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ABSTRACT

Data from an array of six moorings deployed east of Abaco, Bahamas, along 26.5°N during March

2004–May 2005 are analyzed. These moorings formed the western boundary array of a transbasin observing

system designed to continuously monitor the meridional overturning circulation and meridional heat flux in

the subtropical North Atlantic, under the framework of the joint U.K.–U.S. Rapid Climate Change

(RAPID)–Meridional Overturning Circulation (MOC) Program. Important features of the western bound-

ary circulation include the southward-flowing deep western boundary current (DWBC) below 1000 m and

the northward-flowing “Antilles” Current in the upper 1000 m. Transports in the western boundary layer

are estimated from direct current meter observations and from dynamic height moorings that measure the

spatially integrated geostrophic flow between moorings. The results of these methods are combined to

estimate the time-varying transports in the upper and deep ocean over the width of the western boundary

layer to a distance of 500 km offshore of the Bahamas escarpment. The net southward transport of the

DWBC across this region, inclusive of northward deep recirculation, is �26.5 Sv (Sv � 106 m3 s�1), which

is divided nearly equally between upper (�13.9 Sv) and lower (�12.6 Sv) North Atlantic Deep Water

(NADW). In the top 1000 m, 6.0 Sv flows northward in a thermocline-intensified jet near the western

boundary. These transports are found to agree well with historical current meter data in the region collected

between 1986 and 1997. Variability in both shallow and deep components of the circulation is large, with

transports above 1000 m varying between �15 and �25 Sv and deep transports varying between �60 and

�3 Sv. Much of this transport variability, associated with barotropic fluctuations, occurs on relatively short

time scales of several days to a few weeks. Upon removal of the barotropic fluctuations, slower baroclinic

transport variations are revealed, including a temporary stoppage of the lower NADW transport in the

DWBC during November 2004.

1. Introduction

Western boundary currents in the subtropical North

Atlantic Ocean play an important role in both the wind-

driven and large-scale thermohaline circulation. The

deep western boundary current (DWBC) originates

from dense overflows in the Greenland/Norwegian

Seas and deep convection in the subpolar gyre, and

carries these cold waters southward throughout the ba-

sin along the western boundary (Schmitz and McCart-

ney 1993). In compensation for this deep southward

flow, warm waters flow northward in the upper ocean,

leading to a northward oceanic heat flux that peaks at
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greater than 1.0 PW near 25°N (Hall and Bryden 1982).

Much of this northward flow is carried in the Gulf

Stream within the Straits of Florida or in shallow west-

ern boundary currents east of the Bahamas. The system

of shallow and deep currents making up this large-scale

thermohaline circulation, combined with wind-driven

transports in the surface Ekman layer, is referred to as

the meridional overturning circulation (MOC).

Estimates of the strength of the Atlantic MOC and

associated heat transport have typically been made

from transbasin hydrographic sections along one lati-

tude combined with direct measurements of the west-

ern boundary currents (Hall and Bryden 1982; Bryden

et al. 2005) or from sections at several different lati-

tudes in an inverse calculation (Ganachaud and

Wunsch 2000; Lumpkin and Speer 2003). These ap-

proaches require a number of assumptions, including

temporal stationarity of the hydrographic fields and

currents, which may or may not be accurate. A new

approach to the problem of measuring the MOC is to

make continuous observations of the currents and hy-

drographic fields with long-term moorings or other

time series techniques, so as to obtain a temporal

mean value for the MOC as well as information on

its time scales and range of variability. The first attempt

to instrument a complete transbasin section for this

purpose is now in place along 26°N in the Atlantic as

part of the joint U.K.–U.S. Rapid Climate Change

(RAPID)–MOC Program (Cunningham et al. 2007).

The 26°N RAPID–MOC array is a collaboration be-

tween scientists at the U.K. National Oceanography

Centre, Southampton, under the U.K RAPID program,

and scientists at the University of Miami and NOAA’s

Atlantic Oceanographic and Meteorological Labora-

tory under the U.S. Meridional Overturning Circula-

tion and Heat Flux Array (MOCHA) program.

The overall strategy for RAPID–MOC consists of

the deployment of deep-water endpoint “dynamic

height” moorings on either side of the basin to monitor

the basinwide geostrophic shear, combined with obser-

vations from clusters of moorings up the western (Ba-

hamas) and eastern (African) continental margins, and

direct measurements of the flow though the Straits of

Florida. Moorings are also included on the flanks of the

Mid-Atlantic Ridge to resolve flows in either subbasin.

Ekman transports derived from satellite winds are then

combined with the geostrophic and direct current ob-

servations and an overall mass conservation constraint

to continuously estimate the basinwide MOC strength

and vertical structure. Precision bottom pressure

gauges are also employed to monitor absolute trans-

ports, including barotropic circulation. The overall

methodology is described in more detail in Kanzow et

al. (2007), where it is applied to the first year results

from the 26°N array to estimate the Atlantic MOC

strength and variability during 2004–05 (see also Cun-

ningham et al. 2007).

In this paper we present the results from the first

setting of moorings off the Bahamas that make up the

critical western boundary part of the 26°N array. The

specific role of these observations in the overall MOC

calculation is the determination of the time-varying

transport (magnitude and vertical structure) in the re-

gion shoreward of the deep water dynamic-height

mooring making up the western “endpoint” of the sec-

tion. However, it is also of interest to determine the

transports over the full width of the western boundary

layer, which extends farther offshore, including the net

transport of the DWBC and the overlying shallow “An-

tilles” Current, as these currents are important indi-

vidual components of the MOC. Here we use the west-

ern boundary array measurements to estimate the

mean transport and variability of the DWBC and An-

tilles Current for the period from March 2004 to May

2005, and describe in detail the techniques used to pro-

duce the western boundary transports required for the

basinwide MOC calculation (Cunningham et al. 2007).

Transports computed over an extended western bound-

ary layer (to 500 km offshore of Abaco, Bahamas) are

in good agreement with earlier estimates based on the

decade-long World Ocean Circulation Experiment

(WOCE) Atlantic Current Meter (ACM-1) line at the

same location (Lee et al. 1996; Bryden et al. 2005),

suggesting that the western boundary transports during

the first year of the RAPID–MOC experiment were

fairly typical of mean conditions. However, the obser-

vations reveal interesting aspects of the variability of

the DWBC that had not been resolved before, includ-

ing large changes in the internal (baroclinic) structure

of the DWBC.

2. Observations

a. Moored time series measurements

The primary data used in this analysis are time series

records from current meters, temperature/salinity re-

corders, and precision bottom pressure gauges de-

ployed on taut-wire subsurface moorings east of Abaco,

Bahamas. The moorings were deployed from the RRS

Discovery in late March 2004 and recovered on the R/V

Knorr in early May 2005. All moorings were nominally

along 26.5°N latitude, with some small deviations owing

to topographic irregularities (Figs. 1a and 2). The array

consisted of a closely spaced cluster of four moorings

(denoted WBA–WB2) over the steep continental slope

and rise of the Bahamas escarpment, a pair of moorings
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spanning the usual domain of the DWBC within 100 km

of the western boundary (WB3 and WB4), and a final

mooring deployed approximately 500 km offshore at

72°W (WB5). Instrument configuration on the moor-

ings is shown in Fig. 1b.

1) CURRENT MEASUREMENTS

Current meters were included on the five western-

most moorings (WBA–WB3) and consisted of a mix of

Aanderaa RCM-11s, Nortek Aquadopps, Interocean

FIG. 1. (a) The RAPID–MOC western boundary array: Moorings WBA–WB4 compose a

tightly spaced array near the Bahamas escarpment, while mooring WB5 lies 500 km offshore

and forms a “dynamic height” endpoint for the array. (b) Cross-sectional view of the array

over topography, showing the instrument types and depths on the moorings. (Note the ex-

panded distance scale near the western boundary, west of 76°W.) Little data were recovered

from the moored profiler (MMP) on WB4, and no data from WB4 were used in the analysis.

MARCH 2008 J O H N S E T A L . 607



S4s, and Sontek Argonauts. Two R.D. Instruments

acoustic Doppler current profilers (ADCPs) were also

deployed on the moorings at sites WBA (broadband

150 kHz, near bottom) and WB0 (narrowband 150 kHz,

atop the mooring). Mooring WB4 had a McClane

Moored Profiler (MMP) with an acoustic current meter

that was intended to cycle between 75 and 4500 m, but

the MMP failed to cycle after a short time and therefore

its limited data (currents and temperature/salinity) are

not used in the following analysis. All current meters

measured vector-averaged currents with recording in-

tervals from 15 min to 1 h.

Time series of the vector currents at each mooring

site are shown in Figs. 3a–e, after low-pass filtering with

a 40-h Butterworth filter to remove tidal and inertial

oscillations (which are the processed currents used in

all subsequent analysis). The overall data recovery for

the current measurements was 88%, with the largest

problems occurring on WB2 where there were a num-

ber of short records owing to battery failures or other

causes and at WBA where the mooring released pre-

maturely from the bottom. Apart from these problems

the data were of very high quality. Nearly all of the

current meters were equipped with strain gauge pres-

sure sensors to keep track of mooring motion, and

therefore the depths of each instrument are known at

all times.

2) TEMPERATURE/SALINITY MEASUREMENTS

All current meters on mooring WB1 (RCM-11s and

S4s) were equipped with conductivity cells, and thus

provide temperature and salinity measurements in ad-

dition to currents at each level. Higher-precision Sea-

bird 37 (MicroCat) temperature/conductivity/pressure

recorders were included on moorings WB2–WB5 at

each current measurement level and at additional levels

throughout the water column to provide high-quality

measurements of the time-varying temperature and sa-

linity profiles at these sites. These moorings are in-

tended to function as “standing CTDs” that allow

monitoring of the varying dynamic height profile at

each site for inference of geostrophic currents.

To ensure maximum accuracy in the temperature and

salinity measurements, a special calibration procedure

FIG. 2. Bathymetry of the Bahamas escarpment off Elbow Cay, Abaco, Bahamas, derived from a multi-

beam (Seabeam) acoustic bottom survey on the R/V Ronald H. Brown in June 2002. The mooring sites in

the western boundary array cluster from WBA to WB3 are indicated.
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is followed in which each instrument, before deploy-

ment and after recovery, is attached to a shipboard

CTD package and lowered through its design pressure

range with numerous (5 min long) bottle stops on re-

trieval. This procedure provides a highly accurate in

situ calibration that is then applied to the data from

each deployment (Kanzow et al. 2006). Estimated final

accuracies for the SBE 37 measurements are 0.005°C

for temperature, 0.01 for salinity, and 4 dbar for pres-

sure. The methodology used to convert these discrete

temperature and salinity measurements into continuous

vertical profiles and associated uncertainties are dis-

cussed in the following section. An example is shown in

Fig. 4 where the potential temperature profile variabil-

ity at sites WB2 and WB3 is displayed.

Site WB2 is intended to serve as the western bound-

ary “endpoint” dynamic height mooring for the trans-

basin section and is therefore placed as close to the

escarpment as practicable while still being in relatively

deep water. Mooring WB3 serves as a backup dynamic

height mooring for WB2 and also provides direct ve-

locity measurements near the mean core of the DWBC.

Mooring WB4 was placed near the offshore edge of the

DWBC and was intended (with WB2) to provide inte-

grated geostrophic transport estimates across the typi-

cal domain of the DWBC. Finally, mooring WB5 was

placed well offshore of the western boundary to capture

transport variability associated with offshore meander-

ing of the DWBC and localized recirculation cells ad-

jacent to the western boundary.

3) BOTTOM PRESSURE MEASUREMENTS

Precision bottom pressure measurements were ob-

tained at the base of all dynamic height moorings

(WB1, WB2, WB3, and WB5) using SeaBird SBE 16

plus or SBE 53 bottom pressure recorders (BPRs)

equipped with Digiquartz pressure sensors. The pur-

pose of these measurements is to determine the time-

varying reference velocity for geostrophic currents

from the dynamic height moorings (see next section).

The resolution of the pressure measurements is 0.001

dbar (equivalent to 1 mm) for the sampling setup used.

(n.b. the absolute accuracy of the bottom pressures is

0.01% of full scale, or approximately 0.7 dbar for the

10 000 psi gauges used in this experiment, much too

large to determine absolute pressure gradients associ-

ated with oceanic flows.) Additionally, there can be

substantial long-term drift of the bottom pressure sen-

sors of up to several tenths of a decibar that requires

estimation and removal (Watts and Kontoyiannis

1990).

The bottom pressure records from sites WB2, WB3,

and WB5, after removal of their mean values and the

daily/semidaily tides, are shown in Fig. 5, before and

after drift removal. Drifts were removed from each sen-

sor using a least squares exponential–linear fit (Watts

and Kontoyiannis 1990; see also Johns et al. 2005, here-

after J05). The drift curves for the instruments were

fairly typical of our past experience with these instru-

ments, with overall record-length drifts on the order of

0.2 dbar.

b. Shipboard observations

Three cruises were conducted during the time period

of the array observations: (i) 4 April–10 May 2004

(RRS Discovery), (ii) 22 September–3 October 2004

(R/V Ronald H. Brown), and (iii) 2–26 May 2005 (R/V

Knorr, array servicing). On each cruise a set of serial

stations were occupied along 26.5°N east of Abaco

from the western boundary to at least 72°W (the loca-

tion of WB5). The station spacing ranged from approxi-

mately 8 km close to the western boundary to 50 km at

the offshore end of the line, gradually increasing in the

offshore direction. Conventional conductivity/

temperature/depth/dissolved oxygen (CTDO2) profiles

were acquired using a SeaBird SBE-911plus pumped

system and direct velocity profiles were measured using

a dual-ADCP system mounted on the CTDO2 package

[lowered ADCP (LADCP)]. Calibration of the CTDO2

data was performed using salinity and dissolved oxygen

bottle samples drawn from a 24-bottle Rosette, with

accuracies of 0.001 for temperature, 0.003 for salinity,

and 2.0 dbar for pressure. The calibrated temperature

and conductivity data were used for final calibrations of

the moored CTD sensors as previously described.

The LADCP system used on all cruises was a

dual-frequency “hybrid” system consisting of a down-

ward-looking 150-kHz broadband ADCP and an up-

ward-looking 300-kHz Workhorse ADCP. The data

were processed with Visbeck/Lamont-Doherty Earth

Observatory (LDEO) version 9 software (Visbeck

2002), which incorporates CTD pressure data to con-

strain the profile vertical mapping, as well as absolute

bottom-track velocity data and upper-ocean shipboard

ADCP velocity data to constrain the overall velocity

profile. The accuracy of LADCP velocity profiles is

estimated to be approximately 5 cm s�1, with lower er-

rors for the vertically integrated (barotropic) velocity

(Hacker et al. 1996). Here, we will use the LADCP data

for comparison with the velocity structure derived from

the moored array and to help “level” the bottom pres-

sure records to obtain absolute transports from the dy-

namic height moorings (see following section).

Shipboard ADCP systems were continuously oper-

ated on each cruise to measure the upper-ocean cur-
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rents. The ADCP systems and their nominal vertical

ranges of good data during the cruises were (i) March

2004 (RRS Discovery): dual system, 75/150 kHz, 780 m;

(ii) September–October 2004 (R/V Ronald H. Brown):

single system, 150 kHz, 270 m; and (iii) May 2005 (R/V

Knorr): dual system, 75/150 kHz, 760 m. In addition to

the use of on-station data to constrain the simultaneous

LADCP profiles, the continuous along-section data

from the shipboard ADCPs were merged with the

LADCP station data to provide improved velocity

structure and transport estimates in the upper ocean.

3. Methods: Transport estimates

a. Direct transports from current meters

A time series of transport for the region shoreward of

WB3 can be derived from the direct current meter mea-

surements. The procedure for computing these trans-

ports follows the same approach used for the previous

ACM-1 current meter arrays in this region (e.g., Lee et

al. 1996). First, the current measurements at each moor-

ing site are interpolated vertically using a shape-pre-

serving cubic spline (Akima 1970), with extension of

the velocity profile to the surface using constant shear

above the top instrument and to the bottom with con-

stant velocity from the deepest instrument. The vertical

current profiles at each site are then linearly interpo-

lated in the horizontal between the moorings and to the

boundaries of the sloping topography. The resulting in-

terpolated field is computed every 12 h from the low-

pass-filtered data and saved on a 20 m (vertical) by 2

km (horizontal) cross-sectional grid. Transports in vari-

ous layers or for various horizontal distances from the

western boundary can then be easily computed by sum-

FIG. 3. (a) Time series of current vectors from the upward-

looking ADCP at site WBA for representative depths. The ve-

locity scale is indicated at right; northward currents are up. As in

(a), but for (b) current meters at site WB0 and upward-looking

ADCP (50–300 m), (c) current meters at site WB1, (d) current

meters at site WB2, and (e) current meters at site WB3.
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ming over respective parts of the grid. The mean cur-

rents over the length of the deployment derived from

this procedure are shown in Fig. 6.

To extend the time series over the full length of the

deployment period, a method has to be devised to fill in

for the current meter records that stopped prematurely.

Linear regressions with nearby current meter records

either on the same mooring or adjacent moorings,

which explained high levels of variance of the available

parts of these records, were used to extend several of

the records, including WBA, WB0 (400 m), WB1 (1000

and 1200 m), and parts of WB2 (150 and 1250 m).

Mooring WB2 was most problematic in this regard due

to a number of separate failures, and it was not possible

to reasonably extend the full vertical profile of currents

on that mooring past mid-December 2004. Therefore,

after 15 December 2004, no current data are used from

WB2 in the interpolation and gridding procedure. For

the upper-ocean currents this simply means that linear

interpolation is carried straight across between moor-

ings WB1 and WB3, but for the deep currents a prob-

lem is created in how to extrapolate deep currents from

WB3 to the escarpment. As can be seen in Fig. 6 (and

also in Fig. 3d) the deep currents on WB2 are weak and

show a strong signature of “shielding” by the escarp-

ment. This is caused by upstream ridges protruding

from the escarpment with ridge crests at about 1600 m,

as can be seen in Fig. 2 near 26°38�N and 26°44�N. (This

FIG. 4. Time series of potential temperature vs depth at mooring

site WB3 (in colors and black contours), derived from the tem-

perature/salinity recorders on the mooring. White contours show

the respective potential temperatures at nearby mooring WB2.

Potential temperature surfaces contoured are (from bottom to

top) 2.0°, 2.5°, 3.0°, 3.5°, 4.0°, 5.0°, 8.0°, 12.0°, 15.0°, 19.0°, and

23.0°C.

FIG. 5. Detided bottom pressure time series (top) from sites

WB2, WB3, and WB5, and (bottom) after detrending with an

exponential–linear fit. The series are offset by an arbitrary

amount (0.2 dbar) for display purposes; each time series has had

its mean absolute value removed.

FIG. 3. (Continued)
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FIG. 6. Mean northward velocity from the gridded current meter data shoreward of WB3. The red dots and lines

(for ADCPs) show the measurement locations. The bold dashed line shows the topography mask used to simulate the

deep shielded zone inside of mooring WB2 during the latter part of the moored transport calculation (after mid-

December 2004). Velocity contours: cm s�1.

FIG. 7. Average northward velocity derived from the mean of the three LADCP sections acquired during

the period of the moored observations (during April 2005, September 2004, and May 2005, respectively).
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effect was known in advance from previous current

measurements off Abaco, but WB2 was deliberately

placed here to keep it inshore of the DWBC.) To mimic

the effect of this shielded zone after mid-December

2004, a fake wall is introduced, as shown in Fig. 6, along

which the velocity is set to zero before interpolation.

We will show later that this leads to consistent transport

estimates between the early and later parts of the

record.

b. Indirect transports from dynamic height

moorings

Geostrophic transports derived from dynamic height

moorings have been used successfully in a number of

field experiments (Whitworth 1983; Johns et al. 2001;

J05; Kanzow et al. 2006). For a detailed description of

methods and errors the reader is referred to J05 or

Kanzow et al. (2006). Briefly, the following steps are

required:

1) The discrete temperature and salinity measurements

at known pressures on the moorings are interpo-

lated vertically to produce continuous profiles;

2) Dynamic height profiles are calculated for each

mooring and differenced to produce profiles of the

spatially averaged geostrophic velocity between ad-

jacent moorings, relative to an (unknown) reference

value;

3) Bottom pressure data from the moorings are differ-

enced to produce an estimate of the time variability

of the near-bottom reference velocity;

4) A remaining constant (the time-mean value of the

reference velocity) is estimated from other observa-

tions (e.g., LADCP) in order to derive absolute

transports.

The methodology used for step 1 follows that of Fil-

lenbaum et al. (1997) and J05 for the same region of

study. An empirical function representing the climato-

logical vertical temperature gradient as a function of

temperature, dT/dz(T), derived from historical CTD

data, is used to interpolate the temperature profile ver-

tically between the measurement levels on a 20-m grid.

A similar approach is used for the salinity profile based

on the climatological dS/dz(T) field once the tempera-

ture profile is created. The resulting temperature and

salinity profiles connect through all discrete tempera-

ture and salinity measurement points on the mooring,

but are otherwise consistent with the climatological ver-

tical temperature structure and T/S relation for the re-

gion. In tests against real CTD profiles this approach

has been shown to be superior to other methods (J05).

The typical error in dynamic height (geopotential) at

the surface relative to a deep reference level using

this method is approximately 2 dyn cm (0.2 m2 s�2),

and the resulting cumulative baroclinic transport error,

relative to the bottom, is �2 Sv (Sv � 106 m3 s�1). The

error does not depend on mooring separation; it is

the same for widely or closely spaced moorings. We

refer to the resulting transport-per-unit-depth profile

between moorings (i.e., the spatially averaged velocity

times the mooring separation) as the baroclinic trans-

port profile, Vbc.

Bottom pressure records, processed as described pre-

viously, are used to estimate the time-varying reference

velocity between moorings relative to an unknown con-

stant. In terms of the transport per unit depth at the

reference level,

V�ref�t� � ��f �
�1

	p2�t� � p1�t�
,

where p2 and p1 are the bottom pressure variations at

the two sites. If the two moorings are in different

depths, then the reference level is chosen as the greatest

common depth of the two moorings. The deeper bot-

tom pressure record must also then be corrected to that

reference level by subtracting any contribution to the

bottom pressure from the time-varying dynamic height

between the bottom and the reference level (a process

we refer to as “hydroadjusting”). Random transport

errors related to the uncertainty in bottom pressure

measurements are approximately �1.5 Sv (J05).

Adding this time-varying reference value to the baro-

clinic transport profile yields the total transport profile

V�(t) � Vbc(t) � V�ref(t) relative to an unknown con-

stant, V0, the time mean transport per unit depth at the

reference level. In principle, this constant can be deter-

mined by one-time direct velocity measurements at the

reference level in the region between the moorings; in

practice, it is necessary to have several such estimates

for redundancy (J05). If only the transport variability is

of interest, this is unnecessary. Here we use the com-

bined shipboard and lowered-ADCP data from the

three cruises to determine the reference value. Follow-

ing J05, we use the full water column absolute velocity

data from shipboard and lowered ADCP to constrain

the estimates of V0 rather than just the velocity mea-

sured at the reference level, which reduces the overall

noise in the V0 estimates. Once the value of V0 is speci-

fied, the time-varying absolute transport profile V(t) �

Vbc(t) � [V�ref(t) � V0] is determined.

4. Results

a. Transports and velocity structure in the inner

western boundary region

The current meter measurements were designed to

provide a well-resolved picture of the flow distribution
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and its variability inshore of mooring WB2 and corre-

sponding direct transport estimates for this region.

Contributions to the meridional flow in this region have

to be combined with geostrophic interior transports de-

rived from dynamic height moorings (at WB2, and simi-

larly at the eastern boundary) to determine the net in-

terior flow (Kanzow et al. 2007). Alternatively, WB3

could serve as a western boundary dynamic height end-

point if necessary, provided that direct transports are

estimated for the region shoreward of WB3. We there-

fore consider both the transports from the coast

(Abaco) to WB2, which we refer to as the western

boundary wedge, and from the coast to WB3, which we

refer to as the inner western boundary region.

The mean meridional flow for the inner western

boundary region over the length of the deployment is

shown in Fig. 6, as derived from the above interpolation

procedure. A coastally intensified northward flow oc-

curs in the upper ocean with its core located vertically

near 400 m. Maximum mean speeds near the coast

reach approximately 0.4 m s�1. This flow is a persistent

feature of the regional mean circulation, and is consis-

tent with earlier observations of the mean flow in this

region over many years (Lee et al. 1990, 1996; Bryden

et al. 2005). In the modern literature it is usually re-

ferred to as the Antilles Current (e.g., Lee et al. 1990),

although it differs in important respects from the his-

torical concept of a semicontinuous Antilles Current

flowing from the tropics to the subtropics (e.g., Wüst

1924). Lee et al. (1996) attribute it to a recirculation of

water in the western part of the North Atlantic sub-

tropical gyre and partly to a more localized gyre or

eddy centered just northeast of Abaco. Moreover, it is

a subsurface-intensified current mainly involving sub-

tropical mode water (18° Water), rather than a surface

current as the historical notion of an Antilles Current

implies. The surface currents close to Abaco overlying

the strong northward core are almost zero in the mean.

One can see in Figs. 3b,c that reversals to southward

flow are common near the surface but are rare in the

thermocline layer where the flow is persistently north-

ward and at times can exceed 1 m s�1. One can also see

in Fig. 3 that the upper-ocean currents in the region

shoreward of WB2 are highly correlated between

moorings, implying that transports are well resolved in

this region and that there is a fair degree of redundancy

in the measurement array in case of failures.

Near a depth of 800 m the northward flow transitions

abruptly to southward flow associated with the DWBC.

Close to the western boundary an intense core of south-

ward flow is found near 1200 m just at the top of the

escarpment. This particular feature had not been well

resolved by earlier studies that had sparser horizontal

mooring separations (Lee et al. 1990); however, it had

been occasionally observed in high-resolution ship-

board surveys (Hacker et al. 1996; Johns et al. 1997).

Flows in this feature frequently exceeded 0.4 m s�1.

Below this jet lies a region of weak or reversed flow at

depths greater than �1600 m, which, as noted above, is

in a stagnant region behind upstream blocking ridges. It

appears that the strong flow near 1200 m represents the

uppermost part of the DWBC that is able to pass over

these ridges to continue southward close to the western

boundary, perhaps being intensified in the process. Far-

ther offshore at mooring WB3, the core of the DWBC

is found deeper, near 2000 m, consistent with previous

results. From earlier studies, mooring WB3 is known to

lie close to the mean core of the DWBC, or perhaps a

few kilometers shoreward of it. Speeds here often

reached 0.3–0.4 m s�1 through the depth range from

1200 to 4000 m and were persistently southward except

for one notable reversal in November 2004, along with

another brief reversal in late February 2005 (Fig. 3e).

The mean flow structure of Fig. 6 can be compared

with the average flow observed by the three shipboard/

lowered ADCP sections acquired during the period of

the mooring array (Fig. 7). Although each cruise shows

some differences, the average features compare well,

including the thermocline-intensified Antilles Current,

the upper DWBC core at 1200 m over the escarpment,

and the deeper offshore DWBC core (note the differ-

ent scales of the x axes in Figs. 6 and 7; Fig. 6 ends near

the location of the DWBC core in Fig. 7). Evidence of

the shielded region below 1600 m against the escarp-

ment is also clear in Fig. 7. The DWBC is confined to

within about 100 km from the western boundary in this

average picture, which is also typical of previous results;

however, the DWBC is known to occasionally meander

farther offshore (Lee et al. 1996).

Transports derived from the moored current meter

observations are shown in Fig. 8 for the regions shore-

ward of WB2 and shoreward of WB3, respectively. The

region shoreward of WB2 is mainly influenced by the

Antilles Current but also includes variability in the

shallow portion of the DWBC over the escarpment.

The region out to WB3, on the other hand, includes the

greater part of the entire Antilles Current as well as the

inshore part of the deeper DWBC. Two calculations

are shown in Fig. 8: 1) the transports with WB2 in-

cluded (until mid-December 2004) and 2) the trans-

ports with WB2 excluded and with currents interpo-

lated between WB1 and WB3 including the fake topog-

raphy of Fig. 6. The transport in the western boundary

wedge inshore of WB2 varies from �4 to �7 Sv during

the deployment and its mean value and variability are

nearly identical between the two calculations; this we
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take as evidence that the loss of data from WB2 during

the latter part of the experiment is not a serious prob-

lem for the direct transport calculations. The transport

inshore of WB3 has a significantly larger variability,

from �20 to �20 Sv, but again shows excellent agree-

ment between the two calculations. Comparisons with

the transports estimated over these same regions from

the three available LADCP sections also show very

good agreement with the moored transport values, giv-

ing further confidence in the transport estimates. Ac-

counting for the cross-correlations among the measured

currents and allowing for measurement uncertainties

we estimate that the moored transports for the region

shoreward of WB2 are accurate to within �0.5 Sv and

those for the region shoreward of WB3 to within �1.2

Sv (e.g., J05).

The vertical profile of the transport from the coast to

WB3 is shown in Fig. 9, where the variability in the

upper and lower layers can be more clearly discerned.

The positive transport fluctuations are associated pri-

marily with increasing northward flow in the upper

ocean that have a typical time scale of several months.

These fluctuations have been shown in previous records

to be associated with baroclinic upper-ocean eddies

propagating westward that modulate the mean north-

ward Antilles Current (Lee et al. 1990, 1996; Halliwell

et al. 1991). In the DWBC layer the most significant

event during the record was the stoppage (and weak

reversal) in the southward transport that occurred dur-

ing November 2004. This event also contributed to the

FIG. 8. Northward volume transports derived from the gridded

current meter data for the region (top) from the coast to WB2 and

(bottom) from the coast to WB3. The bold line includes deep

current meter data on WB2; the light line shows the correspond-

ing calculation when the deep data on WB2 is removed and re-

placed with the topographic mask displayed in Fig. 6. The dots

show LADCP-derived transports at times of the cruise occupa-

tions.

FIG. 9. Time series of the transport-per-unit-depth profile (105 m2 s�1) for the region extending from the

coast to mooring WB3; the contour interval is decreased in the lower panel to better illustrate the deep

variability. A notable reversal in the deep flow occurs during November 2004.
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large northward pulse seen in the total transport at this

time (Fig. 8b). The overall transport profile across this

region typically shows a southward maximum near

1000–1500 m, owing to the shallow part of the DWBC

flowing over the escarpment, even though the offshore

DWBC core is closer to 2000 m.

b. Transports across the extended western boundary

layer

To extend the transports across the full width of the

western boundary layer to mooring WB5, we must

compute indirect geostrophic transports for the WB3–

WB5 region and combine them with the transports

from the inner western boundary region. Unfortu-

nately, with the lack of data from mooring WB4, it is

not possible to break the transport down into a true

western boundary layer contribution (which would in-

clude the entire region shoreward of WB4, spanning

the typical limits of the Antilles Current and DWBC)

and an “offshore” region where recirculation cells or

other broad flows may exist. The western boundary

layer contribution is, in fact, contained partly in the

inner western boundary region discussed above and

partly in the western region of the WB3–WB5 segment.

Thus, it is not possible to isolate the western boundary

transport from offshore transports in the present analy-

sis.

The relative geostrophic transport profile for the re-

gion from WB3 to WB5 is computed as described above

(section 3b) by differencing the dynamic height profiles

at the mooring sites, and a time-varying reference value

is added, which is determined from the bottom pressure

gauges. The time series of the reference transport Vref

(t) � V�ref (t) � V0, where V0 is the constant determined

from the available shipboard LADCP measurements, is

shown in Fig. 10. (We also show the comparable result

for the WB2–WB3 mooring pair since we can compute

an indirect geostrophic transport for this region as

well.) Each of the LADCP sections produces an esti-

mate of V0 (Table 1), and the consistency of these es-

timates is a measure of how well the true reference

value is determined.

Of the three estimates of V0 for the WB3–WB5

mooring pair, two are in relatively good agreement (the

April 2004 and May 2005 values, respectively; Table 1)

while the third estimate is inconsistent with the others.

Individual estimates of V0 are expected to have rela-

tively large uncertainty, since they depend on the accu-

racy of the relative geostrophic transports derived from

the moorings and the LADCP velocity measurements,

and on how well the LADCP section resolves the trans-

port between the mooring pairs. Temporal variability in

the flow that occurs during the occupation of the sec-

tion can also cause errors. Particularly for the wide off-

shore region between WB3 and WB5, where the station

spacing grows to as large as 50 km, the latter two issues

can become important error sources. Still, the large dis-

crepancy of the September 2004 V0 estimate and the

other two estimates is troubling, and despite consider-

able effort we have been unable to find any obvious

data quality problems or processing errors in the cruise

data that could explain it.

In comparison, the V0 estimates for the WB2–WB3

mooring pair have a smaller spread, with an uncertainty

of about �20%. The moored geostrophic transport be-

tween WB2 and WB3 using the mean reference value

from the three cruises shows a high correlation (r �

0.89) and a very similar vertical structure with that de-

FIG. 10. Time series of the transport per unit depth derived from

bottom pressure records referenced by LADCP measurements

(dots) for the (top) WB2–WB3 mooring pair (reference level:

3800 dbar) and (bottom) WB3–WB5 mooring pair (reference

level: 4800 dbar).

TABLE 1. Estimates of the transport-per-unit-depth reference

value (V0) for the WB2–WB3 and WB3–WB5 mooring pairs from

the three project cruises, and the corresponding values used in the

moored geostrophic transport calculations.

Cruise

V0 (103 m2 s�1)

WB2–WB3 WB3–WB5

April 2004 �2.46 �5.19

September 2004 �1.83 �1.53

May 2005 �1.66 �4.65

Average �1.98 � 0.42 �3.79 � 1.97

Selected value �1.98 �4.92*

* Average of April 2004 and May 2005 estimates.

616 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 38



rived from the direct current measurements (not

shown), but the mean value of the geostrophic trans-

port is smaller (less southward) by nearly 1.5 Sv. This

suggests that the actual reference transport value may

have been more negative (southward) than the mean

estimate. For this reason we use the direct current

meter transports for the inner western boundary region

in the overall transport calculation, which (as shown in

Fig. 8) agree well with the LADCP transports.

For our estimates of absolute transport in the off-

shore region between WB3 and WB5, we have chosen

to use a value for V0 that represents the average of the

two (consistent) estimates and discard the third outly-

ing estimate. Using this value (�4.9 � 103 m2 s�1; Table

1), instead of the mean value of the three estimates

(�3.79 � 103 m2 s�1), results in the net southward

transport in the WB3–WB5 region being larger by al-

most 5.0 Sv, and therefore it must be stated that the

absolute transports in the offshore region are not yet

well determined for this observing period. (For the in-

terested reader we note that the RAPID–MOC strat-

egy for referencing these transports involves the use of

overlapped bottom pressure time series so that a con-

tinuous bottom pressure time series can be built up for

each site without arbitrary offsets between individual

deployment periods. Each LADCP section that is ac-

quired across the array therefore provides an additional

V0 estimate that is applicable to the entire lifetime of

the array. In this way a more statistically robust refer-

ence value can be obtained for the transports. This also

means that the absolute transport values reported here

may be revised in the future as more direct velocity

sections become available.)

The time-varying transport profile across the full

western boundary region, from Abaco to WB5 at a

distance of �500 km offshore, is shown in Fig. 11 after

summing the results from the inner western boundary

and offshore regions. The corresponding mean trans-

port profiles for each region, and the net transport pro-

file, are shown in Fig. 12.

The variability in the upper-ocean transport has the

same characteristics as for the inner western boundary

layer with dominant time scales of several months.

Some of the events roughly coincide with each other

(e.g., the events in April and August 2004; Figs. 9 and

11) but the phasing is different in other parts of the

record. This reflects the different spatial integration

volumes for the two regions and the fact that the ex-

tended western boundary layer is probably less influ-

enced by individual eddies than the near-boundary re-

gion. The width of the extended western boundary

layer (500 km) is about twice the typical wavelengths

(230–340 km) of the westward propagating features

found in the region (Lee et al. 1996). Thus, the trans-

ports over the extended western boundary layer should

act as a filter on the local mesoscale variability to a

degree, provided that the eddy energy decreases to the

east, which is the case (Zantopp et al. 1993, 1996).

In the deeper part of the water column the transport

profile no longer shows the persistent upper DWBC

core at �1200 m found in the inner western boundary

region but, instead, a transport maximum that can vary

FIG. 11. Time series of the transport-per-unit-depth profile (105 m2 s�1) for the region extending from

the coast to mooring WB5 at a distance of 500 km offshore.
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anywhere between 2000 and 4000 m. Several reversals

occur in the deep southward flow below about 3000 m

during the record, most notably in early November

2004, but also briefly in May and December 2004 and

again in February and April 2005.

In the mean transport profiles (Fig. 12) it is clear that

the majority of the net northward flow across the full

western boundary region is contained in the inner west-

ern boundary region. The offshore region still has a

weak net northward flow in the thermocline, but its

contribution is only about one-fifth of the net north-

ward flow. The total northward transport in the upper

1000 m is 6.0 Sv (Table 2), which is very similar to

earlier estimates of 5.0 � 1.8 Sv for the mean Antilles

Current off Abaco (Lee et al. 1996). In the deep water

the mean inner western boundary profile again shows

the maximum southward flow near 1200 m, but in the

offshore region it reaches its maximum below 3000 m.

The net transport profile for the entire western bound-

ary layer is almost uniform between 1200 and 4700 m,

indicating no particular core depth for the southward

DWBC flow when spatially integrated across this re-

gion. The total deep southward transport over the pe-

riod of the deployment is �26.5 Sv (Table 2), which, as

a consequence of the uniform vertical structure, is

nearly equally divided between layers associated with

upper North Atlantic Deep Water (UNADW: �1000–

3000 m, �13.9 Sv) and lower North Atlantic Deep Wa-

ter (LNADW: �3000–5000 m, �12.6 Sv). We reiterate

that we are not able to determine from the present

analysis the contribution of the DWBC itself to these

transports versus the compensation by offshore recir-

culation.

Time series of the net transports across the extended

western boundary layer, for the upper 1000 m and be-

low 1000 m, are shown in Fig. 13. Very large fluctua-

tions occur in both upper and lower layers with trans-

ports above 1000 m varying between �15 and �25 Sv

and deep transports varying between �60 and �3 Sv.

Transport comparisons derived from the shipboard/

lowered ADCP data show good agreement for all but

the deep transport during the September 2004 cruise,

which was the root of the problem in the referencing

issue, as noted above. Similarly large transport fluctua-

tions were observed by Meinen et al. (2006) from an

array of inverted echo sounders and bottom pressure

gauges deployed across the same region from Septem-

ber 2004 to September 2005. Their transport fluctua-

tions calculated over an equivalent deep layer (800–

4800 m, their Fig. 3) agree very closely (r � 0.88) with

those in Fig. 13 for the overlapping period of the time

series (September 2004–April 2005). However, they ob-

tained a considerably smaller mean southward deep

transport across this region (�11 Sv) based on initial

comparisons with (preliminary) LADCP data.

It is clear from examining Fig. 11, particularly in the

deep water, that a large part of the variability in the

deep transports on time scales of several days to weeks

is due to fluctuations that are nearly barotropic. These

fluctuations are sufficiently strong that they can lead to

reversals of the net southward flow across this region,

even with its relatively large mean value of �26 Sv.

Similarly large fluctuations have been observed previ-

ously in this area (Lee et al. 1990, 1996). We will not go

into details here on the nature of these barotropic fluc-

tuations except to say that they appear to have very

large zonal spatial scales, O(2000 km) or greater, based

on cross-spectral analysis of the bottom pressure

records (not shown); this is also obvious from their high

correlation, see Fig. 5), and fast zonal (westward)

propagation speeds of 1–2 m s�1. They most likely rep-

resent transient basin modes or other atmospherically

forced barotropic Rossby waves. They may also be

partly related to the nonequilibrium oceanic response

to the long-period tides, in particular the fortnightly

FIG. 12. Mean transport profile for the whole western boundary

layer (coast to WB5) and its contributions from the near-

boundary (coast to WB3) and offshore (WB3 to WB5) areas.

TABLE 2. Mean volume transports for the western boundary

region, cumulative from Bahamas escarpment to 72°W, for the

present study compared with Bryden et al. (2005).

Layer

Transport (Sv)

This study Bryden et al. (2005)

0–1000 m 6.0 �0.1

1000–3000 m �13.9 �12.9

3000–5000 m �12.6 �11.3

1000–5000 m �26.5 �24.2
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(Mf) tide, which involves large-scale geostrophic flows

(Egbert and Ray 2003). Although interesting in their

own right, for our purposes we consider these fluctua-

tions to represent high-frequency noise on the baro-

clinic, and ultimately lower-frequency, signals that are

of most interest in the context of MOC variability.

c. Internal variability of the DWBC

To reveal more clearly the internal variability of the

western boundary flow, the barotropic signal is re-

moved from the transports in Fig. 13 and the result is

shown in Fig. 14, where the total deep transport is now

broken up into the upper and lower NADW layers.

This is done by removing, at each time step, the devia-

tion of the vertically averaged transport per unit depth

from its time mean value [i.e., 
V (t)� � 
V*�], where

angle brackets represent vertical averaging and the as-

terisk represents a time average. Thus, the time-mean

barotropic flow is retained (and hence time mean trans-

ports of the upper and lower layers), while the fluctua-

tions in barotropic flow are filtered.

Much of the high frequency variability is now gone

from the time series, which is especially evident in the

deep transports. The remaining baroclinic variations

highlight changes in the transport of the DWBC rela-

tive to its time mean value that are not related to baro-

tropic fluctuations and, in particular, it illustrates

changes in the partitioning of the deep transport among

the UNADW and LNADW layers. (Prior to removing

the barotropic fluctuations the visual impression was

simply that these two layers covaried throughout the

time series.) The deep layer transports still covary to a

degree but there are significant differences during parts

of the record, particularly during October–December

2004 when the LNADW layer transport weakens rela-

tive to the UNADW layer; the LNADW layer actually

shuts off briefly in early November. This shutoff also

occurs for the total transport below 1000 m, in Fig. 13,

but it is now clear that that is partly an effect of the

barotropic variability and that the UNADW transport

is not much different from its long-term mean value

during this event. A number of other such “near shut-

offs” occur (Fig. 13) for the total deep transport, but all

of these are primarily due to the barotropic fluctua-

tions, and none have the character of the November

2004 event (except for weaker events in February and

April 2005, which have a hint of this behavior).

The November 2004 event clearly stands out as an

interesting and unique event in the record. The changes

in relative transports of the UNADW and LNADW

layers imply large changes in the deep shear structure

of the DWBC and, therefore, in the slope of the deep

density surfaces across the western boundary layer. In

the mean, the shear between the northward-flowing

Antilles Current and the DWBC requires an upward

slope of the isopycnals toward the western boundary at

the top of the DWBC and a deepening toward the west-

ern boundary at the base of the DWBC (if there is a

middepth DWBC core, such as occurs near the western

boundary). In Fig. 4 this can be seen in the difference in

isotherm depths between moorings WB2 and WB3,

which closely correspond to the density surfaces in deep

FIG. 13. Northward volume transport between Abaco Island

and mooring WB5, spanning a distance of 500 km from the west-

ern boundary. The light line shows the transport above 1000 m;

bold line shows the net transport below 1000 m. Transports de-

rived from LADCP sections are superimposed (open circles for

the upper 1000 m, solid circles for the deep transport).

FIG. 14. Northward volume transport over the whole western

boundary layer after removing barotropic transport fluctuations

(top) for the top 1000 m and (bottom) for the Upper NADW

(1000–3000 m) and Lower NADW (3000–5000 m) layers.
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water. Near the top of the DWBC the isotherms are

shallower at the inshore site (e.g., 5°C), whereas below

the DWBC core they are typically deeper (3°C near

2500 m). Thus, there is a stratification minimum (po-

tential vorticity minimum) associated with the core of

the DWBC near the western boundary that derives

from its formation source in the subpolar North Atlan-

tic, a classical feature of the DWBC.

During the event of November 2004, the isotherms at

the depth approximately separating UNADW from

LNADW (2500–3500 m) are seen to dip markedly, es-

pecially at site WB2 right near the escarpment. The 3°C

isotherm dipped by almost 500 m during this event and

was nearly 200 m deeper than at any other time in the

record. Other events of similar nature took place dur-

ing the record (e.g., February 2005), but the November

event was characterized by a particularly large ampli-

tude and coherence of the isotherm displacements

through this layer. This produced a large southward

shear in this layer (a decreasing southward flow with

depth), effectively shutting off the southward flow of

the lower DWBC. We speculate that this process must

reflect a boundary wave phenomenon, amounting es-

sentially to an internal Kelvin-like disturbance of the

deep interfaces between the UNADW and LNADW

propagating down the western boundary. Although this

event is unique within this record, it seems likely that

such events happen at other times and are likely part of

the normal variability of the DWBC at this location, or

other locations. Examining the records from the de-

cade-long historical current meter dataset off Abaco

(Lee et al. 1990, 1996; J05), we find evidence for two

other events with similar characteristics, although those

data are typically confined closer to the coast and may

not necessarily reflect integrated changes across the

whole DWBC. This suggests that the event observed in

November 2004 is not unique, but that such events are

not particularly frequent either.

5. Discussion

The measurements presented in this paper are part of

a larger effort to determine the strength of the merid-

ional overturning circulation in the midlatitude North

Atlantic and to monitor it continuously for a long

enough period to determine its variability characteris-

tics. Long-term monitoring of the MOC via some form

of semioperational system will be important for under-

standing the role of MOC variability in climate vari-

ability and future climate change. Key components of

the MOC occur in the western boundary layer off the

Bahamas, and we show here how these components can

be monitored with current meters and dynamic height

moorings.

The data from this 1-yr experiment are not sufficient

to determine the mean flows and transports across this

region with statistical certainty, but we can compare the

results with other long-term estimates to assess their

representativeness. Bryden et al. (2005), using all avail-

able current measurements from the historical Abaco

current meter arrays in this region between 1986 and

1997, constructed a mean section of meridional flow

extending from the boundary to near 71°W, or approxi-

mately 600 km offshore. The resulting picture shows a

mean southward DWBC confined within 150 km of the

western boundary and an overlying Antilles Current,

similar to that shown in Fig. 7, except that the mean

DWBC in Bryden et al. (2005, their Fig. 3) is broader,

a feature related to periodic offshore meandering of the

DWBC (e.g., Lee et al. 1996). The mean southward

transport of the DWBC over this region was calculated

by Bryden et al. to be �34.6 � 4 Sv, with an overlying

Antilles Current transport of 5.1 Sv (no error estimate

given). Offshore of the DWBC (Fig. 4 of Bryden et al.)

the flow is characterized by broad northward recircula-

tion at depths from 1000 to 3500 m, concentrated be-

tween 75° and 72°W, with some bands of deeper south-

ward flow near the bottom. This picture is consistent

with other descriptions of the offshore flow developed

from individual shipboard surveys (Johns et al. 1997),

float data (Leaman and Vertes 1996), and earlier cur-

rent meter data (Lee et al. 1996). Summing the western

boundary and offshore regions, Bryden et al. found a

net southward transport below 1000 m of �24.2 Sv,

suggesting a deep offshore recirculation O(10 Sv). Bry-

den et al. note that this value is comparable to estimates

of 21–23 Sv for the net southward deep transport across

25°N based on hydrographic sections (Lavin et al.

1998).

In Fig. 15 we compare the mean transport profile for

the extended western boundary layer (from our Fig. 12)

with the corresponding results from Bryden et al.

(2005) for the mean current meter section extending to

71°W (their Fig. 6). The two section lengths are not

identical, the latter extending 100 km farther offshore.

The estimate of �26.5 Sv that we obtain for the net

southward deep transport compares favorably with that

of Bryden et al. (Table 2). The only notable difference

in the deep transport profile is the local minimum near

3000 m in Bryden et al. separating two cores of stronger

southward flow near 2000 and 4000–4500 m, which is

not present in our results. The most significant differ-

ence is in the upper ocean where neither the magnitude

nor the structure of the transport above 1000 m agrees.

In the Bryden et al. compilation a relatively strong

southward flow occurs in the offshore region between

73° and 71°W at depths of 300–800 m, which compen-
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sates the northward Antilles Current closer to shore

and leads to a near-zero net transport across the full

region (Table 2). Whether this is a true inconsistency of

the results or is related to the much different averaging

periods of the two estimates is unclear. As Bryden et al.

note, there is still a potential for large error in their

offshore transport estimates because of the large sepa-

ration (100 km or more) between the moorings, even if

the long-term mean currents obtained at the measure-

ment sites are significant (and some are only marginally

so). The consistency of the deep transports between the

two studies suggests that the net DWBC flow (including

offshore recirculation) measured during the 2004–05

period is representative of the long-term average, how-

ever.

The analysis of these new measurements revealed

one new feature of the mean flow that had not been

well resolved before—the intense upper core of the

DWBC flowing over the top of the Bahamas escarp-

ment near 1200 m. While it is not a very important

feature in the overall transport picture, it is a compo-

nent that likely had been missed or underestimated in

earlier studies. In terms of the variability, the main fea-

ture of interest in the DWBC, apart from its large over-

all variability, was the occurrence of a temporary shut-

off in the lower part of the DWBC, which appears to be

a relatively rare event. We are able to show from the

extended western boundary array data that this cannot

be attributed to a meander of the DWBC and, also, that

it is not simply a consequence of the large background

barotropic variability in the region but, indeed, reflects

a real and significant internal change in the DWBC

structure. It is not clear what forced this variation, and

it is probably not very likely that it is directly linked to

a water-mass formation event in the source region of

the DWBC. However, what is interesting about this

event is that it may be dynamically representative of the

kind of signal that would be associated with a change in

the transport or structure of the DWBC on longer time

scales (e.g., Döscher et al. 1994). As such, it will be

interesting to see if this signal can be traced in other

contemporaneous data or observations in the North At-

lantic—a topic for further investigation.

The determination of absolute transports with the

methodology employed here is a rather involved pro-

cedure owing to the need to reference the geostrophic

transports with additional direct velocity measurements

and, as we show here, it can lead to significant errors in

absolute transports. These errors should decrease with

time as longer continuous records are obtained and

more direct velocity sections are acquired across the

measurement array. However, it is important to stress

that the determination of transport variability via dy-

namic height moorings is immune to this referencing

problem and has errors that are no worse than typically

can be obtained with an array of “resolving” current

meter moorings (J05). In this sense the estimation of

transport variability from widely spaced dynamic height

moorings is relatively easy, while the determination of

absolute transports is more difficult. It should also be

noted that the estimation of the transbasin MOC from

the RAPID program array does not depend on this

referencing procedure in any way and, in fact, does not

require the availability of bottom pressure measure-

ments (Hirschi et al. 2003). To estimate the basinwide

MOC, only the geostrophic shear needs to be estimated

from the deep water moorings, which is then combined

with direct measurements in boundary regions (Florida

Current, western/eastern boundary “wedges”), Ekman

transport estimates, and an overall zero mass flux con-

straint (Kanzow et al. 2007; Cunningham et al. 2007).

However, an understanding of the barotropic motions

is valuable, as it can provide insight to the mechanisms

by which the MOC varies and by which mass balance is

achieved across the basin (Kanzow et al. 2007).

Other dynamical processes that the extended

RAPID–MOC western boundary array should help to

resolve include the large-scale response of the Atlantic

Ocean to time-variable wind forcing. Especially at sea-

sonal time scales, a large transport variation is expected

in the western boundary layer as a result of the quasi-

FIG. 15. Mean transport profile from the coast to WB5 for the

period March 2004–May 2005 (from Fig. 12) compared with a

similar estimate derived from long-term historical current meter

data by Bryden et al. (2005).
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stationary barotropic response of the basin to interior

wind stress curl forcing (Anderson and Corry 1985; Lee

et al. 1996). This signal is expected to have an ampli-

tude of approximately 13 Sv (Anderson and Corry

1985) with maximum northward transport anomaly in

winter (January) and maximum southward transport

anomaly in fall (October). A hint of this cycle is per-

haps visible in Fig. 12 (in the deep transports) but, as

Lee et al. (1996) demonstrated, it takes several years of

data to be able to discern such a signal from the ener-

getic barotropic background. In any case, the use of

naturally integrating geostrophic measurements, in-

cluding continuous bottom pressure measurements,

over such a wide boundary layer section should be ad-

vantageous in attempting to resolve these motions.

6. Summary

Our objectives in this study have been twofold: (i) to

establish the methodology for obtaining direct trans-

ports in the “inner” western boundary region off the

Bahamas for use in a basinwide estimate of the MOC

strength and variability (Cunningham et al. 2007) and

(ii) to investigate the variability in the Antilles Cur-

rent–DWBC system over a larger western boundary

region extending from the Bahamas to 500 km offshore.

The main results are summarized as follows:

From the closely spaced current meter observations

near the western boundary we are able to deter-

mine the time-varying western boundary layer

transports to within �0.5 Sv over the Bahamas es-

carpment inshore of 3800 m, where instantaneous

transports vary from �4 to 7 Sv. These transports

provide one of four principal components needed

to monitor the time-varying strength and structure

of the MOC at this latitude, the other three being

the Florida Current transport, the midocean geo-

strophic transport, and the basinwide Ekman

transport (Cunningham et al. 2007).

The transport of the upper-ocean Antilles Current

off Abaco, Bahamas, is 6.0 Sv during the period of

these observations (March 2004–May 2005), con-

sistent with earlier estimates derived from long-

term current meter arrays deployed in this same

region within 100 km of the western boundary

(Lee et al. 1996; Bryden et al. 2005). However,

unlike Bryden et al., we find no evidence for sig-

nificant southward recirculation in the upper ocean

in the offshore region (�100–500 km offshore) that

compensates the northward transport along the

western boundary.

The mean southward transport of the DWBC over

the extended western boundary layer (Abaco to

500 km offshore), inclusive of northward recircu-

lation, is �26.5 Sv during the period of observation

and is divided nearly equally between the upper

North Atlantic Deep Water (1000–3000 m; �13.9

Sv) and lower North Atlantic Deep Water (3000–

5000 m; �12.6 Sv) layers. These transports agree

well with corresponding estimates (�24.2, �12.9,

and �11.3 Sv, respectively, for the total, upper,

and lower NADW layers) derived from historical

current meter observations (Bryden et al. 2005).

Both the current meter data and closely spaced low-

ered-ADCP sections collected during the period of

observations reveal a secondary “upper” core of

the DWBC flowing close to the western boundary

over the top of the Bahamas escarpment near

�1200 m depth, a feature that had not been well

resolved in earlier investigations.

Transport fluctuations within the Abaco western

boundary layer are extremely large (from �15 to

25 Sv in the upper 1000 m and �60 to 3 Sv in the

layers below 1000 m) and are dominated by nearly

barotropic fluctuations. The nature of these baro-

tropic fluctuations, though known from previous

studies (Lee et al. 1996; Meinen et al. 2006), re-

quires further study in terms of their spatial scales

and forcing mechanisms.

Superimposed on these large barotropic fluctuations,

significant internal changes in the structure of the

DWBC are revealed by the observations, including

one extreme event in which the lower NADW

layer of the DWBC stopped flowing southward en-

tirely for a brief (�10 day) period. It is shown in

Cunningham et al. (2007) that this corresponded to

a similar brief shutoff in the lower NADW flow

across the entire transatlantic section. Thus, the

vertical structure of the DWBC, as well as that

across the entire basin, is subject to significant

short-term variability by processes acting at the

western boundary.

As of this writing the RAPID–MOC array has been

deployed for 2.5 years, with the second year of data

now in analysis. With presently secured funding the

measurements will continue for four years, until spring

2008, and plans are being developed to extend the pro-

gram though 2014 so that a full decade of DWBC and

MOC variability observations can be obtained.
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