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[1] A stochastic model of rainfall rate is used to examine the temporal variability of
rainfall during heavy convective rain periods. The model represents the microstructure of
rainfall rate at time scales that are important for land surface processes associated with
infiltration and runoff production. The representation of rainfall rate is based on a marked
point process model of raindrop size distributions, which yields a gamma raindrop
spectrum with parameters that are time-varying stochastic processes. Raindrop size
distribution observations from a Joss-Waldvogel disdrometer in Princeton, New Jersey,
during the period May–October 2006 are used along with the stochastic model to examine
rainfall rate variability. Analyses focus on a sample of 60-min time periods in which heavy
convective rainfall occurred. Central elements of the analyses entail examination of the
relationships between rainfall rate and the time-varying model parameters that characterize
the raindrop size distribution. We also examine the dependence structure among these
processes. ‘‘Scaling law’’ formulations of raindrop size distributions are used to examine
variability of raindrop size distributions. Analyses of the Princeton heavy rainfall
periods also point to seasonal and diurnal heterogeneities as important elements of the
distribution of extreme rainfall rates. Convective intensity, as reflected in cloud-to-ground
lightning observations, plays an important role in the distribution of extreme rainfall
rates and the evolution of raindrop size distributions associated with heavy rainfall.
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1. Introduction

[2] A stochastic model of rainfall rate is used to examine
the temporal variability of rainfall during heavy convective
rain periods. The representation of rainfall rate is based on a
marked point process model of raindrop size distributions
[Smith, 1993; see alsoUijlenhoet et al., 2003a, 2003b; Steiner
and Smith, 2004], which yields a gamma raindrop spectrum
N(xjN0, L, m) (drops m

�3 mm�1) with parameters that are
time-varying stochastic processes:

N x j N0 tð Þ; L tð Þ;m tð Þð Þ ¼ N0 tð Þ xm tð Þ exp �L tð Þxð Þ ð1Þ

The stochastic model of rainfall rate takes the form

R tð Þ ¼ 6p v0

104
G 4þ m tð Þ þ pð Þ N0 tð Þ L tð Þ� 4þm tð Þþpð Þ; t 2 0; T½ 	

ð2Þ

where R(t) is rainfall rate (mm h�1) at time t, v0 and p are
‘‘terminal velocity ’’ parameters (see section 2), G(s) is the
gamma function and the time interval is denoted [0, T].
[3] Raindrop size distribution observations from a Joss-

Waldvogel disdrometer [Joss and Waldvogel, 1967; see also
Steiner et al., 2004; Tokay et al., 2005; Munchak and Tokay,
2008] for recent treatments of raindrop size distribution
measurements) in Princeton, New Jersey, during the period
May–October 2006 are used along with the stochastic
model to examine rainfall rate variability. Analyses focus
on a sample of 60-min time periods in which heavy con-
vective rainfall occurred. The time interval T of 60 min
corresponds to periods in which one or more convective
elements pass over the disdrometer location. Cloud-to-
ground lightning observations from the National Lightning
Detection Network (NLDN) [see Orville and Huffines,
2001] are used to show that convective intensity (see Zipser
et al. [2006] for discussion of measures of convective
intensity) plays an important role in the distribution of
extreme rainfall rates and the evolution of raindrop size
distributions for heavy rainfall.
[4] The model represents the microstructure of rainfall

rate at time scales that are important for land surface
processes associated with infiltration and runoff production.
In formulations of infiltration and saturated-unsaturated zone
flow based on the Richards equation [Celia et al., 1990;
Williams and Miller, 1999], rainfall rate provides a surface
boundary condition. Nonlinearity of the Richards equation
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makes the dependence on rainfall microstructure an impor-
tant element of infiltration and runoff production.
[5] The dependence of runoff processes on rainfall micro-

structure is especially important for extreme rainfall rates in
small urban catchments. In these settings, rainfall micro-
structure plays a central role in controlling flood hazards.
Rainfall rate and discharge time series (Figure 1) for the
three events that produced the largest flood peaks in Harry’s
Brook (see section 3) during the summer 2006 observing
period illustrate the close relationship between rainfall rate
variability and urban flooding. Harry’s Brook drains the
urban core of Princeton and has a drainage area of 1.1 km2.
The 22 July 2006 storm produced a unit discharge peak
of 26.5 m3 s�1 km�2 (at a drainage area of 1.1 km2) from a
27-min period with 1-min rainfall rates greater than 25 mm
h�1 and a peak 1-min rainfall rate of 120 mm h�1. The unit
discharge peak from the 22 July storm period is comparable
to record flood peaks in small urban catchments from loca-
tions throughout the United s [Smith et al., 2005]. Storm

total rainfall for the 22 July period was 28.7 mm and the
storm total runoff was 27.6 mm for a runoff ratio of 97%.
Runoff ratios for the 2 June and 21 July storm periods shown
in Figure 1 were both 56%. Runoff ratios for other events
during the warm season of 2006 were smaller, with typical
values around 30%. Rainfall rate variability for each of
the three time periods shown in Figure 1 is tied to structure,
motion and evolution of organized convective systems. The
time scales associated with a storm element passing over a
small urban catchment are similar to the time scales that are
of most importance for runoff production and flood response
in small urban catchments (Figure 1).
[6] Microstructure of rainfall rate is examined through

analyses of the relationships between rainfall rate R(t) and
the raindrop shape process m(t), scale L�1(t) and the scaled
raindrop number density N0(t). The fundamental objective
is to characterize stochastic properties of rainfall rate in
terms of random processes representing time variation in
numbers and sizes of raindrops, as represented through

Figure 1. Time series of rainfall rate (mm h�1 from disdrometer) and ‘‘unit discharge’’ (discharge in
m3 s�1 divided by drainage area (in km2)) for (top) 2 June, (middle) 21 July, and (bottom) 22 July. Note
the different discharge range for the 22 July storm, relative to the 2 June and 21 July storms.
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{m(t), L(t), N0(t)}. We also examine the dependence
structure among the processes m(t), L�1(t) and N0(t). The
state estimation problem of reconstructing the unknown
stochastic processes {m(t), L(t), N0(t); t 2 [0, T]} from
raindrop size distribution observations is a key element of
the analysis methodology (section 2). Analyses of rainfall
rate variability in section 3 utilize the ‘‘scaling law for-
mulations’’ [Sempere Torres et al., 1994; Uijlenhoet and
Stricker, 1999; Uijlenhoet et al., 2003a, 2003b] of raindrop
size distributions as a framework (section 2).
[7] The central topic of this study is the microstructure of

rainfall rate from organized convective systems that produce
extreme rainfall rates. We also examine properties of the
occurrence process of storms that produce extreme rainfall
rates. Seasonal and diurnal cycles are key elements of
the temporal occurrence process for heavy rainfall from
organized convective systems. Convective intensity, as
reflected in cloud-to-ground lightning observations, is an
important feature of the diurnal and seasonal cycles of
storm occurrences. Analyses are synthesized to highlight
key issues in examining stochastic properties of rainfall
rate.

2. Rainfall Rate: Marked Point Process
Representations

[8] Analyses of rainfall rate as a stochastic process are
based on a marked point process model [Smith, 1993; Karr,
1991] of raindrop size distributions. The marked point
process represents the number and sizes of raindrops that
pass a sample area of unit size (1 m2), that is parallel to the
ground surface during a convective storm element. The
sample area reflects the scale of interest for relating rainfall
rate to land surface processes, including infiltration and run-
off production. In this section, we develop the stochastic
model of raindrop size distributions in flux form, as described
above, and translate it into a sample volume representation
(1) using an assumed power law relationship for the terminal
velocity of raindrops.
[9] Rainfall ratewill be examined over a time interval [0, T],

which represents a time period containing one or more high
rain rate convective elements. For the analyses of section 3,
we will focus attention on a time period of 60 min. The time
period is longer than the life cycle of an individual con-
vective cell and corresponds to time scales over which
temporal variability of rainfall rate controls flood response
in ‘‘small’’ urban drainage basins [Smith et al., 2005] (see
also Figure 1).
[10] The arrival time (in s) of the ith drop during the time

interval [0, T] is denoted Ti and the diameter (in mm) of the
ith drop (i.e., the diameter of a sphere of equivalent mass) is
denoted Di. The total number of drops during the time period
[0, T] is denotedM. With this notation {(Ti,Di); i = 1, . . .,M}
is amarked point process [seeKarr, 1991]with {Ti, i=1, . . .,M}
a point process on the interval [0, T], for which each point Ti
is paired with the mark Di.
[11] Rainfall accumulation (mm) at time t is given by

A tð Þ ¼ p
6

10�6
XM tð Þ

i¼1

Di
3 ð3Þ

where M(t) is the number of raindrops that have arrived by
time t, t 2 [0, T]:

M tð Þ ¼
XM
i¼1

1 Ti 
 tð Þ ð4Þ

The indicator function notation 1(Ti 
 t) denotes the random
variable that takes the value 1 if Ti 
 t and 0 otherwise.
[12] Rainfall rate (mm h�1) is defined as

R tð Þ ¼ 3600
A tð Þ � A t �Dtð Þ

Dt

� �
ð5Þ

where Dt is the averaging time period. Because rainfall is
intrinsically a point process, rainfall rate cannot be obtained
as the limit of the term on the right-hand side of (5) as the
time interval Dt decreases to 0. Rainfall rate can only be
defined relative to a fixed averaging time interval Dt. The
time interval used for analyses in the following section is
1 min. The median value of drop arrival rate from the
Princeton observations (section 3) for rain rates greater than
1 mm h�1 is 1300 drops m�2 s�1. The interquartile range of
drop arrival rates extends from 800 to 2000 drops m�2 s�1

and the largest drop arrival rate during the 2006 observing
period was 6950 drops m�2 s�1.
[13] The counting process M(t) specifies the number of

raindrops that have arrived as a function of time. It is mod-
eled as a Cox process [Karr, 1991; see also Smith and Karr,
1983; Smith, 1993], i.e., a Poisson process with randomly
varying rate of occurrence {l(u); u � 0}. In this case the
conditional distribution of the counting process is

P M tð Þ ¼ k j l uð Þ; u 
 tf g ¼
exp �

R t

0
l uð Þ du

� � R t

0
l uð Þ du

� �k
k!

ð6Þ

where k is a nonnegative integer.
[14] The distribution of drop sizes is represented by a

gamma distribution with randomly varying ‘‘shape’’ param-
eter h(t) and ‘‘scale’’ parameter g(t) (for related analyses, see
Ulbrich, 1983; Tokay and Short, 1996; Bringi et al., 2003;
Narayana Rao et al., 2006; Moisseev and Chandrasekar,
2007, and references therein]. The probability density func-
tion of drop diameters takes the form

f x j h tð Þ; g tð Þð Þ ¼ 1

G h tð Þð Þ xh tð Þ�1 g tð Þ�h tð Þ
exp � x

g tð Þ

� �
; x � 0

ð7Þ

where G(s) is the gamma function. Of principal interest in
this study are the stochastic processes {l(t), h(t), g(t)}, and
their relationship to rainfall rate. Microstructure of rainfall
rate is examined through analyses of distributional proper-
ties of the random processes representing drop arrival rate,
‘‘scale’’ of the raindrop size distribution and ‘‘shape’’ of the
raindrop size distribution.
[15] Rainfall rate, based on the representations in (3)–(7),

can be computed using the law of large numbers [Smith,
1993] in terms of the random processes representing drop
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arrival rate, central tendency in drop diameter and shape of
the DSD, yielding

R tð Þ ¼ 6p 10�4 l tð ÞG h tð Þ þ 3ð Þ
G h tð Þð Þ g tð Þ3 ð8Þ

Analyses of rainfall rate center on the ‘‘state estimation’’
problem [see Karr, 1991] of estimating the time-varying
stochastic processes {l(t), h(t),g(t)} from observations of
the marked point process {Ti, Di}.
[16] The time-varying parameters of the gamma drop size

distribution are estimated using both maximum likelihood
(MLE) and moment of moments procedures. In both cases
the estimator for the scale parameter g(t) takes the form

ĝ tð Þ ¼ m̂ tð Þ
ĥ tð Þ ð9Þ

where m̂(t) is the time-varying estimator of the mean
diameter and ĥ(t) is the estimator (either MLE or method
of moments) of the shape parameter. For the method of
moments procedure [Mood et al., 1974] the estimator of the
shape parameter is

ĥ tð Þ ¼ ĉ tð Þ�2 ð10Þ

where ĉ(t) is the sample estimator of the coefficient of
variation (standard deviation divided by the mean) of the
gamma distribution. Maximum likelihood estimators of the
shape parameter follow procedures of Venables and Ripley
[2002]. For the analyses in section 3, we use kernel estimators
of the sample mean and standard deviation in which ob-
servations are binned into 1-min time intervals. Because of
the large drop arrival rates and the 1-min averaging time,
efficiency and bias issues do not play a major role in the state
estimation problem. The state estimator for the conditional
rate of occurrence process is

l̂ tð Þ ¼ dt�1
XM
i¼1

1 k t � Ti k
 dtð Þ ð11Þ

The estimator at time t is a local moment estimator of the
mean arrival rate.
[17] It is conventional in radar meteorology and other

areas of the atmospheric sciences to examine raindrop size
distributions from a sample volume representation of the
number and sizes of drops in a volume of the atmosphere,
rather than from the flux representation presented above
[see, e.g.,Waldvogel, 1974;Ulbrich, 1983;Doviak and Zrnic,
1993]. The sample volume representation specifies the num-
ber of drops in a 3-D sample element which we take to be 1 m
on a side. We denote the number of drops byM and the sizes
{~Di}, i = 1, . . ., M. Given a terminal velocity relationship in
terms of drop sizes, it is straightforward to switch between
flux and sample volume representations [Smith, 1993]. We
use a power law terminal velocity relationship of the form

v xð Þ ¼ v0x
p ð12Þ

with parameter values v0 = 6 and p = 0.67 [Atlas and
Ulbrich, 1977]. Vertical v within a thunderstorm cell

can depart significantly from terminal velocity and these
departures can play an important role in the distribution of
surface rainfall rates [see, e.g., Smith et al., 2005]. Departures
from terminal velocity are generally smaller for near-surface
conditions (see Munchak and Tokay [2008] for a recent
discussion).
[18] Under the assumptions of the marked point process

model, the number of drops has a Poisson distribution with
parameter:

~l tð Þ ¼ l tð Þ
vo

G h tð Þ � pð Þ
G h tð Þð Þ g tð Þ�p ð13Þ

and the drop sizes have a gamma distribution of the form

g x j h tð Þ; g tð Þð Þ ¼ 1

G h tð Þ � pð Þ xh tð Þ�p�1 g tð Þ� h tð Þ�pð Þ

� exp � x

g tð Þ

� �
ð14Þ

These results follow from the representations of Smith
[1993].
[19] The distribution of drop counts and sizes is com-

bined in the raindrop spectrum, N(x), which represents the
expected number of drops per cubic meter of sample volume
per mm of drop diameter centered at a diameter of x mm
[Doviak and Zrnic, 1993].
[20] The gamma drop spectrum can be represented as in

(1) with

N0 tð Þ ¼ l tð Þ
v0 � g tð Þh tð Þ

1

G h tð Þð Þ ð15Þ

L tð Þ ¼ 1

g tð Þ ð16Þ

m tð Þ ¼ h tð Þ � p� 1 ð17Þ

The representation of rainfall rate in (2) follows from use of
(15)–(17) in (8).
[21] ‘‘Scaling law’’ formulations of raindrop size distri-

butions have provided important insights to rain rate fluctua-
tions and useful tools for addressing remote sensing problems
[Sempere Torres et al., 1998; Testud et al., 2001;Uijlenhoet et
al., 2003a, 2003b; Uijlenhoet and Sempere Torres, 2006].
The scaling law form of the raindrop size distribution is
derived from representation of the raindrop spectrum in the
form

N xj R tð Þð Þ ¼ R tð Þag R tð Þ�b
x

	 

ð18Þ

where g(y) is the ‘‘general raindrop size distribution’’ (see
the formulation of Uijlenhoet et al. [2003a, 2003b]).
[22] The gamma form of the scaling law follows from the

assumption that

g yð Þ ¼ k ym exp �cyð Þ ð19Þ
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It follows that

N xjR tð Þð Þ ¼ kR tð Þa�mb
xm exp �cR tð Þ�b

x
n o

ð20Þ

[23] From the perspective of our model formulation, the
key elements of the scaling law model are that the shape
parameter does not vary over time and the scale parameter L
and N0 are power law functions of rainfall rate:

m tð Þ ¼ m ð21Þ

N0 tð Þ ¼ kR tð Þa�mb ð22Þ

L tð Þ ¼ c R tð Þ�b ð23Þ

with

k ¼ 6p 10�4 v0G 4þ pþ mð Þ

 ��1

c4þpþm ð24Þ

It follows that N0(t) is a power law function of L(t). The
assumption of a constant shape parameter is a strong one,
which we examine through analyses of the Princeton data
below. More generally, it is important to examine the role of
temporal variability of the shape parameter in controlling
stochastic properties of rainfall rate.
[24] The gamma scaling law model provides a parsimo-

nious representation of rainfall rate. The shape parameter is
constant and the scale eter can be expressed as a
deterministic function of r vice versa). This representa-

tion of the raindrop size distribution is especially important
for radar rainfall estimation, providing a solid foundation
for estimating rainfall rate from a single variable, the radar
reflectivity factor. Brandes et al. [2004] explored similar
issues in the framework of radar rainfall estimation on the
basis of assumed gamma raindrop size distributions. They
argue that the dimensionality of the gamma parameterization
can be reduced from 3 to 2 through functional relationships
between the shape m(t) and scale L(t). These distributional
issues highlight fundamental aspects of rainfall rate variabil-
ity that are examined in the next section through application
of the gamma model to raindrop size distributions from
heavy convective rainfall events.

3. Results

[25] Analyses in this section utilize raindrop size distribu-
tion measurements from a Joss-Waldvogel disdrometer [Joss
and Waldvogel, 1967; see also Steiner and Smith, 2000] that
was deployed in Princeton, New Jersey during the period
May–October 2006. Analyses focus on 25 time periods
(60 min duration) for which peak 1-min rainfall rates
exceeded 25 mm h�1 (Table 1). Each of the 25 time periods
in Table 1 represents a separate storm episode for which peak
rain rates exceed 25 mm h�1, but drop to 0 between events.
There were periods in the May–October time window when
the disdrometer was not operating, most notably a three week
period in August.
[26] The definition of heavy rain used in this study is

motivated by an underlying representation of the occurrence
of heavy rain periods. In this formulation, rainfall rate can be
represented by {Ui, Ri(t); t 2 [0, Li], i = 1, . . .,Mj}, whereMj

is the number of rainfall periods during year j, Ui is the time

Table 1. Summary of the 25 60-min Storm Periodsa

Date
Time
(UTC)

Max 1 Rain
(mm h�1)

Max 15 Rain
(mm h�1)

Max 60 Rain
(mm h�1) CV m

l
(m�2 s�1)

Diameter
(mm) CG Strikes

12 May 0242 42 17 10.9 0.87 8.8 4485 1.54 0
12 May 0345 57 21 7.8 1.78 6.1 3910 1.70 0
12 May 0421 45 9.2 5.3 1.70 6.2 3990 1.57 2
15 May 2318 27 15 4.6 1.52 5.3 3920 1.34 0
16 May 0043 83 26 6.5 2.48 7.4 3185 2.13 1
16 May 1048 37 18 12 0.62 7.4 3690 1.55 2
2 Jun 2332 41 14 4.3 1.78 4.2 1152 2.20 0
3 Jun 0021 115 51 15 1.94 6.0 4067 2.12 0
3 Jun 0348 81 49 18 1.18 8.7 5405 1.80 3
3 Jun 1644 126 29 7.8 2.75 6.1 4480 2.12 0
8 Jun 2318 60 35 10 1.60 7.8 3585 1.84 0
14 Jun 2327 64 36 13 1.39 7.6 3310 1.92 0
23 Jun 2314 63 32 9.4 1.61 6.8 3915 1.78 11
24 Jun 1034 59 20 4.9 2.82 7.8 4425 1.70 0
24 Jun 2254 40 14 5.4 1.40 10.3 3620 1.65 0
30 Jun 0246 36 17 7.1 1.43 8.8 3230 1.63 30
4 Jul 1957 48 22 5.8 2.01 6.9 2033 2.04 10
6 Jul 0712 59 15 5.5 1.84 5.17 2467 1.96 0
13 Jul 0234 107 38 11 2.10 11.6 6320 1.93 55
21 Jul 1939 26 9.2 2.7 2.12 13.0 2560 1.63 55
22 Jul 0006 88 61 18 1.47 9.8 4940 1.92 35
22 Jul 1954 92 27 8.1 2.36 13.1 5115 1.98 2
22 Jul 2047 120 78 29 1.25 12.1 6035 2.03 50
22 Jul 2247 39 12 4.2 1.94 6.8 4040 1.50 0
5 Oct 0401 123 66 26 1.29 7.8 4265 2.20 11

aShown are date (day and month); time (UTC); maximum rain rate (mm h�1) at 1-, 15- and 60-min time intervals; coefficient of variation of 1-min
rainfall rate for the 60-min period; shape m at maximum rainfall rate; drop arrival rate l (drops m�2 s�1) at maximum rain rate; mean diameter at maximum
rain rate; and total CG strikes during the 60-min period.
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occurrence (the initial time of positive rainfall rates) of the ith
storm period during the year, Ri(t) is the rainfall rate at time t
relative to the occurrence time Ui and Li is the duration of the
ith rainfall period. We focus on heavy convective rainfall by
‘‘thinning’’ the underlying process of rainfall occurrence to
include only rain periods with maximum rainfall rates ex-
ceeding a high threshold. For the analyses presented below
we use a 1-min threshold of 25 mm h�1. The focus of
analyses presented below is on variability of raindrop size
distributions within a rain period and their control on the
microstructure of rainfall rate. We also examine the links
between the occurrence process of rain periods and micro-
structure of rainfall rate, especially through nonstationarities
tied to the diurnal and seasonal cycles of convective rainfall.
[27] The diurnal cycle of convection plays a central role

in the distribution of extreme short-term rainfall rates. The
diurnal cycle in the occurrence of extreme rainfall rates is
closely linked to the diurnal cycle of thunderstorms in
Princeton (Figure 2; represented as a flash density in CG
strikes km�2 a�1). The CG flash density is near 0 for a time
period extending from 1000 to 1600 UTC. The CG flash
density is greater than 10 strikes km�2 a�1 for a 5-h window
centered around 0000 UTC. For reference, the mean annual
lightning flash density for Princeton is 3.0 strikes km�2 a�1.
The occurrence of heavy rain periods from the sample of
25 events closely reflects the diurnal cycle of lightning with
no events during the period 1200–1600 UTC and 21 of
25 events occurring between 1900 UTC and 0600 UTC. For
the subsequent analyses, we define a ‘‘day’’ to extend from
1200 to 1200 UTC to reflect the diurnal cycle of convection
and its control on rainfall rate distribution.
[28] The seasonal cycle of convection also plays an im-

portant role in the distribution of extreme rainfall rates.
Mean CG flash densities h sharp peak in July at a rate

that is an order of magnitude larger than the winter minimum
(figure not shown). The most intense convection for the
25 storm periods, as reflected in CG flash density, was con-
centrated during the midsummer period (Table 1).
[29] There were three heavy rain periods from 1200 UTC

on 22 July through 1200 UTC on 23 July, including the
period with peak 15 min (78 mm h�1) and 60 min
(29 mm h�1) rainfall rates during the observing period
(Table 1). The 60-min storm period on 22 July with peak
rainfall rate at 2047 UTC (Figures 1, 3, and 4) produced the
largest flood peak in Harry’s Brook (Figure 1), which drains
the urban core of Princeton, New Jersey (see Figure 4),
during a three year stream gauging period. During the 6-min
period from 2041 to 2047 UTC on 22 July, the estimated
shape parameter m increased from 7.8 to 12.1 as rainfall rate
increased from 38 mm h�1 to the maximum rainfall rate of
120 mm h�1. During the same time period, the estimated
scale parameter L�1 decreases uniformly and N0 increases.
[30] This period of peak rainfall rates on 22 July 2006

was produced by a rapidly moving multicell thunderstorm
(Figure 4), which was embedded in a larger mesoscale con-
vective system. The evolution of individual convective cells
within a storm element plays an important role in the micro-
structure of rainfall rate (see Smith et al. [2005] for addi-
tional discussion; future studies will examine microstructure
of rainfall rate through combined analyses of disdrometer
and radar observations). The two rain periods which precede
and follow the 60-min period with maximum rain rate
(Table 1) were elements of the same mesoscale convective
system. The temporal correlation structure in the occurrence
of storm periods at a location is linked to the spatial
organization of mesoscale convective systems, as illustrated
in Figure 4. The 25 events during the 2006 observing period
were clustered into 15 days (defining a ‘‘day’’ to extend

Figure 2. Diurnal cycle of CG lightning (CG strikes km�1 a�1) for May–October for Princeton, New
Jersey (10 km radius around the Princeton disdrometer station), based on NLDN observations from 1991
to 2006. Frequency estimators are constructed using a Gaussian smoothing procedure with smoothing
parameter (‘‘sigma’’) of 60 min.
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Figure 3. Time series of (a) rainfall rate (mm h�1), (b) drop arrival rate (drops m�2 s�1), and (c) mean
diameter (mm) and state estimates of (d) m, (e) L�1 (mm), and (f) N0 (drops m

�3 mm�(1+m)) for the 60-min
period (see Table 1) on 22 July 2006 with peak 60-min rainfall accumulation.
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from 1200 UTC to 1200 UTC, as noted above) during which
one or more 60-min storm periods occur over the day. Paired
studies of point rainfall rate using disdrometers and radar
provide useful tools for examining microstructure of point
rainfall rate and linking microstructure of rainfall rate to
structure and evolution of mesoscale convective systems.
[31] The summary analyses in Table 1 are for 60-min time

periods containing the peak 1-min rain rates and with the
beginning time chosen to give the maximum 60-min rainfall
rate. Rain rate distributions are summarized by maximum
1-min, 15-min and 60-min rainfall rates, coefficient of
variation of 1-min rainfall rates for the 60-min time window
(i.e., standard deviation of 1-min rainfall rates divided by
mean 1-min rainfall rates), the shape parameter m corre-
sponding to the maximum 1-min rainfall rate, the drop
arrival rate l corresponding to the maximum 1-min rainfall
rate, themean diameter cor ding to themaximum1-min
rainfall rate and the numb loud-to-ground (CG) light-

ning strikes within 10 km of the disdrometer during the
60-min period.
[32] Using equation (2) with the reconstructed stochastic

processes (l(t), h(t), g(t)) results in near-perfect reconstruc-
tion of rainfall rate (Figure 5) for the 2006 Princeton data.
Thus the information contained in the drop size measure-
ments for a given minute can be condensed to the three
gamma parameters, maintaining an almost perfect represen-
tation of rainfall rate. Inferences are not tied to estimation
procedure. Method of moments and maximum likelihood
procedures for estimating size distribution parameters pro-
vide similar estimates (Figure 6).
[33] The relationships between the state variables m(t),L(t)

and N0(t) and rainfall rate R(t) are summarized through box
plots (Figure 7) representing the conditional distribution of
drop spectrum parameters given the rainfall rate. Rainfall rate
is divided into 7 categories, less than 5mm h�1, 5–10mm h�1,
10–20 mm h�1, 20–40 mm h�1, 40–60 mm h�1, 60–80 mm
h�1 and greater than 80 mm h�1.
[34] Dependence of the estimated state variables m(t), L(t)

and N0(t) on rainfall rate is strongest for the shape parameter m
(Figure 7). Median values of m increase systematically with
rainfall rate and variability in m decreases with increasing rain
rate, most notably for rain rates greater than 40 mm h�1. For
rainfall rates less than 5 mm h�1 (Figure 7), the shape
parameter m has a median value just less than 4, an inter-
quartile range from 2.2 to 6.1 and extremes ranging from just
less than 0 to just above 12. For rain rates greater than 80 mm
h�1, themedian value ofm increases to 8, and the interquartile
range (6.3 to 9.6) and extremes (4.2 to 11.5) are narrower.
[35] Estimators of the scale parameter L�1 and N0 vary

with rain rate, but in more subtle fashion (Figure 7). There is
a tendency for the central portion of the scale parameter
distribution to increase with rain rate and a more pronounced
decrease in variability of the scale parameter with rain rate.
Similarly, the central portion of state estimators of N0

Figure 4. HydroNEXRAD rainfall rate fields for 22 July
2006 at (top) 2022 and (bottom) 2040 UTC on 22 July 2006.
Location of the Princeton disdrometer is shown. ‘‘Urban’’
land use is highlighted in brown, and shading highlights
topography of the surrounding region in New Jersey and
Pennsylvania.

Figure 5. Model rain rate computed from equation (2) versus
observed rain rate for the 2006 Princeton data.
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Figure 6. Scatterplots of maximum likelihood versus
method of moments state estimates of (top) m, (middle)
L�1, and (bottom) N0.

Figure 7. Box plots of state estimates of (top) m, (middle)
L�1, and (bottom) N0. The distributions of state estimators
for each of the parameters are represented by box plots of
estimates for rain rate (1) less than 5 mm h�1, (2) between 5
and 10 mm h�1, (3) between 10 and 20 mm h�1, (4) between
20 and 40mmh�1, (5) between 40 and 60mmh�1, (6) between
60 and 80 mm h�1, and (7) greater than 80 mm h�1.
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generally decrease with rain rate and the variability of the
estimators decreases.
[36] There is strong dependence among the state estimators

of m(t), L(t) and N0(t) (Figure 8). The scale parameter L�1

decreases systematically with increasing scale m and N0

increases linearly with m. There is also strong dependence
between N0 and L�1, with estimators of N0 decreasing with
increasing L�1. These analyses suggest that the ‘‘dimension-
ality’’ of variability in raindrop size distributions is less than
3 for heavy convective rain. Preceding analyses (Figure 5)
show that information on numbers and sizes of raindrops can
be condensed to the 3 three parameters of the gamma drop
spectrum. The dependence among the three processes shown
in Figure 8 indicates that a more parsimonious representation
can be achieved. Radar rainfall algorithms that use a single
variable, radar reflectivity factor, to estimate rainfall rate
work best when the dimensionality can be collapsed to 1, as
in the case of the scaling law model [Krajeswki and Smith,
2002]. Analyses of the Princeton data suggest that for heavy
convective rainfall, the dimensionality of variation in rain-
drop size distributions is greater than 1 and that variation in
the shape parameter m is significant.
[37] Time evolution of the shape of the raindrop size

distribution is an important feature of rainfall rate variability
of heavy convective rainstorms in Princeton and this varia-
tion is tied to the intensity of convection. For heavy convec-
tive rainfall, the estimated shape parameter varies over the
course of an event (Figure 3) and there is systematic variation
from event to event (Table 1). The largest values of the peak
scale parameter (Table 1) are concentrated during the July
events on days with intense convection, as represented by the
number of CG lightning strikes. Smaller values of the peak
scale parameter (Table 1) are concentrated on days with
weaker convection. Extreme values of the shape parameter
are not simply tied to extreme rainfall rates, but also reflect
convective intensity. Peak 1-min rainfall rates exceeding
100 mm h�1 exhibit a range of peak scale parameters that
are linked to CG lightning flash density (Table 1); note
in particular contrasts between the 2–3 June, 3–4 June,
22–23 July and 4–5 October events.
[38] Intermittency of rainfall rate is a central feature of

any characterization of rainfall variability. The largest
values of coefficient of variation for the 60-min storm periods
are associated with short bursts of large rainfall rates. The
22 July event peaking at 1954 UTC has a peak 1-min rainfall
rate of 92 mm h�1 and a 60-min rainfall rate of 8.1 mm h�1.
The CVof 1-min rainfall rates for the 60-min period is 2.36
(fourth largest in the sample of 25 events). An important
element of the microstructure of rainfall rate that is closely
tied to intermittency and variability of rainfall rate is duration
of extreme rainfall rates. For the three flood events high-
lighted in Figure 1 duration of rainfall rates greater than
25 mm h�1 ranged from 8 min for the 2 June event to 27 min
for 22 July event. Intermittency of rainfall rate, as well as
other distributional properties of raindrop size distributions,
are closely linked to the structure, motion and evolution of
convective elements in organized thunderstorm systems
(Figure 4).

4. Summary and Conclusions

[39] A stochastic model of raindrop size distributions is
used to analyze the temporal variability of rainfall rate for

Figure 8. Dependence among the state estimators of
gamma model parameters, represented through scatterplots
of state estimators of (top) L�1 versus m, (middle) N0 versus
m, and (bottom) N0 versus L

�1.
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heavy convective rainfall. Analyses are used to examine the
microstructure of rainfall rate at time scales that are impor-
tant for land surface processes associated with infiltration
and runoff production. The stochastic model of rainfall rate
is based on a model of raindrop size distributions in which
the drop spectrum has a gamma distribution with model
parameters that are time-varying stochastic processes. State
estimation procedures are developed for estimating the time-
varying parameters of the gamma drop spectrum from mea-
sured raindrop size distributions. The model is used to analyze
rain rate variability from disdrometer observations in Princeton,
New Jersey during the period May–October 2006. Analyses
focus on a sample of 60-min periods with heavy rainfall. The
principal conclusions of the study are the following.
[40] 1. The model of rainfall rate based on the time-

varying gamma drop spectrum model (equation (2)), in
combination with state estimation procedures, provides ac-
curate reconstruction of rainfall rate. This implies that the
information about rainfall rate that is contained in a complete
representation of the number and sizes of raindrops can be
condensed to three values, the shape, m, scale, L�1 and nor-
malized number density N0 parameters of the Gamma drop
spectrum. Sensitivity of these inferences to the details of the
state estimation procedure was examined by comparison of
results for both maximum likelihood andmethod of moments
state estimation procedures. Both state estimation procedures
provide excellent representation of rainfall rate and similar
estimates of the time-varying model parameters. Future
studies should examine estimation properties for additional
parametric models of raindrop size distributions and param-
eter estimation procedures [see, e.g., Haddad et al., 1996;
Smith and Kliche, 2005], as well as sensitivity to instrument
properties [see, e.g., Tokay et al., 2005].
[41] 2. An important feature of the estimation results for

the Princeton data is the dependence of the scale parameter
m on rainfall rate. For the 25 storm periods during the 2006
observing period, the estimate of m at the peak rainfall rate
varies from 4.2 to 13.1. The scale parameter L�1 and N0

exhibit a more complex dependence on rainfall rate. There is
not, however, a strong power law relationship between L�1

and rainfall rate or between N0 and rainfall rate. Analyses
provide insights to the links between microstructure of
rainfall rate and stochastic variation in properties of the
raindrop size distribution. Future studies should examine
additional methods for characterizing temporal variation in
raindrop size distributions [see, e.g., Testud et al., 2001] and
explore their links to rainfall microstructure.
[42] 3. There is strong dependence among the time-

varying model parameters, m(t), L�1 (t) and N0(t). The scale
parameter L�1(t) decreases with increasing shape m(t) and
the normalized number density N0(t) increases with m(t).
There is also strong dependence between scale and normal-
ized number density, with N0(t) decreasing for increasing
L�1(t).
[43] 4. The diurnal and seasonal cycles of convection

plays a prominent role in determining the upper tail of the
distribution of rainfall rate. The 25 storm events of 60 min
duration during the 2006 observing period in Princeton are
clustered in a time window that extends from afternoon until
early morning. This mimics the diurnal cycle of CG lightning
for Princeton. Analyses suggest that convective intensity, as
reflected in CG lightning ensities, may be an important

element in determining raindrop size distributions. Variation
of the shape parameter (item 3 above) is linked to convective
intensity, with larger values of the peak shape parameter
associated with CG flash densities.
[44] 5. The temporal variability of 1-min rainfall rate

during heavy convective rain periods is large, as reflected
in a variety of measures. Only 2 of the 25 storm periods have
a coefficient of variation of rainfall rate for the 60-min period
that is less than 1. Short-term variability of rainfall rate plays
an important role in infiltration and runoff processes linked to
flood hydrology in many settings, especially in small urban
watersheds. For 60-min time periods, short-term variability
of convective rainfall is fundamentally linked to the structure
and motion of convective storm elements. Future studies will
examine the role of storm evolution from a Lagrangian
perspective (i.e., following a convective element) in deter-
mining distributional properties of rainfall rate and associated
processes tied to the raindrop size distribution.
[45] 6. Microstructure of extreme rainfall rates is closely

tied to the structure of organized convective systems and the
distribution of rainfall rate at a point for a storm period is tied
to structure and evolution of the convective element. The
occurrence process of storm periods with extreme rainfall
rates exhibits diurnal and seasonal cycles and exhibits cor-
relation that is linked to the structure and evolution of
organized convective systems. Analyses that combine high-
resolution radar measurements of the time evolution of the
3-D structure of organized convective systems with high
time resolution measurements of raindrop size distributions
provide important directions for further examination of the
microstructure of extreme rainfall rates.
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