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Fig. 1. Compressed streaming level of detail. Using our vector-quantized auto-decoder (VQ-AD) method, we compactly encode a 3D signal in a hierarchical
representation which can be used for progressive streaming and level of detail (LOD). Two example neural radiance fields are shown after streaming from 5 to
8 levels of their underlying octrees. The sizes shown are the total bytes streamed; that is, the finer LODs include the cost of the coarser ones. Prior work such
as NeRF [Mildenhall et al. 2020] requires ≈ 2.5MB to be transferred before anything can be drawn.

Neural approximations of scalar- and vector fields, such as signed distance
functions and radiance fields, have emerged as accurate, high-quality rep-
resentations. State-of-the-art results are obtained by conditioning a neural
approximation with a lookup from trainable feature grids [Liu et al. 2020; Mar-
tel et al. 2021; Müller et al. 2022; Takikawa et al. 2021] that take on part of the
learning task and allow for smaller, more efficient neural networks. Unfortu-
nately, these feature grids usually come at the cost of significantly increased
memory consumption compared to stand-alone neural network models. We
present a dictionary method for compressing such feature grids, reducing
their memory consumption by up to 100× and permitting a multiresolution
representation which can be useful for out-of-core streaming. We formulate
the dictionary optimization as a vector-quantized auto-decoder problem
which lets us learn end-to-end discrete neural representations in a space
where no direct supervision is available and with dynamic topology and
structure. Our source code is available at https://github.com/nv-tlabs/vqad.
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1 INTRODUCTION
Coordinate-based multi-layer perceptrons (MLPs) have emerged
as a promising tool for computer graphics for tasks such as view
synthesis [Mildenhall et al. 2020], radiance caching [Müller et al.
2021; Ren et al. 2013], geometry representations [Davies et al. 2020;
Park et al. 2019], and more [Xie et al. 2021]. Whereas discrete signal
representations like pixel images or voxels approximate continuous
signals with regularly spaced samples of the signal, these neural
fields approximate the continuous signal directly with a continuous,
parametric function, i.e., a MLP which takes in coordinates as input
and outputs a vector (such as color or occupancy).

Feature grid methods [Chan et al. 2021; Liu et al. 2020; Martel et al.
2021; Müller et al. 2022; Takikawa et al. 2021] are a special class of
neural fields which have enabled state-of-the-art signal reconstruc-
tion quality whilst being able to render [Takikawa et al. 2021] and
train at interactive rates [Müller et al. 2021]. These methods embed
coordinates into a high dimensional space with a lookup from a
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15 207 kB
31.31 PSNR

252 kB
30.20 PSNR

Fig. 2. Feature Grid Compression. Top-left shows a baseline neural radi-
ance field whose uncompressed feature grid weighs 15 207 kB. Our method,
shown bottom right, compresses this by a factor of 60x, with minimal visual
impact (PSNR shown relative to training images). In a streaming setting, a
coarse LOD can be displayed after receiving only the first 10 kB of data. All
sizes are without any additional entropy encoding of the bit-stream.

parametric embedding (the feature grid), in contrast to non-feature
grid methods which embed coordinates with a fixed function such
as positional Fourier embeddings [Tancik et al. 2020]. This allows
them to move the complexity of the signal representation away
from the MLP and into the feature grid (a spatial data structure such
as a sparse grid [Liu et al. 2020; Takikawa et al. 2021] or a hash
table [Müller et al. 2022]). These methods require high-resolution
feature grids to achieve good quality. This makes them less practi-
cal for graphics systems which must operate within tight memory,
storage, and bandwidth budgets. Beyond compactness, it is also
desirable for a shape representation to dynamically adapt to the
spatially varying complexity of the data, the available bandwidth,
and desired level of detail.

In this paper, we propose the vector-quantized auto-decoder (VQ-
AD) method to directly learn compressed feature-grids for signals
without direct supervision. Our representation enables progressive,
variable bitrate streaming of data by being able to scale the quality
according to the available bandwidth or desired level of detail, see
Figure 1. Our method enables end-to-end compression-aware opti-
mization which results in significantly better results than typical
vector quantization methods for discrete signal compression. We
evaluate our method by compressing feature-grids which represent
neural radiance fields (NeRF) [Mildenhall et al. 2020] and show that
our method is able to reduce the storage required by two orders of

magnitude with relatively little visual quality loss without entropy
encoding (see Figure 2).

2 RELATED WORKS

2.1 Compression for Computer Graphics
The ability to dynamically compress and filter data is of great im-
portance in computer graphics. Nanite [Karis et al. 2021] uses mesh
levels of detail [Luebke et al. 2003] for out-of-core streaming of as-
sets, which adapts to the image-space footprint to decouple the com-
plexity of assets from the complexity of the render. Balsa Rodríguez
et al. [2014] survey techniques to render massive volume datasets,
whichmake extensive use of streaming and compression. Maglo et al.
[2015] survey mesh compression, which include progressive stream-
ing methods. Prefiltered representations like mipmaps [Williams
1983] are heavily utilized in real-time graphics systems.

Most relevant to our paper are the works on the compression
and streaming of voxels, which approximate volumes with regularly
spaced samples. The primary challenge for voxel-based systems is
their high memory utilization. Crassin et al. [2009] adopt a block-
based 𝑁 3-tree [Lefebvre et al. 2005], which stores dense 𝑁 3 bricks in
a sparse tree. They take advantage of the efficient GPU texture unit
and leverage lazy out-of-core streaming with cone-tracing [Crassin
et al. 2011]. These approaches require extra care to handle interpo-
lation at block boundaries, which can either be handled through
neighbour pointers [Ljung et al. 2006] or by allocating extra storage
for redundant border elements [Crassin et al. 2009]. Filtering data in
voxel structures has also been well studied [Heitz et al. 2015; Heitz
and Neyret 2012]. The nodes of such 𝑁 3-trees can be compressed
with transform coding. Tang et al. [2018] compress with a block-
wise Karhunen-Loève transform (KLT). Wang et al. [2019] and Tang
et al. [2020] compress with auto-encoders. Zhang et al. [2014] use a
tree whose nodes are sparse blocks encoded with a graph Laplacian
transform. DeQueiroz and Chou [2016] compresswith a global trans-
form on the sparse tree structure using an adaptive Haar wavelet
transform. Efficient software libraries like OpenVDB [Museth 2021;
Museth et al. 2019] exist to work with sparse brick structures. Our
work is similar in that we want to compress a feature grid, which
consists of sparse blocks of features that condition a neural net-
work; however this comes with additional difficulties of having
to optimize with respect to loss functions on downstream tasks.
We take inspiration from these works and propose an end-to-end
trainable compression scheme for feature grids. By storing data
at all levels of a multi-resolution octree as in [Crassin et al. 2009;
Takikawa et al. 2021], we can stream the resulting data structure
in a breadth-first fashion. This allows coarse levels of detail to be
rendered almost immediately, with features from the subsequent
tree levels progressively refining the model.

2.2 Compression for Neural Fields
Compression is one of the often mentioned benefits of using neural
fields to represent signals, however there are still relatively few
works which evaluate this property. We review works which eval-
uate compression for both global methods which use standalone
neural networks, as well as feature-grid methods.
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2.2.1 Global methods. Manyworks [Davies et al. 2020; Dupont et al.
2021; Zhang et al. 2021] formulate compression as an architecture
search problem where a hyperparameter sweep is used to find the
optimal architecture with the desired rate-distortion tradeoff, and
variable bitrate is achieved by storing multiple models. Bird et al.
[2021] directly minimize the rate-distortion tradeoff with a differen-
tiable approximation of entropy, and variable bitrate is achieved by
tuning for different tradeoffs. Lu et al. [2021] use vector quantization
of MLP parameters alongside quantization at different bitwidths for
variable rate compression. These are all global-methods and hence
reformulate the problem as neural network model compression. Al-
though not for compression, Lindell et al. [2021] learn a series of
bandlimited signals with multiplicative filter networks [Fathony
et al. 2020], Barron et al. [2021] propose a special positional encod-
ing function which can represent the expanding spatial footprint of
cone-tracing samples, and Baatz et al. [2021] uses the same spatial
footprint as an input to the neural network to filter. The resulting
filterable representations have fixed size (static bitrate), in contrast
to our work where we aim to achieve variable bitrate via streaming
level of detail.

2.2.2 Feature-grid methods. Takikawa et al. [2021] learn a multires-
olution tree of feature vectors which can be truncated at any depth;
this achieves an adaptive bitrate through streaming of a breadth-
first prefix of the tree. Isik et al. [2021] directly learn the transform
coefficients of an adaptive Haar wavelet transform for a feature
grid. Müller et al. [2022] use a hash table to learn compact but fixed-
size feature grids; large tables are required for good quality. We
see these methods as complementary to our contributions. In all
of these works, neural signal compression is generally treated as a
separate problem from discrete signal compression. In this paper,
we show-case how the auto-decoder framework [Park et al. 2019]
can directly bridge the gap between discrete signal compression and
neural signal compression.

3 BACKGROUND
We will first give a background on signal compression and neural
fields to provide an overview of the terminology and concepts used
throughout the paper. We define a signal 𝑢 (𝑥) : R → R as a con-
tinuous function which maps a coordinate 𝑥 to a value. In discrete
signal processing, signals are typically approximated by a sequence
of values of length 𝑛, representing evenly spaced samples of the
continuous signal:

𝑢𝑥 = [𝑢1, ..., 𝑢𝑛] (1)

where 𝑢𝑖 denotes the 𝑖-th sample in the sequence. If the continuous
signal 𝑢 (𝑥) is bandlimited and the spacing of the samples 𝑢𝑥 ex-
ceeds the Nyquist rate [Shannon 1984], the continuous signal can be
reconstructed exactly with sinc interpolation. Computer graphics
deals with multi-dimensional, multi-channel signals where the co-
ordinates are often 2-dimensional, 3-dimensional, or higher and the
output dimension is 𝑑 > 1. The multi-dimensional axis can often be
flattened into 1D and the channels can be dealt as separate signals.
A neural field [Xie et al. 2021] is a parametric function𝜓𝜃 (𝑥) ≈

𝑢 (𝑥) which approximates a continuous signal with a continuous
function with parameters 𝜃 , fitted through stochastic optimization.

The parameters ofGlobalmethods, which includes NeRF [Mildenhall
et al. 2020], consist entirely of the MLP’s weights and biases.

𝑥

𝜓𝜃𝑍

interp(𝑥,𝑍 )
Conversely, Feature-grid meth-

ods augment theMLPwith feature-
grid parameters 𝑍 . The feature-
grid is typically a regularly spaced
grid, and the function interp is
used to interpolate the local fea-
ture vectors 𝑧 = interp(𝑥, 𝑍 ) for a
given coordinate 𝑥 .
Since 𝜓𝜃 (𝑥, interp(𝑥, 𝑍 )) ≈ 𝑢 (𝑥) is a non-linear function, this

approach has the potential to reconstruct signals with frequencies
above the usual Nyquist limit. Thus coarser grids can be used, moti-
vating their use in signal compression.

The feature grid can be represented as a matrix 𝑍 ∈ R𝑚×𝑘 where
𝑚 is the number of grid points, and 𝑘 is the dimension of the feature
vector at each grid point. Since𝑚×𝑘 may be quite large compared to
the size of the MLP, the feature vectors are by far the most memory
hungry component. For an example, Müller et al. [2022] utilize ten
thousand MLP weights and 12.6 million feature grid parameters to
represent radiance fields. We therefore wish to compress the feature
grids and look to discrete signal compression for inspiration.

A standard method for compressing discrete signals is known as
transform coding [Goyal 2001], where a function transforms the
discrete signal 𝑢𝑥 to a representation 𝑣𝑥 :

𝑣𝑥 = 𝑓 (𝑢𝑥 )
𝑢𝑥 = 𝑓 −1 (𝑣𝑥 )

(2)

We refer to the transformed representation 𝑣𝑥 as the transform coef-
ficients. The role of this transform is to decorrelate the signal such
that quantization or truncation can be applied on the coefficients to
effectively compress them.

Linear transform coding uses a linear transform 𝐴 ∈ R𝑛×𝑛 to
produce the transform coefficients 𝑣𝑥 = 𝐴𝑢𝑥 ; the signal 𝑢𝑥 can
then be reconstructed with the inverse 𝐴−1. These transform matri-
ces can be fixed (based on an efficient transform such as DFT and
DCT [Ahmed et al. 1974]) or constructed from data. The Karhunen-
Loève transform (KLT), for example, is a data-driven transform
which can optimally decorrelate Gaussian distributed data.

Non-linear transform coding [Ballé et al. 2020] uses a parametric
function 𝑓𝛾 : R𝑛 → R𝑛 with parameters 𝛾 along with its inverse
𝑓 −1𝛾 to encode and decode discrete signals. The transform 𝑓𝛾 is often
a neural network. In comparison to the similar setup known as
the auto-encoder [Kingma and Welling 2013; Kramer 1991], non-
linear transform coding has the additional goal of compressing the
transform coefficients. On the other hand, auto-decoder [Park et al.
2019] refers to only explicitly defining the inverse transform 𝑓 −1𝛾

and performing the forward transform via stochastic optimization
on the transform parameters 𝛾 and the transform coefficients 𝑣𝑥 .
That is, the forward transform is 𝑓 (𝑢𝑥 ) = argmax𝑣𝑥 ,𝛾 ∥ 𝑓 −1𝛾 (𝑣𝑥 ) −
𝑢𝑥 ∥. This could also be seen as a form of stochastic variational
inference [Hoffman et al. 2013]. Similar to non-linear transform
coding for auto-encoders, we define the compressed auto-decoder as
the compressive equivalent of the auto-decoder.
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𝑥 𝑥 𝑥

(a) Feature grid

MLP𝜓𝜃 (𝑥, 𝑧)

(b) Index grid into feature codebook 𝐷

𝜓𝜃 (𝑥, 𝑧)

2𝑏

𝑘

𝐷

(c) Soft-index grid. Differentiable lookup by𝐶𝑖 · 𝐷

𝜓𝜃 (𝑥, 𝑧)

2𝑏

𝑘

𝐷

𝐶1

𝐶2 𝐶3

𝐶4

Fig. 3. (a) shows the baseline uncompressed version of our data structure, in which we store the bulky feature vectors at every grid vertex, of which there may
be millions. In (b), we store a compact 𝑏-bit code per vertex, which indexes into a small codebook of feature vectors. This reduces the total storage size, and
this representation is directly used at inference time. This indexing operation is not differentiable; at training time (c), we replace the indices with vectors𝐶𝑖

of width 2𝑏 , to which softmax 𝜎 is applied before multiplying with the entire codebook. This ‘soft-indexing’ operation is differentiable, and can be converted
back to ‘hard’ indices used in (b) through an argmax operation.

Computing the transform with respect to the entire sequence
can be computationally expensive for large sequences. Block-based
transform coding divides the signal 𝑢𝑥 into fixed size chunks of
size 𝑘 . Instead of computing global transform coefficients 𝑣𝑥 = 𝐴𝑢𝑥
with a large 𝑛 × 𝑛 matrix, we can reshape 𝑢𝑥 ∈ R𝑛 into a matrix
𝑈 ∈ R

𝑛
𝑘
×𝑘 . The smaller, block-wise transform 𝐴 ∈ R𝑘×𝑘 is applied

to get block transform coefficients:

𝑉 = 𝑈𝐴

𝑈 = 𝑉𝐴−1 (3)

In the non-linear case, we can use a function 𝑓𝛾 : R𝑘 → R𝑘 to code
individual blocks (rows of the matrix𝑈 ). For further compression,
the rows of𝑈 can be clustered via vector quantization [Gray 1984].
We also compress our feature-grids using methods inspired by block-
based compression, specifically vector quantization.

4 METHOD
We propose the vector-quantized auto-decoder method which uses
the auto-decoder framework with an extra focus on learning com-
pressed representations. The key idea is to replace bulky feature-
vectors with indices into a learned codebook1. These indices, the
codebook, and a decoder MLP network are all trained jointly. See
Fig. 3 for an overview of the method.
By eschewing the encoder function typically used in transform

coding, we are able to learn compressed representations with re-
spect to arbitrary domains, such as the continuous signal that a
coordinate network MLP encodes, even under indirect supervision
(such as training a neural radiance field from images with a volumet-
ric renderer). We give an overview of the compressed auto-decoder
framework in Section 4.1, show how feature-grid compression fits
into the framework in Section 4.2, and discuss our specific imple-
mentation of this framework in Section 4.3.

4.1 Compressed Auto-decoder
In order to effectively apply discrete signal compression to feature-
grids, we leverage the auto-decoder [Park et al. 2019] framework
where only the decoder 𝑓 −1𝛾 is explicitly constructed; performing

1In prior work such as [Takikawa et al. 2021], the feature vectors consumed 512 bits
each; the codebook indices that replace them in this work may be as small as 4 bits.

the forward transform involves solving the following optimization
problem through stochastic gradient descent:

argmin
𝑣𝑥 ,𝛾

∥ 𝑓 −1𝛾 (𝑣𝑥 ) − 𝑢𝑥 ∥. (4)

A strength of the auto-decoder is that it can reconstruct transform
coefficients with respect to supervision in a domain different from
the signal we wish to reconstruct. We define a differentiable forward
map [Xie et al. 2021] as an operator 𝐹 which lifts a signal onto
another domain. Now, we must solve the following problem:

argmin
𝑣𝑥 ,𝛾

∥𝐹 (𝑓 −1𝛾 (𝑣𝑥 )) − 𝐹 (𝑢𝑥 )∥ (5)

For radiance field reconstruction, the signal of interest 𝑢𝑥 is volu-
metric density and plenoptic color, while the supervision is over 2D
images. In this case, 𝐹 represents a differentiable renderer.

4.2 Feature-Grid Compression
The feature grid is a matrix 𝑍 ∈ R𝑚×𝑘 where𝑚 is the size of the
grid and 𝑘 is the feature vector dimension. Local embeddings are
queried from the feature grid with interpolation at a coordinate 𝑥
and fed to a MLP𝜓 to reconstruct continuous signals. The feature
grid is learned by optimizing the following equation:

argmin
𝑍,𝜃

E𝑥,𝑦 ∥𝐹 (𝜓𝜃 (𝑥, interp(𝑥, 𝑍 ))) − 𝑦∥ (6)

where interp represents trilinear interpolation of the 8 feature grid
points surrounding 𝑥 . The forward map 𝐹 is applied to the output of
theMLP𝜓 ; in our experiments, it is a differentiable renderer [Milden-
hall et al. 2020] and 𝑦 are the training image pixels.

The feature grid 𝑍 can be treated as a block-based decomposition
of the signal where each row vector (block) of size𝑘 controls the local
spatial region. Hence, we consider block-based inverse transforms
𝑓 −1𝛾 with block coefficients𝑉 . Since wewant to learn the compressed
features 𝑍 = 𝑓 −1𝛾 (𝑉 ), we substitute 𝑍 :

argmin
𝑉 ,𝜃,𝛾

E𝑥,𝑦 ∥𝐹 (𝜓𝜃 (𝑥, interp(𝑥, 𝑓 −1𝛾 (𝑉 )))) − 𝑦∥ . (7)

Considering the 𝐹 (𝜓 (𝑥, 𝜃, interp(𝑥, 𝑍 ))) as a map which lifts the
discrete signal 𝑍 to a continuous signal where the supervision (and
other operations) are applied, we can see that this is equivalent to a
block-based compressed auto-decoder. This allows us to work only

4
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with the discrete signal 𝑍 to design a compressive inverse transform
𝑓 −1𝛾 for the feature-grid 𝑍 , in our case the vector-quantized inverse
transform to directly learn compressed representations.

4.3 Vector-Quantization
We show how vector quantization can be incorporated into the com-
pressed auto-decoder framework. We define our compressed repre-
sentation𝑉 as an integer vector𝑉 ∈ Z𝑚 with the range [0, 2𝑏 − 1].
This is used as an index into a codebook matrix 𝐷 ∈ R2𝑏 × 𝑘 where
𝑚 is the number of grid points, 𝑘 is the feature vector dimension,
and 𝑏 is the bitwidth. Concretely, we define our decoder function
𝑓 −1
𝐷

(𝑉 ) = 𝐷 [𝑉 ] where [·] is the indexing operation. See Fig. 3(b).
The optimization problem is:

argmin
𝐷,𝑉 ,𝜃

E𝑥,𝑦 ∥𝜓𝜃 (𝑥, interp(𝑥, 𝐷 [𝑉 ])) − 𝑦∥ (8)

Solving this optimization problem is difficult because indexing is a
non-differentiable operation with respect to the integer index 𝑉 .
As a solution, in training we propose to represent the integer

index with a softened matrix 𝐶 ∈ R𝑚×2𝑏 from which the index
vector 𝑉 = argmax𝑖 𝐶 [𝑖] can be obtained from a row-wise argmax.
We can then replace our index lookup with a simple matrix product
and obtain the following optimization problem:

argmin
𝐷,𝐶,𝜃

E𝑥,𝑦 ∥𝜓𝜃 (𝑥, interp(𝑥, 𝜎 (𝐶)𝐷)) − 𝑦∥ (9)

where the softmax function 𝜎 is applied row-wise on the matrix 𝐶 .
This optimization problem is now differentiable. (See Fig. 3(c))

In practice, we adopt a straight-through estimator [Bengio et al.
2013] approach to make the loss be aware of the hard indexing
during training. That is, we use Equation 8 in the forward pass and
Equation 9 in the backward pass. Other choices of approximations
like the Gumbel softmax [Jang et al. 2016] exist, but we empirically
find that straight-through softmax works well.
At storage and inference, we discard the softened matrix 𝐶 and

only store the integer vector 𝑉 . Even without entropy coding, this
gives us a compression ratio of 16𝑚𝑘/(𝑚𝑏 + 𝑘2𝑏 ) which can be
orders of magnitude when 𝑏 is small and𝑚 is large. We generally
observe𝑚 to be in the order of millions, and evaluate 𝑏 ∈ {4, 6} for
our experiments. In contrast to using a hash function [Müller et al.
2022] for indexing, we need to store 𝑏-bit integers in the feature
grid but we are able to use a much smaller codebook (table) due to
the learned adaptivity of the indices.
Rather than a single resolution feature-grid, we arrange 𝑉 in a

multi-resolution sparse octree as in NGLOD [Takikawa et al. 2021],
to facilitate streaming level of detail. Thus, for a given coordinate,
multiple feature vectors 𝑧 are obtained - one from each tree level -
which can then be summed (i.e. in a Laplacian pyramid fashion) or
concatenated before being passed to the MLP. We train a separate
codebook for each level of the tree. Similarly to NGLOD [Takikawa
et al. 2021], we also train multiple levels of details jointly.

5 EXPERIMENTS

5.1 Baseline and Implementation Details
As an uncompressed baseline for our experiments, we implement the
sparsemulti-resolution feature grid architecture inNGLOD [Takikawa

Table 1. Baseline References. This table shows the baseline feature-grid
method (NGLOD-NeRF) in comparison to NeRF and mip-NeRF which are
state-of-the-art global-methods, and Plenoxels which is also a feature-grid
method. We see from the results that NGLOD-NeRF is a strong baseline
with similar quality to both. All floats are half precision.

Method PSNR ↑ SSIM ↑ LPIPS ↓ Storage [fp16]

NeRF 28.28 0.9398 0.0410 2.5 MB
mip-NeRF 31.61 0.9582 0.0214 1.2 MB
Plenoxels 31.38 0.9617 0.0431 ≈ 168 MB
NGLOD-NeRF 32.72 0.9700 0.0379 ≈ 20 MB

Table 2. LRA, VQ vs loss-aware VQ (ours). This table shows the compar-
ison between low-rank approximation (LRA), vector quantization (kmVQ)
and learned vector quantization (ours) at different truncation sizes (for
LRA) and different quantization bitwidths (for kmVQ and ours). We see
that across all metrics we see a significant improvement by learning vector
quantization. The bitrate is data dependent, so we report average bitrate.

Method PSNR ↑ SSIM ↑ Bitrate (CR)

NGLOD-NeRF 32.72 0.9700 20 MB (1.0×)
+ LRA (8f) 29.09 0.9546 10.2 MB (2.0×)
+ LRA (4f) 26.98 0.9387 5.1 MB (4.0×)
+ kmVQ (6 bw) 27.25 0.9322 0.49 MB (40.9×)
+ kmVQ (4 bw) 25.02 0.9112 0.33 MB (61.3×)
Ours (6 bw) 30.76 0.9567 0.49 MB (40.9×)
Ours (4 bw) 30.09 0.9482 0.33 MB (61.3×)

Fig. 4. Post-Process vs. Learned VectorQuantization. We compare ap-
plying k-means vector quantization on the feature grid as a post-processing
after training, vs. learning vector quantization end-to-end with the same
number of codebook entries. We see the k-means quantization has visible
discoloration, whereas ours preserves the visual quality.

et al. 2021] for the task of learning radiance fields from RGB-D input,
with minor modifications to make NGLOD more suitable for this
task (see supplemental materials for more details). Although we
choose NGLOD as our baseline, our method is agnostic to the choice
of data structure in which to store the feature grid.
We initialize NGLOD’s octree with depth maps associated with

each training image. To train without such calibrated depth informa-
tion, we could in principle adopt a coarse-to-fine approach [Liu et al.
2020; Yu et al. 2021], and refine the octree structure during training.
However we do not evaluate this, choosing instead to focus on our
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Fig. 5. Compressing geometry. We show how VQ-AD can compress
signed distance functions as in NGLOD. Our method introduces visible arti-
facts in the normals, however it does result in a significant bitrate reduction.
We also compare against a quantized Draco mesh which has similar bitrates
when entropy coded (2MB as the decompressed binary .ply mesh).

Fig. 6. Qualitative comparison of static and learned indices. We qual-
itatively compare a hash approach with 12 bitwidth codebooks and our
learned indices with 4 bitwidth codebooks which have similar compression
rates. We see that our learned indices are able to reconstruct with less noise.

Table 3. Comparison between random indices and learned indices.
This table shows the effects of learning codebook indices with VQAD at 120
epochs with different quantization bitwidths (bw). To highlight the tradeoff,
we list the size of the indices 𝑉 and codebook 𝐷 separately. We see that
even when storing indices, we are able to achieve higher quality than the
hash-based approach.

Method PSNR ↑ ∥𝑉 ∥ ∥𝐷 ∥ Total BR (CR)

Hash (16 bw) 29.75 0 kB 8388 kB 8400 kB (2.42×)
Hash (14 bw) 28.48 0 kB 2097 kB 2109 kB (9.65×)
Hash (12 bw) 26.66 0 kB 524 kB 536 kB (37.9×)
Hash (10 bw) 23.70 0 kB 131 kB 143 kB (141.9×)
Ours (6 bw) 29.92 477 kB 8 kB 497 kB (40.9×)
Ours (4 bw) 29.60 318 kB 2 kB 332 kB (61.3×)
Ours (2 bw) 27.59 159 kB 0.5 kB 172 kB (118.5×)
Ours (1 bw) 25.57 79 kB 0.3 kB 92 kB (221.2×)

proposed contributions in compression and streaming. Note that the
references we compare against did not use depth during training,
and could benefit from depth supervision [Deng et al. 2021]. These
methods are mainly used only as reference points of quality.

For all evaluations, we use the 10 brick scenes from RTMV dataset
[Tremblay et al. 2022] which has challenging high-complexity assets.
We use the same evaluation scheme and evaluate the results at a
400 × 400 resolution with LPIPS [Zhang et al. 2018] (with VGG),

SSIM [Wang et al. 2004], and PSNR. We list detailed architectural
hyperparameters in the supplemental material. For some figures,
we use our own custom dataset of assets collected from TurboSquid
which we renderered in NViSII [Morrical et al. 2021].

Our reference comparisons with NeRF [Mildenhall et al. 2020],
mip-NeRF [Barron et al. 2021], and Plenoxels [Yu et al. 2021] were
produced using the author’s code using default hyperparameters
and with the same evaluation setting as described previously. Ta-
ble 1 shows a comparison of the reconstruction quality of these
prior methods to our own baseline, uncompressed NGLOD-NeRF.
We are able to achieve comparable quality despite being orders of
magnitudes faster than the global methods. The storage impact for
the feature-grid methods is much higher than the global methods,
motivating our compression technique which we evaluate next.

5.2 Feature Grid Compression
To evaluate the efficacy of the vector-quantized auto-decoder (VQ-
AD) method, we evaluate several different baselines which perform
compression as postprocessing on a trained model. Our first baseline
is low-rank approximation (LRA) through the KLT transform on
individual feature vectors at different truncation sizes (f). Our second
baseline is vector quantization (kmVQ) through k-means clustering
with different numbers of clusters at different quantization bitwidths
(bw). We report their average bitrate (see Table 2) along with their
compression rate with respect to the baseline. All results assume
half-precision (16 bit) floating point numbers and do not use entropy
coding. LRA is not competitive in quality nor compression ratio
compared to the other methods. Figure 4 shows qualitative results
between kmVQ and our method, where kmVQ causes noticeable
discoloration. This is corroborated by the quantitative results which
show kmVQ to be at a significant quality disadvantage, at equal size;
this shows the efficacy of learning the indices during training.

Our VQ-AD method can also be applied in contexts other than fit-
ting radiance fields. Figure 5 shows the original results from NGLOD
which fits truncated signed distance functions (TSDF) alongside the
VQ-AD version. We also compare against Draco [Galligan et al.
2018], which compresses meshes through entropy coding and heavy
quantization of the vertex positions. Our method does introduce visi-
ble high frequency artifacts for TSDFs, but we are able to nonetheless
reduce the bitrate significantly without relying on entropy coding.

5.3 Random vs. Learned Indices
Our codebook learning method can be seen as a special form of the
hash encoding method from Müller et al. [Müller et al. 2022] where
instead of using a fixed hash function to index into the codebook, we
learn the indices and bake them into the grid. Learning the indices
allows adaptive collision resolution which in turn allows the use of
much smaller codebook sizes at the cost of having to store indices.
To evaluate this tradeoff, we implement an equivalent method

to the hash encodings in our NGLOD-NeRF baseline implementa-
tions by simply allocating random indices of range [0, 2𝑏 ] with a
corresponding codebook size. We train this for 120 epochs at several
different bitwidths (bw), and show that learning the indices can use
a much smaller bitwidth than in the random case (see Table 3) at
approximately equal quality. Figure 6 evaluates the visual quality
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Fig. 7. Compressed levels of detail. From left to right: the different mip levels. Top row: mip-NeRF at different cone widths. Although mip-NeRF produces
filtered results, they are constant bitrate. Bottom row: Our multiresolution and vector quantized representation. We are able to simultaneously filter and
compress the representation, making it suitable for progressive streaming and level of detail.

100 kB 1000 kBBitrate
PSNR

22.5

25.0

27.5

30.0

32.5

NGLOD-NeRF

mip-NeRF
Ours (bw-6)

Ours (bw-4)

VQ (bw-6)
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Fig. 8. Rate Distortion Curve. This graph shows the rate-distortion trade-
offs of different methods on the ‘Night Fury’ RTMV scene, where the y-axis
is PSNR and the x-axis is bitrate (in log-scale). Single-bitrate architectures
are represented with a dot. For Mip-NeRF (purple), the filtering mechanism
can move the dot vertically, but not horizontally. Our compressed architec-
ture (red and blue) has variable-bitrate and is able to dynamically scale the
bitrate to different levels of details. Our architecture is more compact than
feature-grid methods like NGLOD (yellow) and achieves better quality than
postprocessing methods like k-means VQ (gray and green).

of the random and learned approaches at roughly equal storage
cost; we see that the random indices based approach has much more
visible noise.

5.4 Streaming Level of Detail
We also showcase our ability to learn compressed multi-resolution
representations which can be used for progressive streaming. Figure
7 shows a visual comparison between the Fourier encoding-based
filtering mechanism from mip-NeRF [Barron et al. 2021] at different
cone radii, in comparison to our multiresolution representation.
Both are able to produce different levels of detail, but our method is
able to also reduce the bitrate accordingly at lower resolutions thus
enabling progressive streaming.
Figure 8 shows the rate-distortion curves for different methods,

including our compressed multi-resolution architecture. The graph
shows that our VQ-AD can achieve orders of magnitudes smaller bi-
trates, without significantly sacrificing quality like post-processing
methods, e.g., kmVQ. The graph highlights that our representa-
tion has variable-bitrate and encodes multiple different resolutions
which can be progressively streamed at different levels of detail.
The memory overhead of our method prevents us from evaluating
higher bitrates and we hope to explore this frontier in future work.

6 CONCLUSION
Simultaneous filtering and compression is an important feature for
real-life graphics systems. We believe that neural rendering [Tewari
et al. 2020, 2021] and neural fields [Xie et al. 2021] will become more
integrated into next generation graphics pipelines, and as such it is
important to design neural representations that are able to perform
the same signal processing operations currently possible with other
representations like meshes and voxels. We believe that our method,
the vector-quantized auto-decoder, is a step forward in that direction
as we demonstrated our method can learn a streamable, compressive
representation with minimal visual quality loss.
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One of the major drawbacks of our presented method is its train-
ing footprint in terms of memory and compute at training time,
which requires the allocation of a matrix of size 𝑚 × 2𝑏 to hold
the softmax coefficients before they are converted into indices at
inference and storage. We believe that this could be addressed via a
hybrid approach between random and learned indices, where instead
of storing softened version of indices, we learn a parametric func-
tion with respect to coordinates which can predict softened indices
on-the-fly. Our approach is also directly compatible with highly
efficient frameworks like instant neural graphics primitives [Müller
et al. 2022] and we believe that the synthesis of these techniques is
a very exciting research direction.
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7 IMPLEMENTATION DETAILS

7.1 Minor Modifications to NGLOD
We follow the open source implementations NGLOD [Takikawa
et al. 2021] architecture available at https://github.com/nv-tlabs/
nglod. Since the original NGLOD architecture was designed for
learning and rendering signed distance functions, we make minor
modifications to make the architecture more suitable for learning
neural radiance fields. First, in NGLOD, the features can only be
queried in the regions where the sparse voxels are allocated for the
given level. This can be an issue for radiance fields, because this
leads to perturbations in the viewpoint causing rapid change in
the voxels being traced, which can cause instability in training and
rendering. Instead, we modify the feature lookup function such that
any location where sparse voxels are allocated for the coarsest level
in the multiresolution hierarchy can be sampled. If while traversing
the tree for a location 𝑥 and the location is no longer allocated in
the tree for finer resolutions, we simply return a vector of zeros
for those levels. In practice, the NGLOD architecture is a sparse
Laplacian pyramid which sums the feature vectors from multiple
levels, so the zeros end up being a no-op, allowing for an efficient
implementation. We also use a single unified MLP which is shared

across all levels instead of using a separate MLP per level as in the
original NGLOD implementation.

7.2 Architectural Hyperparameters
Weuse a feature vector size of 16, concatenatedwith the 3-dimensional
view direction which is positionally encoded to produce an embed-
ded view direction vector of size 27. The feature vectors are stored
on a sparse, multi-resolution grid with resolutions [25, 26, 27, 28].
The concatenated feature vector and embedded view direction cre-
ate a vector of size 43, which is the input to the neural network.
The neural network is a 2-layer network with a single hidden layer
of size 128 and an output dimension of 4 (density and RGB color).
We use the ReLU activation function for the hidden layer, ReLU
activation on the density output, and sigmoid activation on the RGB
color output. We initialize the feature grid with normally distributed
samples with a standard deviation of 0.01. Our implementation for
volumetric integration uses 16 samples for each voxel that was in-
tersected by each ray, and thus our implementation could benefit
(in compute) from an early termination scheme. Because this cre-
ates a variable number of voxels and samples per ray, we cannot
use standard PyTorch operations to integrate them, and as such we
use custom packed CUDA primitives for volumetric integration to
process them. We implemented everything with PyTorch [Paszke
et al. 2019], custom CUDA kernels, and the differentiable rendering
primitives from the Kaolin library [Jatavallabhula et al. 2019].

7.3 Other training details
The point cloud to initialize the sparse NGLOD grid is generated by
taking the ray origins and ray directions for the ground truth camera
parameters and adding the directions multiplied by depth (pixel-
wise) to the origins to produce a point cloud. We then normalize
this point cloud within a normalize cube with range [−1, 1]. We
apply this same normalization factors to the ray origins such that
the cameras are aligned. We store the normalization scale and offset
in the model to use consistent offsets at validation time.
All optimizations and evaluations are performed in SRGB space.

We downscale the images using area-weighted bilinear interpolation
implemented in OpenCV. On the ground truth images, we premul-
tiply the alphas to remove the boundary artifacts. Training on the
baselines were trained for 600 epochs (unless otherwise noted) with
a batch size of 4096 with a learning rate of 0.001 with the Adam
optimizer. We scale the learning rate of the feature grid by 100 which
we find to be important for performance. We performed some minor
experiments with TV regularizations as in Plenoxels [Yu et al. 2021]
however we found the effects to be minimal and as such we did not
use them.
To train multiple levels of details, we follow a similar strategy

to NGLOD [Takikawa et al. 2021] where we train multiple level of
details with a single model. Whereas in NGLOD they sum the loss
function from all levels and train them simultaneously, we instead
randomly sample a level of detail per batch. We sample levels from
a distribution where each level of detail (starting from the coarsest
level) has a 2x more likely chance of being sampled compared to
the previous level. We also find that only sampling the finest level
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of detail also manages to learn some level of detail effects, although
at compromised quality for the lower levels of detail.

8 OTHER EXPERIMENTAL DETAILS

8.1 Training and Inference Speeds
Since the timings for both training and inference depends on the
model, we will report timings for the Night Fury model on an RTX
8000. We make a note that we do not utilize any optimizations like
early stopping which we expect will make a large impact on the
training and inference performance.

8.1.1 Inference. Inference runs at around 15 FPS at 720p with 8 GB
memory for both the uncompressed NGLOD-NeRF baseline and our
compressed version (4,6 bitwidth). We expect that the compressed
version could be faster with an optimized implementation that uti-
lizes cache better (as showcased by Instant NGP [Müller et al. 2022]).
These numbers are heavily influenced by viewpoints, batching, and
other implementation choices.

8.1.2 Training. Training for 600 epochs takes around 20minutes for
the uncompressed model and around 40 minutes for the compressed
model. Both achieve reasonable PSNR (30+) within 50 epochs, which

takes around 2 minutes for the uncompressed model and around 4
minutes for the compressed model. These numbers assume there is
no extra logging, debug rendering, model checkpoint, etc happening.
The peak memory used during training is 8 GB for the uncom-

pressed model, 8 GB for the 4 bitwidth compressed model, and 18
GB for the 6 bitwidth compressed model. While the memory usage
in training is high (as noted in the limitation section of the paper),
the memory usage for inference is not affected.

8.2 Entropy Coding
In the experiments in the main paper, we do not use any entropy
coding. If we do use entropy coding (gzip) on the uncompressed
NGLOD-NeRF weights, we get a 7% reduction in size. Using entropy
coding on the compressed weights yields a 4% reduction in size.
We generally find that the trained indices are somewhat uniformly
distributed, leading to smaller gains made by entropy coding.
To make entropy coding more effective, we can apply entropy

minimization on the softmax weights in training as a regularization.
This can give up to a 56% reduction in size through entropy coding,
but at the cost of a large quality drop. Entropy coding also precludes
streaming.
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