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Variability of magnitude estimates: A timing theory analysis*
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Three lJIOt*I- for m..nitude estimation were investitated, and a sufficient number of responses
w.e obtained to make reasonable estimates of both the mean and variance of the responses. The
conventional magnitude estimate procedure, without a standard signal, appeared to produce the most
sensible data. The best method of establishing the central tendency of the data appears to be the plot of
the mean ratio of successive responses against the intensity ratio of the corresponding signal intensities.
When this is done, the average response ratio increases roughly as a power function of the signal ratios.
The coefficient of variation, olm, varies from about 0.1 for small signal ratios and increases to 0.3 at
about 20 dB and greater signal separations. The distribution of response ratios appears to be reasonably
well approximated by a beta distribution. The change in aIm with signal ratio is suggestive of an
attention mechanism in which the sample size depends on the location of the attention band. The ratio
estimation procedure suffers badly from discrete number tendencies.

1. INTRODUCTION

Anyone who has collected magnitude estimation data
knows that the responses are highly variable. This

variability is both between observers, with exponents of

the power function fitted to loudness data ranging from
at least .15 to .60 (using an intensity measure), and

within observers, with the coefficient of variation (aim)
being of the order of .2-.3 (Luce & Mo, 1965; Schneider
& Lane, 1963; Stevens & Guirao, 1964). The question
we wish to consider here is whether this variability
contains any interesting information.

The variability among observers strikes us as no more
exciting than variation of weight or height except in one
circumstance, namely, if the exponents from several
different modalities are strongly correlated. Surprisingly,
that does not seem to have been extensively studied; the
only reference we know of is Ekman et al (1968). In the
absence of firm data on this point, the primary current
significance of the between-observer variability is a
cautionary one: one should not average over observers
unless one is quite sure of the functional form of the
data, so that the true form will not be distorted in the
averaging process.

Our concern is not with this variability, but with the
variability within a single observer emitting responses at

different times. Do such data contain any interesting

*Suppolted in part by grants from the National Science
Foundation to the University of California, at Irvine and at San
Diego. Requests for reprints should be sent to R. Duncan Luee,
School of Social Sciences, University of California, Irvine, Irvine,
California 92664.

tNow at the Department of Psychology and Social Relations,
William James Hall, Harvard University, Cambridge,
Massachusetts,

information about the internal representation of signals?

Stevens repeatedly urged the view, both in public (1957,
1959, 1961a, b, 1971) and in private, that it does not,

that it is-like most "noise" which muddies all physical

measurements-ubiquitous and uninformative. This
would be true were the variability due primarily to

randomness wholly unrelated to the sensory-decision
process underlying magnitude estimation, but is

decidedly not true if it is intimately related to that
process. Our goal here is to make a case for the
informativeness of this variability, provided that one

looks at it correctly, namely in terms of the ratios of
magnitude estimates to successive signals. More of the
analysis procedure later.

Theories for magnitude estimation in which variability
plays a key role have been suggested by Durlach and
Braida (1969), Braida and Durlach (1972), and Luce and

Green (1972). In particular, the latter assumed, as was
done earlier by McGill (1963, 1967), Siebert (1965,
1968, 1970), and others, that the signals are, to a first
approximation, represented internally as independent
Poisson processes on a number of parallel channels. The
intensity parameters of these Poisson processes are
assumed to be increasing functions of signal intensity.
What differs in the Luce-Green approach is the emphasis
on timing rather than counting procedures. A counting
rule is one in which the pulses that occur in a fixed time
are counted, whereas a timing rule is one in which the

time is measured for a fixed number of pulses to occur.
They presented data that are consistent with the
interpretation that both modes of behavior are available

to human observers; however, they argued that the
timing mode is probably the one normally employed
except in psychophysical experiments with very brief
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Fig. 1. Mean magnitude functions for six observers of Experiment 1. The smallest intensity in each case is at 32.5 dB SfL,
and the standard, of 100, is at 50 dB SPL.

signalsOr extreme time pressure (Green & Luce, 1973).
If we assume that the timing mode is used in

magnitude estimation experiments (especially those with
signalsof long duration), then a natural internal measure
of the intensity of the signal is the reciprocal of the

average time required to get K interpulse intervals on
each of the J active channels. So each magnitude
estimate is based on a total sample size of k =d. For a
Poisson process, the time between pulses is
exponentially distributed with intensity parameter J.L(s),

where s denotes the signal;we make the idealization that
it is the same parameter on all channels. Thus, the
average time for k intervals is distributed according to
gamma with intensity J.L(s) • k and order k. This suggests
analyzing the distribution of the reciprocals of
magnitude estimates, since that quantity should be
gamma distributed. This empirical distribution would
provide us information both about how J.L(s) grows with
signal intensity, I(s), and about the sample size, .k, used
by the observer (Luce & Green, 1972, p. 28).

The present empirical work began with the preceding
theoretical observation. The failure of the initial model,
together with recent work on sequential dependencies
(see Section 3), led to a more subtle analysis of the
decision process underlying magnitude estimates and to
two more experiments, reported in Sections 4 and 5.
The Discussion section outlines one possible
interpretation of the results.

2.EXPERUMENTALPROCEDURE

presented, in quiet, binaurally via SW-2 Superex headphones to
undergraduate observers who were run individually in
sound-attenuating rooms. The observers responded, with either
whole or decimal numbers, via a Video System Teletype. The
procedure was self-paced, with each trial being initiated by the
observer's response, at an average rate of 10 trials/min. Runs
consisted of 80 trials, between which there was a short break, for
a total of 2 h during a period of 2-4 weeks. The exact number of
trials per signal per observer varied from 80 to 300. Six observers
were run in each experiment, the same ones in Experiments 2
and 3, with Observers 1, 3, and 6 having Experiment 2 first and
Observers 2, 4, and 5 having Experiment 3 first. They were paid
$2.13 per hour.

Experiment 1. Magnitude Estimation With a Standard (MES)
The 20 signals varied in 2.5-dB steps from 32.5 to 80 dB SPL.

The standard was 55 dB and was given a numerical value of 100.
The observer could call for the standard at any time and did, on
the average, abou t 1 in 7 trials. Mistakes in responding could be
corrected by pressing an appropriate key. The instructions were
relatively standard (see Appendix I).

Experiment 2. Magnitude Estimation Without a Standard
(ME)

As a result of the well-known perturbing effect of the
standard and as a result of a possible ambiguity in analyzing the
basis of the observer's responses (see Section 3), we elected to
rerun Experiment I without using any standard. At the same
time, we shifted the signal range up 10 dB (42.5 to 90 dB), and
we modified the response procedure as follows in an attempt to
further minimize erroneous responses. Each response was in a
standard format of up to five decimal digits before the decimal
point, followed by up to four digits. After each response, it was
displayed and the observer was required either to type Y to
verify his response and to proceed or to correct it. The exact
instructions are in Appendix II.

In all three experiments, the random sequence of signals was
programmed and the data recorded by a PDP-IS computer.
Signals were I,OOO-Hz tones of 1 sec duration. They were

Experiment 3. Ratio Estimation (RE)
Two signals, 400 msec apart, were presented on each trial, and

the observers were instructed to judge their subjective ratios. The
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3. RESULTSANDDISCUSSION
OF MESEXPERIMENT

weaker signal was always to be called I and the stronger, an
appropriate, larger number. So responses were either of the form
I :n when the first signal was the weaker and the second n times
as loud or n:1 for the opposite order. Responses were verified as
in Experiment 2. Rather than use all of the pairs generated from
a random sequence of 20 different signals, we selected the
following subset of 34 pairs, which were run in each order and
equally often. We describe them by the (several) values of the
smaller signal and the signal difference in decibels.

Mean magnitude estimates for the six observers of
Experiment 1 are shown in Fig. I. As is by now familiar

from a number of studies (Braida & Durlach, 1972; Luce
& Mo, 1965; Pradhan & Hoffman, 1963), functions

obtained with this many observations per point are
roughly power functions, but with deviations of as much
as 5 dB from the best fitting power functions. (This is

equally true when only a few observations are obtained,

but the variability of one or two responses per signal is
so great that one cannot reject the hypothesis of a power
function; see Ekman et al, 1967, and Stevens and

Guirao, 1964.) The "slopes" vary from .15 to .55, which

seems typical. A perturbation is noticeable in each case
at the standard (a magnitude of 100), and this was one
reason why we were led to run Experiment 2.

A primary reason for running Experiment 1 was to
test the hypothesis that the reciprocal of magnitude
estimates should be distributed as gamma. The order k

of the gamma can be estimated from the average (over
signals)of the coefficient of variation, specifically,

4.02.0

R/Rk
1.0o

99

Fig.~. Distrib~~~ for Observer I C!! magnitude estimates,
~ o r m a l i z e d by dlVidmg by the mean, R, corresponding to the
Slgn31 I.evel and by the estimated sample size, It. The theoretical
curve IS that of the gamma distribution with intensity 1 and
order It.

is very poor at the extreme values, with the tails of the

observed distributions considerably higher than that

predicted by a gamma. For Observer 6, this discrepancy
is apparent only below the 1%or 2% and above the 98%

values. For other observers, however, the discrepancies

were noticeable below 10% or 20% and above 80% or
90%.

ObllMr I

50
25
10

5
2.5

difference (dB)

40
40,65
40,50,60,70,80
40,50,62.5,75,85
40,50, 62.5, 77.5
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The instructions are in Appendix III.

1
k==-­

(a/m)2 '
4. MOTIVATION FOR THE ME EXPERIMENT

and it is interpreted as the size of the sample of

interpulse times on which the magnitude estimate is
supposedly based. The values obtained are shown in
Table 1. A correlation with slopes appears to exist. Plots
of the cumulative normalizd distribution and the fitted
gamma for Observers I and 6, the smallest and largest k,
are shown in Figs. 2 and 3. The former is a relatively

satisfactory fit, whereas the latter, which is more typical,

o

k 3

2

13

Table I

3

20

4

10

5

30

6

50

After these data were collected, we became aware of a
series of papers (Cross, 1973; Garner, 1953; Holland &

l.ockhead, 1968; Ward, 1972, 1973; Ward & Lockhead,
1970, 1971) showing in both absolute identification
(AI) and ME procedures the existence of pronounced
sequential effects. The largest sequential effect appears
to arise from the preceding signal, although much
attenuated effects may arise from signals occurring
further back in time. One possible interpretation of
these results is that the observer uses the signal and
response on the preceding trial as the basis for

responding on the present trial.
We make this hypothesis explicit. Using bold-faced

symbols to denote random variables, the signal presented
on Trial n is Sn and the response is Rn. We assume that
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Observe that

IT(S') ) 00 ,

P\T(s) = Y = fo P[T(s) = z] Z P[T(s) = zy] dz

I yk(s')-l [J.l(S')/i.L(S)] k(s')

= -B-[k-(s-),k-("""s''''-)] [I +YJ.l(s')IJ.l(s)] k(s)+k(s') ,

(2b)

where

B(k k') =(k - I)! (k' - I)!
, (k + k' - I)!

Equation 2b is the beta distribution of the second kind
or equivalently the F distribution with 2k(s), 2k(s')

degrees of function. It is readily shown that

I a, ') J.l(s) r k(s) J
m = E\R

n
_

l
ISft = S & Sn~l == S == p(s') Lk(s) _ 1 '

(3)

Fig. 3. This is the same as Fig. 2 for Observer 6.
and

5. RESULTS OF ME EXPERIMENT

Figure 4 presents the mean magnitude estimates for
this experiment. The functions again show systematic
departures from power functions, and the "slopes" range
from .18 to .35. Weshow these mainly to contrast them
with the mean magnitude ratio on successive trials,

We could not test this theory with the data which

employed a standard since the standard was used on

about 15% of the trials. Weassume that when it is called
for, the standard, rather than the preceding signal, serves

as the reference. Since we had not recorded when the
standard was called for, it was necessary to repeat the
experiment. For reasons cited earlier, we elected to drop
the standard in the revised experiment. In addition, it

seemed desirable to compare these results with a
situation where the same observers were told to report
the subjective ratio of two signals, which led to
Experiment 3.

(4)(
!!..)2 = k(s) + k(s') - I

m kfs') [k(s) - 2] .

(1)

whenever Signal s is presented, it is represented
internally as a random variable X(s). Note that this
depends only on the signal presented, not on the trial
number. The hypothesis, then, is

If so, then the data we should study are not the
magnitude estimates themselves, but rather the ratio of

successive responses to the pair of signals that generated
them, as was done by Ward (1973). A detailed study of
this hypothesis, including a generalization needed to
yield the sequential effects observed, is given in Luce
and Green (1974). This generalization may also explain
the sequential effects reported by Ward and Lockhead

(1971) when there is no signal at all. The theoretical
distribution for the ratio of Eq. I on the assumption X is
determined from a timing model is not a gamma, but
rather that of the ratio of two gamma distributed
random variables.! As is easily shown, if the total time

T(s) for k(s) interpulse intervals is distributed as a
gamma with intensity J.l(s) and order k(s) when Signal s
is presented and if we set X(s) = k(s)/T(s), then for those
pairs of successive trials on which Signal s is preceded by
Signal s' Eq. I yields
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Fig. 4. Mean magnitude functions for six observers of Experiment 2. The smallest intensity in each case is at 42.5 dB SPL.
There was no standard.

ratio increases from its minimum value of about .1 when

the two successive signals are identical to a plateau of
about .3 or .4, running from about 20 dB to at least

40 dB. In the case of Observers 1,4, and 6, there is some
suggestion of a drop again at the longest separations. The
average is about .2-.3, which, as we noted in Section I, is

the range of values previously reported.
Although something systematic clearly is changing

with signal ratio, apparently it is not simply a change in
k with intensity. For simplicity, let us consider the
hypothesis that for any pair (s', s), we have

i.e., the sample size does not depend on signal level, but
it does depend on the ratio. (See Section 7 for further
discussion of this relationship.) On this assumption, we
used Eq.4 to get an initial estimate of k[I(s)/I(s')] ,and
then we sought the value of k which minimized
chi squared in fitting the beta distribution to the data.
All of the data were first sorted into 13 categories by the
differences in successive signal level; they are (I) 0 dB,
(2) 2.5 dB, (3) 5 dB, (4) 7.5 dB, (5) 10 dB, (6) 12.5 dB,
(7) IS dB, (8) 17.5 dB, (9) 20 dB, (I0) 22.5 and 25 dB,

(11)27.5 and 30 dB, (12)32.5,35.0, and 37.5 dB, and
(13)40, 42.5, 45.0, and 47.5 dB. These choices

generated roughly an equal number of observations in
each category. A value of k was estimated for each

change in signal level and eight expected values were
computed by using the 5%, 15%,25%,50%, 75%, 85%,

and 95% levels of the beta distribution. The chi squared
has 5 df-7 independent probabilities less 2 estimated

constants. Thus, the expected chi squared is 5 and the
distribution of chi-squared values should have a standard
deviation of 3.1. Table 2 shows the observed distribution

of chi-squared values for the six observers. The obtained
values of chi squared are all larger than what would be
expected under the null hypothesis-two of the
observers, 4 and 6, had rather poor fits. But several
factors lead us to conclude that the fits are fairly good.
First, the data for positive and negative changes in signal

which are shown as circles on the top portion of each
panel in Fig. 5.

Several things should be noted about these ratio
functions. First, they are considerably closer to power
functions than are the mean magnitude functions.
Second, the slopes are little changed, now ranging from

.18 to .34. Third, the averaging is not only over all
response ratios to a given stimulus pair (s.s'), but over all

pairs having the same intensity ratio (or difference in
decibels), and also over the reciprocal ratio of responses

when the signal ratio is less than I. The empirical
justification for this additional averaging is that we could

not detect any systematic trend as a function of signal

level or the order of the signal presentation. The
theoretical motivation for it is the fact that previous

work with reaction times suggested that Il is
approximately a power function of signal intensity (see

Luce & Green, 1972, p. 45), which in Eq. 3 suggests that
the mean response ratio should be approximately a
power function of the signal ratio, provided that k does
not depend strongly on intensity. We argue below that it
does not in a direct way. And fourth, these functions are
based only on data which do not deviate too much from
the central tendency. Specifically, means were calculated

from all of the data, and all responses that differed by a
factor of more than 5 from the mean were ignored. This
makes little difference in the mean, but it matters a great
deal for higher moments. One can see from Eq. 2 that, if
the theory is correct, high tails of the form y-k(s')-l

are to be expected, and with such high tails, the
variability in estimates of moments is considerable. We

have elected to introduce some bias in the estimates in
order to increase their stability.

To estimate k uncontaminated by u, the theory
suggests (Eq. 4) examining the coefficient of variation,

aim. For each signal pair having the same intensity ratio,
we estimated aim (eliminating extreme responses) and
again could see no evidence of any systematic trend,

which suggests that it is appropriate to combine them.

These data are shown as the circles in middle portion of
each panel. The pattern is completely consistent: the

k(s) = k(s') =k[I(s)/I(s')], (5)
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level have been combined. Second, equal degrees of
freedom have been assumed in the numerator and
denominator of the beta, thus the expected distribution
is nearly symmetric, especially for large values of k. We
know this is false, and we will comment later on this
matter. Finally, we should note that the observed
distribution of responses is considerably more discrete
than this continuous model would predict. Three
observers (1, 3, and 6) responded with the same number
(one) on more than 50% of the trials when the stimulus

o

I
2
3

4
5
6

Mean

15.8
15.6
14.2
65.3
16.5
46.5

Table 2

x·

a

8.8
10.0

5.3
43.2
11.7
35,7

Range
(Max-Min)

32.7
27.7
17.4

132.6
32.5

125.9

N

3134
3286
2907

3782
3038
2758



had the same intensity on two successive trials (O-dB
difference). The other observers (2, 4, and 5) had the

same tendency, but the percentage was much lower, less
than 25%. For Observers 1, 3, and 6, therefore,

Category 0 dB was excluded from the chi-squared
analysis. This general tendency to repeat the same

response was also apparent in all trials when the signal

intensity changed but little. There was also the tendency
to repeat common numbers, and thus certain simple

ratios occur frequently in the data, although the analysis
in terms of the ratio of successive responses obviously

attenuates the occurrence of common ratios as

compared with the frequency of the common responses
themselves.

In this connection, we must raise the possibility that

the reduction in aim with decreasing signal ratio is due
to the well-known tendency of observers to use only a
restricted set of numbers, usually simple fractions, the
digits, and multiples of 5. An inspection of our raw data
confirms the existence of such a round number tendency
in these data, and so the possibility of an artifact is real.
However, as we will see (Section 6), for at least one
distribution of stimulus ratios, two observers altered

their behavior in such a way that aim is largest for small
signal ratios. This suggests that something more than a
round number tendency is involved. It is not difficult to
formulate plausible hypotheses about the round number
tendency that support either view. Our present plan is to

bypass the issue in future work by using cross-modal
matches.

To appreciate how well the beta distribution fits the
data, Table 3 shows the expected and obtained
percentages averaged over the various categories. As the

chi-squared fit indicates, the fit for Observer 4 is rather
bad, but the others are reasonably satisfactory. Note,
however, there is a systematic discrepancy. The

percentage of large responses (top rows of table) is
somewhat greater than expected; whereas, the

percentage of small responses (e.g., bottom two rows) is

always less than expected. Thus, for all observers, the
tail on one side overshoots and on the other side

undershoots the beta distribution.

6. RESULTS OF RE EXPERIMENT

The triangles in Fig. 5 are the means and coefficient
of variation of estimated ratios. The means of ME and
RE are superimposed, whereas the aim estimates are
displaced. Recall that the distribution of stimuli was
different for RE and ME.

Observers 1 and 3 exhibit little difference between the
procedures, except Observer 3 has a smaller aim for RE
than MEwhen the signal difference is small.

Observers 2 and 5 yield both different mean and
different aim functions. The RE mean curve is concave

above that from ME. The aim of the RE procedure is a
decreasing function of signal ratio, whereas that of ME is

VARIABILITY OF MAGNITUDE ESTIMATES 297

Table 3

Expected 2 3 4 5 6

1 1.5 1.9 2.3 3.1 1.4 1.7
'" 1.5 1.4 1.2 1.3 1.6 1.4 .9bll
l;j

2.5 1.9 2.3 2.4 1.9 2.3 2.9...l
5 4.6 3.9 4.2 3.1 4.2 3.5

~
15 12.7 12 12.3 8.2 13.3 11.4

= 25 22.9 25.7 23.8 19.9 25.8 24.2
0

25 28.7 27.6 27.7 34.0 27.1 29.9~

'" 15 17.5 17.1 17.3 22.1 17.0 19.7
~

5 4.8 4.6 5.4 3.9 3.9 3.2
2.5 2.3 2· 1.9 1.5 1.6 1.6:a 1.5 1.0 .8 .8 .3 1.2 .7s 1.0 .6 .8 .6 .2 .8 .3~

N= 3134 3286 2907 3782 3038 2758

Note-Entries are percentages

increasing; the difference is especially noticeable for
Observer 5.

Observers 4 and 6 exhibit the same difference

between the means as do Observers 2 and 5, but their
aIm functions are very similar.

This evidence strongly suggests that the deviations in
the RE behavior from the ME behavior are due to two
distinct mechanisms, since, given that the means differ,

aIm mayor may not. The deviation in the means, when

it occurs, closely resembles that obtained when observers
are asked to make category judgments. If we assume that

they are not distinguishing absolute level, but only signal
ratios, then instead of 17 stimuli there were only 5, and

it may not be surprising that observers reverted to some

form of categorizing. This hypothesis is further
supported by a look at the distribution of responses. The

distributions are extremely discrete; for example, when
the stimulus ratio was ±2.5 dB, Observer4 used only 9
distinct numbers in 828 responses, and 677 of these
were the number 1. For the ±50-dB stimulus pair, 15
different numbers (all integers) were used in 181
responses and the numbers 10, 15, and 20 were' used a
total of 116 times. Observer 5, who has the unusual aIm
variation with signal ratio, undoubtedly absolutely
identified the large change in signal (50 dB): he called it
20 on 37% of the trials.

As can be appreciated from the brief description of
the response morphology, the fit of a beta distribution

to these data was extremely poor. Once again, the value
of k was estimated from the coefficient of variation and
a chi-squared test with 5 df was fit to the data. The
resulting chi squared ranged from 4.3 to 1,795, with a
median of about 200. No observer was fit well, and the
expected and observed distribution always displayed the
same discrepancy. There was always an excess of

observations in the middle two quartiles.
Because of the discreteness of the response

distribution, which is evident in both ME and RE data,
we favor the ME procedure in which the ratios of

successive responses are reported. The ratios muddy the

discreteness to a degree.
The differences in the form of the aim may also be
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related to the distribution of the stimuli, a topic we

consider more fully in the next section.

7. DISCUSSION

Had the coefficient of variation turned out to be

independent of both signal level and signal ratio, we

would have had little to discuss. Had it depended just on

signal level, and so on signal ratio of successive signals in

an indirect way, we would simply have acknowledged

that sample size varies with intensity, because of some

sort of sequential decision procedure or for some other

reason. But the data suggest something more subtle, and

interesting, than either of these possibilities. The sample

size appears to depend on signal ratio in a way that may,

but need not, be affected by the distribution of ratios

presented: with that of a purely random schedule (ME),

all six observers exhibited larger sample sizes for small

ratios than for large ones, whereas, with the peculiar

distribution used in RE, two observers exhibited the

reverse relationship. This difference, which hints at a

difference in the mode of observing in the two tasks,

suggests that the mechanism is not purely sensory.

A possible explanation is that "attention" is unevenly

distributed over intensities, with the main focus

concentrating on a limited band of intensities. In

idealized form, suppose a band of width ~ in pulse rate

can be centered on each trial at any rate (equivalently,

intensity). If the signal on that trial has a rate which lies

within the band, then the size of the sample of

interpulse intervals is K, whereas if it lies outside the

band, the sample size is Ko, where Ko < K. The strategic

problem for the observer is where best to locate the

band on each trial. One plausible idea is that it is shifted

to the region of the preceding signal. If it were to center

exactly on the true rate of the preceding signal, then the

(J/m function for the ME experiment would increase

discontinuously at ~/2. The argument is straightforward.

If the signals are equally spaced over a range of rates, p,

then with probability ~ / p the preceding signal had a

sample size of K and with probability 1 - ~/ p the

sample size was Ko. For the following signal, if the

difference is less than ~ / 2 , the new signal has sample size

K, and for larger differences, it has sample size Ko. So,

for the small differences, the pair of sample sizes are

(K, K) with probability ~ / p

(Ko, K) with probability 1 - Mp

and for the large difference

(K, K,) with probability ~ / p

(Ko , Ko) with probability 1 - ~/ p-

If there is some variability in the location of the interval

about the preceding signal, as there must be if the

estimated rate is used, the discontinuity is obviously

rounded. Assuming that, the ME data suggest that ~

corresponds to approximately 20 dB.

Note that this implies that the response distributions

are based on mixes of either (K, K) and (K,; K) sample

. sizes or of (K, K,) and (K, , Ko) sample sizes, and so our

fitting them with a (k, k) sample size model is surely

wrong in detail. Indeed, our estimates must satisfy the

inequality

Ko < min k < max k < K.

It is evident, by an analogous argument, that if the

observer avoids attending to the region of the previous

signal, then the value of olu» will be large for small

differences and small for large ones. As differences of

10 dB and larger were almost as common in the RE

design as the smaller ones, 5 and 2.5, and perhaps more

noticeable, it is plausible that some observers may have

adopted this strategy. Indeed, even from the ME data

there is some indication that several observers may have

shifted to the opposite end of the range following either

a soft or a loud signal, as evidenced by the decrease in

(J/m for large ratios in Observers 1,4, and 6.

It is interseting that this hypothesis accounts

qualitatively for a well-known, but perlexing, fact about

AI results. It is this: Consider an AI design with n ~ 8

signals, equally spaced in decibels over the range R. With

n fixed, vary R. Were we to assume a fixed sample size

associated with each signal, then increasing R, which

necessarily increases the separation betweeen adjacent

signal intensities would decrease the overlap of the

sampling distributions of the signals, thereby making

them easier to identify. In fact, the predicted

improvement occurs only for smaller ranges, after which

the actual improvement grows considerably more slowly

than predicted by such an argument (Braida & Durlach,

1972; Garner 1952, 1953; Hake & Garner, 1951;

Pollack, 1956). If, however, there is an attention band of

about 20 dB, improved performance is predicted only as

long as all signals remain within the band, after which

there is an increasing probability that a presented signal

will fall outside the band, in which case its

representation is based on a considerably smaller sample

size. Thus, increasing the range beyond 20 dB brings into

play opposing forces: an increase in the separation of the

means of the sampling distribution counteracted by an

increase in the variance due to reduced sample sizes. The

relative balance of forces depends, of course, on the

exact numbers involved, and we have not worked out

any detailed models for either AI or ME experiments.

The postulate that observers tend to center their

attention on the preceding signal, when all signal

intensities are equally likely, predicts the known

tendency for observers to be considerably more accurate

when a signal is repeated (Swets & Green, 1961; Swets,

Shipley, McKey, &Green, 1959).

Although this attention hypothesis seems to make



sense of both the ME and AI data, as a theory it involves

enormous freedom, since we can, post hoc, select a

strategy of attenting for each set of data. This is not

satisfactory unless we can devise methods either to

determine the strategy in use or to manipulate it

experimentally. The use of strong sequential

dependencies in the schedule of signal presentations or

differential payoffs for small aIm for certain signal ratios

are all suggested by this hypothesis, but they have not

yet been tried. So, at present, the attention hypothesis is

largely speculative, but a possible source of direction for

future development.

APPENDIX I. INSTRUCTIONS FOR MES

This is an experiment to determine your ability to
judge the relative loudness of tones. You will hear a
series of tones of different intensities; your task is to tell
me how loud they are by assigning numbers to them.
The ratios between the numbers you assign to the
different tones correspond to the ratio between the
loudnesses of the tones. In other words, try to make the
numbers proportional to the loudness as you hear them.
We will call the standard stimulus 100 units. If the
second stimulus sounds 7 times as loud, call it 700. If it
sound ~ as loud, call it 50, and so forth. Don't worry
about the first few judgments too much; we will give
you several hours of practice before we begin collecting
data. Try to arrive at some systematic procedure so that
after listening to the tone you will be able to assign the
numbers quickly and consistently. Since there are a large
number of different stimuli, it is unlikely the same
stimulus will repeat within any brief interval of time.
Thus, make each judgment by comparing it with the
standard and ignore as much as possible the preceding
stimulus. Any time you wish to hear the standard, you
need only type the letter S and the standard will be
presented. You may also listen to the loudest and the
softest stimuli, at the very beginning of a session (see
procedure instruction sheet).

APPENDIX II. INSTRUCTIONS FOR ME

This is an experiment to determine your ability to
judge the relative loudness of tones. You will be
presented a series of tones of different intensities in an
irregular order; your task is to tell me how loud they are
by assigning numbers to them. The ratios between the
numbers you assign to the different tones should
correspond to the ratio between the loudness of the
tones. For example, if one tone sounds 20 times louder
than another, then, if you had assigned 8 to the weaker
tone, assign 160 to the louder one. In other words, try
to make the number proportional to the loudness as you
hear it. You may assign any positive number you wish to
the tones. There are a large number of intensities, so you
will use many different numbers. However, try to be
consistent in the sense that if two intensities are near
each other then the numbers you assign should be near
each other; but they should exhibit the proper ratio. The
computer program does not accept fractions, so it may
be helpful and easier for you to assign a fairly large
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number like 100 to a middle loudness. The program will
accept decimal numbers, so if you want ~ enter .25 as
your response. Don't worry about the first few
judgments; we will give you several hours' practice
before we begin collecting data.

APPENDIX III. INSTRUCTION FOR RE

This is an experiment to determine your ability to
judge the relative loudness of tones. You will be
presented a pair of tones of different intensities. They
will be presented in an irregular order; your task is to tell
me how they differ in loudness by assigning a ratio to
them. The ratios between the numbers you assign to the
different tones should correspond to the ratio between
the loudness of the tones. Make the softer tone equal to
one. If the louder tone is 20 times louder and it was the
first tone, type "20 ESC I." If the louder tone is the
second tone of the pair, type" 1 ESC 20" [on the VST it

looks like 1:20]. In other words, try to make the
number proportional to the loudness as you hear it. You
may assign any positive number you wish to the tones.
There are a large number of intensities, so you will use
many different numbers. However, try to be consistent
in the sense that if two intensities are near each other,
then the numbers you assign should be near each other;
but they should exhibit the proper ratio. Don't worry
about the first few judgments; we will give you several
hours of practice before we begin collecting data.
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NOTE

1. Of course, other approaches to these data are possible. One
is the counting model. We do not study this for two reasons.
First, we purposely used signals of long duration (1 sec) so that
the observers would not be driven to counting behavior from.
what we believe to be, their natural tendency to use a timing rule
(Green &. Luce, 1973). Second, we have been uanble to derive
neat formulas for the distribution of ratios under the counting
hypothesis. Another avenue is the generalized detectability
analysis of Braida and Durlach (1972). Basically, they approach
the problem as one In the framework of signal detectability In

which the variance of the signal representation is the sum of two
terms, one of which is attributed to the signal and the other of
which grows as the square 'of the range In decibels of signals
used. We are not sympathetic with that hypothesis and are
PUrsuing a different approach here and elsewhere. As will be seen
below, we posit an attentional mechanism, which affects the
sample size and so the variability of the representation, as an
alternative mechanism. It has the advantage of being operative
immediately before the observer has any experience with the
range or distribution of signals being used.
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