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Abstract

Background: Readily accessible samples such as peripheral blood or cell lines are increasingly being used in large

cohorts to characterise gene expression differences between a patient group and healthy controls. However, cell

and RNA isolation procedures and the variety of cell types that make up whole blood can affect gene expression

measurements. We therefore systematically investigated global gene expression profiles in peripheral blood from

six individuals collected during two visits by comparing five of the following cell and RNA isolation methods:

whole blood (PAXgene), peripheral blood mononuclear cells (PBMCs), lymphoblastoid cell lines (LCLs), CD19 and

CD20 specific B-cell subsets.

Results: Gene expression measurements were clearly discriminated by isolation method although the

reproducibility was high for all methods (range r = 0.90-1.00). The PAXgene samples showed a decrease in the

number of expressed genes (P < 1*10-16) with higher variability (P < 1*10-16) compared to the other methods.

Differentially expressed probes between PAXgene and PBMCs were correlated with the number of monocytes,

lymphocytes, neutrophils or erythrocytes. The correlations (r = 0.83; r = 0.79) of the expression levels of detected

probes between LCLs and B-cell subsets were much lower compared to the two B-cell isolation methods (r =

0.98). Gene ontology analysis of detected genes showed that genes involved in inflammatory responses are

enriched in B-cells CD19 and CD20 whereas genes involved in alcohol metabolic process and the cell cycle were

enriched in LCLs.

Conclusion: Gene expression profiles in blood-based samples are strongly dependent on the predominant

constituent cell type(s) and RNA isolation method. It is crucial to understand the differences and variability of gene

expression measurements between cell and RNA isolation procedures, and their relevance to disease processes,

before application in large clinical studies.

Background
The advent of microarray technology has led to gen-

ome-wide interrogation of transcript abundance.

Numerous studies have characterised variation in

human gene expression associated with cell and tissue

type, environmental conditions or disease and these

have led to a better understanding of biological path-

ways. For clinical purposes, gene expression signatures

have been useful to classify tumours [1,2], to identify

diagnostic markers [3] or patient groups that benefit

from therapies [4] and to understand infectious disease

processes [5].

Alongside genome-wide association studies and

upcoming sequencing studies, there is increasing interest

in obtaining large-scale “omics” data from large bio-

banks and sample collections, including gene expression,

proteomic and metabonomic profiling. These biobanks

will rely on easy sample collection and handling using

robust methodologies and sample storage over a pro-

longed time period. While the downstream gene expres-

sion profiling techniques using microarrays are very

reliable for large-scale investigations, there are still chal-

lenges prior to microarray analysis including the choice

of a relevant sample type and RNA and cell isolation

method. Blood-based samples will continue to be one of
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the most readily available sources for gene expression

studies in large-scale investigations. Several strategies -

ranging from PAXgene (which captures RNA profiles of

all cell types in whole blood and has no complex cell

isolation procedures prior to RNA isolation) to the crea-

tion of lymphoblastoid cell lines (LCLs) comprising a

transformed single cell type - have been developed.

Other isolation methods attempt to generate a subset of

cell types such as peripheral blood mononuclear cells

(PBMCs) by the use of Ficoll or lymphocyte subsets

using magnetic beads.

Peripheral blood contains a variety of cell types

including erythrocytes, granulocytes, lymphocytes,

monocytes, natural killer cells and platelets. In PBMCs,

several cell types including neutrophils, basophils, eosi-

nophils, platelets, reticulocytes and erythrocytes are

depleted. Because each of the contributing cell types

expresses a unique gene expression signature relating to

its function, the relative proportions of the cell types

affect the gene expression profile [6]. In addition, the

relative proportions of the cell types can change rapidly

following disease-related or inflammatory responses.

Clearly, this variability may confound the interpretation

of gene expression differences between control and dis-

ease groups.

Investigating gene expression profiles in homogeneous

cell populations, such as T or B lymphocytes, that have

a potential as markers of infection or disease, might

resolve such variability and could have greater diagnos-

tic power than whole blood profiles [6,7]. The extraction

of more homogeneous cell populations, however, which

is often laborious and difficult to standardize, involves

manipulation of the cells and may influence the expres-

sion profiles [6-9].

One source that is used extensively to study genetic

influences on expression [10-12] or to investigate host

responses to pathogens [5] is LCLs. The substantial

advantage of LCLs over whole blood is that the impact

of environmental influences or other cell types on

expression is much reduced, allowing - in theory - a

more powerful investigation of genetic influences. How-

ever, LCLs are transformed and cultured under artificial

conditions and may not represent the natural gene

expression state in vivo due to a large percentage of

pauciclonality combined with widespread monoallelic

expression [13,14].

In order for gene expression profiling in blood to

become a reliable and reproducible tool in large-scale

investigations, a better understanding of intra- and

interindividual variability comparing used methods is

needed. Several studies have shown that the PAXgene

system using whole blood samples results in higher

variability of gene expression profiles and a decrease in

expressed genes compared to PBMC-based methods

[6-9]. However, Whitney et al. observed a higher varia-

bility of gene expression profiles in individuals with dis-

ease than among healthy individuals in blood, indicating

the feasibility of using gene expression profiling in blood

for disease detection and diagnosis [6].

Several studies have examined the variability and gene

expression signatures in whole blood and PBMCs in

healthy individuals using different cell and RNA isola-

tion procedures [6-8,15-21]. Only one study investigated

gene expression signatures of purified T- and B-lympho-

cytes and granulocytes [9] and little work has been done

to explore differences in gene expression profiles from

LCLs and B cell subsets. A comparison between the

variability and gene expression signature of LCLs to

other blood-based subtypes is of particular relevance,

given the extent to which this sample type is currently

being used for expression Quantitative Trait Loci studies

[10-12].

In the present study, we investigated variability and

consistency in gene expression profiles between five of

the most common post venipuncture methods of cell

and RNA isolation: whole blood (PAXgene (PAX)),

PBMCs, Epstein-Barr virus (EBV) transformed LCLs,

CD19-specific B-cells subsets (B-cell CD19), CD20-spe-

cific B-cells subsets (B-cell CD20). Using samples from

six individuals collected during two visits, we evaluated

the differences and concordances of global gene expres-

sion profiles, the biological and technical variability seen

in these approaches, cell-type specific gene expression

signatures and their relevance to large-scale biobanking

initiatives.

Results and Discussion
High reproducibility between visits and high variability

between methods

To determine the effect of the cell and RNA isolation

method on global gene expression profiling, gene

expression profiles for 56 out of 60 samples were suc-

cessfully generated on Illumina Ref 6 arrays (see Meth-

ods). The study design is shown in Figure 1. Four

samples failed gene expression profiling probably due to

low yield or low quality (see Additional file 1). Remain-

ing samples were checked using unsupervised analysis

(see Methods).

To evaluate the reproducibility, variability and signal-

noise ratio between the five cell and RNA isolation

methods, we examined variability between visits and

probes. To explore visit variability (intra-individual), we

calculated Spearman rank sum correlations between the

two visits across all probes after applying two common

probe filters (standard deviation (SD) and detection

score). The correlations ranged between 0.86-0.92 for all

probes, 0.83-0.90 for probes with SD > 0.5 and 0.90-1.00

for probes with detection score > 0.95 indicating a
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Figure 1 Study design. We obtained gene expression profiles of five different post venipuncture methods of cell and RNA isolation. The pie

charts illustrate the different cellular composition of the five methods whereas the arrows show the laboratory processes.
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higher reproducibility between visits using the detection

score as a probe filter (Table 1). These correlations

(same individual) were higher than between random

individuals. Although PAX showed a high reproducibil-

ity between visits, it provided significantly fewer

detected probes (N = 8,783, 19%) than the other isola-

tion methods (range = 10,672-12,122 probes, 23-26%;

P < 1*10-16) (Table 1). The percentage of variable probes

(SD > 0.5) in PAX, however, was significantly

higher (73%) compared with the other methods (52%-65%;

P < 1*10-16).

Consistent with our findings, previous studies found a

reduction of detected probes, lower gene expression sig-

nals and increased inter-individual variability as com-

pared to PBMCs [7,8]. Because the main differences

between PAX and PBMCs are the depletion of erythro-

cytes and reticulocytes from the latter, it is assumed

that these differences are related to the abundant

mRNA expression of members of the hemoglobin gene

family [8,22-25]. Previous studies have shown that

depletion of globin mRNA resulted in an increased

number of detected probes, a decrease of variability and

improved detection sensitivity for mRNAs from non-

reticulocyte cell types [8,22-27] but we did not specifi-

cally test this option in the present study.

We next calculated the mean expression values across

individuals and visits for each overlapping detected

probe between four pairs of cell and RNA isolation

methods with (partly) corresponding or closely related

cell types to visualize inter-individual variability: i) PAX

and PBMCs, ii) LCLs and B-cell CD19, iii) LCLs and

B-cell CD20, and iv) B-cell CD19 and B-cell CD20

(Figure 2). The PAX expression levels are decreased

but more variable than the PBMC expression levels

(r = 0.85). The LCL expression levels are of similar

magnitude as the B-cell CD19 or B-cell CD20 expres-

sion levels (r = 0.83 and r = 0.79 respectively) but

lower than the correlation between B-cell CD19 and

CD20 (r = 0.98).

Variation in expression profiles between different iso-

lation methods and visits can originate from both

biological and technical sources. Inter-individual biologi-

cal variation can arise from variation such as genetic

variation, cellular composition, ethnicity, sex, genotype-

environment interactions or physiological variation such

as time of the day at which a sample was taken, diet

and stress. The latter would also contribute to variability

between multiple visits [6,7,9-11,28]. Technical variation

can be caused by the different steps of the experiment

such as sample preparation, isolation of cellular compo-

nents, labelling, hybridisation and time to analysis

[6,7,9].

We found high correlations between visits for each

method (r = 0.96-0.99) but lower correlations between

different methods (r = 0.79-0.98) suggesting that the

cell or RNA isolation method has a larger impact on the

gene expression profile than the variability between vis-

its. The decreased correlations between LCLs and B-cell

CD19 or B-cell CD20 might have resulted from the con-

trolled in vitro conditions of the LCLs or the B-cell

purifications.

Methods that involve much post-processing provide

less variability but these manipulations might alter gene

expression patterns from those in vivo. The intrinsic

and extrinsic factors play a key role in choosing the

most preferable study design. In genetic studies, homo-

geneous cell populations - in which extrinsic factors are

minimized compared to ex vivo samples - are more use-

ful whereas for biomarker detection whole blood sam-

ples capturing in vivo conditions more accurately could

be more informative.

Gene expression profiles are dependent on cell and RNA

isolation method

To explore and visualise sources of variation in this

dataset, we clustered a subset of 7,305 probes that were

expressed in all 56 samples with a detection score >0.95

using principal components analysis (PCA) and hier-

archical clustering methods. Figure 3 shows that PCA

with three components separated the samples according

to the five methods. The first two components in the

PCA separated the PBMCs, B-cell CD19, B-cell CD20

Table 1 Variability and reproducibility after applying two common probe filters (detection score >0.95 and SD > 0.5)

for each RNA and cell isolation method.

RNA and cell isolation
method

No. of probes
with
SD > 0.5

No. of probes with
detection score
>0.95

Spearman correlation range
across replicates*
Mean(range)

Spearman correlation range across
random individuals
Mean(range)

PAX 34,012 8,783 0.96 (0.96-0.98) 0.93 (0.90-0.95)

PBMC 27,987 11,834 0.98 (0.90-0.99) 0.96 (0.93-0.97)

LCL 24,311 11,865 0.99 (0.96-1.0) 0.96 (0.96-0.97)

Bcell CD19 24,229 12,122 0.99 (0.98-0.99) 0.97 (0.93-0.96)

Bcell CD20 30,342 10,672 0.96 (0.93-0.98) 0.95 (0.96-0.97)

* Spearman correlations are calculated between two visits for each matched or random individual for each method. Spearman correlations are based on

detected probes.
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from PAX and LCLs explaining 70% of the variance.

The third component discriminated the PBMCs from B-

cell CD19 and B-cell CD20 explaining 9.8% of the var-

iance. Notably, B-cell CD19 and B-cell CD20 samples

were clustered together.

We computed Partial Least Squares Discriminant

Analysis (PLS-DA) models for each isolation method to

examine sets of genes whose transcripts are responsible

for separating the methods. For each model, we

extracted the variable weights of the expression probes,

ranked these variable weights and selected the 5% high-

est and 5% lowest ranked expression probes. Table 2

shows genes that were strongly up- or down-regulated

in the PLS-DA models.

These ten subsets of expression probes were then

analyzed for statistical enrichment of Gene Ontology

(GO) terms for Biological processes using all 7,305

expressed probes as a background list. The up-regu-

lated probes in LCLs and the down-regulated probes

of the B-cell CD20 samples (with an overlap of 50%

of probes) revealed an enrichment of alcohol meta-

bolic process (GO:0006066, False Discovery Rate

(FDR) P = 2.0*10-7 and FDR P = 0.03) (see Additional

file 2).

Figure 2 Scatterplots of mean expression levels across individuals. Gene expression levels are averaged for the two visits of the

overlapping detected probes.
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Figure 3 Principal components analysis of the samples.

Table 2 Genes that were strongly up- or down-regulated for each cell and RNA isolation method.

RNA and cell isolation method Up-regulated genes Down-regulated genes

PAX SLC25A37, TYROBP, WDR40A RPL31, RPS27L, RPL26

PBMC NKG7, GZMB, SH2D1A CD70, TNFRSF13C,TNFRSF13B

LCL FSCN1, CD70, TNFSF9 FCRL3, RASGRP2,TYROBP

Bcell CD19 BANK1,FAM129C,FCRL3 LGALS3, WDR40A, FSCN1

Bcell CD20 BANK1,FAM129C, FCRL3 LGALS3, WDR40A, FSCN1
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The GO terms “response to wounding” (GO:0009611)

and “signal transduction” (GO:0007165) were enriched

in the down-regulated probes of the LCLs (FDR P =

0.02, FDR P = 1.2*10-8) and the up-regulated probes of

the PAX (FDR P = 0.002; FDR P = 0.001) and PBMCs

(FDR P = 6.4*10-4; FDR P = 8.7*10-11). Hierarchical clus-

tering of the variable weights of the 2,072 down- and

up-regulated expression probes of all five methods

resulted in clustering of transcripts according to these

GO terms (Figure 4). To examine the concordance of

gene expression measurements across methods, we

extracted 1,952 expression probes that showed variable

weights between -0.01 and 0.01 for all methods. GO

analysis showed an enrichment of “secretion by cell”

(GO:0032940: FDR P 3.2*10-3) and “antigen presentation

and processing” (GO:0048000, FDR P = 0.02).

Gene expression differences between isolation methods

are associated with cellular composition and B-cell

manipulation

Because PLS-DA analysis only gives an overview of varia-

tion for probes across all methods, we refined our GO

analysis by making pair-wise comparisons of closely

related isolation methods focusing on i) uniquely

detected probes and ii) overlapping detected probes that

were significantly differentially expressed between two

methods (Figure 5). In this analysis, we ranked the probes

on significance and then selected 5% of the most signifi-

cant probes that showed an at least three-fold change.

In the PAX-PBMC comparison, 456 probes were

detected in PAX but not in the PBMCs and 3,507 probes

vice versa. For the uniquely detected probes in the

PBMCs and PAX, none of the GO terms was significantly

Figure 4 Hierarchical clustering of 2,072 probes with 5% lowest and 5% highest PLS variable weights expressed across all 56 samples.

Min et al. BMC Genomics 2010, 11:96

http://www.biomedcentral.com/1471-2164/11/96

Page 7 of 14



enriched after FDR correction. We found 374 (4.5%)

probes differentially expressed between PAX and the

PBMCs (Table 3). These probes showed an enrichment

of “gas transport” (GO:0015669) containing genes CA2,

HBD and HBQ1 in PAX (Table 4). The GO term “Macro-

molecule biosynthetic process” (GO:0009059) was most

significantly enriched in the PBMCs containing 33 genes

(including GYPC, RPL26L1, EEF1B2, RPS27A, MTIF2)

encoding proteins such as ribosomal proteins, translation

initiation and elongation factors.

These findings suggest that the gene expression differ-

ences between the PBMCs and PAX are caused by the

differences in cellular composition; gas transport is

specific for erythrocytes and translation and transcrip-

tion are physiological responses more important in lym-

phocytes and monocytes than in granulocytes [6,9]. To

explore whether enrichment is derived from the most

abundant cell types in the sample, we clustered the dif-

ferentially expressed transcripts in six groups and corre-

lated the transcripts in each group to the cell counts in

whole blood (Figure 6). All three groups up-regulated in

the PBMCs showed significant positive correlations with

monocyte counts (r = 0.20, p = 2.2*10-16; r = 0.20, p =

2.7*10-14; r = 0.29, p = 5.9*10-7) and platelets (r = 0.39,

p < 10-16; r = 0.42, p < 10-16; r = 0.47, p = 6.6*10-7).

Only one of these groups was correlated with lympho-

cytes (r = 0.36, p = 1.3*10-7) whereas the two other

groups of up-regulated genes were significantly posi-

tively correlated with neutrophil count (r = 0.20, p =

1.3*10-14; r = 0.50, p = 4.1*10-11). Three groups of

probes were up-regulated in PAX containing probes tar-

geting “hemoglobin” and “signal transduction” genes

and the latter was significantly positively correlated with

erythrocyte count (r = 0.25, p = 2.5*10-6) and mean cell

volume (r = 0.25, p = 8.3*10-5) (Figure 7).

To prevent the difficulties of cell type mixtures, B-cell

specific methods have been developed. To investigate to

which extent B-cell specific methods differ from each

Figure 5 Venn diagrams of the number of detected probes between A) PAX and PBMCs B) B-cell CD19 and LCLs C) B-cell CD19 and

LCLs D) B-cell CD19 and B-cell CD20.

Table 3 The number of differentially expressed probes

between cell and RNA isolation methods after FDR

correction.

RNA and cell isolation method No. probes 5% top hits with three
fold change

+ - %

PAX - PBMC 8,327 268 106 4.5

LCL - Bcell CD19 10,565 358 138 4.7

LCL - Bcell CD20 9,536 336 136 4.9

Bcell CD19 - CD20 10,411 13 18 0.3
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other, we compared gene expression measurements of

LCLs with B-cell CD19 and B-cell CD20. For the B-cell

CD19 and CD20, 1,557 and 1,136 probes were uniquely

expressed compared with the LCLs (Figure 5). In both

B-cell CD19 and CD20 the GO term (GO:0009611)

“response to wounding” (FDR P = 3.8*10-9 and FDR P =

1.5*10-11) was most significantly enriched. This category

contained B-cell specific genes encoding complement

pathway components (CD40lg, CD180), interleukins (IL-

6), chemokine receptors (CCR2, CCR3), immunoglobulin

receptors (FCER1G) and members of the toll-like recep-

tor family (TLR4, TLR8) (see Additional file 3).

In the LCLs, 1,300 and 2,329 probes were uniquely

expressed as compared to B-cell CD19 and CD20

(Figure 5). These probes showed an enrichment of the

GO term “Cell cycle phase” (GO:00022403, FDR P =

Table 4 Enrichment of GO terms among differentially expressed probes between different cell and RNA isolation

methods.

Go Term
(Biological Process)

Description No. genes (%) P FDR P

PAX versus PBMC

GO:0015669 Gas transport 6 (2.3) 2.1*10-5 0.01

GO:0009059 Macromolecule biosynthetic process 33 (12.9) 8.3*10-5 0.03

B-cell CD19 versus LCL

GO:0000278 Mitotic cell cycle 24 (6.2) 5.9*10-5 0.02

GO:0006066 Alcohol metabolic process 23 (5.9) 3.6*10-5 0.02

Bcell CD20 versus LCL

GO:0006066 Alcohol metabolic process 22 (6.5) 1.1*10-5 0.02

Figure 6 Hierarchical clustering of 374 differentially expressed probes for the PAX and PBMCs.
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0.005 and FDR P = 1.5*10-4) and included genes

involved in mitosis (CCNB1, CENPF, PBK, TTK).

Between the B-cell CD19 or B-cell CD20 and LCL sam-

ples, 496 (4.7%) and 472 (4.9%) probes were differen-

tially expressed. In both B-cell CD19 and CD20 samples,

glycolysis GO terms were enriched whereas cell cycle

GO terms were only enriched in B-cell CD19 (Table 4).

The GO analysis suggested an increased rate of glycoly-

sis and cell cycle in LCLs as compared with B-cells. B

lymphocytes found in the peripheral circulation are in a

non-proliferative state and require stimulation with an

antigen to enter the cell cycle. Hollyoake et al. showed

that infection with EBV causes the infected cells to acti-

vate the cell-division cycle [29].

Conclusion
Gene expression profiling of blood is a valuable tool for

diagnostics in a wide range of diseases, particularly

those involving the immune system and cancer. Before

peripheral blood or cell lines can be used in large

cohorts to characterise differences between a patient

group and healthy controls, it is important to

Figure 7 Clusters of differentially expressed probes are correlated with several parameters of blood counts (number of neutrophils,

number of lymphocytes, number of erythrocytes, number of monocytes and mean cell volume). Open circles indicate outlying values in

PAX. Significance levels are indicated at the top: * p-values ≤ 0.05 and > 10-5,** p-values are ≤ 10-5 and >10-10,*** p-values are ≤ 10-10.
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understand the underlying biological and technical fac-

tors that contribute to the gene expression measure-

ments. Our results give insight into the variability and

characterisation of biological differences between post

venipuncture methods including LCLs, purified B-cells

(CD19 and CD20), PBMCs and whole blood samples for

global gene expression profiling. The number of

expressed genes as well the gene expression measure-

ments differ significantly between different isolation

techniques. Although the PAXgene system is suitable

for large-scale gene expression profiling, particularly in

large epidemiological and biobank studies where

immediate sample processing is not always practical, the

PAX samples showed a decrease in the number of

expressed genes and lower gene expression values with

higher variability compared to the PBMCs. Although

whole blood samples contain more cell populations with

different relative proportions than PBMCs, expression

profile differences between the two isolation methods

are also likely to be (partly) caused by the abundance of

globin mRNA. Additional steps in the PAX protocol

involving globin reduction could improve sensitivity and

variability of this sample type relative to other isolation

methods [8,22-27].

The up-regulated probes in PBMCs showed significant

positive correlations with the number of monocytes,

lymphocytes and neutrophils, whereas the down-regu-

lated probes were correlated with the number erythro-

cytes and mean cell volume. Our comparison between

B-cell subsets and LCLs showed that the correlations

between the expression levels of detected probes were

much lower compared to the two B-cell isolation meth-

ods. More specifically, enrichment of inflammatory

response genes in the B-cell CD19 and CD20 may

represent the lack of external stimuli of the in vitro con-

trolled conditions in LCLs or the manipulation of the B-

cell CD19 and CD20. Conversely, the enrichment of gly-

colysis and cell cycle genes in LCLs might appear as

adaptation to the in vitro cell transformation of B-cells

to LCLs and might reflect indefinite LCL propagation.

In this study, we used two positive selection

approaches -using incubation of PBMCs with anti-CD19

or anti-CD20- to purify B-cell populations. A potential

limitation of these approaches is the activation of cell

surface receptors that might alter gene expression.

Further studies of gene expression profiles of other

more recently developed B-cell selection methods using

a negative selection approach should further improve

our understanding of gene expression variability in

blood [30].

Some of these cell and RNA isolation methods are

widely used in large-scale clinical studies; indeed, PAX-

gene is a likely to be a favoured method for general

whole blood expression profiling in samples stored in

large biobanking facilities. It is, however, crucial to con-

sider what effect the choice of a specific RNA isolation

procedure has on the ability to detect certain gene

expression profiles and their likely relation to the dis-

ease of interest.

Methods
Subjects and blood samples

Blood was taken from six healthy volunteers seen twice

in two weeks. All volunteers were Caucasian, healthy,

not on medication and non-fasted. Complete blood

counts were determined by standard procedures and

included: cell counts (white cells, erythrocytes, leuko-

cytes, platelets, neutrophils, lymphocytes, monocytes,

eosinophils and basophils), hemoglobin, hematocrit and

erythrocyte indices (mean corpuscular volume, mean

corpuscular hemoglobin and mean corpuscular hemo-

globin concentration). All subjects fell within normal

ranges for the major cell populations.

For each individual, five different post venipuncture

methods were performed (Figure 1). B Lymphocytes

from 10 ml of blood were isolated by tubes with sodium

citrate. LCLs were generated by EBV-mediated transfor-

mation and cells were grown for eight weeks.

For the isolation of CD19 and CD20 B-cells, 40 ml

whole blood from EDTA tubes was collected and

PBMCs were isolated by using a Ficoll-Paque™ gradient

(Amersham). CD19 and CD20 B-cells were prepared by

positive selection from the PBMCs by incubation with

magnetic anti-CD19 or CD20 mAb-coated microbeads

(MACS, Miltenyi Biotec). For the isolation of PBMCs

from whole blood, BD Vacutainer® CPT Mononuclear

Cell Preparation Tubes (Becton and Dickinson) were

used. Total RNA was isolated from 5 ml of whole blood

samples with the PAXGene Blood RNA system (QIA-

GEN) and samples were left at room temperature for 24

hours before processing according to manufacturer’s

instructions.

Only two people at a time were sampled on any one

day for logistical reasons. After blood draw standard

protocols were followed for cell isolation, transformation

or RNA extraction. With the exception of the PAXgene

samples all RNA was isolated using TRI™ reagent

(SIGMA) and resuspended in RNase free water.

This research was carried out in compliance with the

Helsinki Declaration, and was carried out under ethical

approvals granted to the MolPAGE project by Oxford-

shire Research Ethics Committee B (05/Q1605).

Pre-processing of microarray data

After RNA had been isolated successfully for 59 sam-

ples, RNA quantity was measured using a Nanodrop

ND-1000 Spectrophotometer to give the yield and a

260/280 ratio. Agilent Bioanalyser Lab-on-a-chip RNA
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chips were also run for each sample to check the quality

by calculating RNA Integrity Number (RIN) scores. 500

ng of total RNA was labelled using the TotalPrep™ RNA

Amplification Kit (Ambion Inc.). For each of the five

methods, samples from two visits of an individual were

measured on the same Beadchip and samples from each

individual were measured on a maximum of three Bead-

chips to maximise biological reproducibility and mini-

mise technical variability.

Expression profiling was completed using Human-6

version 2 Sentrix BeadArrays (Illumina Inc.) which con-

tains 48,702 unique probes covering 28,567 RefSeq

annotated transcripts. Arrays were hybridised with

labelled cRNA material and scanned according to manu-

facturer’s instructions. The resultant data were parsed

with the software package BeadStudio (Illumina Inc.) to

produce raw intensity values for all probes. Signal was

checked for quality using hybridisation and labelling

controls internal to each array and subtracted for back-

ground within the statistical scripting environment, R

v2.4.1 [31]. Signal was transformed and normalised

using the variance stabilization algorithm as implemen-

ted in the vsn2 [32] Bioconductor [33] package. Trans-

formed and normalised signal distributions for each

sample were investigated with unsupervised analysis to

identify outliers.

Data quality, probe mapping and filtering

Gene expression profiling was successful for 56 out of

60 samples. RIN scores summarize the distribution of

molecular weights and low RIN scores may confound

further analyses. All four samples that failed showed a

very low RIN score. Due to the use of a different purifi-

cation method, we had no RIN scores available for the

LCLs. Five successfully arrayed samples with high repro-

ducibility between visits showed RIN scores between 1.5

and 6.5 (see Additional file 1). Hierarchical clustering

showed however that isolation method was the major

response variable and not RIN, yield, individual, chip,

detection score or visit.

Probes were sequence matched to NCBI Build 36.1

(hg18) using the blastn algorithm to obtain a physical

position from which Ensembl transcript and Gene iden-

tifiers were extracted. Probes that showed one mismatch

or more were aligned to Ensembl transcripts or EMBL

ESTs using BLAST (1), and genomic locations were

then established by re-mapping the target transcript to

genome (NCBI build 36) either by extracting annotation

data from UCSC MySQL tables or by BLAST against

genomic sequence. Probes overlapping at least 10 bases

of repeat sequence, established by using RepeatMasker

on the transcript sequence, were discarded. Probes with

SNPs (minor allele frequency > 5%, http://www.hapmap.

org) in their sequence or that had no match to the

human genome build 36 were removed from the analy-

sis. We could extract Ensembl transcripts identifiers for

a total of 21,855 probes.

Statistical analysis

For each method, data analysis was restricted to i)

probes for which the detection score was greater than

95% in all samples or ii) probes with SD > 0.5 in all

samples. We compared the number of detected probes

between methods by using a McNemar test. For investi-

gation of the biological reproducibility and the concor-

dance between methods, we calculated spearman

correlations between visits for each probe for each

method. To compare biological reproducibility between

two methods, we averaged the expression values of each

probes across visits and calculated spearman correla-

tions between methods.

For the clustering analysis, we used hierarchical clus-

tering and PCA (using the NIPALS algorithm for esti-

mating latent variables) on the normalised gene

expression data of 7,305 probes that were detected

across all 56 samples. In the PCA and PLS-DA analy-

sis, the measurements of each expression probe were

mean centered prior to the analysis. Using a PLS-DA

model, we identified a set of transcripts that discrimi-

nates the method of interest from the other four

methods. We computed a separate PLS-DA model for

each method for which we set two classes as a

response variable: one class for the method of interest

and one class for the other four methods. We then

extracted the w1 variable weights of the expression

probes for each of the five PLS-DA models, ranked

these variable weights and selected the 5% highest and

5% lowest ranked expression probes for each method.

For a single vector, y, Trygg et al. suggested, that w1

should contain more useful interpretational informa-

tion than the more commonly used regression coeffi-

cients [34].

To investigate the correlation between differentially

expressed probes and cellular composition, we per-

formed hierarchical clustering on the 374 differentially

expressed probes. For each cluster of probes, we calcu-

lated spearman correlations between each probe by

averaging the expression measurements of the two visits

of the PAX samples and cell count parameters (neutro-

phils, lymphocytes and monocytes, mean cell volume

and hemoglobin concentration). Subsequently, we com-

pared the mean spearman correlations of the probes in

each cluster with mean spearman correlation of all

detected probes excluding the differentially expressed

probes using a Wilcoxon rank-sum test. Multivariate

analyses were performed using Evince (UmBio). All

other analyses were conducted within the statistical

scripting environment, R v2.4.1 [31].
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GO analysis

We investigated significant enrichment of specific GO

terms among the set of probes that are specific for the

method compared to the all probes detected for that

specific method. In all GO analyses, Ensembl Gene

Identifiers were tested using DAVID [35]. Enrichment of

each GO term was evaluated through use of the Fisher’s

exact Test and corrected for multiple testing with FDR

[36].

Differential expression analysis

We used the Bioconductor R package Maanova to iden-

tify expression probes whose expression differed signifi-

cantly between pairs of methods [37]. We fitted a linear

mixed model for each probe using the Fs distribution as

the null distribution and we fitted method as fixed, and

visit and individual as random effects. We considered

probes as differentially expressed when significant at a

5% FDR. We tested for significant enrichment of GO

terms among the set of differentially expressed probes

relative to the overlapping detected probes of two meth-

ods. Because a large proportion of probes were signifi-

cantly differentially expressed, we selected the 5% of top

hits ranked by FDR p-value. Of these 5% of top probes,

we used only these probes that showed a more than a

three fold change between methods.

List of abbreviations
LCL: lymphoblastoid cell line; PBMC: Peripheral blood

mononuclear cell; PAX: PAXgene; EBV: Epstein Barr

virus; RIN: RNA Integrity Number; SD: standard devia-

tion; PCA: Principal Components Analysis; PLS-DA:

Partial Least Squares Discriminant Analysis; GO: gene

ontology; FDR: false discovery rate.
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