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Abstract 
How variable is the functionally-defined structure of early visual areas in human cortex and how 
much variability is shared between twins? Here we quantify individual differences in the best 
understood functionally-defined regions of cortex: V1, V2, V3. The Human Connectome Project 
7T Retinotopy Dataset includes retinotopic measurements from 181 subjects, including many 
twins. We trained four “anatomists” to manually define V1-V3 using retinotopic features. These 
definitions were more accurate than automated anatomical templates and showed that surface 
areas for these maps varied more than three-fold across individuals. This three-fold variation 
was little changed when normalizing visual area size by the surface area of the entire cerebral 
cortex. In addition to varying in size, we find that visual areas vary in how they sample the 
visual field. Specifically, the cortical magnification function differed substantially among 
individuals, with  the relative amount of cortex devoted to central vision varying by more than a 
factor of 2.  To complement the variability analysis, we examined the similarity of visual area 
size and structure across twins. Whereas the twin sample sizes are too small to make precise 
heritability estimates (50 monozygotic pairs, 34 dizygotic pairs), they nonetheless reveal high 
correlations, consistent with strong effects of the combination of shared genes and 
environment on visual area size. Collectively, these results provide the most comprehensive 
account of individual variability in visual area structure to date, and provide a robust population 
benchmark against which new individuals and developmental and clinical populations can be 
compared.


Significance Statement 

Areas V1, V2, and V3 are among the best studied functionally-defined regions in human cortex. 
Using the largest retinotopy dataset to date, we characterized the variability of these regions 
across individuals and the similarity between twin pairs. We find that the size of visual areas 
varies dramatically (up to 3.5x) across healthy young adults, far more than the variability of the 
cerebral cortex size as a whole. Much of this variability appears to arise from inherited factors, 
as we find very high correlations in visual area size between monozygotic twin-pairs, and lower 
but still substantial correlations between dizygotic twin pairs. These results provide the most 
comprehensive assessment of how functionally defined visual cortex varies across the 
population to date. 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Introduction 

Maps are a canonical organizing principle of the cerebral cortex. Perceptual regions of the 
brain in particular are tiled with numerous areas each organized along specific dimensions. 
These maps include tonotopic maps (auditory cortex), somatosensory homunculi 
(somatosensory cortex), and retinotopic maps (visual cortex). The retinotopic maps of the 
visual system are particularly well-studied and serve as a model system for the study of cortical 
organization generally. In each hemisphere, the first three visual maps (V1, V2, and V3) are 
among the largest distinct regions of the human cortex, and each forms a complete 
representation of the contralateral visual hemifield (reviewed by Wandell and Winawer, 2011). 
These cortical representations distort the spatial layout of the visual field but largely maintain 
its topology, resulting in the phenomenon of cortical magnification (Talbot and Marshall, 1941; 
Daniel and Whitteridge, 1961), by which some parts of the visual field (e.g., the fovea) are 
represented by substantially more of the cortical surface area per square degree than other 
parts (e.g., the periphery).

	 Due to high interest both in the visual system and in properties of cortical maps, the 
retinotopic organization of the early visual cortex has been measured many times. These 
studies began with lesion patients and rough estimates of anatomy (Inouye, 1909; Holmes, 
1918) and grew over time to include post-mortem studies of the stria of Gennari (Stensaas et 
al., 1974), lesion studies linked to anatomical MRI (Horton and Hoyt, 1991), PET studies (Fox et 
al., 1986), detailed but small-n studies of functional and anatomical MRI (Engel et al., 1994; 
Sereno et al., 1995; Engel et al., 1997), computational models of cortex from many observers 
(Schira et al., 2010; Benson et al., 2014; Wang et al., 2015; Benson and Winawer, 2018), and 
retinotopy studies with very large subject pools (Wang et al., 2015; Benson et al., 2018). 
Consistent among these studies is the observation that the topology of human retinotopic 
organization is highly conserved across subjects: the locations and boundaries of early visual 
areas correspond to consistent visual-field and cortical-anatomical features across subjects. 
However, substantial variation in the size and internal structure of the maps persists. Figure 1 
plots the outline of area V1 in the left hemispheres of two subjects who exemplify this variation. 
The V1 of the subject on the right is approximately 3.5 times as large as that of the left subject 
(Fig. 1A), but both the organization of the maps and the overall (whole-hemisphere) cortical 
surface areas are similar in both subjects (Figs. 1B, 1C). Both the causes and the 
consequences of V1’s large variability in size across the population are unknown. Although 
some previous evidence exists that variation in the sizes of early visual areas is related to 
behavior (Duncan and Boynton, 2003; Schwarzkopf et al., 2011), and to other structures in the 
visual pathways (Andrews et al., 1997), precise characterizations of these relationships are 
absent due to the large sample sizes they would require. Similarly, evidence that the size of 
visual areas are environmentally or genetically determined is scant due to the rarity of twin 
populations in visual neuroimaging research.

	 Recently, the Human Connectome Project (HCP) (Van Essen et al., 2012) has published 
a huge trove of neuroimaging data, including retinotopic mapping data from 181 subjects 
(Benson et al., 2018). Details of these measurements and analyses have been described 
elsewhere (Van Essen et al., 2012; Benson et al., 2018), but, briefly: each subject participated 
in 6 distinct 5-minute population receptive field (PRF) scans at 7T, as well as detailed 
anatomical MRI. The reitinotopic scans included expanding and contracting rings, clockwise 
and counterclockwise wedges, and sweeping bars with a maximum eccentricity of 8°. PRF 
models were fit for the whole brain. The 181 subjects included numerous monozygotic (MZ) as 
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well as dizygotic (DZ) twin pairs, making it an unparalleled source of information about the 
variability of retinotopic organization. Here, we present our analysis of the variation in these 
maps across the subject population as well as comparison between MZ and DZ twin pairs.


To facilitate these comparisons, we manually labeled the V1, V2, and V3 boundaries, as 
well as the V1 horizontal meridian (HM) and five iso-eccentricity contours, in all 362 
hemispheres. We then quantified the surface areas and cortical magnifications of the visual 
sectors and areas delineated by these contours. We also examined a variety of anatomical and 
functional properties such as the cortical gray-matter thickness and the population receptive 
field (PRF) parameters after aligning all subjects to a template surface in order to minimize 
anatomical variability across subjects. We have made this entire dataset of contours and 
surface areas publicly available with our analyses (https://osf.io/gqnp8/). Across our analyses, 
correlations of anatomical and functional measures between twin-pairs are high, and the 
similarity of MZ twins is significantly greater than that of DZ twins or unrelated pairs. 
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subject 958976 
V1 surface area: 6.2 cm2 

LH surface area: 976.5 cm2

subject 100610 
V1 surface area: 21.8 cm2 

LH surface area: 1072.3 cm2
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Figure 1. Variability in V1 size. The surface area of V1 (0-7°) differs by 3.5⨉ between two individuals. Each panel 
depicts the smallest and the largest LH V1 by surface area from the HCP 7T Retinotopy Dataset. In each panel, both 
hemispheres are rendered at the same scale. A. White matter surfaces, with the red line marking the V1 boundary 
(0-7° eccentricity). Identical 1 cm scale-bars are plotted at similar positions relative to each hemisphere. B. Inflated 
surfaces colored by polar angle; black lines mark the V1 boundary. C. Inflated surfaces colored by visual eccentricity; 
white lines mark the V1 boundary. Red, black, and white V1 boundaries are equivalent: Colors were chosen to improve 
contrast.
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Methods 
All analyses in this paper were performed using the PRF analysis results of the HCP 7 Tesla 
Retinotopy Dataset (Benson et al., 2018). These PRF data include polar angle and eccentricity 
values for each vertex of each hemisphere of the 181 HCP subjects who participated in 
retinotopic mapping experiments. The analyses performed here consist of three steps: (1) 
drawing iso-angle and iso-eccentricity contours on each hemisphere, (2) pre-processing the 
contours and converting them from 2D image coordinates to 3D cortical surface coordinates, 
and (3) analyzing and comparing the visual regions defined by the contours. Of the 181 
subjects in the dataset, 19 hemispheres (~5%) were excluded due either to poor retinotopic 
map quality or to the inability of two or more “anatomists” to produce topologically valid sets of 
contours (see “Pre-processing the contours”, below).


Experimental Design and Statistical Analyses 
Experimental procedures for the HCP datasets have been described elsewhere (Glasser et al., 
2016; Vu et al., 2017; Benson et al., 2018). Of the 181 HCP subjects, 109 were female and 72 
were male. These include 53 pairs of genetically confirmed identical twins (106 individuals), 34 
pairs of fraternal twins (68 individuals), two pairs of nontwin siblings (four individuals), and three 
individuals whose twins/siblings were not included. DZ pairs are all same sex.


Drawing the Contours 
The delineation of cortex was performed by four anatomists using custom MATLAB software. 
This software displayed an orthographic projection of a single spherical hemisphere at a time 
on which the anatomist could see various data displayed and could manually click points that 
define iso-eccentricity and iso-angle contours. We will refer to this projection of the cortical 
surface as the anatomist projection. The user was able to toggle between three data displays: 
the hemisphere’s polar angle map, eccentricity map, and binarized curvature map. The first two 
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Table 1. Contours drawn by anatomists on each hemisphere.

Contour Name Contour Description

V1 mid The horizontal meridian in V1

V1 dorsal The lower vertical meridian, V1–V2 dorsal boundary

V1 ventral The upper vertical meridian, V1–V2 ventral boundary

V2 dorsal The lower vertical meridian, V2–V3 dorsal boundary

V2 ventral The upper vertical meridian, V2–V3 ventral boundary

V3 dorsal The lower vertical meridian, V3 dorsal–V3A/B boundary

V3 ventral The upper vertical meridian, V3 ventral-hV4 boundary

0.5° The 0.5° iso-eccentricity contour through V1, V2, and V3

1° The 1° iso-eccentricity contour through V1, V2, and V3

2° The 2° iso-eccentricity contour through V1, V2, and V3

4° The 4° iso-eccentricity contour through V1, V2, and V3

7° The 7° iso-eccentricity contour through V1, V2, and V3
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of these maps were obtained from the HCP 7T Retinotopy Dataset, while the curvature map 
comes from the HCP directly. Users could also toggle the display of contours delineating the 
anatomically-defined maximum probability map regions of the Wang et al. (2015) atlas. Using 
the software, anatomists could add and remove points that define a specific set of contours; 
these contours are described in Table 1 and are shown in Figure 2A. Each anatomist indicated 
whether segments within any of their contours were low confidence (otherwise assumed high 
confidence), and additional notes could be added to the contours drawn for each hemisphere. 
We refer to one set of drawings of each of these contours on a single hemisphere as a 
“contour-set”.

	 Anatomists were trained to draw the set of iso-angle and iso-eccentricity contours, 
shown as a schematic in Figure 2A, onto a subject’s polar angle and eccentricity maps. After 
each anatomist had drawn contours for a few subjects, their contours were reviewed by a 
senior author. Based on these reviews, we confirmed that all anatomists understood the task. 
The anatomists were then instructed to reproduce the set of contours on each subject’s 
hemisphere while preserving the topology of the contours found in Figure 2A. Anatomists were 
allowed to review and to make edits to previously drawn contours. Note that a core assumption 
of this method is that neurotypical adults will have retinotopic organizations in V1-V3 whose 
topology is compatible with that of the schematic. The job of the anatomists was to describe 
how the schematic mapped onto each hemisphere’s retinotopic maps, not to infer a novel 
topology. The extent to which this single topology is accurate for all subjects remains an open 
question.


Pre-processing the Contours 
The contours drawn by the anatomists were separated into distinct “contour-sets”: one set of 
12 contours per anatomist per hemisphere (Tab. 1). Contour-sets were lightly edited by an 
automated algorithm designed to repair minor topological defects. These minor defects were 
limited to near-misses of iso-contours that should intersect—for example, if an anatomist were 
to have put the last point in the 4° iso-eccentricity contour just a few pixels away from the V3 
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Fovea

7. Left V3 dorsal

5. Left V2 dorsal

3. Left V1 dorsal

2. Left V1 mid

4. Left V1 ventral

6. Left V2 ventral

8. Left V3 ventral

1. Left ecc 7 deg

9. Left ecc 4 deg

10. Left ecc 2 deg

11. Left ecc 1 deg

12. Left ecc 0pt5 deg

V1v0
V1d0

V1v1
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V1d4
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Figure 2. V1-V3 manually defined grids. A. Schematic of the manually defined V1-V3 grids marked by four human 
anatomists: 7 iso-polar angle contours (V1m, V1d, V1v, V2d, V2v, V3d, V3v) and 5 iso-eccentricity contours (0.5°, 1°, 
2°, 4°, 7°) on each hemisphere (LH depicted). B. A subject’s inflated hemispheres with polar angle retinotopy (see color 
wheel), the manual definition of V1-V3 averaged across 4 anatomists (black grid).
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dorsal contour at which it topologically terminates, then the algorithm would extend the 
contour to the appropriate terminus. Contour-sets that could not be repaired or that were 
discovered to be topologically incorrect—for example if the 2° and 4° iso-eccentricity contours 
intersected—were excluded from further analysis. These subjects and the reasons for their 
exclusion are included in the dataset on the OSF page (https://osf.io/gqnp8/).

	 After the contours were repaired, each contour was converted from a set of image 
coordinates to a “cortical path”. This conversion was performed by transforming the cortical 
surface mesh into the anatomist projection (see above, “Drawing the contours”), then 
converting each contour into a set of steps along the cortical surface by dividing each segment 
of the contour into smaller segments that each cross a single triangle of the mesh. The 
barycentric coordinates (i.e., coordinates relative to the vertices of the triangle) of these smaller 
segments in the cortical surface mesh were then calculated and stored. The barycentric 
coordinates were used to project the complete contours onto other surface geometries such as 
the subjects’ white and pial surfaces as well as other registrations such as FreeSurfer’s 
fsaverage for comparison across subjects. Finally, each contour was divided into 499 segments 
of equal length with respect to the spherical fsaverage surface such that the 500 equally 
spaced points along its length could be averaged both across anatomists (for a single subject) 
or across subjects using the shared fsaverage registration. Average contours across subjects, 
across anatomists, and across both were calculated.


Contour and Surface Area Analysis 
The set of contours for each hemisphere parcellates the occipital region into three visual areas 
(V1, V2, V3) as well as several “sectors” within each of these areas. These sectors are labeled 
with gray text in Figure 2A, e.g., “V3d1” for the dorsal portion of V3 within 0.5 and 1 deg 
eccentricity. Sectors were extracted from the contour sets for each anatomist by precisely 
dividing each triangle through which any contour passed into a set of sub-triangles inside the 
sector and a set of sub-triangles outside the sector. By doing this, exact surface areas of the 
sectors and visual areas drawn by the anatomists can be calculated rather than 
approximations based on vertex counts. This is important because triangles in the cortical 
meshes do not all have the same area.

	 Sectors for each hemisphere were projected onto the mid-gray cortical surface mesh 
for analysis of surface area and cortical magnification. Surface areas for each sector and visual 
area were calculated by summing the areas of the mesh triangles and partial sub-triangles they 
contained. No attempt was made to account for the curvature of individual triangles (e.g., by 
using the vertex normals): surface areas were computed simply as the sum of areas of the 
triangles as they exist in the reconstructed surface. The cortical magnification of a sector was 
defined as its surface area divided by the area (in square degrees) of the visual field that it 
represents. This visual field area, for all sectors except the V1 and V3 foveal sectors (V20, and 
V30), is given by the formula a = π (r12 - r02) / 4 where r1 is the eccentricity of the outer contour 
and r0 is the eccentricity of the inner contour. For V20 and V30, a = (π / 8) deg2.

	 In addition to the cortical magnification of discrete sectors, a continuous version of 
cortical magnification m(r) [mm2/deg2] was calculated in terms of the eccentricity r. For a given 
visual area (V1, V2, or V3) and eccentricity r, m(r) is calculated by first finding the value Δr such 
that 20% of the cortical surface vertices in V1, V2, or V3 have an eccentricity between r - Δr 
and r + Δr. The total cortical surface area represented by these vertices is then summed and 
divided by the visual area contained in the eccentricity ring defined by r ± Δr.
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	 We quantified the disagreement between anatomists at each point x along each of the 
12 contours in the following way: First, for each subject, we computed the standard deviation 𝜎 
of the positions of the equivalent points to x drawn by the four anatomists. Equivalent points 
are found by expressing points in terms of the fractional distance along their associated 
contours. Second, we averaged this quantity (𝜎) across the 181 subjects. This computation 
yields a single value at each point along each contour that is small anywhere anatomists agree 
and large anywhere anatomist contours diverge.


Assessment of Heritability 
Heritability was quantified first by comparing the correlations of the surface areas of V1-V3 of 
MZ twin-pairs to those of DZ twin-pairs. The intraclass correlation coefficient (ICC) was used 
(Shrout and Fleiss, 1979). The ICC of a set of paired values is similar to the Pearson correlation, 
but whereas the Pearson correlation measures the correlation of a set of ordered pairs, the ICC 
measures the correlation of a set of unordered pairs. Because it does not matter which 
member of a twin pair is “twin 1” and which member is “twin 2,” twins should be considered 
unordered pairs for the purposes of correlation.


In principle, the computation of correlations in the size of a visual area between both 
MZ and DZ twins enables one to estimate the degree of heritability of that visual area’s size 
within the population, where heritability is the fraction of variance in the population for a given 
trait (e.g., visual area size) that is partially attributable to genetics. In this study, we employed 
Falconer’s heritability index (H2), one of several formulas used in twin studies to estimate 
heritability (Falconer, 1960; Jacquard, 1983). Falconer’s formula is H2 = 2(rMZ - rDZ).


We additionally performed a comparison of the similarity in surface areas for MZ twin-
pairs versus the similarity for DZ twin-pairs. We employed a non-parametric statistic for this 
evaluation because the distribution of absolute surface area differences between twin-pairs is 
not known and is not normally distributed. For each MZ and each DZ twin-pair we calculated 
the surface area difference (in square cm) between the twins for the ROI combining V1-V3. We 
then asked whether, for a randomly selected MZ twin-pair and a randomly selected DZ twin-
pair, what is the probability that the MZ twin-pair has a smaller surface area difference than the 
DZ twin-pair? A probability value greater than 0.5 indicates an effect of twin type. The 
probability can be calculated by comparing every MZ twin-pair against every DZ twin-pair. We 
computed the 2.5th, 50th, and 97.5th percentiles of this probability using 10,000 bootstraps.


Scientific Transparency and Software Availability 
All data collected in this paper as well as all software tools used to analyze these data have 
been made freely available on an Open Science Framework website (https://osf.io/gqnp8/). 
Detailed instructions on how to access and analyze these data can be found there.


Results 
Within the 181 healthy, young adult subjects of the HCP 7T Retinotopy Dataset, the size of V1 
varied dramatically. Defined from 0° to 7° of eccentricity, the smallest V1 was only 6.2 cm2, 
slightly more than a quarter the size of the largest V1 at 21.8 cm2 (Fig. 1). This 3.5-fold variation 
in the size of functionally-defined V1 is much greater than the variation in total hemisphere 
surface area across the same subjects, about 1.7-fold from smallest to largest. In the 
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subsequent sections, we first evaluate the quality of the hand-drawn contours and use them to 
examine this variation. We then use the large number of twin pairs in the HCP 7T Retinotopy 
Dataset to quantify the similarity in the size of V1, V2, and V3 across monozygotic and 
dizygotic twin pairs.


Hand-drawn Contours Are More Accurate than Anatomy-based Predictions and Show 
Agreement Across Anatomists 
Delineation of visual area boundaries and iso-eccentricity contours is a difficult task. Across 
subjects, there is substantial variation in the anatomical arrangement of visual cortex and an 
approximately equivalent amount of variation in the functional maps themselves (Benson and 
Winawer, 2018). Beyond these variations, measurement noise and artifacts can cause large 
distortions in the maps. Although some work has been done to develop an automatic and 
objective method for drawing such contours (Dougherty et al., 2003; Benson and Winawer, 
2018), these methods have been neither trained nor evaluated against a large gold-standard 
dataset such as the one described here. In light of these uncertainties, hand-labelling the V1-
V3 contours is not only the most accurate available method of describing these ROIs, but it 
also provides a missing piece of any project to automate such description. Additionally, to 
mitigate sources of human error, we formalized a process by which four independent 
anatomists, using a common set of software, were trained and tested (see Methods).


Of the 1448 contour-sets, each of which comprises 7 iso-angle and 5 iso-eccentricity 
contours, 91 of them (~6%) had some form of error and were discarded. Beyond these checks 
of basic correctness, we compared our hand-drawn contour-sets to the visual area boundaries 
obtained by anatomically-defined atlases that are based on FreeSurfer’s fsaverage alignment 
(Fischl et al., 1999), such as that of Wang et al. (2015). In some cases, the contours drawn by 
hand are very similar to those deduced by the atlas; however, when they differ, the hand-drawn 
contours match the functional landmarks of the visual area boundaries much more closely (Fig. 
3). For example, in the top row of Figure 3 (subject 221319), the dorsal V2 and V3 atlas 
boundaries deviate substantially from the functional polar angle reversals, while the hand-
drawn contours match the reversals closely. In fact, for V3D, there is essentially no overlap 
between the hand-drawn and atlas-based maps. 


It is not surprising that the atlas-based contours will sometimes differ from landmarks in 
the functional data, as the atlas relies only on anatomy and the anatomical alignment method. 
These deviations have been quantified in prior work (Benson and Winawer, 2018). In 
comparison, the subject in the bottom row (subject 111312) has polar angle reversals that 
closely match the position of the visual area boundaries as predicted anatomically. (We do not 
compare the eccentricity contours since the atlas-based lines were fit to data spanning a 
different range of eccentricities than the hand-drawn contours.) Overall, we find that the hand-
drawn contours procured by this project add substantial accuracy compared to anatomically-
drawn contours when it comes to V1-V3 functional boundaries. These results underscore the 
importance of performing single-subject analyses that respect the features of individual 
subjects that may deviate from group atlases (such as surface-based fsaverage or volume-
based MNI). The hand-drawn contours created here, although time-consuming and laborious, 
are critical for accurately measuring the structure of early visual areas, and this observation is 
likely to be the case for other areas in the brain. Similar renderings of atlas-drawn boundaries 
with hand-drawn contours for the 179 remaining subjects (both hemispheres, all anatomists) 
are available on the OSF site accompanying this publication.
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	 An important test of the quality of the hand-drawn contours is the agreement across 
anatomists. First, we see that there is little systematic bias across anatomists. A comparison of 
each anatomist’s average contour across subjects reveals a high level of consistency (Fig. 4A). 
This consistency across anatomists is found even though there is substantial variation between 
subjects, evident in the plots of  the average contour across anatomists per subject (Fig. 4B). 
Since these contours are all visualized after projection to the fsaverage, the spread among 
subjects indicates variability even after warping into this common space. Had we plotted the 
atlas-based contours in this space, they would be identical for each subject. 


To quantify the consistency of the anatomists on a per-subject basis, we calculated the 
disagreement between anatomists at each point along each contour (see Methods). This 
disagreement is plotted in Figure 4C. Because disagreements were calculated in terms of 
distances along the surface of the spherical fsaverage mesh, these disagreements are in units 
of angular degrees of the sphere. These data demonstrate that the differences between 
anatomist contours are relatively low throughout most of early visual cortex with exceptions 
near the fovea and in dorsal V3. Even in these areas, the disagreement among anatomists 
averages only ~2° of the spherical fsaverage cortical mesh.


The variability across subjects in the size of visual areas is much larger than the 
variability across anatomists.  We show this by an intraclass correlation plot (Fig. 3D). In this 
plot, subjects were sorted (along the x-axis) in ascending order by the bilateral surface area of 
the V1 ROI drawn by anatomist A1. The surface area measurements for all anatomists were 
then plotted vertically above the corresponding sorted x-position. In this plot the points are 
both tightly clustered in the y-dimensions and ascend smoothly across the x-dimension, 
indicating a high level of agreement between anatomists. The largest V1 (0 to 7º) is about 40 
cm2 and the smallest about 12 cm2, whereas anatomist variability is only a few cm2 per subject. 
When the surface areas of V1 across all subjects and anatomists are fit with a general linear 
model in which each anatomist and each subject is represented by one factor, the factors 
associated with the subjects explain 93.9% of the variance. The remaining variance arises from 
factors associated with anatomists and the interaction between anatomists and subjects. In V2 
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Subject: 
221319 

Subject: 
111312 

Wang et al. (2015) 
Mean Anatomist

Figure 3. Examples of manually defined boundaries 
(black lines) compared to atlas-based boundaries (white 
lines). The figure shows flattened sphere representations 
of two example subjects. The top two hemispheres show 
an example of marked discrepancy between the manual 
definition and Wang atlas, especially in the dorsal regions 
of V1-V3. The bottom two hemispheres show a subject 
with substantial agreement between the manual definition 
and Wang atlas definition of V1v/d, V2v/d, V3v/d. The 
manually defined boundaries have the advantage of more 
closely capturing individual differences in retinotopy, as 
well as parcellating each area into multiple eccentricity 
sectors. Note that our manual definitions extend from 0-7° 
while the Wang atlas’s most foveal and eccentric 
boundaries differ (see text).
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Figure 4. Consistency among anatomists and variability across subjects. A. The mean manually defined 
retinotopic grid (averaged across subjects) for each anatomist.  Line thickness indicates ±𝜎 across subjects for each 
anatomist. Plots use an orthographic projection of the fsaverage sphere centered at the occipital pole (CaS: Calcarine 
sulcus). B. Panel B is the converse of A: contours are averaged across the four anatomists, and plotted separately for 
each individual subject. For better visibility, we plot only a subset of the iso-eccentricity contours (0.5, 2, 7 degrees, 
colored cyan) and all 7 iso-polar angle contours (red). The variability across these retinotopic grid demonstrates inter-
subject variability, even after warping to the fsaverage template. C. The magnitude of disagreement between 
anatomists is plotted at each point along an iso-eccentricity or iso-polar angle contour. Both the width of the contours 
and the color plot the mean over subjects of the disagreement between anatomists in degrees of the fsaverage 
spherical mesh. D. Surface area is plotted on the y-axis and individual subjects (light gray vertical lines) are ordered 
across the x-axis by sorting on A1 surface area. For each subject, the clustering is fairly tight for the four anatomists’ 
surface areas (red dots), and the spread between anatomists is much smaller than the magnitude of differences 
between subjects.
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and V3 these numbers are similar with 93.3% (V2) and 89.3% (V3) of the variance attributed to 
subjects. In short, the vast majority of the variance in our estimates of the size of all visual 
areas is due to subject variance, with variance associated with anatomists and subject-
anatomist interactions both playing small roles.


Cortical Surface Areas of V1-V3 Span a 3-Fold Range Across Subjects 
The surface areas of V1-V3 vary far more between individuals than does total cortical area. 
Vertical histograms of the cortical surface area of V1, V2, and V3 across subjects are shown 
independently for each area, hemisphere, and sex in Figure 5A. The largest to smallest V1 for 
males is about a 3.5 fold ratio, with a coefficient of variation (σ / µ) of 0.198. There are modest 
group differences in the distributions between males and females, and little to no differences 
between left and right hemispheres.


Consistent with previous results (Dougherty et al., 2003), V2 is nearly as large as V1 (the 
median V2 surface area is 97% that of V1), and V3 is slightly smaller (17% smaller than V1). As 
a comparison we have also plotted the distribution of overall cortical surface area per 
hemisphere (Fig. 5B). Because the axes of Figures 5A and 5B cover identical multiplicative 
ranges, it is readily apparent that the distribution of V1 sizes is much wider relative to its mean 
than that of the cortex overall. There is also a difference in overall cortical surface area between 
biological males and females. Normalizing each subject’s V1, V2, and V3 surface areas by their 
total cortical area removes the sex difference but has little effect on the variability per area 
within sex (Fig. 5C). Notably, the coefficients of variation (CoV) of the V1 distribution (~0.2 and 
0.16 for males and females) are not substantially affected by normalization (0.19 and 0.16 after 
normalization). There is also little change for V2 after normalization. In V3, the variability in 
surface area declines only slightly following normalization, suggesting that some of the 
variation in the size of V3 may be predicted by total cortical area.
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A CB

Figure 5. Distribution of cortical surface area in V1, V2, and V3. A. Violin plots of the total mid-gray cortical 
surface area (cm2) in areas V1-V3 for the 181 Human Connectome Project retinotopy subjects, defined from 0 to 7 deg 
eccentricity. Black dots and black lines embedded in the violin plots give the median ± interquartile range of the 
distribution while numbers above the plots give the coefficient of variation (standard deviation divided by mean). 
Horizontal lines indicate individual subjects. Distributions are plotted separateh by sex and laterality. B. Same as A but 
across the entire hemisphere. C. Same as A but normalized by total cortical area. 
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The Cortical Magnification Function Varies Substantially Across Subjects 
The amount of cortical area devoted to different parts of the visual field varies systematically 
with eccentricity. Cortical magnification is the ratio of cortical area (e.g., in mm2) to visual area 
represented (e.g., in deg2), and this value computed at each point in the visual field defines the 
cortical magnification function (CMF). This function is of considerable interest as a summary 
metric of map organization, and as a basis for comparison between individuals (Dougherty et 
al., 2003), between species (Horton and Hoyt, 1991), between different parts of the visual 
system (Adams and Horton, 2003), and between brain and behavior (Cowey and Rolls, 1974; 
Duncan and Boynton, 2003; Song et al., 2015).


Total cortical magnification can be calculated and reported in a number of ways. One 
highly robust way to calculate cortical magnification, given the many sectors into which we 
have divided the cortex, is to calculate the surface area of a particular sector and divide that 
area by the area of the region in the visual field that is represented by that particular sector. For 
example, in left V1, sector V1d2 (see Fig. 2A) is bordered in the visual field by the lower vertical 
meridian, the right horizontal meridian, the 1° iso-eccentricity arc and the 2°  iso-eccentricity 
arc. The surface area of this partial annulus is ~9.4 degrees2 (see Methods for more 
information).


The cortical magnification values for each sector, computed using this method, are 
reported in Figure 6A. These data confirm that the mean eccentricity follows the same basic 
pattern as has been reported previously, with high magnification in the fovea gradually 
decreasing magnification in the periphery. In fact, the mean cortical magnification values in V1 
are nearly identical to those measured almost 30 years ago by (Horton and Hoyt, 1991). To 
better visualize this, Figure 6B plots the distribution of cortical magnification across subjects in 
terms of eccentricity with the relationship reported by Horton and Hoyt plotted for comparison. 
In V1 in particular, the similarity of the median cortical magnification, as measured in 181 
subjects using contemporary state-of-the-art methods, and the cortical magnification deduced 
30 years ago through the examination of scotoma and lesions is remarkable. We can 
additionally observe the crossover in cortical magnification between V1 and V2/V3 between 
0.5° and 1° of eccentricity previously observed by (Schira et al., 2010). At eccentricities higher 
than this crossover point, V1 has a higher cortical magnification than V2 and V3 while at 
eccentricities lower than the crossover V1 has the lower magnification.


Interestingly, the variability of cortical magnification is much higher near the fovea (<1° 
of eccentricity) in V1 and V2 than in the periphery, as can be seen most clearly in the second 
row of Figure 6B. This row plots the identical cortical magnification data as the top row, but 
plots it as a ratio to the median cortical magnification. I.e., the y-axis is in log2 steps, so a y-
value of 1 indicates twice the value of the median while a y-value of -1 indicates half the value 
of the median.


Notably, across visual areas and eccentricities, the variability in cortical magnification is 
commensurate with or slightly larger than the 3.5-fold variability across visual area surface 
areas.	 Some of the variability across subjects in cortical magnification values is due to 
variation in the overall size of V1 across subjects; other variability is likely related to the shape 
of each subject’s cortical magnification function. For example, two subjects with identically 
shaped V1 regions may nonetheless devote very different fractions of their V1s to the inner 5° 
of eccentricity. In Figure 6C we report a model-free metric of the “steepness” of the cortical 
magnification that is independent of total visual area size: the eccentricity that splits the ROI 
(i.e., the part of V1, V2, or V3 traced by the anatomists) into two ROIs with equal surface area. 
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The eccentricity predicted by the measurements of Horton and Hoyt for this same ROI in V1 is 
also included as a vertical dashed line in each panel (~2.58°). As one moves from V1 to V2 to 
V3, the median halfway-point eccentricity decreases by ~1°. The halfway-point varies by a 
factor of approximately 2 in each visual area and is significantly correlated across hemispheres 
for each visual area (rV1 = 0.44, 95% CIV1 = 0.29–0.56; rV2 = 0.39, 95% C1V2 = 0.23–0.53; rV3 = 
0.45, 95% C1V3 = 0.31–0.56; using 10,000 bootstraps). This indicates that the variation we 
report across individuals is unlikely to simply be due to measurement noise.


Surface Area is Correlated Between ROIs, Hemispheres, and Dorsal/Ventral Subdivisions 
Models of V1-V3 frequently include the assumptions that these visual areas are, to a first 
approximation, left-right and ventral-dorsal symmetric and that V1, V2, and V3 are closely 
related in size. Across subjects, we find this latter statement to be largely true. The surface area 
of V1, summed across hemispheres, is highly correlated with the surface area of V2 (r = 0.77, 
95% C.I. = 0.73-0.81 across 10,000 bootstraps) (Fig. 7A, 7D). There is also a strong correlation 
between the surface areas of V2 and V3 (r = 0.64), and a lower but still robust correlation 
between V1 and V3 (r = 0.45). These correlations are higher than those reported previously 
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Figure 6. Cortical magnification in V1, V2, and V3. A. Average areal cortical magnification of each sector of V1-V3 
across subjects; the mean set of contours across anatomists for each subject was used to calculate the cortical 
surface area of each sector. B. Median areal cortical magnification across subjects in terms of eccentricity. In both top 
and bottom rows, solid colored lines indicate the median while the darker and lighter shaded regions depict the 25%/
75% and 2.5%/97.5% percentiles. The black dashed line represents the cortical magnification function for V1 reported 
by Horton and Hoyt (1991). In the top row of panels the cortical magnification is plotted. In the bottom row, the same 
data are reproduced but are plotted in terms of their relation to the median. A point (xtop,ytop) from the top row is plotted 
in the bottom row as (xbot,ybot) where xbot = xtop, but with ybot = log2(y / m(x)) where m(x) is the median cortical 
magnification at eccentricity x. A consequence of this scaling is that the median line in the top row is plotted as a 
constant y = 0 in the bottom row. C. Histograms of the eccentricity that divides the surface area of the inner 7° of V1, 
V2, or V3 into equal foveal and peripheral halves. The black dotted line indicates the eccentricity at which this would 
occur according to Horton and Hoyt (1991): ~2.58° of eccentricity. Explicitly, this means that, according to Horton and 
Hoyt, the V1 ROI from 0°-2.58° of eccentricity has the same surface area as the V1 ROI from 2.58°-7° of eccentricity.
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(Dougherty et al., 2003), particularly the relation between V1 and V3 surface area which has 
been reported to be near 0. One reason we report larger correlations is in the methodology: we 
summed across hemisphere and across ventral and dorsal subdivisions, whereas Dougherty et 
al. did not. This summation may attenuate the effect of measurement noise. Secondly, the 
much larger sample size available from the HCP data affords a more accurate estimate of the 
true population relationships. 


Within each of V1, V2, and V3 the surface areas of the right and left hemispheres are 
highly similar. Figure 7B shows a scatter-plot of the LH versus RH surface areas of V1, V2, and 
V3 for all subjects, which reveals the strong correlations as well as the overall decrease in size 
from V1 to V2 to V3. A similar plot is shown in Figure 7C, which compares the ventral surface 
area of V1-V3 (x-axis) to the dorsal surface area (y-axis). Again, there is high correlation within 
areas, and one can observe the decrease in size from V1 to V3. Unlike left versus right, these 
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Figure 7. Area-area correlations. A.  In all three possible pairings of areas V1, V2, and V3, the earlier area tends to 
be larger than the later area (center of mass for all three colors lies below the lines of equality). Crosses about the 
plotted points indicate the range of values across anatomists B. Within individuals, there is substantial LH-RH 
symmetry in the surface area of V1-V3. C. Within individuals, there is substantial dorsal-ventral symmetry in surface 
area. D. The correlation between areas V1 and V2 is higher than between areas V1 and V3 or areas V2 and V3. E. This 
correlation matrix includes LH/RH V1, V2, V3. Relatively higher correlation in surface areas can be seen within each 
area across hemispheres (e.g., LH V1 and RH V1; diagonal dotted line). F. This correlation matrix includes ventral/
dorsal V1, V2, V3. The pattern of correlations in surface area is highest for V1v-V2v, V2v-V3v, and V1v-V1d. The inset 
panel shows the median and 68% confidence intervals for ventral and dorsal comparisons, as computed across 
10,000 bootstraps. Confidence intervals are non-overlapping for each comparison shown.
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dorsal-ventral plots show some 
asymmetries: The points tend to be 
under the diagonal in V2 (µV2v = 11.23 
cm2 > µV2d = 9.66 cm2), with V1 and V3 
being more symmetrically arranged 
(µV1d = 11.73 cm2 ≈ µV1v = 11.37 cm2; 
µV3d = 8.25 cm2 ≈ µV3v = 8.34 cm2). (At a 
fi n e r a n g u l a r r e s o l u t i o n t h a n 
quarterfields, there are additional polar 
angle asymmetries in V1) (Benson et al., 
2020). The differences between visual 
areas may reflect different processing 
priorities, and warrants further study.


Correlations across subjects for 
left v. right visual areas are strongest for 
corresponding areas. In Figure 7E we 
plot the correlation matrix that results from comparing LH size to RH size across subjects. The 
dashed line in this plot that marks the correlations between the same areas in contralateral 
hemispheres shows the highest correlations (all > 0.77). In comparison, the correlations shown 
between ventral and dorsal subparts of each visual area (Fig. 7F) show much lower (though still 
positive and highly significant) correlations. In fact, the highest correlations in this comparison 
are between V1-ventral and V2-ventral and between V2-ventral and V3-ventral as well as 
between V1-ventral and V1-dorsal. Correlations between equivalent dorsal regions are much 
lower (Fig. 7F, inset), suggesting either that processing needs for the ventral portions of V1-V3 
(upper visual field) could be more similar across areas than those of the dorsal portion (lower 
visual field) or that dorsal areas are subject to greater measurement noise.


The Size of Retinotopic Maps is Similar Between Twin Pairs  
Datasets containing twin pairs are rare in visual neuroscience; accordingly, a uniquely valuable 
component of the dataset described in this paper is the availability of both MZ and DZ twin 
pairs (50 MZ pairs and 34 DZ pairs). We exploit these twin pairs to examine the extent to which 
variability in visual area size is explainable by relatedness. If twins have highly correlated 
surface areas, and the correlations are higher for MZ twins than DZ twins, it suggests that to a 
large degree, the size of these visual areas is inherited. Correlations that are high for both types 
of twin pairs but show little difference between the two types implicate a large role for shared 
environment in determining visual area size. 


Visual inspection of the contours drawn for pairs of twins and pairs of unrelated 
subjects suggests that twins tend to have more similar map organization than unrelated pairs 
(Fig. 8). Although the flattened cortical maps introduce a small amount of arbitrary distortion in 
each hemisphere and thus should not be interpreted as a perfect proxy for similarity, it remains 
clear from examining both the contour geometry and the map parameters that each subject’s 
retinotopic organization is more similar to that of their associated twin than to that of either of 
the unrelated subjects. For example, the MZ twins in Figure 8 both show relatively large foveal 
sectors in V2 and V3, differing from the two DZ twins.


To quantify the similarity between sets of twin-pairs, we first computed the intraclass 
correlation coefficient (ICC) of the surface areas. We focus on the surface areas of V1, V2, and 
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Table 2. Correlations between surface areas across subjects.

Area 1 Area 2 Correlation (r)

Bilateral V1 Bilateral V2 0.77

Bilateral V2 Bilateral V3 0.64

Bilateral V1 Bilateral V3 0.45

Left V1 Right V1 0.80

Left V2 Right V2 0.84

Left V3 Right V3 0.77

Bilateral Ventral V1 Bilateral Dorsal V1 0.68

Bilateral Ventral V2 Bilateral Dorsal V2 0.52

Bilateral Ventral V3 Bilateral Dorsal V3 0.50
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V3 because surface area is a well-defined proxy for the overall organization of these visual 
areas that can be derived from the drawn contours and because we have already established 
that surface area has a large amount of individual variability that is not due to measurement 
noise.


All three visual areas show very high correlations between MZ twins, with ricc of 0.84, 
0.81, and 0.75 for V1, V2, and V3, respectively (Figs. 9A, 9B, and 9C). This indicates that twin 
status explains about 80% of the variance in the size of these visual areas within the group of 
all MZ twins. We find lower but highly robust correlations for the DZ twins, with ricc of 0.68, 
0.72, and 0.44 for V1, V2, and V3. These calculations are based on the normalized surface 
areas (surface area of visual area divided by surface area of all of cerebral cortex); similar 
values are obtained for the unnormalized surface areas, with the only substantial exception 
being that the ricc for V3 in the DZ twins is higher for the unnormalized calculations (0.72 v. 
0.44). This indicates that with the exception of V3 in the DZ twins, the correlations between 
twins are unrelated to the similarity in total cortical area. 


Although the similarity between twin pairs in the sizes of V1, V2, and V3 is not explained 
by similarity in total cortical area, the total cortical area is in fact highly similar between twin 
pairs. Notably, the correlation for the full cortical surface is substantially higher than that for any 
other region and is substantially higher in MZ twins (rICC = 0.93) than in DZ twins (rICC = 0.73), 
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Figure 8. Comparison of manually defined retinotopic grids in MZ twins, DZ twins, and an unrelated pair. 
The top row shows left hemispheres and the bottom row shows right hemispheres. Functional data from polar angle 
scans is depicted for each hemisphere (see colormap). Black grids indicate the 7 iso-polar angle contours (V1m, V1d, 
V1v, V2d, V2v, V3d, V3v) and 5 iso-eccentricity contours (0.5, 1, 2, 4, 7 degrees) on each hemisphere (see Figure 2A). 
Note the high similarity in the functional data and resulting grid in the MZ twins (left two columns), especially the RH 
V1’s larger lower field (dorsal) representations. Intermediate similarity in the DZ twins (right two columns) can be seen in 
size, shape, and other details of the functional data and resulting grid. Lower similarity in the example unrelated pair 
(inner two columns) can be seen in the functional data and resulting grids, especially in overall size. Visual inspection 
reveals much higher similarity in the topography of areas V1-V3 for the DZ and MZ twins. 
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consistent with prior reports showing high heritability of cortical surface area (Panizzon et al., 
2009; Winkler et al., 2010; Gomez-Robles et al., 2015; Schmitt et al., 2019) (Fig. 9E).


We used the correlation values for each visual area and twin type to calculate Falconer’s 
heritability index H2 for each area (see Methods). The fact that the correlations between twin 
pairs was positive for both twin types and higher for the MZ twins than the DZ twins means 
that the H2 value is positive for all metrics (V1, V2, and V3 surface areas, as well total cortical 
surface area; Fig. 9F). Nonetheless, it is clear from the large size of the 95% confidence 
intervals that the number of twin pairs is far too low to make a reliable estimate of H2. For 
example, our 95% confidence intervals for V1 span 0 and 100%. This contrasts with the 
measures of correlation rICC, which have tighter confidence intervals. Specifically, the variance 
in H2 is twice the sum of the two variances in the rICC calculations.
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Figure 9. Correlations in the sizes of brain areas across MZ and DZ twins. The three panels in the top row show 
comparisons of the (A) V1, (B) V2, and (C) V3 percent-of-cortical surface area measurements for both MZ and DZ twin 
pairs. Because the assignment of a subject into the category of “twin 1” or “twin 2” is entirely arbitrary, all points plotted 
twice, reflected along the line x = y. Panel D plots the same metric for the anatomically-defined V1 (Benson et al., 
2014). In panels A-D, the surface areas were calculated between 0.5° and 7° of eccentricity only. Panel E shows a 
similar comparison of the entire cortical surface area across twin pairs in terms of square meters. F. Summary of 
correlations and heritability calculations for each ROI and relationship type (MZ/DZ). The H2 values were calculated 
using Falconer’s formula of heritability. Confidence intervals (CIs) were calculated using 1000 bootstraps over twin 
pairs. For the top row,  CIs are at the 68% level (1 S.E.M.), and for the bottom row they are at the 95% level. In panels 
A-E, CIs are expressed as “± x” where x is half of the difference between the 97.5th and the 2.5th percentiles.
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As an alternative to directly calculating the heritability of V1-V3 surface areas using 
correlations, we can instead assess the median difference in surface areas for MZ twin-pairs 
compared to DZ twin-pairs and the probability that this differenceMZ < differenceDZ. This 
calculation is a non-parametric homolog to a two-way ANOVA and is detailed in the Methods. 
Across 10,000 bootstraps, we found that the surface area of V1-V3 differs by 4.33 cm2 (median 
across bootstraps) for MZ twin pairs, and 6.06 cm2 for DZ pairs. This was a highly reliable 
difference: the 2.5th and 97.5th percentiles of the differences between MZ twin pairs were 3.72 
cm2 and 4.96 cm2, and for DZ twins 5.25 cm2 and 7.00 cm2. Overall, this means that the visual 
area size differed between DZ twins by about 41% more than it differed between MZ twins 
(95% CI of 22% to 72%). For both types of twin pairs, the visual area sizes were much more 
similar than they are for unrelated subject pairs, whose V1-V3 size differs by 10.10 cm2 (2.5th 
and 97.5th percentiles of 9.94 and 10.26 cm2) For these values, V1, V2, and V3 surface areas 
were summed into a single ROI that was not normalized by total cortical surface area. 
However, the effect of DZ differences < MZ differences < unrelated pair differences remains 
significant even when V1-V3 size is normalized by cortical size.


For comparison with the functionally-defined regions (V1, V2, and V3), we also 
computed the correlation across subjects of the surface area of a similar anatomically-defined 
region, the V1 ROI as originally defined by Benson et al. (2014) and updated by Benson and 
Winawer (2018) (Fig. 9D). Because this ROI is computed using purely anatomical data from the 
subjects, the correlation of its size between twins reflects only the similarity of the cortical 
folding pattern in the V1 region. The “Benson 2014” V1 ROI was limited to have the same 
eccentricity boundaries (0.5°-7°) as the hand-labeled ROIs compared in panels A-C. These 
anatomically-defined regions were found using FreeSurfer’s anatomical alignment and were not 
informed by functional data (i.e., retinotopy measurements of these subjects). The correlations 
for the anatomically defined V1 are lower than those for functionally defined region (0.75 v. 0.84 
and 0.49 v. 0.68: anatomically v. functionally-defined V1 for MZ and DZ twins respectively). 


Moreover, if we compute the residual surface area, meaning the area of the functionally 
defined V1 minus the area of the anatomically defined V1, we find that these residual areas are 
also highly correlated between twins (0.64 and 0.39, MZ, and DZ). This indicates that the hand-
drawn contours capture meaningful features of the maps. If the hand-drawn contours differed 
from the anatomical boundaries only due to noise, then the residuals would not be correlated 
between twin pairs. 


The Organization of V1-V3 is Similar for Twin Pairs and More Similar for MZ Pairs 
The size of a visual area on cortex is one measurement of early visual cortical organization; 
however, the visual area size provides relatively little information about similarities in the 
relationship between anatomy and function or in the idiosyncrasies of the layout of the 
retinotopic maps on cortex. To better understand what aspects of the structure-function 
relationship of visual cortex are shared among twins, we also examined the correlation of 
various anatomical and functional properties within the occipital cortex between MZ twin-pairs, 
DZ twin-pairs, or UR (unrelated) pairs. In the comparisons of an ROI’s surface area examined in 
the previous section, there is one value per subject (the surface area of the relevant ROI) that is 
compared across twin pairs leading to a single rICC value to characterize the entire population 
of twins. In contrast, here we measure properties such as cortical thickness that are correlated 
spatially across the many vertices of the cortical surface, yielding a separate r value for each 
twin pair. We can then compare the distribution of these r values for all MZ twins with the 
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distribution for all DZ twins and that for all unrelated pairs. In order to compare data at 
corresponding locations, the cortical surfaces of subjects were anatomically aligned to the 
HCP’s fs_LR atlas surface, and calculations were limited to a patch of cortex just large enough 
to contain V1-V3 in all subjects.


Critically, because these are vertex-wise correlations within pairs of subjects, the 
expected value for unrelated pairs is not 0. For example, the calcarine sulcus is always in 
approximately the same location between subjects once the surfaces are aligned. Hence the 
curvature correlations of unrelated pairs are significantly positive. The same patterns hold for 
other cortical properties. This contrasts with the size correlations across pairs of subjects 
(previous section), in which the expected value for unrelated pairs is 0.


The functional properties we chose to compare were the PRF center coordinates x and 
y, both expressed in degrees of the visual field, as well as the mean EPI signal intensity from 
the PRF scans, which is related to vasculature (Kay et al., 2019). All three functional properties 
show a pattern whereby the correlations between MZ pairs are significantly higher than those 
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Figure 10. Distributions of correlations of cortical properties between twin pairs. In each panel, the density of 
correlation values is plotted for all three relationship types (MZ, DZ, UR/unrelated) with the x-axis corresponding to the 
correlation value of the relevant property over the occipital cortical surface and the  y-axis corresponding to the density 
of twin pairs at that correlation value. The ROI over which the correlation was calculated was identical for all panels. 
This region was defined on the HCP’s fs_LR anatomically-aligned surface and consisted of a circular region of cortex 
just large enough to contain V1, V2, and V3 for all subjects. The points and error-bars at the top of the panels given the 
median and the 68% confidence interval of the correlation values for each relationship type. Note that in all cases, the 
unrelated pairs are so numerous that the confidence interval is narrower than the plot-point. Vertical lines plotted from 
the x-axis to the histogram boundary indicate the individual twin-pairs for MZ and DZ groups. For the unrelated pairs 
(UR), the lines are too numerous to plot, so a random sample of 50 unrelated pairs are shown (however the UR 
histograms are calculated using all unrelated pairs).
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for DZ pairs, which in turn are higher than those for unrelated pairs (Figs. 10A, 10B, 10C). 
Notably, in each case the 68% confidence intervals between MZ/DZ, MZ/UR, and DZ/UR pairs 
are non-overlapping. These results imply that the topographical distribution of these functional 
measures is influenced by genetic factors. The correlations are computed after registration to 
the FreeSurfer template, a process guided by the cortical curvature pattern. Therefore, the 
correlations likely reflect similarity in both the shape of cortex and the way in which these 
features are linked to the shape.


 The anatomical properties we compared were selected due to their ubiquity in 
neuroimaging research and their ready availability in the HCP datasets rather than due to 
fitness with respect to a specific hypothesis. These properties are the curvature (Fig. 10D), the 
myelination estimate (T1/T2 ratio; Fig. 10E), and the gray-matter thickness (Fig. 10F). Each 
showed the same pattern as the functional properties: the MZ pairs have the highest 
correlations while the DZ pairs have lower correlations, and the UR pairs have the lowest. With 
the exception of the MZ and DZ correlations of myelination estimates, all anatomical property 
confidence intervals are non-overlapping as well. These results complement the size 
correlations reported in the previous section: the size correlations show a similarity in the 
overall size of visual areas between twins, and these results show similarity in the organization 
and structure within the maps.


Discussion 
This paper describes an examination of the precise functional boundaries of the early visual 
cortex in a pool of 181 subjects from the HCP that is the largest of its kind to date. Because 
our dataset contains V1-V3 visual area boundaries drawn by four trained individuals, it is 
valuable both for the examination of early visual organization across subjects as well as for 
understanding the variations across individuals in how such boundaries are drawn. Although 
similar efforts to characterize the organization of early visual areas have been made by 
previous researchers (Benson et al., 2014; Wang et al., 2015), our dataset differs in four critical 
ways. First, our dataset is larger than any similar dataset and consists entirely of data collected 
at 7T. The large size is especially valuable when trying to estimate variability across the 
population. Accurate estimates of variability are important for establishing whether newly 
measured individuals or groups fall within a normal range. Second, the annotations we provide 
include not just the visual area boundaries but also iso-eccentricity contours that annotate 
valuable information about the organization of retinotopic maps within each visual area. The 
various contours can be used to quantify the cortical magnification function as well as the 
similarities between subregions of the maps. Third, our dataset contains a large number of twin 
pairs. The combination of variability among unrelated individuals and the similarity between 
twin pairs sheds light on extent to which the visual organization of cortex is driven by genetic 
or environmental factors. Finally, our entire dataset, from the pixels originally marked by the 
anatomists to the figures in this paper, is publicly available and can be easily downloaded and 
examined by other researchers (https://osf.io/gqnp8/).


The Value of Functionally Defined Visually Field Maps in Individual Subjects  
A great deal of human brain research is conducted by analyzing data in groups of subjects 
aligned to a template brain, such as the MNI or Talairach volumes (Talairach and Tournoux, 
1988; Mazziotta et al., 2001) or the FreeSurfer fsaverage surface (Fischl et al., 1999). Alignment 
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to a template is a core step in statistical parametric mapping, perhaps the most widespread 
approach to analyzing fMRI data (Friston, 2007). This method can be used to predict ROIs 
(Hinds et al., 2008; Benson et al., 2014; Wang et al., 2015); however it assumes a functional 
correspondence in anatomically aligned brain locations, an assumption that may often fail 
(Haxby et al., 2011), leading to high variability in the quality of predictions across subjects 
(Benson and Winawer, 2018). An alternative approach is to identify specific regions using 
function responses or a combination of anatomical landmarks and functional responses in 
individual subjects (Saxe et al., 2006; Benson et al., 2014; Benson and Winawer, 2018). We 
have taken this latter approach here, annotating individual visual maps by hand. An important 
observation is that in many cases, alignment by anatomy alone (surface curvature) leads to 
results that are obviously incorrect relative to the functionally defined areas, in the extreme 
cases with no overlap at all between anatomically drawn and hand-drawn boundaries. Figure 3 
confirms this variability. In the top panels, the polar angle maps of HCP subject 221319 are 
shown along with the boundaries of both the anatomically-defined Wang-2015 atlas (white) and 
the anatomist-drawn contours (black) while in the bottom panel shows a similar plot for subject 
111312. The agreement between the hand-drawn boundaries and the anatomically-defined 
boundaries is low for subject 221319 but high for subject 111312. The hand-drawn contours 
(black) are also a better match to the polar angle reversals for subject 221319 than the 
anatomically-defined contours. This demonstrates that the hand-drawn contours are capturing 
additional functional information that is not captured by the folding pattern alone. That this is 
true for even early sensory areas suggests that purely anatomical alignment for cortex is likely 
to risk poor alignment of function for many regions.


Incorporating functional data into the definition of regions of interest does not 
necessarily entail manual delineation. The manual approach we took here is time-consuming 
and requires substantial training and validation. It would therefore be useful if the process 
could be automated. An explicit goal in creating this dataset was to establish a gold-standard 
set of annotations about the visual cortex in individual subjects against which other models 
and techniques can be validated and trained. We describe some of these methods below, but 
note that they were completed without the use of our large, hand-labeled gold standard data 
set for training.


One method to improve the boundary predictions of anatomical atlases is to combine 
the atlas prediction (as a prior) with retinotopic measurements (an observation) in a 
fundamentally Bayesian way (Benson and Winawer, 2018). However, without a dataset 
annotating the ground-truth of the V1-V3 boundaries, evaluating the accuracy of such 
predictions in a quantitative way is difficult. Other recent work has begun to examine the 
application of convolutional neural networks for predicting retinotopic parameters and maps 
(Thielen et al., 2019; Ribeiro et al., 2020). The dataset provided here is valuable as a potential 
training and validation resource for future machine learning research on visual cortex. However, 
a dataset such as this one is only as valuable as it is reliable. One metric for this reliability is the 
inter-rater agreement across anatomists. To this end, we have provided both the raw data from 
each anatomist as well as summary data averaged across anatomists for further study. The 
variability between anatomists in our dataset is small—in particular, the disagreement between 
anatomists, both across the entire subject population as a whole and for any given subject is 
minor relative to the differences in retinotopic organizations between subjects. To facilitate 
usage by other group, all preprocessed and projected data were saved in common open file 
formats (JSON, HDF5) with wide language support and were uploaded to the OSF (https://
osf.io/gqnp8/). All source code used to preprocess the contours is open source and can be 
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found on the OSF site. The dataset, including the unprocessed source data from the 
anatomists and all processed data analyzed in this paper, is also included in the Neuropythy 
library as a native dataset (https://github.com/noahbenson/neuropythy).


Enormous Variability in the Size of Early Visual Field Maps 
One of the explicit advantages of the dataset described here is its size: to date, no other public 
dataset of retinotopic maps has a comparable number of subjects as the HCP retinotopy 
dataset. This project expands the value of the existing retinotopy dataset by also providing 
visual area boundary annotations. These annotations have allowed us to quantify the 
distribution of visual area sizes in the population at a previously impossible resolution. 


One of the striking features of this distribution is its range: the smallest and the largest 
instances of each visual area differ by a factor of three or more. Previous work has found 
evidence that the size of V1 can weakly predict Vernier acuity (Duncan and Boynton, 2003) as 
well as the strength of certain optical illusions (Schwarzkopf et al., 2011). However, these 
studies do not demonstrate anything like a 3.5-fold difference in behavioral effects. Notably, 
the surface area of the cortex as a whole has a difference of only approximately 1.5-fold 
between extrema, indicating that the size of V1 is not simply scaled up or down with the size of 
cortex. In fact, when normalized by the overall cortical surface area, the distribution of relative 
V1 sizes strongly resembles that of the overall V1 sizes. The correlation between V1 size and 
cortex size in the dataset is significant but low: r = 0.35. However, some of this correlation can 
be accounted for by the difference in cortex size between males and females; for males only 
and females only, the correlation is 0.32 and 0.23, respectively. This leaves open the question 
of why some V1s are so much larger than others and leaves open the possibility that 
experience plays a substantial role in visual area organization.

	 Despite low correlations between cortical surface area and V1 surface area, the 
correlations between V1 and V2, V2, and V3 , and V1 and V3 surface areas are high, as are 
correlations between matched LH and RH visual area sizes and between ventral and dorsal 
sections of each visual area, indicating that, although the visual area size may not depend 
strongly on overall cortex size, there is nonetheless some overall shared variability across the 
early visual system. This observation is consistent with previous results showing that the sizes 
of the LGN, the optic tract, and V1 vary by a 2- to 3-fold factor across brains but are all 
strongly correlated within a brain (Andrews et al., 1997). Our dataset demonstrates that this 
correlation persists beyond V1 to higher order brain areas and provides further evidence that 
the visual system likely develops in an interdependent manner.

	 Another intriguing observation from this dataset is the distribution of male and female 
cortex and V1 sizes. Although the difference is small, the overall size of the cortex of males is 
larger on average than that of females, and this difference applies to a similar degree to the 
size of V1, V2, and V3. However, when one normalizes the visual area size by the size of the 
overall cortex, the distribution of relative visual area sizes for men and women is very similar. 
This suggests that the differences in visual area size between males and females is a product 
of the difference in brain size rather than a difference in experience.

	 A caveat concerning variability is that we compute surface area over only a portion of 
each map, limited by eccentricity. It is logically possible that the variability would be lower if 
computed over entire maps (i.e., not limited by 7° of eccentricity). We think this is unlikely. 
While we don’t have functional definitions of the entire maps, we can estimate the surface 
areas from an anatomical template (Benson et al., 2012; Benson et al., 2014; Benson and 
Winawer, 2018). Doing so results in a similar degree of variability (CoVs of 0.13, 0.11, and 0.13 

22

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 9, 2021. ; https://doi.org/10.1101/2020.12.30.424856doi: bioRxiv preprint 

https://github.com/noahbenson/neuropythy
https://doi.org/10.1101/2020.12.30.424856
http://creativecommons.org/licenses/by/4.0/


for V1, V2, and V3, respectively). Nonetheless, it would be useful in future work to functionally 
measure the maps out to a much wider extent in the periphery to verify these estimates.


Measurements of Cortical Magnification Confirm and Extend Previous Reports 
The annotation of both visual area boundaries as well as the boundaries of several sectors of 
the visual field provides a unique opportunity to measure cortical magnification of V1-V3 in a 
large population. We find that these measurements, whether calculated using the sector 
boundaries or using a moving band delimited by iso-eccentricity contours in the visual field, are 
highly consistent with past reports on average. The mean cortical magnification across 
subjects, in fact, matched that reported by Horton and Hoyt (1991) almost exactly. 
Nonetheless, the variation across subjects was large. The variation across subjects occurs in 
both the total (integrated) cortical magnification, equivalent to visual area size, but also the 
distribution, meaning that visual areas of different sizes are not simply scaled versions of one 
another. This is at least qualitatively similar to patterns found in cone density, in which 
individuals with the highest foveal cone density do not necessarily have the highest parafoveal 
cone density (Curcio et al., 1990). 


Across V1, V2, and V3, the slope of the cortical magnification declines somewhat. Aside 
from the small decrease in size, and thus cortical magnification, from V1 to V3 (Fig. 5), the 
fraction of each area devoted to the fovea increases relative to the whole area. This effect can 
be seen both by plotting the eccentricity at which each visual area is split into two equal-area 
halves (Fig. 6C) as well as in the cortical magnification plots of Figure 6B, where between 
0.5° and 1° of eccentricity, the cortical magnification of the V1 fovea is slightly lower than that 
of V2 and V3. This effect of the V1-V3 foveal confluence was originally observed by Schira et al. 
(2010), who noted that the V1 cortical magnification dipped below that of V2 and V3 around 
0.75° of eccentricity. 


A critical point regarding this change in the magnification slope between areas is that 
the visual areas are not simply rescaled versions of each other: the surface area of V2 is not 
distributed in a way that is proportional to that of V1. Were this the case, we would expect the 
eccentricity value that bisects each visual area to be the same; however in V3 this value is ~1° 
lower than in V1.


Left and Right ROIs are More Symmetric than Ventral and Dorsal ROIs. 
The pattern of symmetry we see in the brain may reflect the patterns of symmetry we see in 
natural images. Left-right symmetry is a common feature of many important classes of natural 
images; for example, images of human faces, plants, and animals all typically have high 
bilateral symmetry, but relatively lower symmetry when comparing the upper to the lower part 
of an image (Torralba and Oliva, 2003). This left-right symmetry is also reflected in the high 
correlation of left and right hemisphere visual areas relative to ventral and dorsal regions of the 
same visual area. This suggests that the processing requirements for the left and right visual 
fields may be more similar or more interdependent than those of the upper and lower visual 
fields with respect to V1-V3’s early role in vision. In fact, V1v and V2v are more similar to each 
other than to their dorsal counterparts (Figs. 7E and 7F). The same holds true for V2v and V3v 
compared to their dorsal regions. Although the same observation also holds true for the dorsal 
regions, the effect is substantially smaller.


One possible explanation of the lower correlation for dorsal areas is measurement 
noise: the dorsal boundaries may simply be harder to draw. There is substantially more 
disagreement in the contour positions for the dorsal than the ventral boundaries, especially for 
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V3. Inspection of the retinotopic maps across subjects reveals that the dorsal boundaries are 
ambiguous in a number of ways and thus may either be harder to draw or may be less 
consistently organized across subjects. One example of these ambiguities is the occasional 
presence of a representation of the lower vertical meridian (LVM) for V3 growing out of the LVM 
representation for V1 (Van Essen and Glasser, 2018; their Fig. S2). This representation occurs in 
a number of subjects in the dataset and may contribute to variance in the surface areas of 
dorsal V1-V3. Nonetheless, the overall measure of disagreement is relatively low, even in the 
dorsal areas, and the correlations between dorsal areas and between ventral-dorsal 
counterparts are robust, even if lower than for ventral areas. 


MZ Twins’ Retinotopic Maps are More Similar Than Those of DZ Twins or Unrelated Pairs 
Visual inspection of twin pairs in this dataset yields the clear observation that twins have more 
similar retinotopic maps than unrelated pairs. Additionally, MZ twins appear to have the most 
similar maps among pairs in the dataset overall. In fact, for MZ twins, the correlation between 
the size of their V1s and that of their twins is ~0.84 (LH and RH combined; Fig. 9A, Tab. 2). 
Remarkably, this is slightly higher even than the correlation between LH V1 and RH V1 (r ≈ 
0.80).

	 The close relationship between visual area sizes in twin pairs is partly explainable in 
terms of the closeness of the anatomical shape between the pairs’ cortices. Comparing the 
overall cortical surface area of MZ and DZ twins partially supports this idea: for MZ twins, r ≈ 
0.93 and for DZ twins, r ≈ 0.73. However, were the similarity between twins driven entirely by 
cortical anatomy similarity, we would expect that differences between the functionally defined 
maps and the anatomically defined maps would be uncorrelated in twin pairs. This was not so, 
as the residual map areas (functionally defined minus anatomically defined) showed robust 
correlations. Moreover, the residual correlations were about twice as high in MZ twins as in DZ 
twins, indicating that functional organization not explained by the folding pattern is highly 
heritable. Thus, although anatomy is highly correlated between twins, especially MZ twins, 
there is additional similarity between the functional measurements not explained by anatomical 
differences alone.

	 Additional comparisons between subject pairs reveal the same trend: regardless of the 
property being compared, MZ twins are more similar than DZ twins, who are more similar than 
unrelated subject pairs. This was found for both anatomical properties (cortical curvature, 
estimated myelination, and cortical thickness) and functional properties of the retinotopic maps 
(PRF x, PRF y, and mean EPI signal intensity). Our analyses of these properties were calculated 
using just the occipital cortex, but anatomical data show similar trends when calculated over 
the entire cortex. Significantly higher correlations for MZ twins than for DZ twins indicates that 
each of the measures is to some degree heritable.


The six properties compared in Figure 10 as well as the ICC values in Figure 9 paint a 
clear story about the similarity of visual cortex and visual cortical organization between twins. 
Overall, MZ twins are consistently more similar across many measurements than DZ twins, and 
the difference in surface area between MZ twins is significantly smaller than the same 
difference between DZ twins: DZ twins’ visual areas are ~0.6 cm2 more different in size than 
MZ twins, indicating an influence of genetics on the visual cortex. However, these results are 
also highly consistent with the hypothesis that a shared environment yields similar visual 
cortices. Notably, both MZ and DZ twins share an environment even in the womb where 
substantial visual development takes place (Rao et al., 2013). Despite these findings,  
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calculations of Falconer’s heritability for size of visual areas using this dataset generally fall 
short of statistical significance (Figure 9F). There are two primary reasons for this. First, our 
dataset of surface areas is small for heritability studies, which can often have many thousands 
of twin pairs. It is likely that our calculations of heritability are under-powered, even though the 
correlations for MZ twins and DZ twins separately are robust. Second, there are a number of 
sources of noise in our dataset, including imaging noise, noise from subject performance on 
the retinotopic mapping task, and noise from the anatomists’ boundaries. In calculating 
correlations, on which heritability calculations are based, compounded sources of noise will 
have a larger effect on more highly correlated data-points (MZ twins) than those that are less 
highly correlated (DZ twins and unrelated pairs). (In the extreme case, if the true correlation is 
100%, noise can only reduce the measured correlation, whereas if the true correlation is 0, 
noise is equally likely to increase or decrease the measured correlation). Thus it is reasonably 
likely that the population differences in correlations between MZ and DZ twins are larger than 
the measured differences. Overall, the pattern of results, both in the size correlations and in the 
correlations of map properties suggests that genetics likely play a large role in the organization 
of the visual cortex.


CONCLUSION 
We have characterized the functionally-defined structure of early visual areas in human cortex 
with a previously unmatched precision. Across individuals, variation in the surface area of V1, 
V2, and V3 is much greater than variation in the size of cortex even when V1-V3 surface areas 
are normalized by total cortical surface area. Simultaneously, visual area sizes and both 
anatomical and functional properties of the occipital cortex are highly correlated between 
twins. In all analyses, correlations were strongest for MZ twins, less strong for DZ twins, and 
least strong for unrelated pairs. This pattern of correlation across many measurements implies 
that the organization of early visual cortex is strongly heritable.
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