆i and

∆j with i 6= j, f |= ϕi and f |= ϕj , and there exists

e ∈ E, or e1, e2 ∈ E and r(e1, e2) ∈ R, such that one of

the following holds:

• add e ∈ Opi and rem e ∈ Opj

• add r(e1, e2) ∈ Opi and rem r(e1, e2) ∈ Opj

• mod e ∈ Opi and rem e ∈ Opj

• mod e ∈ Opi and mod e ∈ Opj

A core model C = (E,R, fb) and a set of ∆-models

∆ are well-defined if for all valid feature configurations

f ∈ F , all applications of ∆-operations are defined and

there are no conflicts between any two ∆-models. Well-

definedness is a prerequisite for commutativity of model

configuration and model refinement.

V. MODEL REFINEMENT AND CONFIGURATION

Based on the formalization of the ∆-modelling ap-

proach in Section IV, model refinement of core and ∆-

models can be defined. A model is transformed to a more

detailed model by refining the contained modelling ele-

ments to models themselves, as in the example in Section

III, components are refined to class diagrams showing their

internal structure. Relations between modelling elements

are not considered for refinement, such as connections

between components are only relevant on the component

modelling level.

Definition 7 (Model Refinement): The refinement

operation refine maps every modelling element e ∈ E to

a model M such that refine(e) = Me = (Ee, Re). The

refinement M ′ of a model M = (E,R) is defined by

refine(M) = ({M ′′ |M ′′ = refine(e), e ∈ E},
{r(refine(e1), refine(e2)) | r(e1, e2) ∈ R})

The core model and all other product models can be

refined using the above definition of model refinement. In

order to refine ∆-models, the specified addition, modifi-

cation and removal operations on modelling elements and

relations have to be refined. The addition of a modelling

element is refined to a set of addition operations for the

elements and the relational tuples of the model obtained

by refining the modelling element. The removal of a

modelling element is refined to a set of remove operations

for the modelling elements and relational tuples of the

model resulting from refining the modelling element. The

modification of a modelling element is refined to a set of

addition, modification and removal operations for mod-

elling elements and relational tuples obtained by refining

the modelling element. Change operations for relations are

removed during ∆-refinement. The application condition

of a ∆-model remains unchanged such that the variability

structure is preserved. In the example in Section III, the

component diagram ∆-model (cf. Figure 4) is refined to

a class diagram ∆-model (cf. Figure 7) according to the

following definition.

Definition 8 (∆-Refinement): The refinement of a

∆-model ∆ = (ϕ, Op) is defined by refine(∆) =
(ϕ, refine(Op)) where refine({op1, ..., opn}) =
{refine(op1), ..., refine(opn)} and

• refine(add e) = {add e′ | e′ ∈ Ee} ∪
{add r(e′1, e

′

2) | r(e′1, e
′

2) ∈ Re, e
′

1, e
′

2 ∈ Ee}
• refine(rem e) = {rem e′ | e′ ∈ Ee} ∪

{rem r(e′1, e
′

2) | r(e′1, e
′

2) ∈ Re, e
′

1, e
′

2 ∈ Ee}
• refine(mod e) = {op e′ | e′ ∈ Ee} ∪

{op r(e′1, e
′

2) | r(e′1, e
′

2) ∈ Re, e
′

1, e
′

2 ∈ Ee} where

op ∈ {add, rem, mod}
• refine(add r(e1, e2)) = refine(rem r(e1, e2)) = ∅
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The configuration of a refined model for a feature

configuration f ∈ F is performed in three steps. First,

the original model on the higher abstraction level is

configured subject to the feature configuration f . Second,

for every modelling element e included in the resulting

product model, the refined core model restricted to the

modelling element e is configured using the refined ∆-

models restricted to the modelling element e subject to

the feature configuration f . If a modelling element e is

not contained in the core model, but introduced by a

∆-model, the refined core model restricted to the mod-

elling element e is an empty model. Third, the refined

modelling elements replace their non-refined version in

the configured original model. The result is a model

that contains models as modelling elements and relations

between these models. In the example in Section III,

a configured, refined model is a component diagram in

which the components contain class diagrams showing

their detailed internal structure. The restriction of a core

model C = (E,R, fb) to a modelling element e ∈ E is

defined by C|e = ({e}, ∅) if e ∈ E and by C|e = (∅, ∅),
otherwise. Further, we define ∆|e = {∆1|e, . . . ,∆n|e} as

the set of ∆-models only modifying element e ∈ E where

∆i|e = (ϕi, {op e ∈ Opi}) for op ∈ {add, rem, mod}.

Definition 9 (Configuration of Refined Models): Let

C = (E,R, fc) be a core model, ∆ = {∆1, . . . ,∆n}
a set of normalized and sorted ∆-models and f ∈ F
a feature configuration. Let Pf = (EP , RP , f) =
conf ((E,R), {∆1, . . . ,∆n}, f) be the configured

original model for the feature configuration f . Further,

let Me = conf (refine(C|e), ν(refine(∆|e)), f) be the

refined configured modelling element for e ∈ EP .

The refined configured model is defined by Pr =
conf ref (refine(E,R), refine(∆), f) with Pr =

({Me | e ∈ EP }, {r(Me1
, Me2

) | r(e1, e2) ∈ RP }, f)

The commutativity of model refinement and model

configuration by ∆-application constitutes the basis for the

incremental model-based development of software product

lines by stepwise refinement of core and ∆-models. The

requirement for commutativity is that the refinement of

the change operations specified in ∆-models is compat-

ible with model configuration. For addition and removal

operations, compatibility is ensured by the definition of ∆-

model refinement in Definition 8. For the refinement of the

modification operations, a local refinement compatibility

condition has to be established. This local refinement

compatibility condition requires that the result of applying

the refined modification operation to the refined modelling

element in core model is the same as the refinement of the

modelling element that has been configured on the non-

refined modelling level.

Definition 10 (Refinement Compatibility): Let e′ ∈ E

be the result of applying the modification operation mod e

to the modelling element e ∈ E. The local refinement

compatibility constraint for the operation mod e holds iff

apply(refine(e), refine(mod e)) = refine(e′)

The following theorem states that model refinement and

model configuration commute if all modification opera-

tions satisfy refinement compatibility.

Theorem 1 (Commutativity): For a feature

configuration f ∈ F , a core model C = (E,R, fc)
and a set of well-defined ∆-models ∆ = {∆1, . . . ,∆n}
and a refinement refine on the modelling elements

e ∈ E, if all modification operations mod e ∈ Opi

satisfy the refinement compatibility condition,

then it holds that refine(conf ((E,R),∆, f)) =
conf ref (refine(E,R), refine(∆), f).

Proof: By induction on the set of ∆-models and a

case distinction on their add, mod, rem operations. For

add and rem operations, the definition of ∆-refinement in

Definition 8 is used. For mod operations, the refinement

compatibility condition from Definition 10 is assumed.

Commutativity of model refinement and model con-

figuration provides that basis for an incremental model-

driven development process for software product lines.

After the initial core and ∆-models have been created to

capture the variability of the feature model, this initial

variability structure is preserved on each modelling level

by the independent refinement of core and ∆-models.

VI. CONCLUSION

∆-modelling is an variability modelling approach for

model-driven development of software product lines. Prod-

uct variability is expressed by core and ∆-models on all

modelling levels that are preserved under model refine-

ment. For a concrete development process, the semantics

of ∆-application has to be defined for the language

concepts used on each modelling level. Model configu-

ration by ∆-application can be automated, e.g., by aspect-

oriented model weaving techniques [6], [7], [13] or model

superimposition [14]. In [21], the ∆-modelling approach

has been implemented using frame technology.

For future work, we aim at providing tool support and

guidelines how to develop initial core and ∆-models for

a given feature model. This will be complemented by

modular analyses establishing conflict-freedom and well-

definedness of core and ∆-models using existing vari-

ability analysis techniques based on confluence analysis.

Besides, we want to extend ∆-modelling with explicit

conflict resolution by imposing a partial order between ∆-

models in order to avoid the normalization of ∆-models

during configuration.
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