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ABSTRACT 

The Open Periodic Vehicle Routing Problem with Time 
Windows (OPVRPTW) is a practical transportation 
routing and scheduling problem arising from real-world 
scenarios. It shares some common features with some 
classic VRP variants. The problem has a tightly 
constrained large-scale solution space and requires well-
balanced diversification and intensification in search. In 
Variable Depth Neighbourhood Search, large 
neighbourhood depth prevents the search from trapping 
into local optima prematurely, while small depth 
provides thorough exploitation in local areas. 
Considering the multi-dimensional solution structure and 
tight constraints in OPVRPTW, a Variable-Depth 
Adaptive Large Neighbourhood Search (VD-ALNS) 
algorithm is proposed in this paper. Contributions of four 
tailored destroy operators and three repair operators at 
variable depths are investigated. Comparing to existing 
methods, VD-ALNS makes a good trade-off between 
exploration and exploitation, and produces promising 
results on both small and large size benchmark instances. 

 
Keywords: adaptive large neighbourhood search, 
variable depth neighbourhood search, open periodic 
vehicle routing problem with time windows, 
metaheuristic  

 
1. INTRODUCTION 
Vehicle Routing Problem (VRP) is a well-studied topic 
in Operational Research, and has a large number of 
variants. In the classic model of Vehicle Routing 
Problem with Time Windows (VRPTW) (Solomon 
1987) starting from a depot, a fleet of vehicles visits a 
number of customers satisfying the time constraints. The 
depot and customers visited compose a route of a vehicle. 
The total demands on the route cannot exceed the 
vehicle’s capacity. All vehicles have to return to the 
depot within the planning horizon (so called a close route 
(Hamilton Cycle) (Tarantilis et al. 2005)). The objective 
of VRPTW is to minimize the total cost of all routes (e.g., 
travel distance, and the number of vehicles used). 
Derived from various real-world problems, a large 
number of extended VRP models are proposed with 

various Side Constraints to VRPTW (e.g. driver working 
hour regulations, demand type, vehicle type and 
customer preference), or combined with other problems 
(e.g. inventory routing problem (Coelho, Cordeau and 
Laporte 2014)), while both exact approaches and 
heuristic algorithms are heavily studied (Toth and Vigo 
2001). 
 
1.1. Variants of Vehicle Routing Problem 

The problem model in our study is related to three 
classical VRP variants. In Vehicle Routing Problem with 
Pickups and Deliveries (Golden et al. 2008), customers 
have pickup and delivery demands. Each vehicle picks 
up goods from a number of pickup points, then delivers 
them to the appointed destinations within the associated 
time windows. In Less-than Truckload Transportation 
problem, goods delivered can be consolidated; 
otherwise, it is a Full Truckload Transportation problem 
(Wieberneit 2008). 

In Multi-Period Vehicle Routing Problem, the 
service to a customer could be performed over a multi-
period horizon (Mourgaya and Vanderbeck 2007).  
Especially in grocery distribution, soft drink industry and 
waste collection, goods are delivered at a specified 
service frequency for customers over a multi-period 
horizon. In this so-called Periodic Vehicle Routing 
Problem (Eksioglu et al. 2009), the objective is to 
minimize the total cost of vehicles routing on all 
workdays servicing all customers. 

To reduce cost, in practice many companies hire 
external carriers via third party logistic providers, instead 
of having their own fleet. Those hired vehicles do not 
return to the starting depot after completing the tasks, so 
all routes end at the last customers serviced. The routes 
are called open routes (Hamilton Paths instead of 
Hamilton Cycles) in Open VPRs, first proposed by 
Eppen and Schrage (1981). 
 
1.2. Existing Methods 

As a well-known NP-hard problem (Toth and Vigo 
2001), VRPs have been investigated by a huge number 
of exact methods and heuristic algorithms. Exact 
methods guarantee optimality (Baldacci et al. 2012), 
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however, become unrealistic when solving larger scale 
real-world problems with complex constraints (El-
Sherbeny 2010). Heuristic and Metaheuristic algorithms 
generate good approximations of optimal solutions in an 
acceptable computational time and have made great 
achievements in solving large-scale VRPs in the last 
three decades (Bräysy and Gendreau 2001).   

Population-Based Metaheuristics evolve improved 
solutions in populations and have shown high-
performance on problems such as multi-objective 
problems (Lourens 2005, Ghoseiri and Ghannadpour 
2010). However, when facing high-dimensional complex 
solution structures and large problem size in real-world 
problems, they could be intractable. For the large scale 
and highly constrained problem in this study, we focus 
on single solution-based metaheuristics. 

Single solution-based metaheuristics, by calling 
neighbourhood operators, explore only one new solution 
in each iteration. In Tabu Search (TS), specific solutions 
in a tabu list are forbidden to avoid cyclic search, and 
worse solutions within a certain extend are accepted to 
escape from a local optima trap. A TS is proposed for 
PVRPTW in (Cordeau et al. 2001), considering travel 
time, capacity, duration and time windows. TS has been 
widely applied to many applications in VRPs (Laporte et 
al. 2000). 

Variable Neighbourhood Search (VNS) explores a 
solution space by changing neighbourhood structures 
systematically (Mladenoviċ and Hansen 1997). It has 
obtained good results on various optimization problems 
(Hansen et al. 2010) including OVRPTW (Redi et al. 
2013). In Variable-Depth Neighbourhood Search 
(VDNS), one operator is used, but at variable 
neighbourhood depths. It is widely applied in Very Large 

Scale Neighbourhood search (Pisinger and Ropke 2010). 
Chen et al. (2016) develop a combined VNS and VDNS 
with compounded neighbourhood operators for VRPTW 
and obtained a number of new best solutions for 
benchmark instances.   

Large Neighbourhood Search (LNS) (Shaw 1997, 
1998) applies destroy operators (removal heuristics) and 
repair operators (insertion heuristics) to remove and 
reinsert a number of customers/demands from the current 
solution, producing a new solution with a larger 
difference. Schrimpf et al. (2000) also propose a similar 
Ruin & Recreate scheme. Pisinger and Ropke (2007) 
introduce the Adaptive Large Neighbourhood Search 
(ALNS), which employs an LNS strategy with adaptive 
operator selection, to solve five VRP variants.  

When traditional operators of small change (e.g. λ-
opt, CROSS-exchange (Bräysy and Gendreau 2005)) are 
used to explore tightly constrained large neighbourhood, 
the search can easily stuck into local optima. LNS 
operators (destroy & repair) and ALNS efficiently 
conquer this weakness by introducing larger changes to 
the current solution, and produce promising results in a 
large number of problems compared to existing methods 
(Pisinger and Popke 2010; Laporte et al. 2010).  

In (Azi et al. 2014), the operation depth of 
neighbourhood operators in the ALNS for VRPs with 

Multiple Routes changes. E.g., the Random Removal 
operator can randomly remove workdays, routes or 
customers from the operated solution. Note that each of 
the three different depths is used for only once by turn. 
More ALNS algorithms for practical VRPs can be found 
in (Ribeiro and Laporte 2012; Schopka and Kopfer 
2016). 

In this paper, we propose a Variable-Depth 
Adaptive Large Neighbourhood Search algorithm (VD-
ALNS) for the Open Periodic Vehicle Routing Problem 
with Time Windows (OPVRPTW) (Chen et al. 2017). 
Inspired by the idea of systematically adjusting 
neighbourhood operators during the search in VNS and 
VDNS, the operation depth of LNS operators in our 
algorithm is variable.  
 
2. PROBLEM MODEL 

Based on a practical Full Truckload Transportation 
problem at the Ningbo Port, the second biggest port in 
China, Chen et al. (2017) propose an OPVRPTW model. 
A fleet of 100 identical trucks is available in the depot to 
complete container transportation tasks among nine 
terminals. The objective of this problem is to minimize 
the total unloaded travel distance of the fleet. 

The problem is a Periodic VRP with a planning 
horizon of two to four days, each day has two shifts. One 
shipment request may contain a number of containers. At 
the beginning of a working day, the trucks leave the 
depot to complete a number of tasks of container pickup 
and delivery between terminals and return to the depot at 
the end of the day. In the middle of a workday, due to 
regulations of working hours on Labour Law, drivers 
working on the first (Odd-Indexed) shift of a day 
handover a truck to a driver working on the second 
(Even-Indexed) shift at a terminal. The terminal can be 
the first pickup point (source terminal) to the even-
indexed shift driver or the last delivery point (destination 
terminal) to the odd-indexed shift driver. The routes in 
this problem are open, i.e. routes in odd-indexed shifts do 
not have to end at the depot, and routes in even-indexed 
shifts do not need to start from the depot. 

We use the same problem model as (Chen et al. 
2017). All tasks of transporting a container are 
represented as one task node including: loading the 
container into a truck at the source terminal, travelling 
from the source to the destination terminal, and 
unloading at the destination terminal. Therefore, the 
travel between two nodes is always unloaded travel, 
because the loaded travel has been packaged into the task 
nodes. In this Open Periodic VRP with Time Windows, 
one truck can carry only one container at a time for its 
capacity.    

To connect the route of a truck from an odd-indexed 
shift to the following even-indexed shift, Artificial 

Depots are used in between on each workday. In one 
shift, every route starts from a starting depot and ends at 
a termination depot. The main notations used in this 
model are summarized in Table 1. 

In Figure 1, a small example of one workday 
schedule (of two consecutive shifts) is presented. A fleet 
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of five trucks completes 14 transportation tasks. The 
physical move of the truck in the top route is 
demonstrated on the right side, with a handover at the 
artificial depot from Shift 1 (odd-indexed) to the driver 
in Shift 2 (even-indexed). It is worth to note that, the 
second and third routes in Shift 1 and the third and fourth 
routes in Shift 2 are empty routes, which directly connect 
artificial depots and the physical depot. This means no 

task is completed on these routes. Notice that the cost of 
an empty route is not always zero, e.g. the cost of the 
fourth route in Shift 2 could be non-zero, due to the 
unloaded travel distance from the last destination of the 
fourth route in Shift 1 to the physical depot is not zero. 
The cost of empty route will be zero only if the connected 
artificial node actually represents the physical depot.  

 
 

Table 1: The List of Notations 

Input Parameters: 𝐾 Fleet size. 𝑆 
The set of time-continuous working shifts, which can be divided into odd-indexed shifts (𝑆𝑜𝑑𝑑) and even-indexed shifts 
(𝑆𝑒𝑣𝑒𝑛). [𝑌𝑆, 𝑍𝑆] Time window of shift 𝑠. 𝑁 = {0,1,2,⋯ , 𝑛}  Set of 𝑛 + 1 nodes. Each node represents a task except node 0 is the physical depot. [𝑎𝑖 , 𝑏𝑖] The time window for node 𝑖. The time window for a depot is zero at the boundary of a shift. If a truck arrives at the source 
of 𝑖 early, it has to wait until 𝑎𝑖. 

𝑊 

Set of Artificial Depots. This set of nodes are introduced to represent the destination terminals in 𝑆𝑜𝑑𝑑 or source terminals 
in 𝑆𝑒𝑣𝑒𝑛 on each day, which is decided by if the associated trucks in 𝑆𝑜𝑑𝑑 can arrive at their terminals before the end of 
the shift. This set varies in different solutions, i.e. a physical terminal may not appear or may appear more than once in 𝑊. 𝐴 Set of arcs. Each arc (𝑖, 𝑗) represents that node 𝑗 is immediately serviced/visited after servicing/visiting node 𝑖. 𝑐𝑖𝑗 The cost (distance) of unloaded travel from node 𝑖 to node 𝑗. If the destination terminal of task i and the source terminal 
of task j is the same, 𝑐𝑖𝑗 = 0. 𝑡𝑖𝑗 The travel time from node 𝑖 to node 𝑗. When both 𝑖 and 𝑗 are task nodes, 𝑡𝑖𝑗 is the travel time from the destination of 𝑖 to 

the source of 𝑗. Otherwise, it is the travel time from or to a depot. 𝑇𝑖 The arrival time at node 𝑖. 𝐵𝑖 The time to begin the service of node 𝑖. 𝑙𝑖 The time for servicing node 𝑖, which includes the loading time, transportation time (from pick-up source to delivery 
destination) and unloading time. The service time of a depot is zero. 

Decision Variable: 𝑥𝑖𝑗𝑠  
A binary decision variable for nodes 𝑖, 𝑗 ∈ 𝑁 ∪𝑊. Its value is 1 if arc (𝑖, 𝑗) is included in the solution in shift 𝑠, otherwise 
is 0. 𝑖 and 𝑗 ∈ 𝑊 at the same time is not allowed 

 
 
 
 

 
Figure 1：A scheduling example of two consequent shifts with five trucks. 
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This OPVRPTW problem can be formally defined 
as follows. 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒        ∑ ∑ ∑ 𝑐𝑖𝑗 ∙ 𝑥𝑖𝑗𝑠𝑗∈𝑁∪𝑊𝑖∈𝑁∪𝑊𝑠∈𝑆         (1) 

 
Subject to 
 ∑ ∑ 𝑥𝑖𝑗𝑠𝑖∈𝑁\{0}𝑠∈𝑆 = 1,              ∀ 𝑗 ∈ 𝑁\{0}          (2) ∑ ∑ 𝑥𝑖𝑗𝑠𝑗∈𝑁\{0}𝑠∈𝑆 = 1,              ∀ 𝑖 ∈ 𝑁\{0}          (3) ∑ 𝑥𝑖𝑗𝑠𝑖∈𝑁∪𝑊 = ∑ 𝑥𝑗𝑓𝑠  ,   ∀𝑗 ∈ 𝑁\{0}, 𝑠 ∈ 𝑆𝑓∈𝑁∪𝑊   (4) 𝑇𝑗 = ∑ (𝐵𝑖 + 𝑙𝑖 + 𝑡𝑖𝑗) ∙𝑖∈𝑁\{0} 𝑥𝑖𝑗𝑠 + ∑ (𝑌𝑠 + 𝑡𝑖𝑗) ∙ 𝑥𝑖𝑗𝑠𝑖={0}∪𝑊 , 

                                     ∀𝑗 ∈ 𝑁\{0}, 𝑠 ∈ 𝑆    (5) 𝐵𝑗 = 𝑇𝑗 +𝑚𝑎𝑥{𝑎𝑗 − 𝑇𝑗 , 0} ,          ∀𝑗 ∈ 𝑁\{0}          (6) 𝑥𝑖𝑗𝑠 ∙ 𝑌𝑠 ≤ 𝑥𝑖𝑗𝑠 ∙ 𝑇𝑗  ,    ∀𝑖 ∈ {0} ∪𝑊, 𝑗 ∈ 𝑁 ∪𝑊, 𝑠 ∈ 𝑆  (7) 𝑥𝑖𝑗𝑠 ∙ (𝐵𝑖 + 𝑙𝑖) ≤ 𝑥𝑖𝑗𝑠 ∙ 𝑍𝑠 ,                                             ∀𝑖 ∈ 𝑁 ∪𝑊, 𝑗 ∈ {0} ∪𝑊, 𝑠 ∈ 𝑆    (8) 𝑎𝑖 ≤ 𝐵𝑖 ≤ 𝑏𝑖 − 𝑙𝑖  ,                    ∀𝑖 ∈ 𝑁\{0}          (9) 𝑥𝑖𝑗𝑠 ∈ {0,1} ,                   ∀𝑖, 𝑗 ∈ 𝑁 ∪𝑊, 𝑠 ∈ 𝑆     (10) 𝑥𝑣𝑤𝑠 = 0 ,                   ∀𝑣 ∈ 𝑊,𝑤 ∈ 𝑊, 𝑠 ∈ 𝑆     (11) 

 
In odd-indexed shifts (∀s ∈ 𝑆𝑜𝑑𝑑): 
 ∑ 𝑥0𝑗𝑠 = 𝐾 ,                 ∀ 𝑠 ∈ 𝑆𝑜𝑑𝑑𝑗∈𝑁\{0}∪𝑊          (12) 𝑥𝑖0𝑠 = 0 ,           ∀𝑖 ∈ 𝑁\{0} ∪𝑊, 𝑠 ∈ 𝑆𝑜𝑑𝑑          (13) ∑ ∑ 𝑥𝑖𝑤𝑠 = 𝐾 ,                  ∀𝑠 ∈ 𝑆𝑜𝑑𝑑𝑤∈𝑊𝑖∈𝑁          (14) 

 
In even-indexed shifts (∀s ∈ 𝑆𝑒𝑣𝑒𝑛): 
 ∑ 𝑥𝑗𝑤𝑠−1 = ∑ 𝑥𝑤𝑒𝑠  ,     ∀𝑤 ∈ 𝑊, 𝑠 ∈ 𝑆𝑒𝑣𝑒𝑛𝑒∈𝑁𝑗∈𝑁      (15) 𝑥0𝑗𝑠 = 0 ,                  ∀𝑗 ∈ 𝑁\{0} ∪W, s ∈ 𝑆𝑒𝑣𝑒𝑛      (16) ∑ ∑ 𝑥𝑤𝑗𝑠𝑗∈𝑁 = 𝐾 ,                        ∀𝑠 ∈ 𝑆𝑒𝑣𝑒𝑛𝑤∈𝑊      (17) ∑ 𝑥𝑖0𝑠 = 𝐾 ,                        ∀𝑠 ∈ 𝑆𝑒𝑣𝑒𝑛𝑖∈𝑁\{0}∪𝑊      (18) 

 
The objective of this problem (1) is to minimize the 

total unloaded travel distance. Constraints (2) and (3) 
denote that every task node can be visited exactly once, 
and all tasks are visited. Constraint (4) specifies that a 
task may only be serviced after the previous task is 
completed. Constraints (2) - (4) together make sure arcs 
of over more than one shift are unacceptable. Constraint 
(5) is the arrival time at a task node. Constraint (6) 
defines the beginning time of servicing a task node, 
calculated by the arrival time plus the waiting time at the 
source of the task. Constraints (5) and (6) enforce the 
correct successive relationship between consecutive 
nodes. 

Constraints (7) and (8) are the time window 
constraints of each shift, while constraint (9) represents 
the time constraint on each task. The domain of the 
respective decision variable is defined by constraints (10) 
and (11). Constraint (11) prohibits the travel between two 
artificial depots.  

In odd-indexed shifts and even-indexed shifts, the 
constraints for the start and termination depots are 
different. Constraints (12) and (14) represent that K 
trucks leave the physical depot 0 at the beginning of an 
odd-indexed shift, and they would stop at artificial depots 
at the end of the shift. Constraint (13) represents that no 
truck returns to the physical depot in odd-indexed shifts. 
Constraints (16) - (18) place the reverse restraints in 
even-indexed shifts. Constraint (15) defines the shift 
change from an odd-indexed shift to the following even-
indexed shift on artificial depots, where the incoming of 
each artificial terminal in Sodd equals its outgoing in the 
following Seven. 

It is easy to see that, this problem is highly 
constrained with an exponential growing search space 
(|S|·K·n!). It has been proofed that exact methods are not 
suitable to solve this problem due to the exorbitant 
computing requirement (Chen et al. 2017). To address 
the tightly constrained problems with large 
neighbourhood, a Variable-Depth ALNS algorithm (VD-
ALNS) is proposed. 

 
3. VARIABLE-DEPTH ADAPTIVE LARGE 

NEIGHBOURHOOD SEARCH 

 
3.1. Framework of VD-ALNS 
The framework of VD-ALNS is shown in ALGORITHM 
1. An emergency-based construction heuristic (Chen et 
al. 2017) is firstly used to generate an initial solution by 
considering shifts chronologically, and assigning the 
tasks with higher emergency first. According to their 
time windows, those tasks that must be completed before 
the next shift will be assigned first. Starting from the 
initial solution, four destroy operators and three repair 
operators are then used to produce new solutions by 
modifying the current solution ( S𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ), pursuing 
solutions with higher quality.  𝑊𝑒𝑖𝑔ℎ𝑡 and 𝑆𝑐𝑜𝑟𝑒 in Step 1 are two scalars used to 
guide the subsequent search. Specifically, Scorei records 
the contributions of operator i in solution improvement 
within a fixed number of iterations (so called a Segment). 
Scorei is used to update the value of Weighti, which 
determines the probability of operator i being adopted 
during search, in the next Segment. Their values are set 
as the same for all operators at the beginning, and then 
updated during the search. The algorithm iteratively 
explores the solution space until the Stopping Criterion 
is met, i.e. the quality of the best found solution (𝑆) has 
not been improved in the last 𝑈𝑁𝐼𝑀𝑃𝑅𝑀𝐴𝑋  iterations, or 
the improvement is less than 1% in the last 𝐼𝑁𝐶𝑅𝐸𝑀𝐴𝑋  iterations. 

In Step 2.1, 𝐷𝑒𝑝𝑡ℎ is the range the operators work 
upon. It is systematically switched between the whole 
planning horizon (𝐻𝑂𝑅𝐼𝑍𝑂𝑁 ) and a specified shift 
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(𝑆𝐻𝐼𝐹𝑇) to balance the exploration and exploitation. In 
Step 2.2, a pair of a destroy operator (𝐷𝑖) and a repair 
operator (𝑅𝑗) are used to generate a new solution (𝑆′).  

Every single operator in ALNS has its own weight 
(𝑊𝑒𝑖𝑔ℎ𝑡𝑖). However, a research issue here is whether an 
operator should be assigned two different weights for 
two different depths to separately record its contribution 
to improvement at depths 𝐻𝑂𝑅𝐼𝑍𝑂𝑁  and 𝑆𝐻𝐼𝐹𝑇 , or 
only one weight is sufficient to record all previous 
contribution. In the literature, this question has been 
addressed in VNS and VDNS (Pisinger and Ropke 
2010). Using two independent weights separately records 
knowledge collected during the search employing two 
independent operators at different depths, thus would 
prevent the knowledge collected at the other depth from 
being used. However, in our preliminary experiments, it 
is found that search experience at different operation 
depths can contribute and promote each other. In VD-
ALNS, thus, we adopt one operator in both scenarios and 
record an operator's information with only one scalar.  
 

ALGORITHM 1: Framework of VD-ALNS 
Input: An initial feasible solution (𝑆) generated by the construction 

heuristic in (Chen et al. 2017), Stopping Criterion, 𝐼𝑇𝐸𝑀𝐴𝑋 
and LEN_SEGMENT.  

Step 1. Set up the initial parameters. 
         𝑊𝑒𝑖𝑔ℎ𝑡 ← {1,⋯ ,1}.  
 𝑆𝑐𝑜𝑟𝑒 ← {0,⋯ ,0}. 
 S𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑆, 𝐷𝑒𝑝𝑡ℎ ← 𝐻𝑂𝑅𝐼𝑍𝑂𝑁.  
Step 2.     
   while Stopping Criterion is not met do 
 Step 2.1 Variable-Depth Setting. 
       if 𝑆 is not improved in the last 𝐼𝑇𝐸𝑀𝐴𝑋 iterations 
            if 𝐷𝑒𝑝𝑡ℎ = 𝐻𝑂𝑅𝐼𝑍𝑂𝑁 then 
              𝐷𝑒𝑝𝑡ℎ ← 𝑆𝐻𝐼𝐹𝑇. 
            else 
                          𝐷𝑒𝑝𝑡ℎ ← 𝐻𝑂𝑅𝐼𝑍𝑂𝑁.  
                    end 

              end 
 Step 2.2 Operators Selection and Execution.  

Select a Destroy Operator (𝐷𝑖) and a Repair Operator (𝑅𝑗) 
based on 𝑊𝑒𝑖𝑔ℎ𝑡.  
Execute 𝐷𝑖  and 𝑅𝑗  at Depth, and obtain a new solution: 𝑆′ ← 𝑅𝑗(𝐷𝑖(𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡)).      

        Step 2.3 Accept or Reject.   
A Record-to-Record Travel algorithm is employed to 
determine if the newly generated solution is accepted 
(𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑆′) or rejected. If the quality of 𝑆′  is better 
than 𝑆, update the best-found solution 𝑆 ← 𝑆′. 

 Step 2.4 Weight Adjustment.  
The Scores of 𝐷𝑖 and 𝑅𝑗 (𝑆𝑐𝑜𝑟𝑒𝑖 and 𝑆𝑐𝑜𝑟𝑒𝑗) are updated 

at every iteration according to the quality of 𝑆′.  
At every LEN_SEGMENT  iteration, 𝑊𝑒𝑖𝑔ℎ𝑡  is updated 
based on the accumulated Score, Score is then reset.   

    end    

Output: An improved solution 𝑆. 

 
A pair of operators is selected by Roulette Wheel 

based on the weights of operators in Step 2.2. The 
probability of an operator 𝑖 being selected is calculated 
with Eq. (19), where ℎ  is the number of candidate 
operators. 

 𝑃𝑟𝑖 = 𝑊𝑒𝑖𝑔ℎ𝑡𝑖∑ 𝑊𝑒𝑖𝑔ℎ𝑡𝑘ℎ𝑘=1                            (19) 

 

Step 2.3 decides if 𝑆′  is accepted as new 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡  
and 𝑆 is updated, while Step 2.4 adjusts the scores and 
weights of operators according to the quality of 𝑆′. These 
adaptive weights guide the search to promising solution 
regions. More details are introduced in Sections 3.2 – 3.5. 

 
3.2. Variable-Depth Setting 
Variable search depth endows a balanced search 
performance. When 𝐷𝑒𝑝𝑡ℎ  is 𝑆𝐻𝐼𝐹𝑇 , the destroy 
operators remove a number of nodes from one specified 
shift, while the repair operators reinsert them back into 
that shift. All the shifts are specified and checked 
sequentially. When 𝐷𝑒𝑝𝑡ℎ  is 𝐻𝑂𝑅𝐼𝑍𝑂𝑁 , the removal 
and reinsertion happen within the whole planning 
horizon. Obviously, 𝐻𝑂𝑅𝐼𝑍𝑂𝑁  is a greater depth than 𝑆𝐻𝐼𝐹𝑇, and lead to a greater change in a solution, thus 
improves the diversification of search. Contrarily, using 
a 𝐷𝑒𝑝𝑡ℎ of 𝑆𝐻𝐼𝐹𝑇 modifies routes in a single shift by 
locally optimizing the solution, thus increases the 
intensification of search.  𝐷𝑒𝑝𝑡ℎ is systematically switched to seek a trade-off 
between exploration and exploitation. Searching with 
smaller depth exploits a relatively smaller solution area 
intensively, while larger search depth avoids search 
trapping into local optima. In the proposed algorithm, 𝐷𝑒𝑝𝑡ℎ would be switched to the other value when 𝑆 is 
not improved in 𝐼𝑇𝐸𝑀𝐴𝑋  iterations, to keep both the 
diversification and intensification in searching the large 
scale tightly constrained solution space. 

 
3.3. Operators of Destroy and Repair 

Four destroy operators and three repair operators are 
developed in our proposed VD-ALNS. 
 
3.3.1. Destroy Operators  

In each iteration, 𝑞  nodes are removed by a destroy 
operator (Removal Heuristic). The value of 𝑞 increases 
by 5 when the solution is not improved in the last 
iteration. As a too small 𝑞 will hardly bring change to a 
solution, while a too large 𝑞 will significantly increase 
repair operation time and the algorithm becomes a 
random search, a lower bound of max{0.1𝑛, 10} and an 
upper bound of min{0.5𝑛, 60} are set for 𝑞, where 𝑛 is 
the total number of nodes. 

1. Random Removal: The 𝑞 nodes to be removed 
are randomly selected. 

2. Worst Removal: This is a greedy heuristic, 
where the top 𝑞 nodes causing the greatest cost 
will be removed. In other words, removing the 
q task nodes brings the greatest cost reduction 
to the solution. 

3. Worst Edge Removal: This is also a greedy 
heuristic, which deletes 𝑞 nodes adjacent to arcs 
of the highest cost. 

4. Related Removal: Shaw (1997) proposes this 
operator based on the observation that, if nodes 
relate to one another are removed together, there 
would be an opportunity to interchange them in 
the later repaired solution. In VD-ALNS, we 
define the Relatedness of two task nodes (𝑖 and 
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𝑗) from five aspects: Service Time (𝑅𝑖𝑗𝑆𝑇), Time 

window (𝑅𝑖𝑗𝑇𝑊), Service Starting Time (𝑅𝑖𝑗𝑆𝑆𝑇), 

Vehicle used (𝑅𝑖𝑗𝑉 ) and Source and Destination 

(𝑅𝑖𝑗𝑆𝐷) as follows. 

 𝑅𝑖𝑗𝑆𝑇 = |𝑙𝑖−𝑙𝑗|(𝑙𝑖+𝑙𝑗)∙0.5                                                 (20) 

𝑅𝑖𝑗𝑇𝑊 = 0.5∙(|𝑎𝑖−𝑎𝑗|+|𝑏𝑖−𝑏𝑗|)𝑚𝑎𝑥{𝑏𝑖,𝑏𝑗}−𝑚𝑖𝑛{𝑎𝑖,𝑎𝑗}                               (21) 

𝑅𝑖𝑗𝑆𝑆𝑇 = |𝐵𝑖−𝐵𝑗|𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔 𝐻𝑜𝑟𝑖𝑧𝑜𝑛                      (22) 

𝑅𝑖𝑗𝑉 = { 0 𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒 𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑑 𝑏𝑦 𝑎 𝑠𝑎𝑚𝑒 𝑣𝑒ℎ𝑖𝑐𝑙𝑒0.5 𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒 𝑠𝑒𝑟𝑣𝑖𝑒𝑐𝑒𝑑 𝑏𝑦 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑠ℎ𝑖𝑓𝑡1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.    (23) 

𝑅𝑖𝑗𝑆𝐷 = {  
  0 𝑖 𝑎𝑛𝑑 𝑗 ℎ𝑎𝑣𝑒 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑠𝑜𝑢𝑟𝑐𝑒 𝐴𝑁𝐷𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛0.5 𝑖 𝑎𝑛𝑑 𝑗 ℎ𝑎𝑣𝑒 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑠𝑜𝑢𝑟𝑐𝑒 𝑂𝑅𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.          (24) 

 
Correspondingly, the relatedness of two task nodes 

(𝑅𝑖𝑗 ) is a linear combination of the five components 

above-mentioned (25). The values of the five linear 
coefficients are discussed in Section 4.2. In Related 

Removal, the first node to be removed is randomly 
selected, then the other nodes are sorted in ascending 
order of their relatedness Rij to the first node. 
 𝑅𝑖𝑗 = 𝛼 ∙ 𝑅𝑖𝑗𝑆𝑇 + 𝛽 ∙ 𝑅𝑖𝑗𝑇𝑊 + 𝛾 ∙ 𝑅𝑖𝑗𝑆𝑆𝑇 + 𝛿 ∙ 𝑅𝑖𝑗𝑉 + 𝜀 ∙ 𝑅𝑖𝑗𝑆𝐷  (𝑠. 𝑡.  𝛼 + 𝛽 + 𝛾 + 𝛿 + 𝜀 = 1)    (25) 
 

The rest 𝑞 − 1  nodes to be removed are selected 
with a preference of smaller 𝑅𝑖𝑗, where the nodes with 

the index of ⌈𝑁𝜌𝐷⌉  will be removed. Here, 𝑁  is the 
number of the current candidate nodes, 𝜌 is a random 
number between 0 and 1, and 𝐷 is a constant greater or 
equal to 1. The greater 𝐷 is, the stronger the preference 
would be, while 𝐷  is set to 3 in VD-ALNS. This 
selection scheme with a preference has been widely used 
in ALNS methods (Ropke and Pisinger 2006; Prescott-
Gagnon 2009; Azi et al. 2014). 

 
3.3.2. Repair Operators 

The nodes removed in the Destroy phase will be 
reinserted back into the solution following the below 
specific rules of each repair operator (Insertion 
Heuristic). 

1. Random Insertion: The removed nodes are 
randomly inserted into feasible positions. 

2. Greedy Insertion: The removed nodes are 
inserted into their best feasible positions 
causing the least cost increase. 

3. Regret2 Insertion: This greedy insertion 
heuristic is proposed by Pisinger and Ropke 
(2007), which always inserts firstly the node of 
the largest REGRET value into its best feasible 
position. The REGRET of a node is the cost 

difference between inserting the node to its best 
and second best feasible positions. 

 
3.4. Acceptance Criterion 

Record-to-Record Travel acceptance criterion (Dueck 
1993) is used to determine if the newly generated 
solution (𝑆′) is acceptable in the search. If 𝑆′ is better 
than the best-found solution 𝑆  (i.e. 𝐶𝑂𝑆𝑇(𝑆′) <𝐶𝑂𝑆𝑇(𝑆)), 𝑆′  will be accepted as the current solution 
(𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ). A new solution worse than 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡  is still 
acceptable as long as the gap between their COST is less 
than a DEVIATION threshold (i.e. 0.01 ∙ 𝐶𝑂𝑆𝑇(𝑆)). 
 
3.5. Weight Adjustment 

In each iteration, the employed operator i is rewarded a 
value 𝜎 ≥ 0 based on the quality of the generated 
solution 𝑆′ (see Eq. 26). The effect of 𝜎 is further studied 
in Section 4.2. 
 

𝜎 =
{   
   𝜎1 𝑆′𝑖𝑠 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝑎𝑛𝑑 𝐶𝑂𝑆𝑇(𝑆′) < 𝐶𝑂𝑆𝑇(𝑆)𝜎2 𝑆′𝑖𝑠 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝐴𝑁𝐷𝐶𝑂𝑆𝑇(𝑆) < 𝐶𝑂𝑆𝑇(𝑆′) < 𝐶𝑂𝑆𝑇(𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡)𝜎3 𝑆′𝑖𝑠 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝐴𝑁𝐷𝐶𝑂𝑆𝑇(𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡) < 𝐶𝑂𝑆𝑇(𝑆′)𝜎4 𝑆′𝑖𝑠 𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑

 

s.t.   𝜎1 > 𝜎2 > 𝜎3 > 𝜎4 ≥ 0          (26) 

 
After a fixed number ( 𝐿𝐸𝑁_𝑆𝐸𝐺𝑀𝐸𝑁𝑇 ) of 

iterations (a Segment), the total accumulated reward 
saved in 𝑆𝑐𝑜𝑟𝑒𝑖  in the current Segment t-1 is used to 
update the weight of operator i for the next Segment t (see 
Eq. (27)). In Eq. (27), the reaction factor 𝑟 controls how 
quickly the adjustment scheme reacts. 𝑢𝑖 is the number 
times operator 𝑖 is used in Segment 𝑡 − 1. After updating 𝑊𝑒𝑖𝑔ℎ𝑡𝑖𝑡 , 𝑆𝑐𝑜𝑟𝑒𝑖  will be reset to zero to start the 
accumulation of reward in Segment 𝑡. 

 𝑊𝑒𝑖𝑔ℎ𝑡𝑖𝑡 = 𝑟 ∙ 𝑊𝑒𝑖𝑔ℎ𝑡𝑖𝑡−1 + (1 − 𝑟) ∙ 𝑆𝑐𝑜𝑟𝑒𝑖𝑢𝑖        (27) 

 
4. EXPERIMENTS AND ANALYSIS 

 
4.1. Benchmark 

Bai et al. (2015) generate a dataset including 15 real-life 
instances extracted from the container transportation 
historical data at Ningbo Port, and 16 artificial instances 
with diverse features. The planning horizons are four, six 
and eight shifts in the real-life instances, and four or eight 
shifts in artificial instances, respectively. The artificial 
instances are classified and named by the tightness of the 
time windows (Tight/Loose) and workload balance at 
terminals (Balanced/Unbalanced). For example, the 
instance named NP4-1 is the first real-life instance with 
four shifts, and instance TU8-7 is the seventh artificial 
instance with eight shifts, tight time window and 
unbalanced workload at terminals.  

The sizes of these 31 instances are large comparing 
to the classical VRP datasets (Solomon1987; Gehring 
and Homberger 1999). To test the effectiveness and 
efficiency of the proposed algorithms on small size 
instances, the Ningbo Port dataset is scaled down by 
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25%, while keeping the same features in Chen et al. 
(2017). We test our proposed VD-ALNS on both the 
original and scaled down datasets. 

 
4.2. Parameter Sensitivity Analysis 

Parameters in VD-ALNS are studied one at a time, fixing 
the other parameters. It is easy to understand that, higher 𝑈𝑁𝐼𝑀𝑃𝑅𝑀𝐴𝑋 and 𝐼𝑁𝐶𝑅𝐸𝑀𝐴𝑋 lead to more iterations in 
search, so might bring better solutions but at the cost of 
longer time. 𝐼𝑇𝐸𝑀𝐴𝑋  represents the times of one 𝐷𝑒𝑝𝑡ℎ 
value would be continuously used. The trade-off between 
the solution quality and running time needs to be 
considered to strike a balance between effectiveness and 
efficiency of the search. The values of parameters used 
in VD-ALNS are presented in Table 2. 
 

Table 2: Parameters in VD-ALNS. 
Parameter 𝜎1 𝜎2 𝜎3 𝜎4 UNIMPRMAX INCREMAX ITEMAX 

Value 30 15 5 0 150 200 4*No. of shifts 

Parameter α β γ δ ε r LEN_SEGMENT 
Value 0.3 0.2 0.1 0.2 0.2 70 0.4 

 
In adaptive weight adjustment, the values of 

rewards represent the contributions in solution 
improvement. To obtain the best setting of reward values, 𝜎4 is set to zero, which indicates 𝑆𝑐𝑜𝑟𝑒𝑖 stays the same 
when 𝑆’ is rejected. Besides, 𝜎3 is set to 5 as a base unit. 
Different 𝜎1  and 𝜎2  are tested in parameter tuning 
experiments to find the setting generating the best 
solutions. It is observed that a too large 𝜎1 would cause 
premature search. The best solutions are obtained when 
the reward to producing a new best solution (𝜎1) is two 
times of that of generating an acceptable solution better 
than 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡  (𝜎2), and six times of that of obtaining an 
acceptable solution worse than 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡  (𝜎3).  

When tuning the definition of Relatedness (Eq. 
(25)), all the five components are firstly assigned equal 
weights ( α = β = γ = δ = ε = 0.2 ). Then, each 
coefficient is gradually increased to reflect the 
contribution of the associated component to the total 
relatedness. It is found that when the weight of Service 
Time Relatedness (𝑅𝑖𝑗𝑆𝑇) is high, the quality of solutions 

is higher. This indicates that reassigning two tasks with a 
higher similarity of Service Time leads to a higher 
possibility to produce a better solution. Since the Service 
Staring Time of a task may change for various reasons 
(e.g., a task is assigned to a new truck, and a precedent 
task is reassigned, etc.), 𝑅𝑖𝑗𝑆𝑆𝑇  can hardly represent the 

relatedness of two tasks and shows low contribution in 
tuning tests. A lower coefficient is given to 𝑅𝑖𝑗𝑆𝑆𝑇 .  

A too small LEN_SEGMENT will change the 
weights of operators frequently and thus the search may 
converge prematurely. On the other hand, a large 
LEN_SEGMENT cannot update the guidance 
information in time. Our preliminary experiments show 
that the best performance is found when 
LEN_SEGMENT is between 50 and 80. In Eq. (27), the 
higher 𝑟 is, the slower the algorithm reacts to the latest 
guidance information. VD-ALNS performs the best 
when 𝑟 is between 0.4 and 0.6. 

 
4.3. Comparison of Solution Algorithms 

To demonstrate the contribution of variable depth, a 
standard ALNS for OPVRPTW is also implemented, 
where the Destroy and Repair operators are only used at 
the depth of HORIZON in global searching. Comparing 
to other metaheuristics using small change operators, 
both VD-ALNS and ALNS have a stronger ability to 
escape from local optima in a tightly constrained solution 
space. They are compared to VNS-RLS (Chen et al. 
2017), which uses neighbourhood operators with small 
changes.  

The comparison results on the 25% scaled down 
instances are presented in Tables 3 and 4. The three 
algorithms are compared from four aspects: best-found 
solution (Best), average solution (Ave), evaluation times 
(Times) and standard deviation (S.D.). All the results are 
obtained from 30 runs. In these results, we convert the 
objective value into Heavy-Loaded Distance Rate 
(HLDR) (Eq. (28)), which is widely used by logistic 
companies in practice. This objective is equivalent to the 
lowest unloaded travel distance in Eq. (1), but it converts 
the problem into a maximization problem. The lower and 
upper bounds of optimal solutions, which are obtained by 
CPLEX (Chen et al. 2017), are also given. NF in the 
tables means no feasible solution can be found. 

 𝐻𝐿𝐷𝑅 = 𝐿𝑜𝑎𝑑𝑒𝑑 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐿𝑜𝑎𝑑𝑒𝑑 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒+𝑈𝑛𝑙𝑜𝑎𝑑𝑒𝑑 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒        (28) 

 
Table 3: HLDR on the 25% scaled down real-life 
instances. (Best-found HLDR in bold.) 

Instance NP4-1 NP4-2 NP4-3 NP4-4 NP4-5 

VNS-

RLS 

Best 82.89% 62.32% 75.64% 59.76% 79.24% 

Ave 81.51% 61.42% 74.92% 59.18% 78.48% 

Times 469,233 311,885 319,202 347,134 326,956 

S.D. 1.16% 0.60% 0.62% 0.35% 0.42% 

ALNS 

Best 81.15% 65.51% 75.17% 61.86% 77.14% 

Ave 79.80% 65.08% 73.60% 61.47% 76.15% 

Times 385 500 458 499 395 

S.D. 0.72% 0.33% 0.80% 0.27% 0.57% 

VD-

ALNS 

Best 81.74% 65.45% 75.54% 62.53% 77.67% 

Ave 79.61% 65.16% 74.15% 61.75% 77.03% 

Times 483 529 503 549 573 

S.D. 1.20% 0.25% 0.82% 0.27% 0.53% 

Lower Bound 78.36% 65.14% 64.83% 54.39% NF 

Upper Bound 92.36% 97.04% 100% 97.72% 100% 
      

Instance NP6-1 NP6-2 NP6-3 NP6-4 NP6-5 

VNS-

RLS 

Best 76.24% 73.39% 62.32% 80.50% 82.44% 

Aver 74.99% 72.83% 62.06% 79.84% 80.53% 

Times 698.514 624,078 253,037 541,548 365,435 

S.D. 0.96% 0.41% 0.20% 0.41% 1.72% 

ALNS 

Best 79.07% 70.28% 65.00% 78.43% 82.15% 

Ave 78.03% 69.42% 64.26% 77.07% 80.58% 

Times 420 449 412 426 450 

S.D. 0.69% 0.49% 0.42% 0.80% 0.69% 

VD-

ALNS 

Best 79.95% 70.75% 65.31% 78.26% 82.75% 

Ave 78.33% 69.85% 64.40% 77.07% 80.34% 

Times 549 537 553 515 496 

S.D. 0.92% 0.49% 0.47% 0.76% 1.19% 

Lower Bound NF NF 54.30% NF 66.11% 

Upper Bound NF NF 95.20% NF 98.39% 
      

Instance NP8-1 NP8-2 NP8-3 NP8-4 NP8-5 

VNS-

RLS 

Best 76.91% 77.76% 75.35% 60.90% 72.27% 

Ave 74.72% 77.16% 74.93% 60.47% 71.68% 

Times 607,961 525,479 442,103 430,962 516,872 

S.D. 1.20% 0.37% 0.31% 0.32% 0.36% 

ALNS 

Best 74.74% 74.32% 75.08% 61.85% 71.60% 

Ave 73.90% 73.07% 74.29% 61.66% 71.05% 

Times 445 444 442 421 439 

S.D. 0.54% 0.49% 0.59% 0.14% 0.29% 
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VD-

ALNS 

Best 75.50% 74.76% 75.09% 61.92% 71.58% 

Ave 74.22% 73.53% 74.53% 61.70% 71.10% 

Times 579 524 528 456 527 

S.D. 0.57% 0.58% 0.36% 0.14% 0.31% 

Lower Bound NF NF NF NF NF 

Upper Bound 98.98% 100% 100% NF 100% 

 
 
Table 4: HLDR on 25% scaled down artificial instances. 
(Best-found HLDR in bold.) 

Instance LB4-1 LB4-2 TB4-3 TB4-4 LU4-5 LU4-6 TU4-7 TU4-8 

VNS-

RLS 

Best 76.92% 83.42% 69.08% 66.41% 60.71% 61.08% 48.75% 54.97% 

Ave 74.80% 81.61% 67.78% 64.95% 59.29% 60.62% 48.54% 54.68% 

Times 313,707 280,849 286,059 298,651 321,835 290,082 166,248 193,536 

S.D. 0.95% 1.09% 0.65% 0.75% 0.64% 0.29% 0.30% 0.33% 

ALNS 

Best 78.85% 81.85% 68.41% 66.94% 58.87% 59.35% 49.42% 54.12% 

Ave 77.84% 80.08% 67.36% 66.06% 57.84% 58.60% 48.87% 53.35% 

Times 438 421 426 410 396 287 371 287 

S.D. 0.67% 1.01% 0.51% 0.39% 0.52% 0.37% 0.39% 0.43% 

VD-

ALNS 

Best 79.16% 83.42% 68.92% 67.01% 59.84% 60.16% 49.42% 55.31% 

Ave 77.98% 80.92% 67.45% 66.22% 58.74% 59.37% 49.05% 54.19% 

Times 445 448 457 443 472 477 411 448 

S.D. 0.75% 0.95% 0.65% 0.36% 0.47% 0.46% 0.38% 0.48% 

Lower 

Bound 
66.62% 76.41% 69.91% 69.30% NF 58.65% 50.37% 55.36% 

Upper 

Bound 
100% 94.87% 86.31% 83.51% 79.94% 73.90% 52.17% 66.38% 

         

Instance LB8-1 LB8-2 TB8-3 TB8-4 LU8-5 LU8-6 TU8-7 TU8-8 

VNS-

RLS 

Best 91.25% 93.56% 63.05% 66.31% 65.76% 66.58% 56.46% 52.29% 

Ave 89.76% 92.09% 61.78% 63.25% 64.86% 65.58% 55.79% 51.93% 

Times 492,628 547,853 296,837 517,855 438,295 439,782 269,164 281,479 

S.D. 0.95% 0.87% 0.54% 1.16% 0.44% 0.49% 0.29% 0.18% 

ALNS 

Best 87.37% 87.87% 63.61% 66.12% 64.84% 60.34% 55.37% 51.89% 

Ave 83.02% 84.41% 62.75% 64.89% 63.61% 58.13% 54.69% 51.28% 

Times 398 396 403 461 437 318 334 385 

S.D. 2.40% 1.40% 0.59% 0.74% 0.54% 0.73% 0.23% 0.42% 

VD-

ALNS 

Best 88.71% 89.62% 64.37% 67.01% 65.30% 63.08% 55.52% 52.41% 

Ave 84.32% 84.35% 62.99% 65.26% 63.93% 59.95% 54.78% 51.81% 

Times 515 499 549 535 598 590 482 577 

S.D. 1.87% 1.95% 0.59% 0.54% 0.57% 1.29% 0.14% 0.39% 

Lower 

Bound 
NF NF 56.85% 52.40% 57.42% NF 47.65% 50.74% 

Upper 

Bound 
100% 100% 82.33% 88.75% 78.33% 86.84% 71.59% 70.43% 

 
From the experiment results, we can find that VD-

ALNS beats ALNS in almost all instances, indicating 
that the variable depth scheme does improve the 
performance of ALNS. This scheme enhances the 
exploitation in local areas, leading to increased total 
evaluation times in ALNS. Comparing to VNS-RLS, on 
6 of 15 real-life instances and half of artificial instances, 
VD-ALNS finds better or equally good solutions, 
showing no significant difference. However, VD-ALNS 
takes remarkably fewer evaluation times and 90% 
running time of VNS-RLS to obtain those results. All the 
three methods have the similar stability of a difference 
on S.D. lower than 1%.  
 
Table 5: HLDR on the original full real-life dataset. 
(Best-found HLDR in bold.) 

Instance NP4-1 NP4-2 NP4-3 NP4-4 NP4-5 

VNS-RLS 

Best 83.29% 69.85% 72.90% 66.61% 80.65% 

Ave 81.88% 69.56% 72.20% 65.91% 80.48% 

Times 779,504 575,894 661,384 923,891 718,219 

S.D. 0.55% 0.16% 0.38% 0.47% 0.17% 

ALNS 

Best 81.68% 69.08% 74.72% 66.63% 78.16% 

Ave 80.21% 68.62% 74.06% 66.11% 77.78% 

Times 212 281 288 271 267 

S.D. 0.99% 0.36% 0.49% 0.29% 0.22% 

VD-

ALNS 

Best 82.30% 69.13% 73.94% 67.05% 78.96% 

Ave 81.42% 68.83% 73.01% 66.28% 78.11% 

Times 313 501 243 345 297 

S.D. 0.58% 0.21% 0.86% 0.56% 0.49% 

Upper Bound 90.43% 70.23% 79.58% 73.72% 81.20% 
      

Instance NP6-1 NP6-2 NP6-3 NP6-4 NP6-5 

VNS-

RLS 

Best 79.64% 74.14% 58.94% 79.52% 79.99% 

Aver 79.07% 73.72% 58.62% 79.10% 78.36% 

Times 1.03×106 1.16×106 513,974 1.05×106 984,987 

S.D. 0.47% 0.21% 0.23% 0.53% 0.99% 

ALNS 

Best 76.73% 69.16% 65.27% 77.99% 77.43% 

Ave 76.27% 64.76% 64.79% 77.11% 76.64% 

Times 265 44 251 236 274 

S.D. 0.29% 3.04% 0.35% 0.49% 0.56% 

VD-

ALNS 

Best 81.74% 71.73% 65.16% 78.67% 77.39% 

Ave 77.04% 70.95% 64.84% 77.86% 76.52% 

Times 483 300 303 381 387 

S.D. 1.20% 0.69% 0.24% 0.50% 0.54% 

Upper Bound 83.93% 76.67% 66.90% 80.97% 84.30% 
      

Instance NP8-1 NP8-2 NP8-3 NP8-4 NP8-5 

VNS-

RLS 

Best 73.80% 75.27% 74.20% 61.97% 73.62% 

Ave 73.48% 74.86% 73.96% 61.91% 73.26% 

Times 1.49×106 978,695 867,663 693,779 1.18×106 

S.D. 0.15% 0.28% 0.22% 0.06% 0.35% 

ALNS 

Best 69.53% 71.88% 74.02% 61.13% 72.63% 

Ave 68.58% 71.56% 73.22% 61.00% 72.05% 

Times 113 253 227 322 290 

S.D. 0.45% 0.23% 0.40% 0.09% 0.45% 

VD-

ALNS 

Best 70.13% 72.48% 74.02% 61.17% 73.07% 

Ave 69.72% 71.39% 73.67% 60.98% 72.59% 

Times 303 284 338 306 365 

S.D. 0.31% 0.28% 0.23% 0.09% 0.34% 

Upper Bound 77.04% 77.55% 78.82% 62.53% 76.09% 

 
Table 6: HLDR on the original full artificial dataset. 
(Best-found HLDR in bold.) 

Instance LB4-1 LB4-2 TB4-3 TB4-4 LU4-5 LU4-6 TU4-7 TU4-8 

VNS-

RLS 

Best 73.52% 78.08% 69.32% 72.24% 64.67% 68.12% 53.21% 53.80% 

Ave 72.93% 77.70% 68.54% 71.42% 64.38% 67.52% 53.03% 53.61% 

Times 642,796 617,656 616,237 635,130 724,154 782,608 399,970 290,599 

S.D. 0.32% 0.32% 0.42% 0.49% 0.20% 0.40% 0.16% 0.08% 

ALNS 

Best 75.98% 77.28% 68.68% 73.03% 61.11% 64.45% 52.75% 53.39% 

Ave 75.41% 76.68% 68.05% 71.52% 60.59% 63.85% 52.01% 53.39% 

Times 328 193 222 257 316 202 242 106 

S.D. 0.48% 0.35% 0.43% 1.26% 0.35% 0.30% 0.43% 0.00% 

VD-

ALNS 

Best 76.05% 77.15% 69.03% 73.66% 61.04% 65.33% 52.88% 53.66% 

Ave 75.14% 76.83% 68.51% 72.78% 60.40% 64.80% 52.49% 53.47% 

Times 379 253 309 315 400 255 294 151 

S.D. 0.60% 0.18% 0.38% 0.64% 0.43% 0.49% 0.39% 0.10% 

Upper 

Bound 
79.47% 86.33% 84.05% 88.74% 74.11% 74.47% 64.05% 63.50% 

         

Instance LB8-1 LB8-2 TB8-3 TB8-4 LU8-5 LU8-6 TU8-7 TU8-8 

VNS-

RLS 

Best 85.49% 94.03% 69.59% 66.85% 67.81% 68.41% 59.60% 54.50% 

Ave 84.11% 92.83% 69.04% 65.70% 67.20% 68.07% 59.21% 54.23% 

Times 1.44×106 1.13×106 669,136 1.47×106 1,11×106 1.03×106 572,065 859,770 

S.D. 0.95% 1.05% 0.38% 0.76% 0.34% 0.21% 0.21% 0.16% 

ALNS 

Best 91.22% 92.98% 68.60% 63.76% 66.95% 61.68% 59.26% 53.78% 

Ave 83.01% 84.98% 67.80% 63.33% 65.28% 60.12% 58.86% 53.18% 

Times 231 212 236 232 275 225 242 210 

S.D. 3.44% 3.35% 0.49% 0.28% 0.34% 0.57% 0.15% 0.32% 

VD-

ALNS 

Best 88.71% 89.74% 69.53% 64.95% 67.01% 62.30% 58.99% 54.31% 

Ave 85.96% 86.67% 68.52% 63.78% 65.38% 61.29% 58.77% 53.10% 

Times 339 347 427 336 280 343 251 175 

S.D. 2.43% 1.77% 0.55% 0.75% 0.53% 0.76% 0.15% 0.50% 

Upper 

Bound 
98.26% 97.97% 87.06% 92.44% 74.27% 71.36% 70.29% 56.54% 

 
Tables 5 and 6 present results on the original 

Ningbo Port instances. The upper bounds are obtained 
with relaxing the travels of leaving and returning to the 
depot (Bai et al. 2015). It can be found that, with the 
variable depth scheme, VD-ALNS outperforms ALNS 
again from the aspects of both the average and best found 
solution. New best solutions are generated by VD-ALNS 
on 7 out of 31 benchmark instances. 
 
4.4. Contributions of Operators 

Table 7 provides statistics on the Destroy and Repair 
operators. On the scaled down dataset, one single 
operator is excluded at a time in VD-ALNS to record the 
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resulting solution quality deterioration. The second and 
third columns show the average deterioration on the best 
found solution and average solution, while the last two 
columns give the maximum deterioration on the dataset. 
 

Table 7: Contributions of each operator 

Operator 
Best sol. 

deg. 

Avg. 

deg. 

Max best 

sol. deg. 

Max avg. 

deg. 

Random Removal 0.15% 0.23% 1.08% 0.13% 
Worst Removal 0.33% 0.60% 2.18% 2.14% 
Related Removal 0.09% 0.08% 1.32% 0.68% 
Worst Edge Removal 0.55% 0.56% 2.87% 2.14% 
Random Insertion 0.21% 0.12% 1.80% 1.09% 
Greedy Insertion 4.84% 5.34% 9.64% 7.69% 
Regret2 Insertion 0.54% 0.25% 4.07% 1.31% 

 
The results indicate the contributions of each 

operator in VD-ALNS. It can be found that Worst Edge 
Removal is the most efficient destroy operator, followed 
by Worst Removal. Related Removal contributes the 
least. Among all repair operators, Greedy Insertion is the 
most useful, followed by Regret2 Insertion. Overall, 
greedy heuristics provide effective complement on 
search intensification and outperform the others in VD-
ALNS. 
 
4.5. Analysis of Runtime 

The Destroy and Repair operators in ALNS bring greater 
changes than the traditional neighbourhood operators by 
operating on more nodes and making greater 
perturbation. Therefore, the computation time spent on 
choosing removal nodes and insertion positions is 
considerable. The evaluation times of ALNS and VD-
ALNS to obtain these results are significantly less than 
that of VNS-RLS, but the running time of VD-ALNS 
compared to VNS-RLS is around 17% more on the 
original instances, and slightly less on small instances. 
This observation indicates that scalability of the runtime 
of VD-ALNS is worse (increases faster) than VNS-RLS 
along with the instance size. 

Choosing the insertion position is time-consuming. 
Actually, the computational time of the repair operators 
accounts for a larger proportion of the overall time, 
around 3.5 times of the destroy operators’ on scaled 
down instances. What’s more, on the original dataset, the 
repair operation may spend more than 95% of the total 
computing time.  
 
5. CONCLUSIONS 

This paper investigates an open Periodic Vehicle Routing 
Problem with Time Windows (OPVRPTW) from a real-
world container transportation problem. To address this 
OPVRPTW of large scale search space with tight side 
constraints, a Variable-Depth Adaptive Large 
Neighbourhood Search algorithm (VD-ALNS) is 
proposed, using four destroy operators and three repair 
operators at variable neighbourhood depth. In this 
OPVRPTW with high-dimensional solution structure, 
the variable depth scheme shows to significantly improve 
the performance of the proposed algorithm on 
benchmark instances.  

On both small and big size benchmarks, it was 
demonstrated that the proposed variable depth scheme 
can handle the trade-off between exploration and 
exploitation and find good solutions efficiently, 
significantly promoting the performance of the classic 
Adaptive Large Neighbourhood Search algorithm.  
Comparing to an existing solution metaheuristic with 
small change operators, a number of new best-found 
solutions are obtained by VD-ALNS.  

In our future research, the multi-objective feature 
will be considered, and other effective trade-off 
strategies between solution quality and search speed will 
be adapted within ALNS. It will be interesting to also 
integrate advanced customized exact methods into both 
the destroy and repair operators. 
 

 
ACKNOWLEDGMENTS 

This research was supported by Ningbo Science & 
Technology Bureau (2014A35006) and School of 
Computer Science, the University of Nottingham. 
 
REFERENCES 

Azi N., Gendreau M., and Potvin J.Y., 2014. An adaptive 
large neighborhood search for a vehicle routing 
problem with multiple routes. Computers & 
Operations Research 41 (2014), 167–173. 

Bai R., Xue N., Chen J., and Roberts G.W., 2015. A set-
covering model for a bidirectional multi-shift full 
truckload vehicle routing problem. Transportation 
Research Part B: Methodological 79 (2015), 134–
148. 

Baldacci R., Mingozzi A., and Roberti R., 2012. Recent 
exact algorithms for solving the vehicle routing 
problem under capacity and time window 
constraints. European Journal of Operational 
Research 218, 1 (2012), 1–6. 

Bräysy O. and Gendreau M., 2001. Metaheuristics for the 
vehicle routing problem with time windows. Report 
STF42 A 1025 (2001). 

Bräysy O. and Gendreau M., 2005. Vehicle routing 
problem with time windows, Part I: Route 
construction and local search algorithms. 
Transportation science 39, 1 (2005), 104–118. 

Chen B., Qu R., Bai R., and Ishibuchi H., 2016. A 
variable neighbourhood search algorithm with 
compound neighbourhoods for VRPTW. Springer, 
25–35. 

Chen B., Qu R., Bai R., and Laesanklang W., 2017. A 
Reinforcement Learning Based Variable 
Neighborhood Search Algorithm for Open Periodic 
Vehicle Routing Problem with Time Windows. 
Submitted to the Special Issue of the Journal 
“Networks” on Vehicle Routing and Logistic, 2017. 

Coelho, L.C., Cordeau, J.F. and Laporte, G., 2013. Thirty 
years of inventory routing. Transportation 
Science, 48(1), pp.1-19.  

Cordeau J.F., Laporte G., and Mercier A., 2001. A 
unified tabu search heuristic for vehicle routing 

Proceedings of the Int. Conf. on Harbor Maritime and Multimodal Logistics M&S, 2017 

ISBN 978-88-97999-87-4; Bottani, Bruzzone, Longo, Merkuryev, and Piera Eds.

33



problems with time windows. Journal of the 
Operational research society 52, 8 (2001), 928–936. 

Dueck G., 1993. New Optimization Heuristics: The 
Great Deluge Algorithm and the Record-to-Record 
Travel. J. Comput. Phys. 104, 1 (1993), 86–92. 

Eksioglu B., Vural A.V., and Reisman A., 2009. The 
vehicle routing problem: A taxonomic review. 
Computers & Industrial Engineering 57, 4 (2009), 
1472–1483. 

El-Sherbeny N.A., 2010. Vehicle routing with time 
windows: An overview of exact, heuristic and 
metaheuristic methods. Journal of King Saud 
University-Science 22, 3 (2010), 123–131. 

Eppen G. and Schrage L., 1981. Centralized ordering 
policies in a multi-warehouse system with lead 
times and random demand. Multi-level 
production/inventory control systems: Theory and 
practice 16 (1981), 51–67. 

Gehring H. and Homberger J., 1999. A parallel hybrid 
evolutionary metaheuristic for the vehicle routing 
problem with time windows. In Proceedings of 
EUROGEN99, Vol. 2. Citeseer, 57–64. 

Ghoseiri K., and Ghannadpour S.F., 2010. Multi-
objective vehicle routing problem with time 
windows using goal programming and genetic 
algorithm. Applied Soft Computing 10, 4 (2010), 
1096–1107. 

Golden B.L., Raghavan S., and Wasil E.A., 2008. The 
Vehicle Routing Problem: Latest Advances and 
New Challenges: latest advances and new 
challenges. Vol. 43. Springer Science & Business 
Media. 

Hansen P., Mladenoviċ N., and Pėrez J.A.M., 2010. 
Variable neighbourhood search: methods and 
applications. Annals of Operations Research 175, 1 
(2010), 367–407. 

Laporte G., Gendreau M., Potvin J.Y., and Semet F., 
2000. Classical and modern heuristics for the 
vehicle routing problem. International transactions 
in operational research 7, 45 (2000), 285–300. 

Laporte G., Musmanno R., and Vocaturo F., 2010. An 
adaptive large neighbourhood search heuristic for 
the capacitated arc-routing problem with stochastic 
demands. Transportation Science 44, 1 (2010), 
125–135. 

Lourens T., 2005. Using population-based incremental 
learning to optimize feasible distribution logistic 
solutions. Thesis. 

Mladenoviċ N. and Hansen P., 1997. Variable 
neighborhood search. Computers & Operations 
Research 24, 11 (1997), 1097–1100. 

Mourgaya M. and Vanderbeck F., 2007. Column 
generation based heuristic for tactical planning in 
multi-period vehicle routing. European Journal of 
Operational Research 183, 3 (2007), 1028–1041. 

Pisinger D. and Ropke S., 2007. A general heuristic for 
vehicle routing problems. Computers & operations 
research 34, 8 (2007), 2403–2435. 

Pisinger D. and Ropke S., 2010. Large neighborhood 
search. Springer, 399–419. 

Prescott-Gagnon E., Desaulniers G, and Rousseau L.M., 
2009. A branch-and-price-based large 
neighborhood search algorithm for the vehicle 
routing problem with time windows. Networks 54, 
4 (2009), 190–204. 

Redi A.A.N.P., Maghfiroh M.F.N., and Yu V.F., 2013. 
An improved variable neighborhood search for the 
open vehicle routing problem with time windows. 
In Industrial Engineering and Engineering 
Management (IEEM), 2013 IEEE International 
Conference on. IEEE, 1641–1645. 

Ribeiro G.M. and Laporte G., 2012. An adaptive large 
neighborhood search heuristic for the cumulative 
capacitated vehicle routing problem. Computers & 
Operations Research 39, 3 (2012), 728–735. 

Ropke S. and Pisinger D., 2006. An adaptive large 
neighborhood search heuristic for the pickup and 
delivery problem with time windows. 
Transportation science 40, 4 (2006), 455–472. 

Schopka K. and Kopfer H., 2016. An Adaptive Large 
Neighborhood Search for the Reverse Open 
Vehicle Routing Problem with Time Windows. 
Springer, 243–257. 

Schrimpf G., Schneider J., Stamm-Wilbrandt H., and 
Dueck G., 2000. Record breaking optimization 
results using the ruin and recreate principle. J. 
Comput. Phys. 159, 2 (2000), 139–171. 

Shaw P., 1997. A new local search algorithm providing 
high quality solutions to vehicle routing problems. 
APES Group, Dept of Computer Science, 
University of Strathclyde, Glasgow, Scotland, UK 
(1997). 

Shaw P., 1998. Using constraint programming and local 
search methods to solve vehicle routing problems. 
Springer, 417–431. 

Solomon M.M., 1987. Algorithms for the vehicle routing 
and scheduling problems with time window 
constraints. Operations research 35, 2 (1987), 254–
265. 

Tarantilis C.D., Ioannou G., Kiranoudis C.T., and 
Prastacos G.P., 2005. Solving the open vehicle 
routeing problem via a single parameter 
metaheuristic algorithm. Journal of the Operational 
Research Society 56, 5 (2005), 588–596. 

Toth P. and Vigo D., 2001. The vehicle routing problem. 
Siam. 

Wieberneit N., 2008. Service network design for freight 
transportation: a review. OR spectrum 30, 1 (2008), 
77–112. 

Proceedings of the Int. Conf. on Harbor Maritime and Multimodal Logistics M&S, 2017 

ISBN 978-88-97999-87-4; Bottani, Bruzzone, Longo, Merkuryev, and Piera Eds.

34


