
VARIABLE-DEPTH ADAPTIVE LARGE NEIGHBOURHOOD SEARCH ALGORITHM

FOR OPEN PERIODIC VEHICLE ROUTING PROBLEM WITH TIME WINDOWS

Binhui Chen(a) , Rong Qu(b), Hisao Ishibuchi(c)

(a),(b)School of Computer Science, The University of Nottingham, United Kingdom
(c)1) Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen,

China. 2) Department of Computer Science and Intelligent Systems, Osaka Prefecture University, Japan

(a)Binhui.Chen@nottingham.ac.uk, (b)Rong.Qu@nottingham.ac.uk ,(c)hisaoi@cs.osakafu-u.ac.jp

ABSTRACT

The Open Periodic Vehicle Routing Problem with Time
Windows (OPVRPTW) is a practical transportation
routing and scheduling problem arising from real-world
scenarios. It shares some common features with some
classic VRP variants. The problem has a tightly
constrained large-scale solution space and requires well-
balanced diversification and intensification in search. In
Variable Depth Neighbourhood Search, large
neighbourhood depth prevents the search from trapping
into local optima prematurely, while small depth
provides thorough exploitation in local areas.
Considering the multi-dimensional solution structure and
tight constraints in OPVRPTW, a Variable-Depth
Adaptive Large Neighbourhood Search (VD-ALNS)
algorithm is proposed in this paper. Contributions of four
tailored destroy operators and three repair operators at
variable depths are investigated. Comparing to existing
methods, VD-ALNS makes a good trade-off between
exploration and exploitation, and produces promising
results on both small and large size benchmark instances.

Keywords: adaptive large neighbourhood search,
variable depth neighbourhood search, open periodic
vehicle routing problem with time windows,
metaheuristic

1. INTRODUCTION
Vehicle Routing Problem (VRP) is a well-studied topic
in Operational Research, and has a large number of
variants. In the classic model of Vehicle Routing
Problem with Time Windows (VRPTW) (Solomon
1987) starting from a depot, a fleet of vehicles visits a
number of customers satisfying the time constraints. The
depot and customers visited compose a route of a vehicle.
The total demands on the route cannot exceed the
vehicle’s capacity. All vehicles have to return to the
depot within the planning horizon (so called a close route
(Hamilton Cycle) (Tarantilis et al. 2005)). The objective
of VRPTW is to minimize the total cost of all routes (e.g.,
travel distance, and the number of vehicles used).
Derived from various real-world problems, a large
number of extended VRP models are proposed with

various Side Constraints to VRPTW (e.g. driver working
hour regulations, demand type, vehicle type and
customer preference), or combined with other problems
(e.g. inventory routing problem (Coelho, Cordeau and
Laporte 2014)), while both exact approaches and
heuristic algorithms are heavily studied (Toth and Vigo
2001).

1.1. Variants of Vehicle Routing Problem

The problem model in our study is related to three
classical VRP variants. In Vehicle Routing Problem with
Pickups and Deliveries (Golden et al. 2008), customers
have pickup and delivery demands. Each vehicle picks
up goods from a number of pickup points, then delivers
them to the appointed destinations within the associated
time windows. In Less-than Truckload Transportation
problem, goods delivered can be consolidated;
otherwise, it is a Full Truckload Transportation problem
(Wieberneit 2008).

In Multi-Period Vehicle Routing Problem, the
service to a customer could be performed over a multi-
period horizon (Mourgaya and Vanderbeck 2007).
Especially in grocery distribution, soft drink industry and
waste collection, goods are delivered at a specified
service frequency for customers over a multi-period
horizon. In this so-called Periodic Vehicle Routing
Problem (Eksioglu et al. 2009), the objective is to
minimize the total cost of vehicles routing on all
workdays servicing all customers.

To reduce cost, in practice many companies hire
external carriers via third party logistic providers, instead
of having their own fleet. Those hired vehicles do not
return to the starting depot after completing the tasks, so
all routes end at the last customers serviced. The routes
are called open routes (Hamilton Paths instead of
Hamilton Cycles) in Open VPRs, first proposed by
Eppen and Schrage (1981).

1.2. Existing Methods

As a well-known NP-hard problem (Toth and Vigo
2001), VRPs have been investigated by a huge number
of exact methods and heuristic algorithms. Exact
methods guarantee optimality (Baldacci et al. 2012),

Proceedings of the Int. Conf. on Harbor Maritime and Multimodal Logistics M&S, 2017

ISBN 978-88-97999-87-4; Bottani, Bruzzone, Longo, Merkuryev, and Piera Eds.

25

mailto:Binhui.Chen@nottingham.ac.uk
mailto:Rong.Qu@nottingham.ac.uk

however, become unrealistic when solving larger scale
real-world problems with complex constraints (El-
Sherbeny 2010). Heuristic and Metaheuristic algorithms
generate good approximations of optimal solutions in an
acceptable computational time and have made great
achievements in solving large-scale VRPs in the last
three decades (Bräysy and Gendreau 2001).

Population-Based Metaheuristics evolve improved
solutions in populations and have shown high-
performance on problems such as multi-objective
problems (Lourens 2005, Ghoseiri and Ghannadpour
2010). However, when facing high-dimensional complex
solution structures and large problem size in real-world
problems, they could be intractable. For the large scale
and highly constrained problem in this study, we focus
on single solution-based metaheuristics.

Single solution-based metaheuristics, by calling
neighbourhood operators, explore only one new solution
in each iteration. In Tabu Search (TS), specific solutions
in a tabu list are forbidden to avoid cyclic search, and
worse solutions within a certain extend are accepted to
escape from a local optima trap. A TS is proposed for
PVRPTW in (Cordeau et al. 2001), considering travel
time, capacity, duration and time windows. TS has been
widely applied to many applications in VRPs (Laporte et
al. 2000).

Variable Neighbourhood Search (VNS) explores a
solution space by changing neighbourhood structures
systematically (Mladenoviċ and Hansen 1997). It has
obtained good results on various optimization problems
(Hansen et al. 2010) including OVRPTW (Redi et al.
2013). In Variable-Depth Neighbourhood Search
(VDNS), one operator is used, but at variable
neighbourhood depths. It is widely applied in Very Large

Scale Neighbourhood search (Pisinger and Ropke 2010).
Chen et al. (2016) develop a combined VNS and VDNS
with compounded neighbourhood operators for VRPTW
and obtained a number of new best solutions for
benchmark instances.

Large Neighbourhood Search (LNS) (Shaw 1997,
1998) applies destroy operators (removal heuristics) and
repair operators (insertion heuristics) to remove and
reinsert a number of customers/demands from the current
solution, producing a new solution with a larger
difference. Schrimpf et al. (2000) also propose a similar
Ruin & Recreate scheme. Pisinger and Ropke (2007)
introduce the Adaptive Large Neighbourhood Search
(ALNS), which employs an LNS strategy with adaptive
operator selection, to solve five VRP variants.

When traditional operators of small change (e.g. λ-
opt, CROSS-exchange (Bräysy and Gendreau 2005)) are
used to explore tightly constrained large neighbourhood,
the search can easily stuck into local optima. LNS
operators (destroy & repair) and ALNS efficiently
conquer this weakness by introducing larger changes to
the current solution, and produce promising results in a
large number of problems compared to existing methods
(Pisinger and Popke 2010; Laporte et al. 2010).

In (Azi et al. 2014), the operation depth of
neighbourhood operators in the ALNS for VRPs with

Multiple Routes changes. E.g., the Random Removal
operator can randomly remove workdays, routes or
customers from the operated solution. Note that each of
the three different depths is used for only once by turn.
More ALNS algorithms for practical VRPs can be found
in (Ribeiro and Laporte 2012; Schopka and Kopfer
2016).

In this paper, we propose a Variable-Depth
Adaptive Large Neighbourhood Search algorithm (VD-
ALNS) for the Open Periodic Vehicle Routing Problem
with Time Windows (OPVRPTW) (Chen et al. 2017).
Inspired by the idea of systematically adjusting
neighbourhood operators during the search in VNS and
VDNS, the operation depth of LNS operators in our
algorithm is variable.

2. PROBLEM MODEL

Based on a practical Full Truckload Transportation
problem at the Ningbo Port, the second biggest port in
China, Chen et al. (2017) propose an OPVRPTW model.
A fleet of 100 identical trucks is available in the depot to
complete container transportation tasks among nine
terminals. The objective of this problem is to minimize
the total unloaded travel distance of the fleet.

The problem is a Periodic VRP with a planning
horizon of two to four days, each day has two shifts. One
shipment request may contain a number of containers. At
the beginning of a working day, the trucks leave the
depot to complete a number of tasks of container pickup
and delivery between terminals and return to the depot at
the end of the day. In the middle of a workday, due to
regulations of working hours on Labour Law, drivers
working on the first (Odd-Indexed) shift of a day
handover a truck to a driver working on the second
(Even-Indexed) shift at a terminal. The terminal can be
the first pickup point (source terminal) to the even-
indexed shift driver or the last delivery point (destination
terminal) to the odd-indexed shift driver. The routes in
this problem are open, i.e. routes in odd-indexed shifts do
not have to end at the depot, and routes in even-indexed
shifts do not need to start from the depot.

We use the same problem model as (Chen et al.
2017). All tasks of transporting a container are
represented as one task node including: loading the
container into a truck at the source terminal, travelling
from the source to the destination terminal, and
unloading at the destination terminal. Therefore, the
travel between two nodes is always unloaded travel,
because the loaded travel has been packaged into the task
nodes. In this Open Periodic VRP with Time Windows,
one truck can carry only one container at a time for its
capacity.

To connect the route of a truck from an odd-indexed
shift to the following even-indexed shift, Artificial

Depots are used in between on each workday. In one
shift, every route starts from a starting depot and ends at
a termination depot. The main notations used in this
model are summarized in Table 1.

In Figure 1, a small example of one workday
schedule (of two consecutive shifts) is presented. A fleet

Proceedings of the Int. Conf. on Harbor Maritime and Multimodal Logistics M&S, 2017

ISBN 978-88-97999-87-4; Bottani, Bruzzone, Longo, Merkuryev, and Piera Eds.

26

of five trucks completes 14 transportation tasks. The
physical move of the truck in the top route is
demonstrated on the right side, with a handover at the
artificial depot from Shift 1 (odd-indexed) to the driver
in Shift 2 (even-indexed). It is worth to note that, the
second and third routes in Shift 1 and the third and fourth
routes in Shift 2 are empty routes, which directly connect
artificial depots and the physical depot. This means no

task is completed on these routes. Notice that the cost of
an empty route is not always zero, e.g. the cost of the
fourth route in Shift 2 could be non-zero, due to the
unloaded travel distance from the last destination of the
fourth route in Shift 1 to the physical depot is not zero.
The cost of empty route will be zero only if the connected
artificial node actually represents the physical depot.

Table 1: The List of Notations

Input Parameters: 𝐾 Fleet size. 𝑆
The set of time-continuous working shifts, which can be divided into odd-indexed shifts (𝑆𝑜𝑑𝑑) and even-indexed shifts
(𝑆𝑒𝑣𝑒𝑛). [𝑌𝑆, 𝑍𝑆] Time window of shift 𝑠. 𝑁 = {0,1,2,⋯ , 𝑛} Set of 𝑛 + 1 nodes. Each node represents a task except node 0 is the physical depot. [𝑎𝑖 , 𝑏𝑖] The time window for node 𝑖. The time window for a depot is zero at the boundary of a shift. If a truck arrives at the source
of 𝑖 early, it has to wait until 𝑎𝑖.

𝑊

Set of Artificial Depots. This set of nodes are introduced to represent the destination terminals in 𝑆𝑜𝑑𝑑 or source terminals
in 𝑆𝑒𝑣𝑒𝑛 on each day, which is decided by if the associated trucks in 𝑆𝑜𝑑𝑑 can arrive at their terminals before the end of
the shift. This set varies in different solutions, i.e. a physical terminal may not appear or may appear more than once in 𝑊. 𝐴 Set of arcs. Each arc (𝑖, 𝑗) represents that node 𝑗 is immediately serviced/visited after servicing/visiting node 𝑖. 𝑐𝑖𝑗 The cost (distance) of unloaded travel from node 𝑖 to node 𝑗. If the destination terminal of task i and the source terminal
of task j is the same, 𝑐𝑖𝑗 = 0. 𝑡𝑖𝑗 The travel time from node 𝑖 to node 𝑗. When both 𝑖 and 𝑗 are task nodes, 𝑡𝑖𝑗 is the travel time from the destination of 𝑖 to

the source of 𝑗. Otherwise, it is the travel time from or to a depot. 𝑇𝑖 The arrival time at node 𝑖. 𝐵𝑖 The time to begin the service of node 𝑖. 𝑙𝑖 The time for servicing node 𝑖, which includes the loading time, transportation time (from pick-up source to delivery
destination) and unloading time. The service time of a depot is zero.

Decision Variable: 𝑥𝑖𝑗𝑠
A binary decision variable for nodes 𝑖, 𝑗 ∈ 𝑁 ∪𝑊. Its value is 1 if arc (𝑖, 𝑗) is included in the solution in shift 𝑠, otherwise
is 0. 𝑖 and 𝑗 ∈ 𝑊 at the same time is not allowed

Figure 1：A scheduling example of two consequent shifts with five trucks.

Proceedings of the Int. Conf. on Harbor Maritime and Multimodal Logistics M&S, 2017

ISBN 978-88-97999-87-4; Bottani, Bruzzone, Longo, Merkuryev, and Piera Eds.

27

This OPVRPTW problem can be formally defined
as follows.

 𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒 ∑ ∑ ∑ 𝑐𝑖𝑗 ∙ 𝑥𝑖𝑗𝑠𝑗∈𝑁∪𝑊𝑖∈𝑁∪𝑊𝑠∈𝑆 (1)

Subject to
 ∑ ∑ 𝑥𝑖𝑗𝑠𝑖∈𝑁\{0}𝑠∈𝑆 = 1, ∀ 𝑗 ∈ 𝑁\{0} (2) ∑ ∑ 𝑥𝑖𝑗𝑠𝑗∈𝑁\{0}𝑠∈𝑆 = 1, ∀ 𝑖 ∈ 𝑁\{0} (3) ∑ 𝑥𝑖𝑗𝑠𝑖∈𝑁∪𝑊 = ∑ 𝑥𝑗𝑓𝑠 , ∀𝑗 ∈ 𝑁\{0}, 𝑠 ∈ 𝑆𝑓∈𝑁∪𝑊 (4) 𝑇𝑗 = ∑ (𝐵𝑖 + 𝑙𝑖 + 𝑡𝑖𝑗) ∙𝑖∈𝑁\{0} 𝑥𝑖𝑗𝑠 + ∑ (𝑌𝑠 + 𝑡𝑖𝑗) ∙ 𝑥𝑖𝑗𝑠𝑖={0}∪𝑊 ,

 ∀𝑗 ∈ 𝑁\{0}, 𝑠 ∈ 𝑆 (5) 𝐵𝑗 = 𝑇𝑗 +𝑚𝑎𝑥{𝑎𝑗 − 𝑇𝑗 , 0} , ∀𝑗 ∈ 𝑁\{0} (6) 𝑥𝑖𝑗𝑠 ∙ 𝑌𝑠 ≤ 𝑥𝑖𝑗𝑠 ∙ 𝑇𝑗 , ∀𝑖 ∈ {0} ∪𝑊, 𝑗 ∈ 𝑁 ∪𝑊, 𝑠 ∈ 𝑆 (7) 𝑥𝑖𝑗𝑠 ∙ (𝐵𝑖 + 𝑙𝑖) ≤ 𝑥𝑖𝑗𝑠 ∙ 𝑍𝑠 , ∀𝑖 ∈ 𝑁 ∪𝑊, 𝑗 ∈ {0} ∪𝑊, 𝑠 ∈ 𝑆 (8) 𝑎𝑖 ≤ 𝐵𝑖 ≤ 𝑏𝑖 − 𝑙𝑖 , ∀𝑖 ∈ 𝑁\{0} (9) 𝑥𝑖𝑗𝑠 ∈ {0,1} , ∀𝑖, 𝑗 ∈ 𝑁 ∪𝑊, 𝑠 ∈ 𝑆 (10) 𝑥𝑣𝑤𝑠 = 0 , ∀𝑣 ∈ 𝑊,𝑤 ∈ 𝑊, 𝑠 ∈ 𝑆 (11)

In odd-indexed shifts (∀s ∈ 𝑆𝑜𝑑𝑑):
 ∑ 𝑥0𝑗𝑠 = 𝐾 , ∀ 𝑠 ∈ 𝑆𝑜𝑑𝑑𝑗∈𝑁\{0}∪𝑊 (12) 𝑥𝑖0𝑠 = 0 , ∀𝑖 ∈ 𝑁\{0} ∪𝑊, 𝑠 ∈ 𝑆𝑜𝑑𝑑 (13) ∑ ∑ 𝑥𝑖𝑤𝑠 = 𝐾 , ∀𝑠 ∈ 𝑆𝑜𝑑𝑑𝑤∈𝑊𝑖∈𝑁 (14)

In even-indexed shifts (∀s ∈ 𝑆𝑒𝑣𝑒𝑛):
 ∑ 𝑥𝑗𝑤𝑠−1 = ∑ 𝑥𝑤𝑒𝑠 , ∀𝑤 ∈ 𝑊, 𝑠 ∈ 𝑆𝑒𝑣𝑒𝑛𝑒∈𝑁𝑗∈𝑁 (15) 𝑥0𝑗𝑠 = 0 , ∀𝑗 ∈ 𝑁\{0} ∪W, s ∈ 𝑆𝑒𝑣𝑒𝑛 (16) ∑ ∑ 𝑥𝑤𝑗𝑠𝑗∈𝑁 = 𝐾 , ∀𝑠 ∈ 𝑆𝑒𝑣𝑒𝑛𝑤∈𝑊 (17) ∑ 𝑥𝑖0𝑠 = 𝐾 , ∀𝑠 ∈ 𝑆𝑒𝑣𝑒𝑛𝑖∈𝑁\{0}∪𝑊 (18)

The objective of this problem (1) is to minimize the

total unloaded travel distance. Constraints (2) and (3)
denote that every task node can be visited exactly once,
and all tasks are visited. Constraint (4) specifies that a
task may only be serviced after the previous task is
completed. Constraints (2) - (4) together make sure arcs
of over more than one shift are unacceptable. Constraint
(5) is the arrival time at a task node. Constraint (6)
defines the beginning time of servicing a task node,
calculated by the arrival time plus the waiting time at the
source of the task. Constraints (5) and (6) enforce the
correct successive relationship between consecutive
nodes.

Constraints (7) and (8) are the time window
constraints of each shift, while constraint (9) represents
the time constraint on each task. The domain of the
respective decision variable is defined by constraints (10)
and (11). Constraint (11) prohibits the travel between two
artificial depots.

In odd-indexed shifts and even-indexed shifts, the
constraints for the start and termination depots are
different. Constraints (12) and (14) represent that K
trucks leave the physical depot 0 at the beginning of an
odd-indexed shift, and they would stop at artificial depots
at the end of the shift. Constraint (13) represents that no
truck returns to the physical depot in odd-indexed shifts.
Constraints (16) - (18) place the reverse restraints in
even-indexed shifts. Constraint (15) defines the shift
change from an odd-indexed shift to the following even-
indexed shift on artificial depots, where the incoming of
each artificial terminal in Sodd equals its outgoing in the
following Seven.

It is easy to see that, this problem is highly
constrained with an exponential growing search space
(|S|·K·n!). It has been proofed that exact methods are not
suitable to solve this problem due to the exorbitant
computing requirement (Chen et al. 2017). To address
the tightly constrained problems with large
neighbourhood, a Variable-Depth ALNS algorithm (VD-
ALNS) is proposed.

3. VARIABLE-DEPTH ADAPTIVE LARGE

NEIGHBOURHOOD SEARCH

3.1. Framework of VD-ALNS
The framework of VD-ALNS is shown in ALGORITHM
1. An emergency-based construction heuristic (Chen et
al. 2017) is firstly used to generate an initial solution by
considering shifts chronologically, and assigning the
tasks with higher emergency first. According to their
time windows, those tasks that must be completed before
the next shift will be assigned first. Starting from the
initial solution, four destroy operators and three repair
operators are then used to produce new solutions by
modifying the current solution (S𝑐𝑢𝑟𝑟𝑒𝑛𝑡), pursuing
solutions with higher quality. 𝑊𝑒𝑖𝑔ℎ𝑡 and 𝑆𝑐𝑜𝑟𝑒 in Step 1 are two scalars used to
guide the subsequent search. Specifically, Scorei records
the contributions of operator i in solution improvement
within a fixed number of iterations (so called a Segment).
Scorei is used to update the value of Weighti, which
determines the probability of operator i being adopted
during search, in the next Segment. Their values are set
as the same for all operators at the beginning, and then
updated during the search. The algorithm iteratively
explores the solution space until the Stopping Criterion
is met, i.e. the quality of the best found solution (𝑆) has
not been improved in the last 𝑈𝑁𝐼𝑀𝑃𝑅𝑀𝐴𝑋 iterations, or
the improvement is less than 1% in the last 𝐼𝑁𝐶𝑅𝐸𝑀𝐴𝑋 iterations.

In Step 2.1, 𝐷𝑒𝑝𝑡ℎ is the range the operators work
upon. It is systematically switched between the whole
planning horizon (𝐻𝑂𝑅𝐼𝑍𝑂𝑁) and a specified shift

Proceedings of the Int. Conf. on Harbor Maritime and Multimodal Logistics M&S, 2017

ISBN 978-88-97999-87-4; Bottani, Bruzzone, Longo, Merkuryev, and Piera Eds.

28

(𝑆𝐻𝐼𝐹𝑇) to balance the exploration and exploitation. In
Step 2.2, a pair of a destroy operator (𝐷𝑖) and a repair
operator (𝑅𝑗) are used to generate a new solution (𝑆′).

Every single operator in ALNS has its own weight
(𝑊𝑒𝑖𝑔ℎ𝑡𝑖). However, a research issue here is whether an
operator should be assigned two different weights for
two different depths to separately record its contribution
to improvement at depths 𝐻𝑂𝑅𝐼𝑍𝑂𝑁 and 𝑆𝐻𝐼𝐹𝑇 , or
only one weight is sufficient to record all previous
contribution. In the literature, this question has been
addressed in VNS and VDNS (Pisinger and Ropke
2010). Using two independent weights separately records
knowledge collected during the search employing two
independent operators at different depths, thus would
prevent the knowledge collected at the other depth from
being used. However, in our preliminary experiments, it
is found that search experience at different operation
depths can contribute and promote each other. In VD-
ALNS, thus, we adopt one operator in both scenarios and
record an operator's information with only one scalar.

ALGORITHM 1: Framework of VD-ALNS
Input: An initial feasible solution (𝑆) generated by the construction

heuristic in (Chen et al. 2017), Stopping Criterion, 𝐼𝑇𝐸𝑀𝐴𝑋
and LEN_SEGMENT.

Step 1. Set up the initial parameters.
 𝑊𝑒𝑖𝑔ℎ𝑡 ← {1,⋯ ,1}.
 𝑆𝑐𝑜𝑟𝑒 ← {0,⋯ ,0}.
 S𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑆, 𝐷𝑒𝑝𝑡ℎ ← 𝐻𝑂𝑅𝐼𝑍𝑂𝑁.
Step 2.
 while Stopping Criterion is not met do
 Step 2.1 Variable-Depth Setting.
 if 𝑆 is not improved in the last 𝐼𝑇𝐸𝑀𝐴𝑋 iterations
 if 𝐷𝑒𝑝𝑡ℎ = 𝐻𝑂𝑅𝐼𝑍𝑂𝑁 then
 𝐷𝑒𝑝𝑡ℎ ← 𝑆𝐻𝐼𝐹𝑇.
 else
 𝐷𝑒𝑝𝑡ℎ ← 𝐻𝑂𝑅𝐼𝑍𝑂𝑁.
 end

 end
 Step 2.2 Operators Selection and Execution.

Select a Destroy Operator (𝐷𝑖) and a Repair Operator (𝑅𝑗)
based on 𝑊𝑒𝑖𝑔ℎ𝑡.
Execute 𝐷𝑖 and 𝑅𝑗 at Depth, and obtain a new solution: 𝑆′ ← 𝑅𝑗(𝐷𝑖(𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡)).

 Step 2.3 Accept or Reject.
A Record-to-Record Travel algorithm is employed to
determine if the newly generated solution is accepted
(𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑆′) or rejected. If the quality of 𝑆′ is better
than 𝑆, update the best-found solution 𝑆 ← 𝑆′.

 Step 2.4 Weight Adjustment.
The Scores of 𝐷𝑖 and 𝑅𝑗 (𝑆𝑐𝑜𝑟𝑒𝑖 and 𝑆𝑐𝑜𝑟𝑒𝑗) are updated

at every iteration according to the quality of 𝑆′.
At every LEN_SEGMENT iteration, 𝑊𝑒𝑖𝑔ℎ𝑡 is updated
based on the accumulated Score, Score is then reset.

 end

Output: An improved solution 𝑆.

A pair of operators is selected by Roulette Wheel

based on the weights of operators in Step 2.2. The
probability of an operator 𝑖 being selected is calculated
with Eq. (19), where ℎ is the number of candidate
operators.

 𝑃𝑟𝑖 = 𝑊𝑒𝑖𝑔ℎ𝑡𝑖∑ 𝑊𝑒𝑖𝑔ℎ𝑡𝑘ℎ𝑘=1 (19)

Step 2.3 decides if 𝑆′ is accepted as new 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡
and 𝑆 is updated, while Step 2.4 adjusts the scores and
weights of operators according to the quality of 𝑆′. These
adaptive weights guide the search to promising solution
regions. More details are introduced in Sections 3.2 – 3.5.

3.2. Variable-Depth Setting
Variable search depth endows a balanced search
performance. When 𝐷𝑒𝑝𝑡ℎ is 𝑆𝐻𝐼𝐹𝑇 , the destroy
operators remove a number of nodes from one specified
shift, while the repair operators reinsert them back into
that shift. All the shifts are specified and checked
sequentially. When 𝐷𝑒𝑝𝑡ℎ is 𝐻𝑂𝑅𝐼𝑍𝑂𝑁 , the removal
and reinsertion happen within the whole planning
horizon. Obviously, 𝐻𝑂𝑅𝐼𝑍𝑂𝑁 is a greater depth than 𝑆𝐻𝐼𝐹𝑇, and lead to a greater change in a solution, thus
improves the diversification of search. Contrarily, using
a 𝐷𝑒𝑝𝑡ℎ of 𝑆𝐻𝐼𝐹𝑇 modifies routes in a single shift by
locally optimizing the solution, thus increases the
intensification of search. 𝐷𝑒𝑝𝑡ℎ is systematically switched to seek a trade-off
between exploration and exploitation. Searching with
smaller depth exploits a relatively smaller solution area
intensively, while larger search depth avoids search
trapping into local optima. In the proposed algorithm, 𝐷𝑒𝑝𝑡ℎ would be switched to the other value when 𝑆 is
not improved in 𝐼𝑇𝐸𝑀𝐴𝑋 iterations, to keep both the
diversification and intensification in searching the large
scale tightly constrained solution space.

3.3. Operators of Destroy and Repair

Four destroy operators and three repair operators are
developed in our proposed VD-ALNS.

3.3.1. Destroy Operators

In each iteration, 𝑞 nodes are removed by a destroy
operator (Removal Heuristic). The value of 𝑞 increases
by 5 when the solution is not improved in the last
iteration. As a too small 𝑞 will hardly bring change to a
solution, while a too large 𝑞 will significantly increase
repair operation time and the algorithm becomes a
random search, a lower bound of max{0.1𝑛, 10} and an
upper bound of min{0.5𝑛, 60} are set for 𝑞, where 𝑛 is
the total number of nodes.

1. Random Removal: The 𝑞 nodes to be removed
are randomly selected.

2. Worst Removal: This is a greedy heuristic,
where the top 𝑞 nodes causing the greatest cost
will be removed. In other words, removing the
q task nodes brings the greatest cost reduction
to the solution.

3. Worst Edge Removal: This is also a greedy
heuristic, which deletes 𝑞 nodes adjacent to arcs
of the highest cost.

4. Related Removal: Shaw (1997) proposes this
operator based on the observation that, if nodes
relate to one another are removed together, there
would be an opportunity to interchange them in
the later repaired solution. In VD-ALNS, we
define the Relatedness of two task nodes (𝑖 and

Proceedings of the Int. Conf. on Harbor Maritime and Multimodal Logistics M&S, 2017

ISBN 978-88-97999-87-4; Bottani, Bruzzone, Longo, Merkuryev, and Piera Eds.

29

𝑗) from five aspects: Service Time (𝑅𝑖𝑗𝑆𝑇), Time

window (𝑅𝑖𝑗𝑇𝑊), Service Starting Time (𝑅𝑖𝑗𝑆𝑆𝑇),

Vehicle used (𝑅𝑖𝑗𝑉) and Source and Destination

(𝑅𝑖𝑗𝑆𝐷) as follows.

 𝑅𝑖𝑗𝑆𝑇 = |𝑙𝑖−𝑙𝑗|(𝑙𝑖+𝑙𝑗)∙0.5 (20)

𝑅𝑖𝑗𝑇𝑊 = 0.5∙(|𝑎𝑖−𝑎𝑗|+|𝑏𝑖−𝑏𝑗|)𝑚𝑎𝑥{𝑏𝑖,𝑏𝑗}−𝑚𝑖𝑛{𝑎𝑖,𝑎𝑗} (21)

𝑅𝑖𝑗𝑆𝑆𝑇 = |𝐵𝑖−𝐵𝑗|𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔 𝐻𝑜𝑟𝑖𝑧𝑜𝑛 (22)

𝑅𝑖𝑗𝑉 = { 0 𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒 𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑑 𝑏𝑦 𝑎 𝑠𝑎𝑚𝑒 𝑣𝑒ℎ𝑖𝑐𝑙𝑒0.5 𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒 𝑠𝑒𝑟𝑣𝑖𝑒𝑐𝑒𝑑 𝑏𝑦 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑠ℎ𝑖𝑓𝑡1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. (23)

𝑅𝑖𝑗𝑆𝐷 = {
 0 𝑖 𝑎𝑛𝑑 𝑗 ℎ𝑎𝑣𝑒 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑠𝑜𝑢𝑟𝑐𝑒 𝐴𝑁𝐷𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛0.5 𝑖 𝑎𝑛𝑑 𝑗 ℎ𝑎𝑣𝑒 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑠𝑜𝑢𝑟𝑐𝑒 𝑂𝑅𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. (24)

Correspondingly, the relatedness of two task nodes

(𝑅𝑖𝑗) is a linear combination of the five components

above-mentioned (25). The values of the five linear
coefficients are discussed in Section 4.2. In Related

Removal, the first node to be removed is randomly
selected, then the other nodes are sorted in ascending
order of their relatedness Rij to the first node.
 𝑅𝑖𝑗 = 𝛼 ∙ 𝑅𝑖𝑗𝑆𝑇 + 𝛽 ∙ 𝑅𝑖𝑗𝑇𝑊 + 𝛾 ∙ 𝑅𝑖𝑗𝑆𝑆𝑇 + 𝛿 ∙ 𝑅𝑖𝑗𝑉 + 𝜀 ∙ 𝑅𝑖𝑗𝑆𝐷 (𝑠. 𝑡. 𝛼 + 𝛽 + 𝛾 + 𝛿 + 𝜀 = 1) (25)

The rest 𝑞 − 1 nodes to be removed are selected
with a preference of smaller 𝑅𝑖𝑗, where the nodes with

the index of ⌈𝑁𝜌𝐷⌉ will be removed. Here, 𝑁 is the
number of the current candidate nodes, 𝜌 is a random
number between 0 and 1, and 𝐷 is a constant greater or
equal to 1. The greater 𝐷 is, the stronger the preference
would be, while 𝐷 is set to 3 in VD-ALNS. This
selection scheme with a preference has been widely used
in ALNS methods (Ropke and Pisinger 2006; Prescott-
Gagnon 2009; Azi et al. 2014).

3.3.2. Repair Operators

The nodes removed in the Destroy phase will be
reinserted back into the solution following the below
specific rules of each repair operator (Insertion
Heuristic).

1. Random Insertion: The removed nodes are
randomly inserted into feasible positions.

2. Greedy Insertion: The removed nodes are
inserted into their best feasible positions
causing the least cost increase.

3. Regret2 Insertion: This greedy insertion
heuristic is proposed by Pisinger and Ropke
(2007), which always inserts firstly the node of
the largest REGRET value into its best feasible
position. The REGRET of a node is the cost

difference between inserting the node to its best
and second best feasible positions.

3.4. Acceptance Criterion

Record-to-Record Travel acceptance criterion (Dueck
1993) is used to determine if the newly generated
solution (𝑆′) is acceptable in the search. If 𝑆′ is better
than the best-found solution 𝑆 (i.e. 𝐶𝑂𝑆𝑇(𝑆′) <𝐶𝑂𝑆𝑇(𝑆)), 𝑆′ will be accepted as the current solution
(𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡). A new solution worse than 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is still
acceptable as long as the gap between their COST is less
than a DEVIATION threshold (i.e. 0.01 ∙ 𝐶𝑂𝑆𝑇(𝑆)).

3.5. Weight Adjustment

In each iteration, the employed operator i is rewarded a
value 𝜎 ≥ 0 based on the quality of the generated
solution 𝑆′ (see Eq. 26). The effect of 𝜎 is further studied
in Section 4.2.

𝜎 =
{
 𝜎1 𝑆′𝑖𝑠 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝑎𝑛𝑑 𝐶𝑂𝑆𝑇(𝑆′) < 𝐶𝑂𝑆𝑇(𝑆)𝜎2 𝑆′𝑖𝑠 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝐴𝑁𝐷𝐶𝑂𝑆𝑇(𝑆) < 𝐶𝑂𝑆𝑇(𝑆′) < 𝐶𝑂𝑆𝑇(𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡)𝜎3 𝑆′𝑖𝑠 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝐴𝑁𝐷𝐶𝑂𝑆𝑇(𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡) < 𝐶𝑂𝑆𝑇(𝑆′)𝜎4 𝑆′𝑖𝑠 𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑

s.t. 𝜎1 > 𝜎2 > 𝜎3 > 𝜎4 ≥ 0 (26)

After a fixed number (𝐿𝐸𝑁_𝑆𝐸𝐺𝑀𝐸𝑁𝑇) of

iterations (a Segment), the total accumulated reward
saved in 𝑆𝑐𝑜𝑟𝑒𝑖 in the current Segment t-1 is used to
update the weight of operator i for the next Segment t (see
Eq. (27)). In Eq. (27), the reaction factor 𝑟 controls how
quickly the adjustment scheme reacts. 𝑢𝑖 is the number
times operator 𝑖 is used in Segment 𝑡 − 1. After updating 𝑊𝑒𝑖𝑔ℎ𝑡𝑖𝑡 , 𝑆𝑐𝑜𝑟𝑒𝑖 will be reset to zero to start the
accumulation of reward in Segment 𝑡.

 𝑊𝑒𝑖𝑔ℎ𝑡𝑖𝑡 = 𝑟 ∙ 𝑊𝑒𝑖𝑔ℎ𝑡𝑖𝑡−1 + (1 − 𝑟) ∙ 𝑆𝑐𝑜𝑟𝑒𝑖𝑢𝑖 (27)

4. EXPERIMENTS AND ANALYSIS

4.1. Benchmark

Bai et al. (2015) generate a dataset including 15 real-life
instances extracted from the container transportation
historical data at Ningbo Port, and 16 artificial instances
with diverse features. The planning horizons are four, six
and eight shifts in the real-life instances, and four or eight
shifts in artificial instances, respectively. The artificial
instances are classified and named by the tightness of the
time windows (Tight/Loose) and workload balance at
terminals (Balanced/Unbalanced). For example, the
instance named NP4-1 is the first real-life instance with
four shifts, and instance TU8-7 is the seventh artificial
instance with eight shifts, tight time window and
unbalanced workload at terminals.

The sizes of these 31 instances are large comparing
to the classical VRP datasets (Solomon1987; Gehring
and Homberger 1999). To test the effectiveness and
efficiency of the proposed algorithms on small size
instances, the Ningbo Port dataset is scaled down by

Proceedings of the Int. Conf. on Harbor Maritime and Multimodal Logistics M&S, 2017

ISBN 978-88-97999-87-4; Bottani, Bruzzone, Longo, Merkuryev, and Piera Eds.

30

25%, while keeping the same features in Chen et al.
(2017). We test our proposed VD-ALNS on both the
original and scaled down datasets.

4.2. Parameter Sensitivity Analysis

Parameters in VD-ALNS are studied one at a time, fixing
the other parameters. It is easy to understand that, higher 𝑈𝑁𝐼𝑀𝑃𝑅𝑀𝐴𝑋 and 𝐼𝑁𝐶𝑅𝐸𝑀𝐴𝑋 lead to more iterations in
search, so might bring better solutions but at the cost of
longer time. 𝐼𝑇𝐸𝑀𝐴𝑋 represents the times of one 𝐷𝑒𝑝𝑡ℎ
value would be continuously used. The trade-off between
the solution quality and running time needs to be
considered to strike a balance between effectiveness and
efficiency of the search. The values of parameters used
in VD-ALNS are presented in Table 2.

Table 2: Parameters in VD-ALNS.
Parameter 𝜎1 𝜎2 𝜎3 𝜎4 UNIMPRMAX INCREMAX ITEMAX

Value 30 15 5 0 150 200 4*No. of shifts

Parameter α β γ δ ε r LEN_SEGMENT
Value 0.3 0.2 0.1 0.2 0.2 70 0.4

In adaptive weight adjustment, the values of

rewards represent the contributions in solution
improvement. To obtain the best setting of reward values, 𝜎4 is set to zero, which indicates 𝑆𝑐𝑜𝑟𝑒𝑖 stays the same
when 𝑆’ is rejected. Besides, 𝜎3 is set to 5 as a base unit.
Different 𝜎1 and 𝜎2 are tested in parameter tuning
experiments to find the setting generating the best
solutions. It is observed that a too large 𝜎1 would cause
premature search. The best solutions are obtained when
the reward to producing a new best solution (𝜎1) is two
times of that of generating an acceptable solution better
than 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 (𝜎2), and six times of that of obtaining an
acceptable solution worse than 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 (𝜎3).

When tuning the definition of Relatedness (Eq.
(25)), all the five components are firstly assigned equal
weights (α = β = γ = δ = ε = 0.2). Then, each
coefficient is gradually increased to reflect the
contribution of the associated component to the total
relatedness. It is found that when the weight of Service
Time Relatedness (𝑅𝑖𝑗𝑆𝑇) is high, the quality of solutions

is higher. This indicates that reassigning two tasks with a
higher similarity of Service Time leads to a higher
possibility to produce a better solution. Since the Service
Staring Time of a task may change for various reasons
(e.g., a task is assigned to a new truck, and a precedent
task is reassigned, etc.), 𝑅𝑖𝑗𝑆𝑆𝑇 can hardly represent the

relatedness of two tasks and shows low contribution in
tuning tests. A lower coefficient is given to 𝑅𝑖𝑗𝑆𝑆𝑇 .

A too small LEN_SEGMENT will change the
weights of operators frequently and thus the search may
converge prematurely. On the other hand, a large
LEN_SEGMENT cannot update the guidance
information in time. Our preliminary experiments show
that the best performance is found when
LEN_SEGMENT is between 50 and 80. In Eq. (27), the
higher 𝑟 is, the slower the algorithm reacts to the latest
guidance information. VD-ALNS performs the best
when 𝑟 is between 0.4 and 0.6.

4.3. Comparison of Solution Algorithms

To demonstrate the contribution of variable depth, a
standard ALNS for OPVRPTW is also implemented,
where the Destroy and Repair operators are only used at
the depth of HORIZON in global searching. Comparing
to other metaheuristics using small change operators,
both VD-ALNS and ALNS have a stronger ability to
escape from local optima in a tightly constrained solution
space. They are compared to VNS-RLS (Chen et al.
2017), which uses neighbourhood operators with small
changes.

The comparison results on the 25% scaled down
instances are presented in Tables 3 and 4. The three
algorithms are compared from four aspects: best-found
solution (Best), average solution (Ave), evaluation times
(Times) and standard deviation (S.D.). All the results are
obtained from 30 runs. In these results, we convert the
objective value into Heavy-Loaded Distance Rate
(HLDR) (Eq. (28)), which is widely used by logistic
companies in practice. This objective is equivalent to the
lowest unloaded travel distance in Eq. (1), but it converts
the problem into a maximization problem. The lower and
upper bounds of optimal solutions, which are obtained by
CPLEX (Chen et al. 2017), are also given. NF in the
tables means no feasible solution can be found.

 𝐻𝐿𝐷𝑅 = 𝐿𝑜𝑎𝑑𝑒𝑑 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐿𝑜𝑎𝑑𝑒𝑑 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒+𝑈𝑛𝑙𝑜𝑎𝑑𝑒𝑑 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (28)

Table 3: HLDR on the 25% scaled down real-life
instances. (Best-found HLDR in bold.)

Instance NP4-1 NP4-2 NP4-3 NP4-4 NP4-5

VNS-

RLS

Best 82.89% 62.32% 75.64% 59.76% 79.24%

Ave 81.51% 61.42% 74.92% 59.18% 78.48%

Times 469,233 311,885 319,202 347,134 326,956

S.D. 1.16% 0.60% 0.62% 0.35% 0.42%

ALNS

Best 81.15% 65.51% 75.17% 61.86% 77.14%

Ave 79.80% 65.08% 73.60% 61.47% 76.15%

Times 385 500 458 499 395

S.D. 0.72% 0.33% 0.80% 0.27% 0.57%

VD-

ALNS

Best 81.74% 65.45% 75.54% 62.53% 77.67%

Ave 79.61% 65.16% 74.15% 61.75% 77.03%

Times 483 529 503 549 573

S.D. 1.20% 0.25% 0.82% 0.27% 0.53%

Lower Bound 78.36% 65.14% 64.83% 54.39% NF

Upper Bound 92.36% 97.04% 100% 97.72% 100%

Instance NP6-1 NP6-2 NP6-3 NP6-4 NP6-5

VNS-

RLS

Best 76.24% 73.39% 62.32% 80.50% 82.44%

Aver 74.99% 72.83% 62.06% 79.84% 80.53%

Times 698.514 624,078 253,037 541,548 365,435

S.D. 0.96% 0.41% 0.20% 0.41% 1.72%

ALNS

Best 79.07% 70.28% 65.00% 78.43% 82.15%

Ave 78.03% 69.42% 64.26% 77.07% 80.58%

Times 420 449 412 426 450

S.D. 0.69% 0.49% 0.42% 0.80% 0.69%

VD-

ALNS

Best 79.95% 70.75% 65.31% 78.26% 82.75%

Ave 78.33% 69.85% 64.40% 77.07% 80.34%

Times 549 537 553 515 496

S.D. 0.92% 0.49% 0.47% 0.76% 1.19%

Lower Bound NF NF 54.30% NF 66.11%

Upper Bound NF NF 95.20% NF 98.39%

Instance NP8-1 NP8-2 NP8-3 NP8-4 NP8-5

VNS-

RLS

Best 76.91% 77.76% 75.35% 60.90% 72.27%

Ave 74.72% 77.16% 74.93% 60.47% 71.68%

Times 607,961 525,479 442,103 430,962 516,872

S.D. 1.20% 0.37% 0.31% 0.32% 0.36%

ALNS

Best 74.74% 74.32% 75.08% 61.85% 71.60%

Ave 73.90% 73.07% 74.29% 61.66% 71.05%

Times 445 444 442 421 439

S.D. 0.54% 0.49% 0.59% 0.14% 0.29%

Proceedings of the Int. Conf. on Harbor Maritime and Multimodal Logistics M&S, 2017

ISBN 978-88-97999-87-4; Bottani, Bruzzone, Longo, Merkuryev, and Piera Eds.

31

VD-

ALNS

Best 75.50% 74.76% 75.09% 61.92% 71.58%

Ave 74.22% 73.53% 74.53% 61.70% 71.10%

Times 579 524 528 456 527

S.D. 0.57% 0.58% 0.36% 0.14% 0.31%

Lower Bound NF NF NF NF NF

Upper Bound 98.98% 100% 100% NF 100%

Table 4: HLDR on 25% scaled down artificial instances.
(Best-found HLDR in bold.)

Instance LB4-1 LB4-2 TB4-3 TB4-4 LU4-5 LU4-6 TU4-7 TU4-8

VNS-

RLS

Best 76.92% 83.42% 69.08% 66.41% 60.71% 61.08% 48.75% 54.97%

Ave 74.80% 81.61% 67.78% 64.95% 59.29% 60.62% 48.54% 54.68%

Times 313,707 280,849 286,059 298,651 321,835 290,082 166,248 193,536

S.D. 0.95% 1.09% 0.65% 0.75% 0.64% 0.29% 0.30% 0.33%

ALNS

Best 78.85% 81.85% 68.41% 66.94% 58.87% 59.35% 49.42% 54.12%

Ave 77.84% 80.08% 67.36% 66.06% 57.84% 58.60% 48.87% 53.35%

Times 438 421 426 410 396 287 371 287

S.D. 0.67% 1.01% 0.51% 0.39% 0.52% 0.37% 0.39% 0.43%

VD-

ALNS

Best 79.16% 83.42% 68.92% 67.01% 59.84% 60.16% 49.42% 55.31%

Ave 77.98% 80.92% 67.45% 66.22% 58.74% 59.37% 49.05% 54.19%

Times 445 448 457 443 472 477 411 448

S.D. 0.75% 0.95% 0.65% 0.36% 0.47% 0.46% 0.38% 0.48%

Lower

Bound
66.62% 76.41% 69.91% 69.30% NF 58.65% 50.37% 55.36%

Upper

Bound
100% 94.87% 86.31% 83.51% 79.94% 73.90% 52.17% 66.38%

Instance LB8-1 LB8-2 TB8-3 TB8-4 LU8-5 LU8-6 TU8-7 TU8-8

VNS-

RLS

Best 91.25% 93.56% 63.05% 66.31% 65.76% 66.58% 56.46% 52.29%

Ave 89.76% 92.09% 61.78% 63.25% 64.86% 65.58% 55.79% 51.93%

Times 492,628 547,853 296,837 517,855 438,295 439,782 269,164 281,479

S.D. 0.95% 0.87% 0.54% 1.16% 0.44% 0.49% 0.29% 0.18%

ALNS

Best 87.37% 87.87% 63.61% 66.12% 64.84% 60.34% 55.37% 51.89%

Ave 83.02% 84.41% 62.75% 64.89% 63.61% 58.13% 54.69% 51.28%

Times 398 396 403 461 437 318 334 385

S.D. 2.40% 1.40% 0.59% 0.74% 0.54% 0.73% 0.23% 0.42%

VD-

ALNS

Best 88.71% 89.62% 64.37% 67.01% 65.30% 63.08% 55.52% 52.41%

Ave 84.32% 84.35% 62.99% 65.26% 63.93% 59.95% 54.78% 51.81%

Times 515 499 549 535 598 590 482 577

S.D. 1.87% 1.95% 0.59% 0.54% 0.57% 1.29% 0.14% 0.39%

Lower

Bound
NF NF 56.85% 52.40% 57.42% NF 47.65% 50.74%

Upper

Bound
100% 100% 82.33% 88.75% 78.33% 86.84% 71.59% 70.43%

From the experiment results, we can find that VD-

ALNS beats ALNS in almost all instances, indicating
that the variable depth scheme does improve the
performance of ALNS. This scheme enhances the
exploitation in local areas, leading to increased total
evaluation times in ALNS. Comparing to VNS-RLS, on
6 of 15 real-life instances and half of artificial instances,
VD-ALNS finds better or equally good solutions,
showing no significant difference. However, VD-ALNS
takes remarkably fewer evaluation times and 90%
running time of VNS-RLS to obtain those results. All the
three methods have the similar stability of a difference
on S.D. lower than 1%.

Table 5: HLDR on the original full real-life dataset.
(Best-found HLDR in bold.)

Instance NP4-1 NP4-2 NP4-3 NP4-4 NP4-5

VNS-RLS

Best 83.29% 69.85% 72.90% 66.61% 80.65%

Ave 81.88% 69.56% 72.20% 65.91% 80.48%

Times 779,504 575,894 661,384 923,891 718,219

S.D. 0.55% 0.16% 0.38% 0.47% 0.17%

ALNS

Best 81.68% 69.08% 74.72% 66.63% 78.16%

Ave 80.21% 68.62% 74.06% 66.11% 77.78%

Times 212 281 288 271 267

S.D. 0.99% 0.36% 0.49% 0.29% 0.22%

VD-

ALNS

Best 82.30% 69.13% 73.94% 67.05% 78.96%

Ave 81.42% 68.83% 73.01% 66.28% 78.11%

Times 313 501 243 345 297

S.D. 0.58% 0.21% 0.86% 0.56% 0.49%

Upper Bound 90.43% 70.23% 79.58% 73.72% 81.20%

Instance NP6-1 NP6-2 NP6-3 NP6-4 NP6-5

VNS-

RLS

Best 79.64% 74.14% 58.94% 79.52% 79.99%

Aver 79.07% 73.72% 58.62% 79.10% 78.36%

Times 1.03×106 1.16×106 513,974 1.05×106 984,987

S.D. 0.47% 0.21% 0.23% 0.53% 0.99%

ALNS

Best 76.73% 69.16% 65.27% 77.99% 77.43%

Ave 76.27% 64.76% 64.79% 77.11% 76.64%

Times 265 44 251 236 274

S.D. 0.29% 3.04% 0.35% 0.49% 0.56%

VD-

ALNS

Best 81.74% 71.73% 65.16% 78.67% 77.39%

Ave 77.04% 70.95% 64.84% 77.86% 76.52%

Times 483 300 303 381 387

S.D. 1.20% 0.69% 0.24% 0.50% 0.54%

Upper Bound 83.93% 76.67% 66.90% 80.97% 84.30%

Instance NP8-1 NP8-2 NP8-3 NP8-4 NP8-5

VNS-

RLS

Best 73.80% 75.27% 74.20% 61.97% 73.62%

Ave 73.48% 74.86% 73.96% 61.91% 73.26%

Times 1.49×106 978,695 867,663 693,779 1.18×106

S.D. 0.15% 0.28% 0.22% 0.06% 0.35%

ALNS

Best 69.53% 71.88% 74.02% 61.13% 72.63%

Ave 68.58% 71.56% 73.22% 61.00% 72.05%

Times 113 253 227 322 290

S.D. 0.45% 0.23% 0.40% 0.09% 0.45%

VD-

ALNS

Best 70.13% 72.48% 74.02% 61.17% 73.07%

Ave 69.72% 71.39% 73.67% 60.98% 72.59%

Times 303 284 338 306 365

S.D. 0.31% 0.28% 0.23% 0.09% 0.34%

Upper Bound 77.04% 77.55% 78.82% 62.53% 76.09%

Table 6: HLDR on the original full artificial dataset.
(Best-found HLDR in bold.)

Instance LB4-1 LB4-2 TB4-3 TB4-4 LU4-5 LU4-6 TU4-7 TU4-8

VNS-

RLS

Best 73.52% 78.08% 69.32% 72.24% 64.67% 68.12% 53.21% 53.80%

Ave 72.93% 77.70% 68.54% 71.42% 64.38% 67.52% 53.03% 53.61%

Times 642,796 617,656 616,237 635,130 724,154 782,608 399,970 290,599

S.D. 0.32% 0.32% 0.42% 0.49% 0.20% 0.40% 0.16% 0.08%

ALNS

Best 75.98% 77.28% 68.68% 73.03% 61.11% 64.45% 52.75% 53.39%

Ave 75.41% 76.68% 68.05% 71.52% 60.59% 63.85% 52.01% 53.39%

Times 328 193 222 257 316 202 242 106

S.D. 0.48% 0.35% 0.43% 1.26% 0.35% 0.30% 0.43% 0.00%

VD-

ALNS

Best 76.05% 77.15% 69.03% 73.66% 61.04% 65.33% 52.88% 53.66%

Ave 75.14% 76.83% 68.51% 72.78% 60.40% 64.80% 52.49% 53.47%

Times 379 253 309 315 400 255 294 151

S.D. 0.60% 0.18% 0.38% 0.64% 0.43% 0.49% 0.39% 0.10%

Upper

Bound
79.47% 86.33% 84.05% 88.74% 74.11% 74.47% 64.05% 63.50%

Instance LB8-1 LB8-2 TB8-3 TB8-4 LU8-5 LU8-6 TU8-7 TU8-8

VNS-

RLS

Best 85.49% 94.03% 69.59% 66.85% 67.81% 68.41% 59.60% 54.50%

Ave 84.11% 92.83% 69.04% 65.70% 67.20% 68.07% 59.21% 54.23%

Times 1.44×106 1.13×106 669,136 1.47×106 1,11×106 1.03×106 572,065 859,770

S.D. 0.95% 1.05% 0.38% 0.76% 0.34% 0.21% 0.21% 0.16%

ALNS

Best 91.22% 92.98% 68.60% 63.76% 66.95% 61.68% 59.26% 53.78%

Ave 83.01% 84.98% 67.80% 63.33% 65.28% 60.12% 58.86% 53.18%

Times 231 212 236 232 275 225 242 210

S.D. 3.44% 3.35% 0.49% 0.28% 0.34% 0.57% 0.15% 0.32%

VD-

ALNS

Best 88.71% 89.74% 69.53% 64.95% 67.01% 62.30% 58.99% 54.31%

Ave 85.96% 86.67% 68.52% 63.78% 65.38% 61.29% 58.77% 53.10%

Times 339 347 427 336 280 343 251 175

S.D. 2.43% 1.77% 0.55% 0.75% 0.53% 0.76% 0.15% 0.50%

Upper

Bound
98.26% 97.97% 87.06% 92.44% 74.27% 71.36% 70.29% 56.54%

Tables 5 and 6 present results on the original

Ningbo Port instances. The upper bounds are obtained
with relaxing the travels of leaving and returning to the
depot (Bai et al. 2015). It can be found that, with the
variable depth scheme, VD-ALNS outperforms ALNS
again from the aspects of both the average and best found
solution. New best solutions are generated by VD-ALNS
on 7 out of 31 benchmark instances.

4.4. Contributions of Operators

Table 7 provides statistics on the Destroy and Repair
operators. On the scaled down dataset, one single
operator is excluded at a time in VD-ALNS to record the

Proceedings of the Int. Conf. on Harbor Maritime and Multimodal Logistics M&S, 2017

ISBN 978-88-97999-87-4; Bottani, Bruzzone, Longo, Merkuryev, and Piera Eds.

32

resulting solution quality deterioration. The second and
third columns show the average deterioration on the best
found solution and average solution, while the last two
columns give the maximum deterioration on the dataset.

Table 7: Contributions of each operator

Operator
Best sol.

deg.

Avg.

deg.

Max best

sol. deg.

Max avg.

deg.

Random Removal 0.15% 0.23% 1.08% 0.13%
Worst Removal 0.33% 0.60% 2.18% 2.14%
Related Removal 0.09% 0.08% 1.32% 0.68%
Worst Edge Removal 0.55% 0.56% 2.87% 2.14%
Random Insertion 0.21% 0.12% 1.80% 1.09%
Greedy Insertion 4.84% 5.34% 9.64% 7.69%
Regret2 Insertion 0.54% 0.25% 4.07% 1.31%

The results indicate the contributions of each

operator in VD-ALNS. It can be found that Worst Edge
Removal is the most efficient destroy operator, followed
by Worst Removal. Related Removal contributes the
least. Among all repair operators, Greedy Insertion is the
most useful, followed by Regret2 Insertion. Overall,
greedy heuristics provide effective complement on
search intensification and outperform the others in VD-
ALNS.

4.5. Analysis of Runtime

The Destroy and Repair operators in ALNS bring greater
changes than the traditional neighbourhood operators by
operating on more nodes and making greater
perturbation. Therefore, the computation time spent on
choosing removal nodes and insertion positions is
considerable. The evaluation times of ALNS and VD-
ALNS to obtain these results are significantly less than
that of VNS-RLS, but the running time of VD-ALNS
compared to VNS-RLS is around 17% more on the
original instances, and slightly less on small instances.
This observation indicates that scalability of the runtime
of VD-ALNS is worse (increases faster) than VNS-RLS
along with the instance size.

Choosing the insertion position is time-consuming.
Actually, the computational time of the repair operators
accounts for a larger proportion of the overall time,
around 3.5 times of the destroy operators’ on scaled
down instances. What’s more, on the original dataset, the
repair operation may spend more than 95% of the total
computing time.

5. CONCLUSIONS

This paper investigates an open Periodic Vehicle Routing
Problem with Time Windows (OPVRPTW) from a real-
world container transportation problem. To address this
OPVRPTW of large scale search space with tight side
constraints, a Variable-Depth Adaptive Large
Neighbourhood Search algorithm (VD-ALNS) is
proposed, using four destroy operators and three repair
operators at variable neighbourhood depth. In this
OPVRPTW with high-dimensional solution structure,
the variable depth scheme shows to significantly improve
the performance of the proposed algorithm on
benchmark instances.

On both small and big size benchmarks, it was
demonstrated that the proposed variable depth scheme
can handle the trade-off between exploration and
exploitation and find good solutions efficiently,
significantly promoting the performance of the classic
Adaptive Large Neighbourhood Search algorithm.
Comparing to an existing solution metaheuristic with
small change operators, a number of new best-found
solutions are obtained by VD-ALNS.

In our future research, the multi-objective feature
will be considered, and other effective trade-off
strategies between solution quality and search speed will
be adapted within ALNS. It will be interesting to also
integrate advanced customized exact methods into both
the destroy and repair operators.

ACKNOWLEDGMENTS

This research was supported by Ningbo Science &
Technology Bureau (2014A35006) and School of
Computer Science, the University of Nottingham.

REFERENCES

Azi N., Gendreau M., and Potvin J.Y., 2014. An adaptive
large neighborhood search for a vehicle routing
problem with multiple routes. Computers &
Operations Research 41 (2014), 167–173.

Bai R., Xue N., Chen J., and Roberts G.W., 2015. A set-
covering model for a bidirectional multi-shift full
truckload vehicle routing problem. Transportation
Research Part B: Methodological 79 (2015), 134–
148.

Baldacci R., Mingozzi A., and Roberti R., 2012. Recent
exact algorithms for solving the vehicle routing
problem under capacity and time window
constraints. European Journal of Operational
Research 218, 1 (2012), 1–6.

Bräysy O. and Gendreau M., 2001. Metaheuristics for the
vehicle routing problem with time windows. Report
STF42 A 1025 (2001).

Bräysy O. and Gendreau M., 2005. Vehicle routing
problem with time windows, Part I: Route
construction and local search algorithms.
Transportation science 39, 1 (2005), 104–118.

Chen B., Qu R., Bai R., and Ishibuchi H., 2016. A
variable neighbourhood search algorithm with
compound neighbourhoods for VRPTW. Springer,
25–35.

Chen B., Qu R., Bai R., and Laesanklang W., 2017. A
Reinforcement Learning Based Variable
Neighborhood Search Algorithm for Open Periodic
Vehicle Routing Problem with Time Windows.
Submitted to the Special Issue of the Journal
“Networks” on Vehicle Routing and Logistic, 2017.

Coelho, L.C., Cordeau, J.F. and Laporte, G., 2013. Thirty
years of inventory routing. Transportation
Science, 48(1), pp.1-19.

Cordeau J.F., Laporte G., and Mercier A., 2001. A
unified tabu search heuristic for vehicle routing

Proceedings of the Int. Conf. on Harbor Maritime and Multimodal Logistics M&S, 2017

ISBN 978-88-97999-87-4; Bottani, Bruzzone, Longo, Merkuryev, and Piera Eds.

33

problems with time windows. Journal of the
Operational research society 52, 8 (2001), 928–936.

Dueck G., 1993. New Optimization Heuristics: The
Great Deluge Algorithm and the Record-to-Record
Travel. J. Comput. Phys. 104, 1 (1993), 86–92.

Eksioglu B., Vural A.V., and Reisman A., 2009. The
vehicle routing problem: A taxonomic review.
Computers & Industrial Engineering 57, 4 (2009),
1472–1483.

El-Sherbeny N.A., 2010. Vehicle routing with time
windows: An overview of exact, heuristic and
metaheuristic methods. Journal of King Saud
University-Science 22, 3 (2010), 123–131.

Eppen G. and Schrage L., 1981. Centralized ordering
policies in a multi-warehouse system with lead
times and random demand. Multi-level
production/inventory control systems: Theory and
practice 16 (1981), 51–67.

Gehring H. and Homberger J., 1999. A parallel hybrid
evolutionary metaheuristic for the vehicle routing
problem with time windows. In Proceedings of
EUROGEN99, Vol. 2. Citeseer, 57–64.

Ghoseiri K., and Ghannadpour S.F., 2010. Multi-
objective vehicle routing problem with time
windows using goal programming and genetic
algorithm. Applied Soft Computing 10, 4 (2010),
1096–1107.

Golden B.L., Raghavan S., and Wasil E.A., 2008. The
Vehicle Routing Problem: Latest Advances and
New Challenges: latest advances and new
challenges. Vol. 43. Springer Science & Business
Media.

Hansen P., Mladenoviċ N., and Pėrez J.A.M., 2010.
Variable neighbourhood search: methods and
applications. Annals of Operations Research 175, 1
(2010), 367–407.

Laporte G., Gendreau M., Potvin J.Y., and Semet F.,
2000. Classical and modern heuristics for the
vehicle routing problem. International transactions
in operational research 7, 45 (2000), 285–300.

Laporte G., Musmanno R., and Vocaturo F., 2010. An
adaptive large neighbourhood search heuristic for
the capacitated arc-routing problem with stochastic
demands. Transportation Science 44, 1 (2010),
125–135.

Lourens T., 2005. Using population-based incremental
learning to optimize feasible distribution logistic
solutions. Thesis.

Mladenoviċ N. and Hansen P., 1997. Variable
neighborhood search. Computers & Operations
Research 24, 11 (1997), 1097–1100.

Mourgaya M. and Vanderbeck F., 2007. Column
generation based heuristic for tactical planning in
multi-period vehicle routing. European Journal of
Operational Research 183, 3 (2007), 1028–1041.

Pisinger D. and Ropke S., 2007. A general heuristic for
vehicle routing problems. Computers & operations
research 34, 8 (2007), 2403–2435.

Pisinger D. and Ropke S., 2010. Large neighborhood
search. Springer, 399–419.

Prescott-Gagnon E., Desaulniers G, and Rousseau L.M.,
2009. A branch-and-price-based large
neighborhood search algorithm for the vehicle
routing problem with time windows. Networks 54,
4 (2009), 190–204.

Redi A.A.N.P., Maghfiroh M.F.N., and Yu V.F., 2013.
An improved variable neighborhood search for the
open vehicle routing problem with time windows.
In Industrial Engineering and Engineering
Management (IEEM), 2013 IEEE International
Conference on. IEEE, 1641–1645.

Ribeiro G.M. and Laporte G., 2012. An adaptive large
neighborhood search heuristic for the cumulative
capacitated vehicle routing problem. Computers &
Operations Research 39, 3 (2012), 728–735.

Ropke S. and Pisinger D., 2006. An adaptive large
neighborhood search heuristic for the pickup and
delivery problem with time windows.
Transportation science 40, 4 (2006), 455–472.

Schopka K. and Kopfer H., 2016. An Adaptive Large
Neighborhood Search for the Reverse Open
Vehicle Routing Problem with Time Windows.
Springer, 243–257.

Schrimpf G., Schneider J., Stamm-Wilbrandt H., and
Dueck G., 2000. Record breaking optimization
results using the ruin and recreate principle. J.
Comput. Phys. 159, 2 (2000), 139–171.

Shaw P., 1997. A new local search algorithm providing
high quality solutions to vehicle routing problems.
APES Group, Dept of Computer Science,
University of Strathclyde, Glasgow, Scotland, UK
(1997).

Shaw P., 1998. Using constraint programming and local
search methods to solve vehicle routing problems.
Springer, 417–431.

Solomon M.M., 1987. Algorithms for the vehicle routing
and scheduling problems with time window
constraints. Operations research 35, 2 (1987), 254–
265.

Tarantilis C.D., Ioannou G., Kiranoudis C.T., and
Prastacos G.P., 2005. Solving the open vehicle
routeing problem via a single parameter
metaheuristic algorithm. Journal of the Operational
Research Society 56, 5 (2005), 588–596.

Toth P. and Vigo D., 2001. The vehicle routing problem.
Siam.

Wieberneit N., 2008. Service network design for freight
transportation: a review. OR spectrum 30, 1 (2008),
77–112.

Proceedings of the Int. Conf. on Harbor Maritime and Multimodal Logistics M&S, 2017

ISBN 978-88-97999-87-4; Bottani, Bruzzone, Longo, Merkuryev, and Piera Eds.

34

