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Abstract. Consideration of preference-orders requires the use of an extended 
rough set model called Dominance-based Rough Set Approach (DRSA). The 
rough approximations defined within DRSA are based on consistency in the 
sense of dominance principle. It requires that objects having not-worse 
evaluation with respect to a set of considered criteria than a referent object 
cannot be assigned to a worse class than the referent object. However, some 
inconsistencies may decrease the cardinality of lower approximations to such an 
extent that it is impossible to discover strong patterns in the data, particularly 
when data sets are large. Thus, a relaxation of the strict dominance principle is 
worthwhile. The relaxation introduced in this paper to the DRSA model admits 
some inconsistent objects to the lower approximations; the range of this 
relaxation is controlled by an index called consistency level. The resulting 
model is called variable-consistency model (VC-DRSA). We concentrate on the 
new definitions of rough approximations and their properties, and we propose a 
new syntax of decision rules characterized by a confidence degree not less than 
the consistency level. The use of VC-DRSA is illustrated by an example of 
customer satisfaction analysis referring to an airline company. 

1. Introduction 

Rough sets theory introduced by Pawlak [6] is an approach for analysing information 
about objects described by attributes. It is particularly useful to deal with 
inconsistencies of input information caused by its granularity. The original rough set 
approach does not consider, however, the attributes with preference-ordered domains, 
i.e. criteria. Nevertheless, in many real-life problems the ordering properties of the 
considered attributes play an important role. For instance, such features of objects as 
product quality, market share, debt ratio are typically treated as criteria in economical 
problems. Motivated by this observation, Greco, Matarazzo and Slowinski [1,3] 
proposed a generalisation of the rough set approach to problems where ordering 
properties should be taken into account. Similarly to the original rough sets, this 
approach is based on approximations of partitions of the objects into pre-defined 
categories, however, differently to the original model, the categories are ordered from 
the best to the worst and the approximations are constructed using a dominance 
relation instead of an indiscernibility relation. The considered dominance relation is 



built on the basis of the information supplied by criteria. The new Dominance-based 
Rough Set Approach (DRSA) was applied to solve typical problems of Multiple-
Criteria Decision Aiding (MCDA), i.e. choice, ranking and sorting (see e.g. [1,3]).  

In this paper, we consider a variant of DRSA used to multiple-criteria sorting 
problems, which concerns an assignment of objects evaluated by a set of criteria to 
some pre-defined and preference-ordered decision classes. In this variant of DRSA, 
the sets to be approximated with the dominance relation are, so-called, upward and 
downward unions of decision classes. There are known encouraging results of its 
applications, e.g. to evaluation of bankruptcy risk [2]. 

The analysis of large real-life data tables shows, however, that for some multiple-
criteria sorting problems the application of DRSA identifies large differences between 
lower and upper approximations of the unions of decision classes and, moreover, 
rather weak decision rules, i.e. supported by few objects from lower approximations. 
The reason is that inconsistency, in the sense of dominance principle, between objects 
x and y assigned to very distant classes, h and t, respectively, (x dominates y, while 
class h is worse than t) causes inconsistency (ambiguity) also with all objects 
belonging to intermediate classes (from h to t) and dominated by x. In such cases it 
seems reasonable to relax the conditions for assignment of objects to lower 
approximations of the unions of decision classes. Classically, only non-ambiguous 
objects can be included in lower approximations. The relaxation will admit some 
ambiguous objects as well; the range of this ambiguity will be controlled by an index 
called consistency level. The aim of this article is to present a generalization of DRSA 
to variable consistency model (VC-DRSA).  

This kind of relaxation has been already considered within the classical 
indiscernibility-based rough set approach, by means of so-called variable precision 
rough set model (VPRS) [11]. VPRS allows defining lower approximations accepting 
a limited number of counterexamples controlled by pre-defined level of certainty.  

The paper is organized as follows. In section 2, main concepts of VC-DRSA are 
introduced, including rough approximations, approximation measures and decision 
rules. An illustrative example presented in section 3 refers to a real problem of 
customer satisfaction analysis in an airline company. The final section groups 
conclusions. 

2. Variable Consistency Dominance-based Rough Set Approach (VC-
DRSA) 

For algorithmic reasons, information about objects is represented in the form of an 
information table. The rows of the table are labelled by objects, whereas columns are 
labelled by attributes and entries of the table are attribute-values. Formally, by an 
information table we understand the 4-tuple S=<U,Q,V,f>, where U is a finite set of 
objects, Q is a finite set of attributes, U

Qq
qVV

∈
=  and V q  is a domain of the attribute 

q, and f:U×Q→V is a total function such that f(x,q)∈Vq for every q∈Q, x∈U, called an 
information function [6]. The set Q is, in general, divided into set C of condition 
attributes and set D of decision attributes. 



Assuming that all condition attributes q∈C are criteria, let fq  be an weak 
preference relation  on U with respect to criterion q such that xfq y means “x is at 
least as good as y with respect to criterion q”. We suppose that fq  is a total preorder, 
i.e. a strongly complete and transitive binary relation, defined on U on the basis of 
evaluations f(⋅,q). 

Furthermore, assuming that the set of decision attributes D (possibly a singleton 
{d}) makes a partition of U into a finite number of decision classes, let Cl={Clt, t∈T}, 
T={1,...,n}, be a set of these classes such that each x∈U belongs to one and only one 
class Clt∈Cl. We suppose that the classes are preference-ordered, i.e. for all r,s∈T, 
such that r>s, the objects from Clr are preferred to the objects from Cls. The above 
assumptions are typical for consideration of a multiple-criteria sorting problem. 

The sets to be approximated are called upward union and downward union of 
classes, respectively:  

U
ts

st ClCl
≥

≥ = ,   U
ts

st ClCl
≤

≤ = ,   t=1,...,n. 

The statement Clx t
≥∈  means “x belongs at least to class Clt”, while Clx t

≤∈  
means “x belongs at most to class Clt”. 

Let us remark that Cl≥1 = Cln
≤ =U, Cln

≥ =Cln and Cl≤1 =Cl1. Furthermore, for 
t=2,...,n, we have: 

Clt
≤
−1 =U- Clt

≥   and  Clt
≥ =U- Clt

≤
−1 . 

The key idea of rough sets is approximation of one knowledge by another 
knowledge. In classical rough set approach (CRSA), the knowledge approximated is a 
partition of U into classes generated by a set of decision attributes; the knowledge 
used for approximation is a partition of U into elementary sets of objects that are 
indiscernible by a set of condition attributes. The elementary sets are seen as 
“granules of knowledge” used for approximation. 

In DRSA approach, where condition attributes are criteria and classes are 
preference-ordered, the knowledge approximated is a collection of upward and 
downward unions of classes and the “granules of knowledge” are sets of objects 
defined using a dominance relation instead of an indiscernibility relation. This is the 
main difference between CRSA and DRSA. Let us define now the dominance 
relation. 

We say that x dominates y with respect to P⊆C, denoted by xDPy, if  xfq y  for all 
q∈P.  Given P⊆C and x∈U, the “granules of knowledge” used for approximation in 
DRSA are: 

- a set of objects dominating x, called P-dominating set, DP
+ (x)={y∈U: yDPx}, 

- a set of objects dominated by x, called P-dominated set, DP
− (x)={y∈U: xDPy}. 

For any P⊆C we say that x∈U belongs to ≥
tCl with no ambiguity at consistency 

level l∈(0, 1], if x∈ ≥
tCl  and at least l∗100% of all objects y∈U dominating x with 

respect to P also belong to ≥
tCl , i.e. 
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The level l is called consistency level because it controls the degree of consistency 
between objects qualified as belonging to ≥

tCl  without any ambiguity. In other 
words, if l<1, then (1-l)∗100% of all objects y∈U dominating x with respect to P do 
not belong to ≥

tCl and thus contradict the inclusion of x in ≥
tCl . 

Analogously, for any P⊆C we say that x∈U belongs to Clt
≤  with no ambiguity at 

consistency level l∈(0, 1], if x∈Clt
≤  and at least l∗100% of all the objects y∈U 

dominated by x with respect to P also belong to Clt
≤ , i.e.  

( )( )
( )( )xDcard

ClxDcard

P

tP
−

≤− ∩
≥l. 

Thus, for any P⊆C, each object x∈U is either ambiguous or non-ambiguous at 
consistency level l with respect to the upward union ≥

tCl  (t=2,...,n) or with respect to 

the downward union ≤
tCl  (t=1,...,n -1). 

The concept of non-ambiguous objects at some consistency level l leads naturally 
to the definition of P-lower approximations of the unions of classes ≥

tCl  and ≤
tCl  . 
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Given P⊆C and consistency level l, we can define the P-upper approximations of 

Clt
≥  and ≤

tCl , denoted by ( )≥tl ClP  and ( )≤tl ClP , by complementation of  ( )≤
−1t

l ClP  

and ( )≥
+1t

l ClP with respect to U: 

( )≥tl ClP =U - ( )≤
−1t

l ClP  , ( )≤tl ClP =U - ( )≥
+1t

l ClP . 

( )≥tl ClP  can be interpreted as the set of all the objects belonging to Clt
≥ , possibly 

ambiguous at consistency level l. Analogously, ( )≤tl ClP  can be interpreted as the set 
of all the objects belonging to Clt

≤ , possibly ambiguous at consistency level l. The P-

boundaries (P-doubtful regions) of ≥
tCl  and ≤

tCl  are defined as:  

BnP( ≥
tCl )= ( )≥tl ClP - ( )≥tl ClP ,     BnP( ≤

tCl )= ( )≤tl ClP - ( )≤tl ClP ,   for t=1,...,n. 

The variable consistency model of the dominance-based rough set approach provides 
some degree of flexibility in assigning objects to lower and upper approximations of 
the unions of decision classes. It can easily be demonstrated that for 0<l’<l≤1 and 
t=2,...,n,  

( )≥tl ClP  ⊆ ( )≥t'l ClP     and    ( )≥t'l ClP  ⊆ ( )≥tl ClP . 



The variable consistency model is inspired by Ziarko’s model of the variable 
precision rough set approach [11,12], however, there is a significant difference in the 
definition of rough approximations because ( )≥tl ClP  and ( )≥tl ClP  are composed of 
non-ambiguous and ambiguous objects at consistency level l, respectively, while 
Ziarko’s ( )t

l ClP  and ( )t
l ClP  are composed of P-indiscernibility sets such that at 

least l∗100% of these sets are included in tCl or have an non-empty intersection with 

tCl , respectively. If one would like to use Ziarko’s definition of variable precision 
rough approximations in the context of multiple-criteria sorting, then the P-
indiscernibility sets should be substituted by P-dominating sets ( )xDP

+ , however, then 
the notion of ambiguity that naturally leads to the general definition of rough 
approximations (see [9]) looses its meaning. Moreover, bad side effect of a direct use 
of Ziarko’s definition is that a lower approximation ( )≥tl ClP  may include objects y 

assigned to hCl , where h is much less than t, if y belongs to ( )xDP
+  that was included 

in ( )≥tl ClP . When the decision classes are preference ordered, it is reasonable to 
expect that objects assigned to far worse classes than the considered union are not 
counted to the lower approximation of this union. 

Furthermore, the following properties can be proved: 
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2)  ( )≥tl ClP  ⊆ Clt
≥  ⊆ ( )≥tl ClP ,   ( )≤tl ClP  ⊆ Clt

≤
 ⊆ ( )≤tl ClP . 

Due to complementarity of the rough approximations [3], also the following property 
holds: 

BnP( ≥
tCl ) = BnP( ≤

−1tCl ),  for t=2,...,n,   and  BnP( ≤
tCl ) = BnP( ≥

+1tCl ),  for t=1,...,n-1. 

For every t∈T and for every P⊆C we define the quality of approximation of partition 
Cl by set of criteria P, or in short, quality of sorting: 
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The quality expresses the ratio of all P-correctly sorted objects to all objects in the 
table.  

Each minimal subset P⊆C such that ( )ClPγ = ( )ClCγ  is called a reduct of Cl and 
denoted by ClRED . Let us remark that an information table can have more than one 
reduct. The intersection of all reducts is called the core and denoted by ClCORE . 

Let us remind that the dominance-based rough approximations of upward and 
downward unions of classes can serve to induce a generalized description of objects 
contained in the information table in terms of “if..., then...” decision rules. For a given 
upward or downward union of classes, ≥

tCl  or ≤
sCl , the decision rules induced under 

a hypothesis that objects belonging to ( )≥tl ClP  (or ( )≤sl ClP ) are positive and all the 
others negative, suggest an assignment to “at least class Clt” (or to “at most class 
Cls”). They are called D≥- (or D≤) certain decision rules because they assign objects 
to classes without any ambiguity. Next, if upper approximations differ from lower 
approximations, another kind of decision rules can be induced under the hypothesis 
that objects belonging to ( )≥tl ClP  (or to ( )≤sl ClP ) are positive and all the others 
negative. These rules are called D≥- (or D≤) possible decision rules suggesting that an 
object could belong to "at least class ≥

tCl " (or "at most class  ≤
sCl "). Yet another 

option is to induce D≥≤-approximate decision rules from the intersection 
)()( ≥≤ ∩ t

l
s

l ClPClP  instead of possible rules. For more discussion see [8]. 
Within VC-DRSA, decision rules are induced from examples belonging to 

extended approximations. So, it is necessary to assign to each decision rules an 
additional parameter α, called confidence of the rule. It controls the discrimination 
ability of the rule. 

Assuming that for each q∈C, Vq⊆R (i.e. Vq is quantitative) and that for each x,y∈
U, f(x,q)≥f(y,q) implies xfq y (i.e. Vq is preference-ordered), the following two basic 
types of variable-consistency decision rules can be considered: 

1)    D≥-decision rules with the following syntax: 

if  f(x,q1)≥rq1 and  f(x,q2)≥rq2 and …f(x,qp)≥rqp, then  x∈Clt
≥   with confidence α,  

where P={q1,...,qp}⊆C, (rq1,...,rqp)∈Vq1×Vq2×...×Vqp and t∈T;  

2)    D≤-decision rules with the following syntax: 

if  f(x,q1)≤rq1 and f(x,q2)≤rq2 and ... f(x,qp)≤rqp, then  x∈Clt
≤   with confidence α, 

where P={q1,...,qp}⊆C, (rq1,...,rqp)∈Vq1×Vq2×...×Vqp and t∈T;  

We say that an object supports a decision rule if it matches both condition and 
decision parts of the rule. On the other hand, an object is covered by a decision rule if 



it matches the condition part of the rule. More formally, given a D≥-rule ρ :  if  
f(x,q1)≥rq1 and  f(x,q2)≥rq2 and …f(x,qp)≥rqp, then  x∈Clt

≥ , an object y∈U supports 
decision rule ρ iff f(y,q1)≥rq1 and  f(y,q2)≥rq2 and … f(y,qp)≥rqp and  y∈Clt

≥ , while y is 
covered by ρ iff f(y,q1)≥rq1 and  f(y,q2)≥rq2 and … f(y,qp)≥rqp. Similar definitions hold 
for D≤-decision rules. 

Let Cover(ρ) denote the set of all objects covered by the rule ρ. Thus, the 

confidence α of D≥-decision rule ρ is defined as: 
( )( )

( ))(ρ
ρ

Covercard
ClCovercard t

≥∩
. For D≤-

decision rule the confidence is defined in a similar way.  
Let us remark that the decision rules are induced from P-lower approximations 

whose composition is controlled by user-specified consistency level l. In 
consequence, the value of confidence α for the rule should be constrained from the 
bottom. It seems reasonable to require that the smallest accepted confidence of the 
rule should not be lower than the currently used consistency level l. Indeed, in the 
worst case, some objects from the P-lower approximation may create a rule using all 
criteria from P thus giving a confidence α≥l. The user may have a possibility of 
increasing this lower bound for confidence of the rule but then decision rules may not 
cover all objects from the approximations. 

Moreover, we require that each decision rule is minimal. Since a decision rule is an 
implication, by a minimal decision rule we understand such an implication that there 
is no other implication with an antecedent of at least the same weakness (in other 
words, rule using a subset of elementary conditions or/and weaker elementary 
conditions) and a consequent of at least the same strength (in other words, rule 
assigning objects to the same union or sub-union of classes) with a not worse 
confidence α≥l. 

Consider a D≥-decision rule "if  f(x,q1)≥rq1 and  f(x,q2)≥rq2 and …f(x,qp)≥rqp, then  

x∈Clt
≥ " with confidence α. If there exists an object y∈ ( )≥tl ClP , P={q1, q2, …, qp} 

and l≤α, such that f(y,q1)=rq1 and  f(y,q2)=rq2 and …f(y,qp)=rqp, then y is called basis 
of the rule. Each D≥-decision rule having a basis is called robust because it is 
"founded" on an object existing in the data table. Analogous definition of robust 
decision rules holds for D≤-decision rules. 

The induction of variable-consistency decision rules can be done using properly 
modified algorithms proposed for DRSA. Let us remind that in DRSA, decision rules 
should have confidence equal to 1. The key modification of rule induction algorithms 
for VC-DRSA consists in accepting as rules such conjunctions of elementary 
conditions that yield confidence α≥l. Let us also notice that different strategies of rule 
induction could be used [10]. For instance, one can wish to induce a minimal and 
complete set of rules covering all input examples, or all minimal rules, or a subset of 
rules satisfying some user’s pre-defined requirements, e.g. generality or support. The 
details of one of the rule induction algorithms for VC-DRSA can be found in [4]. 



3. Illustrative  example 

Let us illustrate the above concepts on a didactic example. The example refers to a 
real problem of customer satisfaction analysis [7] in an airline company. The 
company has diffused a questionnaire to its customers in order to get opinion about 
the quality of its services. Among the questions of the questionnaire there are three 
items concerning specific aspects of the aircraft comfort: space for hand luggage (q1), 
seat width (q2) and leg room (q3). Moreover, there is also a question about an overall 
evaluation of the aircraft comfort (d). A customer's answer on each of these questions 
gives an evaluation on a three grade ordinal scale: poor, average, good.  

The data table contains 50 objects (questionnaires) described by the set C={q1, q2, 
q3} of 3 criteria corresponding to the considered aspects of the aircraft comfort and 
the overall evaluation D={d}. All criteria are to be maximized. The scale of criteria is 
number-coded: 1=poor, 2=average, 3=good. The overall evaluation d creates three 
decision classes, which are preference-ordered according to increasing class number, 
i.e. Cl1=poor, Cl2=average, Cl3=good. The analysed data are presented in Table 1. 

Table 1. Customer satisfaction data table 
Cust. q1 q2 q3 d  Cust. q1 q2 q3 d 
1 1 3 2 2  26 2 2 1 2 
2 1 3 1 1  27 1 2 2 1 
3 3 3 1 1  28 3 2 2 2 
4 3 3 2 3  29 1 3 2 2 
5 3 1 3 1  30 2 3 1 2 
6 2 3 1 2  31 1 1 1 1 
7 2 1 2 2  32 1 2 2 2 
8 1 1 3 2  33 3 1 1 1 
9 2 3 3 3  34 2 2 1 2 
10 3 3 1 1  35 3 2 1 2 
11 1 3 3 2  36 2 2 2 2 
12 2 1 1 2  37 1 1 2 1 
13 1 1 1 1  38 3 1 2 2 
14 1 3 3 3  39 3 3 1 1 
15 1 1 1 1  40 1 1 1 1 
16 2 2 3 2  41 3 1 1 1 
17 2 1 1 2  42 1 2 1 1 
18 1 2 3 2  43 1 3 2 2 
19 3 2 1 3  44 3 1 2 1 
20 2 2 2 1  45 2 2 3 1 
21 2 3 3 3  46 3 2 2 1 
22 1 2 3 2  47 2 1 3 1 
23 3 2 2 2  48 1 2 2 3 
24 2 2 1 2  49 2 2 3 3 
25 1 3 1 1  50 3 3 3 3 

 
The marketing department of the airline company wants to analyse the influence of 

the three specific aspects on the overall evaluation of the aircraft comfort. Thus, a 



sample of questionnaires was analysed using VC-DRSA. As the decision classes are 
ordered, the following downward and upward unions of classes are to be considered:  

at most poor: ≤
1Cl = {2,3,5,10,13,15,20,24,25,27,31,33,37,39,40,41,42,44,45,46,47},  

at most average: ≤
2Cl ={1,2,3,5,6,7,8,10,11,12,13,15,16,17,18,20,22,23,24,25,26,27, 

28,29,30,31, 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47};  
at least average: ≥

2Cl ={1,4,6,7,8,9,11,12,14,16,17,18,19,21,22,23,26,28,29,30,32, 
34,35,36,38,43,48,49,50}, 

at least good - ≥
3Cl ={4,9,14,19,21,48,49,50}. 

Let us observe that in the data table there are several inconsistencies. For instance, 
object #3 dominates object #6, because its evaluations on all criteria q1, q2, q3 are not 
worse, however, it is assigned to the decision class Cl1 worse than Cl2 to which 
belongs object #6. This means that the customer #3 gave an evaluation for all the 
considered aspects not worse than the evaluation given by customer # 6 and, on 
another hand, customer #3 gave an overall evaluation of the aircraft comfort worse 
than the overall evaluation of customer #6. There are 99 inconsistent pairs in the data 
table violating the dominance principle in this way. 

The data table has been analysed by VC-DRSA assuming the confidence level 
l=0.8. In this case, the approximations of upward and downward unions of decision 
classes are the following (the objects present in the lower approximations obtained for 
confidence level l=1 are in bold): 

)( 1
8.0 ≤ClC ={2,13,15,25,31,37,40,42}, 

)( 1
8.0 ≤ClC ={2,3,5,6,7,8,10,12,13,15,17,19,20,24,25,26,27,30,31,33,34,35,36,37,38, 

39,40,41,42,43,44,45,46,47}, 
)( 1

8.0 ≤ClBnC ={3,5,6,7,8,10,12,17,19,20,24,26,27,30,33,34,35,36,38,39,40,41,43,44, 
45,46,47}; 

)( 2
8.0 ≤ClC ={1,2,3,5,6,7,8,10,11,12,13,15,16,17,18,20,22,23,24,25,26,27,28,29,30,31,

32,33,34,35,36,37,38,39,40,41, 42,43,44,45,46,47}, 

)( 2
8.0 ≤ClC ={1,2,3,5,6,7,8,10,11,12,13,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,

31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49},  
)( 2

8.0 ≤ClBnC ={19,48,49}; 

)( 2
8.0 ≥ClC ={1,4,9,11,14,16,18,21,22,23,28,29,32,48,49,50},  

)( 2
8.0 ≥ClC ={1,3,4,5,6,7,8,9,10,11,12,14,16,17,18,19,20,21,22,23,24,26,272,28,29,30,

32,33,34,35,36,38,39,40,41,43, 44,45,46,47, 48,49,50},  
)( 2

8.0 ≥ClBnC ={3,5,6,7,8,12,17,19,20,24,26,27,30,33,34,35,36,38,39,40,41,43, 
44,45,46,47}; 

)( 3
8.0 ≥ClC ={4,9,14,21,50}, 

)( 3
8.0 ≥ClC ={4,9,14,19,21,48,49,50},  

)( 3
8.0 ≥ClBnC ={19,48,49}. 



The set of all robust decision rules having a confidence level α≥0.8 was induced 
from the above approximations. Let us remark that rules having confidence α=1 are 
the same as obtained with the DRSA rule induction algorithm. The induced rules are 
listed below: 

Rule 1. if (f(x,q1) ≤1) and (f(x,q2) ≤1), then x∈ ≤
1Cl     [α=.83]   

Rule 2. if (f(x,q1) ≤1) and (f(x,q3) ≤1), then x∈ ≤
1Cl     [α=1]   

Rule 3. if (f(x,q1) ≤1) and (f(x,q2) ≤1) and (f(x,q3) ≤2), then x∈ ≤
1Cl    [α=1]   

Rule 4. if ((f(x,q1) ≤1), then x∈ ≤
2Cl     [α=0.89]              

Rule 5. if ((f(x,q1) ≤2), then x∈ ≤
2Cl      [α=0.85]       

Rule 6. if ((f(x,q2) ≤2), then x∈ ≤
2Cl      [α=0.91]       

Rule 7. if ((f(x,q2) ≤1), then x∈ ≤
2Cl      [α=1]       

Rule 8. if (f(x,q1) ≤2) and (f(x,q2) ≤2), then x∈ ≤
2Cl       [α=0.92]    

Rule 9. if ((f(x,q3) ≤2), then x∈ ≤
2Cl      [α=0.92]     

Rule 10. if ((f(x,q3) ≤1), then x∈ ≤
2Cl      [α=0.95]      

Rule 11. if (f(x,q1) ≤2) and (f(x,q3) ≤1), then x∈ ≤
2Cl     [α=1]      

Rule 12. if (f(x,q1) ≤2) and (f(x,q3) ≤2), then x∈ ≤
2Cl      [α=0.96]    

Rule 13. if (f(x,q2) ≤2) and (f(x,q3) ≤2), then x∈ ≤
2Cl      [α=0.93]    

Rule 14. if (f(x,q2)≥2) and (f(x,q3)≥2), then x∈ ≥
2Cl      [α=0.82]    

Rule 15. if (f(x,q2)≥3) and (f(x,q3)≥2), then x∈ ≥
2Cl      [α=1]     

Rule 16. if (f(x,q2)≥2) and (f(x,q3)≥3), then x∈ ≥
2Cl      [α=0.9]      

Rule 17. if (f(x,q1)≥3) and (f(x,q2)≥2) and (f(x,q3)≥2), then x∈ ≥
2Cl     [α=0.83]    

Rule 18. if (f(x,q2)≥3) and (f(x,q3)≥3), then x∈ ≥
3Cl       [α=0.8]     

Rule 19. if (f(x,q1)≥3) and (f(x,q2)≥3) and (f(x,q3)≥2), then x∈ ≥
3Cl      [α=1]    

Rule 20. if (f(x,q1)≥2) and (f(x,q2)≥3) and (f(x,q3)≥3), then x∈ ≥
3Cl      [α=1]   

   
Managers of the airline company appreciated the easy verbal interpretation of the 

above rules. For example rule 16 says that if seat width is at least average and leg 
room is (at least) good, then the overall evaluation of the comfort is at least average 
with a confidence of 90%, independently of the space for hand luggage. This rule 
covers 10 examples, i.e. 20% of all questionnaires. Let us remark that such a strong 
pattern would not be discovered by DRSA because of one negative example (#45) 
being inconsistent with four other positive examples (#16,18,22,49).  

Let us remark that relaxation of the confidence level has at least the following two 
positive consequences: 
1) it enlarges lower approximations, permitting to regain many objects that were 

inconsistent with some marginal objects from outside of the considered union of 



classes: for instance six objects, #16,18,22,32,48,49, inconsistent with object #45 
entered the lower approximation )( 2

8.0 ≥ClC ; 
2) it discovers strong rule patterns that did not appear when the dominance was 

strictly observed in rule induction: for instance rule 16 above. 

The above aspects are very useful when dealing with large real data sets, which is 
usually the case of customer satisfaction analysis. 

4. Conclusions 

The relaxation of the dominance principle introduced in the dominance-based 
rough set approach results in a more flexible approach insensitive to marginal 
inconsistencies encountered in data sets. The variable-consistency model thus 
obtained maintains all basic properties of the rough sets theory, like inclusion, 
monotonicity with respect to supersets of criteria and with respect to the consistency 
level. The rough approximations resulting from this model are the basis for 
construction of decision rules with a required confidence. The variable-consistency 
model is particularly useful for analysis of large data sets where marginal 
inconsistencies may considerably reduce the lower approximations and prevent 
discovery of strong rule patterns. 
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