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Abstract
We provide necessary conditions on Euclidean domains for inclusionsW 1,p(·)(�) ↪→
Lq(·)(�) of variable exponent Sobolev spaces. The conditions on the exponent p(·)
are log-Hölder and log-log-Hölder continuity, while those on the domain � are the
measure and the log measure density conditions. Restrictions on the exponents q(·)
and p(·) appearing in Górka et al. (J. Geom. Anal. 310: 7304-7319, 2021) are relaxed,
improving the results obtained in that work.
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1 Introduction

Variable exponent Lebesgue-Sobolev and Hölder spaces are nowadays used in the
description of non-linear phenomena in elastic [23] and fluid mechanics [18, 20], and
in image restoration [14, 22], among other fields. Those situations are modelled in
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domains of Euclidean space, whose shape or form becomes part of the phenomena
itself.

For classical Sobolev and Hölder spaces, the study of conditions on domains in R
n

relevant for the inclusions between these spaces of functions is a classical subject [1];
in turn, the importance of the shape and regularity of the domain is relevant in the
description of some models in engineering [9].

This work is a continuation of [5], where inclusions of variable exponent Sobolev
spaces on Euclidean domains are studied. In turn, some notions of continuity for the
exponent used in [5] are motivated by problems mentioned in [3, 11] concerning
the density of smooth functions in those spaces, where the interdependence between
some types of continuity of the variable exponent and the regularity of the domain is
addressed. In the same spirit as in [5], here we obtain conditions for the inclusions
between these function spaces in terms of the continuity of the exponent and the
regularity of the domain.

As highlighted in [5], an important progress concerning necessary conditions on the
regularity of the domain to obtain inclusions in classical Sobolev spaces was achieved
in [10]. Similar results have been obtained in fractional Slobodeckij-Sobolev spaces
[7, 24], in Triebel-Lizorkin and Besov spaces [15, 16], and in Hajłasz-Sobolev spaces
in metric-measure spaces [2, 6].

This paper is organized as follows. In Sect. 2 we provide a brief description of
the spaces of functions,1 of the continuity for the exponents, and of the regularity
for domains relevant in this work. With those preliminaries we are ready for Sect. 3,
where the main results are stated, and their proofs are provided. These results improve
those in [5]: the hypothesis on the range of values and continuity of the exponents
are weaker, as a conclusion less regularity on the domain is needed for the functional
inclusions to hold, see Sect. 3 for the deatils. We conclude in Sect. 4 with a couple of
questions that arose during this work.

2 Preliminaries

We denote by Ln the n-dimensional Lebesgue measure, and � will be a Lebesgue
measurable subset of R

n . If A is a Ln-measurable subset of �, to abbreviate we write
|A| instead of

∫
A dLn(x) = Ln(A). A variable exponent, or simply an exponent, is a

bounded Ln-measurable function p : � → [1,∞[, usually written as p(·). For such
a p(·), whenever A a Ln-measurable subset of � define

p−
A := ess inf {p(x) : x in A} and p+

A := ess sup {p(x) : x in A}.
If A = �, we simply write p− and p+, respectively.

The Lebesgue space L p(·)(�) is the vector space of measurable functions u : � →
R for which the functional

ρp(·)(u) :=
∫

�

|u(x)|p(x)dLn(x)

1 For a detailed description of these spaces the reader can consult [4].
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is finite. The functional ρp(·) is convex, and L p(·)(�) is a Banach space with the norm

‖u‖L p(·)(�) := inf{t > 0 : ρp(·)(u/t) ≤ 1}.

The functionals ‖ ‖L p(·)(�) and ρp(·)( ) can be compared using the inequalities

min{ ρp(·)(u)1/p
−
, ρp(·)(u)1/p

+ } ≤ ‖u‖L p(·)(�) ≤ max{ ρp(·)(u)1/p
−
, ρp(·)(u)1/p

+ },

and the unit ball property follows: ‖u‖L p(·)(�) ≥ 1 if and only if ρp(·)(u) ≥ 1.
The Sobolev space W 1,p(·)(�) is the vector space of those functions u in L p(·)(�)

for which their distributional gradient (that we denote by ∇u if no confusion arises)
is also in L p(·)(�). W 1,p(·)(�) is also a Banach space with the norm

‖u‖W 1,p(·)(�) := ‖u‖L p(·)(�) + ‖∇u‖L p(·)(�).

As in the classical case, C0,α(·)(�) is the Hölder space of variable exponent α(·)
over �, where now α : � →]0, 1] is a measurable function: given a bounded and
continuous function u on � consider its seminorm

[u]α(·) := sup
x �=y∈�

|u(x) − u(y)|
|x − y|α(x)

,

so thatC0,α(·)(�) is the vector space made up of those u that are bounded, continuous,
and for which the seminorm [u]α(·) is finite.C0,α(·)(�) is a Banach space for the norm

‖u‖C0,α(·)(�) := ‖u‖∞ + [u]α(·).

To describe the regularity or continuity of the exponent p(·), many moduli of conti-
nuity can be used: given a continuous function2 φ : R+ → R+ with limt→0+ φ(t) = 0,
the exponent p(·) : � → [1,∞[ is φ-continuous if there exists a constant Cφ such
that

|p(x) − p(y)| ≤ Cφ φ(|x − y|)

for every pair of points {x, y} in �. If φ1(t) ≤ φ2(t) for t near 0, then p(·) is φ2-
continuous whenever p(·) is φ1-continuous.

Distinguished notions of continuity for p(·) are:
(1) log-Hölder continuity, where

φ(t) := 1/ log(e + 1/t),

and

2 If φ is everywhere equal to zero, we recover the classical Sobolev spaces.
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(2) log-log-Hölder continuity, with

φ(t) := log log(e + 1/t)/ log(e + 1/t).

One verifies that log-log-Hölder continuity is a weaker notion than log-Hölder conti-
nuity. These notions are important in the study of the density of the smooth functions
in W 1,p(·)(�) [3, 4, 11]: if the domain � has a Lipschitz boundary and p(·) is log-
Hölder continuous, the smooth functions are dense in W 1,p(·)(�); on the other hand,
if � is the unit disk in R

2 and p(·) is log-log-Hölder continuous, such density does
not always occur [11]. Those results give a satisfactory but still partial answer to the
mentioned density problem.

Concerning domains3, the following notion of regularity was used in [5]: a subset
� of R

n satisfies the s-measure density condition for some s > 0, if there exists a
positive constant c such that for every x in � and each R in ]0, 1] one has

cRs ≤ |BR(x) ∩ �|.

If s = n in the previous notion, one says that� satisfies the measure density condition.
In [5] some standard notions of regularity for domains in R

n were mentioned, with
relations between them, including the notion of measure density condition. For the
purpose of clarifying those relations, a picture or diagram was drawn, where we wrote
A �⇒ B if whenever � is a domain with property A, then � also has property B.

Besides the measure density condition, we consider the following notions of regu-
larity (none of which appears in [5]) for domains in R

n :

(1) The (ε,∞)-condition,
(2) The (ε, δ)-condition,
(3) The John condition, and
(4) The log measure density condition.

The associated diagram for these notions is:

(ε,∞)-condition

John condition (ε, δ)-condition

Measure density condition

Log measure density condition
The first three notions in the list and the relationships between them and themeasure

density condition are well known to experts, and are scattered in the literature as well.
The log measure density notion has been recently introduced in a different context
(see the comments after its definition below). To make this work accessible to more
readers, we spend some lines in the subject:

3 By a domain we understand an open and connected subset of R
n .
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Definition 2.1 Assume that ε ∈ (0,∞) and δ ∈ (0,∞]. A domain � ⊂ R
n is said to

be an (ε, δ)-domain if whenever x, y ∈ � and |x − y| < δ, there is a rectifiable curve
γ ⊂ � joining x to y satisfying

l(γ ) ≤ 1

ε
|x − y| (1)

and

d(z, ∂�) ≥ ε|x − z| |y − z|
|x − y| for all z ∈ γ, (2)

where l(γ ) denotes the length of γ , and d(z, ∂�) the Euclidean distance from z to the
boundary of �.

Definition 2.2 We say that � is a John domain if there is a constant A ≥ 1 such that
for every pair of points x, y ∈ � there exists a rectifiable curve γ joining them with

min{l(γ (x, z)), l(γ (y, z))} ≤ A d(z, ∂�) for all z ∈ γ, (3)

where γ (x, z) is the part of γ between x and z, and γ (y, z) is the part between y and z.

John domains were first introduced by F. John in his work on elasticity [13], and
the name was coined by Martio and Sarvas [17]. Our definition also includes the case
of unbounded John domains, which is due to [19]. The class of John domains includes
all smooth domains, Lipschitz domains and certain fractal domains (for instance
snowflake-type domains).

Lemma 2.1 and Lemma 2.2 below show that (ε, δ)-domains and John domains
satisfy the measure density condition.

Lemma 2.1 Let � ⊂ R
n be an (ε, δ)-domain for some ε > 0 and δ > 0. Then it

satisfies the measure density condition.

Proof Fix x ∈ � and4 r ≤ 1. Note that it is enough to assume that r ≤ min{1, δ/2}. If
� ⊂ Br (x), then there is nothing to prove; so we assume that�\Br (x) �= ∅. Choose5

y ∈ � ∩ (B2r (x) \ Br (x)), and let γ be a curve joining x to y, and pick z ∈ γ such
that |x − z| = r/4. Then

d(z) ≥ εr |y − z|
4|x − y| ,

where d(z) = dist(z, ∂�). The triangle inequality gives

|y − z| ≥ |x − y| − |x − z| ≥ r − r

4
= 3r

4
.

4 The case when x ∈ ∂� follows easily from the case x ∈ �. Indeed, if x ∈ ∂� there exists x̃ ∈ � such
that BR/2(x̃) ⊂ BR(x) and then |BR(x) ∩ �| ≥ C(R/2)n .
5 Since � is connected, � ∩ (B2r (x) \ Br (x)) is not the empty set.
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Therefore d(z) ≥ 3ε
32r and Bmin{d(z),3r/4}(z) ⊂ �∩ Br (x). Hence |Br (x)∩�| ≥ Crn ,

and the measure density condition follows. ��
Lemma 2.2 Let � ⊂ R

n be a John domain. Then it satisfies the measure density
condition.

Proof Let x ∈ � and r ≤ 1. Note that if � ⊂ Br (x), then there is nothing to prove;
so we assume that �\Br (x) �= ∅. Take y ∈ �\Br (x), let γ be the curve joining x to
y, and choose z ∈ γ such that |x − z| = r/4. Then from the John condition

d(z) ≥ 1

A
min{l(γ (x, z)), l(γ (y, z))} ≥ r

4A
.

On the other hand, we have Bmin{d(z),3r/4}(z) ⊂ � ∩ Br (x). Therefore |Br (x) ∩ �| ≥
Crn . ��
The weakest notion in the diagram is the next one:

Definition 2.3 A subset � of R
n is said to satisfy the log s-measure density condition

if there exists two positive constants c and α such that for every x in �̄ and each R in
]0, 1/2] one has

cRs(log(
1

R
))−α ≤ |BR(x) ∩ �|.

If s = n, one says that � satisfies the log measure density condition.

The notion appears in [12] (see Theorem 1.1 and Remark 1.2(c)) as a necessary
condition for certain Orlicz-Sobolev embeddings. It is obvious that if � satisfies the
s-measure density condition, then� satisfies the log s-measure density condition. The
next example shows that the converse is not true.

Example 2.1 Fix some α ≥ 1, and consider the function f : [0, 1/√2] → R given by

f (r) := √
2r

{√
2α − n

√
2 log(

√
2r)

(− log(
√
2r))α+1

} 1
n−1

f (0) = 0.

Note that there exists some r0 ≤ 1/
√
2 such that f (r) is increasing and f (r) ≤ r

whenever r ≤ r0.

Consider the domain

� = { x = (x1, . . . , xn) ∈ R
n 0 < xn < r0 and x21 + ... + x2n−1 < f (xn)

2 }

given by a rotation of the area below the graph of f around the xn axis, whose cusp is
at the origin.
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First we will show that � does not satisfy the measure density condition. Consider
the ball BR(0) centered at the origin with radius R ≤ r0, and consider the positive
real number r ≡ r(R) given by

R2 = r2 + f (r)2;

since f (r) ≤ r it follows that R2 ≤ 2r2, therefore

R/
√
2 ≤ r ≤ R. (4)

Note that

ωn−1

∫ r

0
f (xn)

n−1dxn ≤ |� ∩ BR(0)| ≤ ωn−1

∫ R

0
f (xn)

n−1dxn, (5)

where ωk is the volume of the k-dimensional unit ball, and compute

∫ R

0
f (xn)

n−1dxn = (
√
2R)n

(− log(
√
2R))α

. (6)

Now use (4), (5) and (6) to infer that

ωn−1
Rn

(− log R)α
≤ |� ∩ BR(0)| ≤ ωn−1

(
√
2R)n

(− log(
√
2R))α

,

whose right hand side inequality says that � does not satisfy the n-measure density
condition.

Now we prove that the left hand side inequality also holds, up to a constant, for all
the balls BR(x) centered at x ∈ �,with radius R ≤ r0/4. For this purpose, it is enough
to consider the points x ∈ � which are near the origin: if x = (x1, . . . , xn) ∈ � is
such that xn ≤ r0/4, it suffices to prove that BR(0) ∩ � + x ⊂ BR(x) ∩ �, where
BR(0) ∩ � + x = {y + x : y ∈ BR(0) ∩ �} is the translation of BR(0) ∩ � by x .

Assume that y = (y1, . . . , yn) ∈ BR(0) ∩ �, so that y + x ∈ BR(x): we must
check that y + x ∈ �. Since

√
(y1 + x1)2 + · · · + (yn−1 + xn−1)2 ≤

√
y21 + · · · + y2n−1 +

√
x21 + · · · + y2n−1

< f (yn) + f (xn),

we have that y + x ∈ � if for all s and t in (0, r0/4]

f (s) + f (t) ≤ f (s + t),

namely if f is superadditive. In particular, if f is convex and f (0) = 0, then f is
superadditive.

The proof of the convexity of f requires some computations that are left to the
reader.
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3 Main results

As explained in Sect. 1, the results in this work can be seen as an improvement and as
an extension of themain results in [5]. Our first result in this section is the improvement
of:

Theorem 3.1 (Theorem 3.1 in [5]) Let � be an open subset of R
n, and suppose that

for some s > 1:

(1) The exponent p(·) is log-Hölder continuous, with p+ < s.
(2) The exponent q(·) := p(·)s

s−p(·) is such that 1
q− < 1

q+ + 1
s .

(3) W 1,p(·)(�) ↪→ Lq(·)(�), where q(·) := p(·)s
s−p(·) .

Conclusion: � satisfies the s-measure density condition.

Such improvement consists in removingHypothesis 2: this is achievedbymodifying
the proof given in [5] (see below). We have:

Theorem 3.2 Let � be an open subset of R
n, and suppose that:

(1) The exponent p(·) is log-Hölder continuous, with p+ < s for some s > 1.
(2) W 1,p(·)(�) ↪→ Lq(·)(�), where q(·) := p(·)s

s−p(·) .
Conclusion: � satisfies the s-measure density condition.

The next result is similar to Theorem 3.2, but involves the weaker modulus of
log-log-Hölder continuity for the exponents, and the weaker notion of log s-measure
density condition for the domain (see Sect. 2 for the definitions).

Theorem 3.3 Let � be an open subset of R
n, and suppose that:

(1) The exponent p(·) is log-log-Hölder continuous, with p+ < s for some s > 1.
(2) W 1,p(·)(�) ↪→ Lq(·)(�), where q(·) := p(·)s

s−p(·) .
Conclusion: � satisfies the log s-measure density condition.

Using the technique of Theorem 3.3 in [5], we also get the following result in the
supercritical case:

Theorem 3.4 Let � be an open and connected subset of R
n, and suppose that:

(1) The exponent p(·) is log-log-Hölder continuous, with p− > s for some s > 0.
(2) W 1,p(·)(�) ↪→ C0,α(·)(�), where α(·) := 1 − s/p(·).

Conclusion: � satisfies the log s-measure density condition.

In the rest of this Section we will prove Theorems 3.2, 3.3 and 3.4. We start with
the first one which is a modification of Theorem 3.1 in [5]; we give the details for the
sake of completeness:

Proof of Theorem 3.2 For a fixed x in �̄ define AR := BR(x) ∩ �, and consider only
the case when |AR | ≤ 1, otherwise |AR | ≥ 1 ≥ Rs whenever R ≤ 1, and there is
nothing to prove; moreover, it is enough to consider R ≤ r0 for some 0 < r0 ≤ 1/4.
For such an R, denote by R̃ < R the smallest real number such that

|AR̃ | = 1

2
|AR |.
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At this point we recall from [5] the following Lemma:

Lemma 3.1 Use the same assumptions and notation as in Theorem 3.2. Then there
exists a constant c1 > 0 such that for all x in �̄ and every R in ]0, 1] one has the
estimate

R − R̃ ≤ c1|AR |
1
s + 1

q+
AR

− 1
q−
AR .

To continue with the proof of Theorem 3.2, given x in �̄ and R in ]0, r0], construct
the sequence {Ri } by setting R0 := R, and then define Ri+1 := R̃i inductively for
i ≥ 0. It follows that

|ARi | = 1

2i
|AR |

with limi→∞ Ri = 0.

With those ingredients in Lemma 3.1 one observes that

Ri − Ri+1 ≤ c1|ARi |
1
s + 1

q+
ARi

− 1
q−
ARi ≤ c1|ARi |

1
s + 1

q+
AR

− 1
q−
AR = c1

|AR |ηR

2iηR
, (7)

where the abbreviation ηR := 1
s + 1

q+
AR

− 1
q−
AR

has been used.

Now, we would like to find a constant η̃ > 0, independent of x and R, such that
1
s + 1

q+
AR

− 1
q−
AR

=: ηR ≥ η̃ > 0 for all R ≤ r0. Towards this end, first note that the

log-Hölder continuity of p gives the log-Hölder continuity of 1/q, probably with a
different constant, that we also denote by Clog: this means that for any z and y in AR

| 1

q(z)
− 1

q(y)
| ≤ Clog

log(e + 1/|z − y|) ,

and taking the supremum over all pairs of points in AR one gets

1

q−
AR

− 1

q+
AR

≤ Clog

log(1/(2R))
. (8)

Suppose now that for some R ≤ 1/4we have that ηR ≤ 0. Then (8) gives 1
s ≤ Clog

log
(

1
2R

) ,

or R ≥ 1
2e

−sClog .
The previous discussion allows us to conclude that:

• If 1
2e

−sClog > 1
4 , then there is no R ≤ 1

4 for which ηR ≤ 0.

• If 1
2e

−sClog ≤ 1
4 , then ηR ≤ 0 implies R ≥ 1

2e
−sClog .

123



P. Górka et al.

Therefore if we choose r0 = 1
2 min{ 14 , 1

2e
−sClog}, then ηr0 > 0, and also

1

s
>

Clog

log(1/(2r0))
. (9)

But ηr0 may depend on the point x fixed at the beginning of the proof. To obtain
the required η̃, we apply again log-Hölder continuity of 1/q on Ar0 , to obtain

1

q−
Ar0

− 1

q+
Ar0

≤ Clog

log(1/(2r0))
, (10)

and (9) together with (10) give

ηr0 = 1

s
+ 1

q+
Ar0

− 1

q−
Ar0

≥ 1

s
− Clog

log(1/(2r0))
> 0.

Choosing η̃ := 1
s − Clog

log(1/(2r0))
, we get that ηR ≥ ηr0 ≥ η̃ > 0 for all R ≤ r0. This is

our desired η̃.

Since ηR ≥ η̃ > 0, we deduce, from (7), that

R =
∞∑

i=0

(Ri − Ri+1) ≤ c1|AR |ηR

∞∑

i=0

2−iηR = c1|AR |ηR
1

1 − 2−ηR

≤ max{1, c1
1 − 2−η̃

} |AR |ηR . (11)

Moreover, since c2 := 1/max{1, c1
1−2−η̃ } ≤ 1 one has

|AR | ≥ c1/ηR
2 R1/ηR ≥ c1/η̃2 R1/ηR = c1/η̃2 Rs RβR/ηR , (12)

where βR := 1 − sηR .
From (12) one sees that if a positive lower bound for RβR/ηR is provided, the proof

of Theorem 3.2 is finished. To achieve such a lower bound, the log-Hölder continuity
of p(·)will be used: by the hypotheses on p(·) and q(·) one has that q(·) is log-Hölder
continuous as well, hence

|q(z) − q(y)| ≤ Clog

log(e + 1/|z − y|) ;

taking the supremum over pairs of points in AR one gets

q+
AR

− q−
AR

≤ Clog

log(1/(2R))
,
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or

log
(
1/(2R)

q+
AR

−q−
AR

)
≤ Clog,

therefore

R
q+
AR

−q−
AR ≥ e−Clog

2
q+
AR

−q−
AR

≥ e−Clog

2(q+−q−)
. (13)

But

R
βR
ηR ≥ R

βR
η̃ = R

s(q+
AR

−q−
AR

)

η̃q+
AR

q−
AR ≥ (R

q+
AR

−q−
AR )s/η̃(q−)2 ,

hence using (13) the required bound

R
βR
ηR ≥

(
e−Clog

2(q+−q−)

)s/η̃(q−)2

=: c3 > 0

follows, and the uniform estimate cRs ≤ |BR(x)∩�| is obtained, where c := c1/η̃2 c3.
��

We continue with the proof of our second main result.

Proof of Theorem 3.3 For a fixed x in �̄ define AR := BR(x) ∩ �. It is enough to
consider the case when |AR | ≤ 1, otherwise |AR | ≥ 1 ≥ Rs whenever R ≤ 1/2, and
there is nothing to prove; moreover, it is enough to consider R ≤ r1, where r1 ≤ 1

4 .

Consider R ≤ Tcrit/2, with Tcrit := 1/(ee − e) ≈ 0.08 (< 1
4 ) such that

φ(t) = log log(e + 1/t)/ log(e + 1/t)

is increasing on (0, Tcrit].
It is easy to see that the log-log-Hölder continuity of p(·) entails the log-log-Hölder

continuity of 1/q(·), probably with a different constant, that we also denote byClog-log.
Therefore

| 1

q(z)
− 1

q(y)
| ≤ Clog-log φ(|z − y|);

taking the supremum over all pairs of points in AR one gets

1

q−
AR

− 1

q+
AR

≤ Clog-log φ(2R),

hence

1

q−
AR

− 1

q+
AR

≤ Clog-log log log(e + 1/(2R))/ log(1/(2R)).
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Suppose now that ηR := 1
s + 1

q+
AR

− 1
q−
AR

≤ 0 for some R ≤ Tcrit/2. Then

1

s
≤ Clog-log log log(e + 1/(2R))/ log(1/(2R)), (14)

or

1

2R
≤ (log(e + 1/(2R)))C1 , (15)

where C1 := s Clog-log. On the other hand

lim
R→0

(log(e + 1/(2R)))C1(2R)
1
2 = 0. (16)

Combining (15) and (16) we see that there exists some r0, such that whenever R ≤ r0

1

2R
≤

(
1

2R

) 1
2

,

and R ≥ 1/2 follows. This contradicts our choice of R: however if we take R ≤
min{Tcrit/2, r0} =: r1, then ηR ≥ ηr1 > 0. But ηr1 may depend on x , and our aim is
to obtain a positive lower bound of ηR which is independent of x and R.

To get the desired lower uniform bound, we apply log-log-Hölder continuity of
1/q(·) on Ar1 , and

1

q−
Ar1

− 1

q+
Ar1

≤ Clog-log log log(e + 1/(2r1))/ log(1/(2r1)) (17)

follows. Moreover, from (14) and the previous discussion we have

1

s
> Clog-log log log(e + 1/(2r1))/ log(1/(2r1)). (18)

Therefore, using (17) and (18), we obtain

ηr1 = 1

s
+ 1

q+
Ar1

− 1

q−
Ar1

≥ 1

s
− Clog-log log log(e + 1/(2r1))/ log(1/(2r1)) > 0.

Choosing

η̃ := 1/s − Clog-log log log(e + 1/(2r1))/ log(1/(2r1)), (19)

we conclude that ηR ≥ ηr1 ≥ η̃ > 0 for all R ≤ r1.
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Consider now R ≤ r1; for such an R, denote by R̃ < R the smallest real number
such that

|AR̃ | = 1

2
|AR |.

Given x in �̄ and R ≤ r1, construct the sequence {Ri } by setting R0 := R, and
then define Ri+1 := R̃i inductively for i ≥ 0. It follows that

|ARi | = 1

2i
|AR |,

with limi→∞ Ri = 0. Using the sequence {Ri } in Lemma 3.1, one observes that

Ri − Ri+1 ≤ c1|ARi |
1
s + 1

q+
ARi

− 1
q−
ARi ≤ c1|ARi |

1
s + 1

q+
AR

− 1
q−
AR = c1

|AR |ηR

2iηR
,

where ηR = 1
s + 1

q+
AR

− 1
q−
AR

as before.

Note that ηR ≥ η̃ > 0 for the η̃ in (19), to deduce, thanks to the previous observa-
tions, that

R =
∞∑

i=0

(Ri − Ri+1) ≤ c1|AR |ηR

∞∑

i=0

2−iηR = c1|AR |ηR
1

1 − 2−ηR

≤ max{1, c1
1 − 2−η̃

} |AR |ηR . (20)

Moreover, since c2 := 1/max{1, c1
1−2−η̃ } < 1 one has

|AR | ≥ c1/ηR
2 R1/ηR ≥ c1/η̃2 R1/ηR = c1/η̃2 Rs RβR/ηR , (21)

where βR := 1 − sηR .
To obtain a lower bound for RβR/ηR , we make use of the fact that p(·) is log-log-

Hölder continuous. It is easy to see that the log-log-Hölder continuity of p(·) entails
the log-log-Hölder continuity of q(·), probably with a different constant, that we also
denote by Clog-log. Therefore

|q(z) − q(y)| ≤ Clog-log φ(|z − y|),

and taking the supremum over all pairs of points in AR one gets

q+
AR

− q−
AR

≤ Clog-log log log(e + 1/(2R))/ log(1/(2R)),

or

log
(
1/(2R)

q+
AR

−q−
AR

)
≤ Clog-log log log(e + 1/(2R)),
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therefore

R
q+
AR

−q−
AR ≥

(
1

log(e + 1/(2R))

)Clog-log 1

2
q+
AR

−q−
AR

≥
(

1

log(e + 1/(2R))

)Clog-log 1

2(q+−q−)
. (22)

But

R
βR
ηR ≥ R

βR
η̃ = R

s(q+
AR

−q−
AR

)

η̃q+
AR

q−
AR ≥ (R

q+
AR

−q−
AR )s/(η̃(q−)2),

hence using (21) and (22) we get

|AR | ≥ c1/η̃2 Rs
(

1

log(e + 1/(2R))

)Clog-logs/(η̃(q−)2) 1

2(q+−q−)s/(η̃(q−)2)
.

If c3 := Clog-logs/(η̃(q−)2) and c4 := c1/η̃2
1

2(q+−q−)s/(η̃(q−)2)
, we conclude that

|AR | ≥ c4R
s
(

1

log(e + 1/(2R))

)c3
≥ c4R

s
(

1

log(1/R)

)c3

whenever R ≤ r1, where the last inequality uses that r1 ≤ Tcrit/2 < 1/(2e), and the
log s-measure density condition for the domain follows. ��

Finally, we give the details of the proof of Theorem 3.4 which, as mentioned above,
uses the technique of Theorem 3.3 in [5] together with Theorem 3.3 in this work.

Proof of Theorem 3.4 We use the notations similar to that in Theorems 3.2 and 3.3. Fix
x in �̄ and some R ≤ Tcrit/2, with Tcrit := 1/(ee − e) ≈ 0.08 (< 1

4 ). We assume that
�\BR(x) �= ∅, since otherwise |AR | = |�|. Let u(y) := φ(y − x) be a function of
y ∈ �, where φ is a cut-off function satisfying:

(1) φ : R
n → [0, 1],

(2) spt φ ⊂ BR(0),
(3) φ(0) = 1, and
(4) |∇φ| ≤ c̃/R for some constant c̃.

The hypothesis W 1,p(·) ↪→ C0,α(·) entails that whenever u ∈ W 1,p(·) one has that

|u(y) − u(z)| ≤ Csob‖u‖
L p(·)
1

|y − z|1−s/p(y) (23)

for everypair of points {y, z} in�. In (23) choose y = x and z ∈ (�\BR(x))∩B2R(x)6:
one gets

1 ≤ Csob‖u‖
L p(·)
1

|x − z|1−s/p(x). (24)

6 Since � is connected we have (� \ BR(x)) ∩ B2R(x) �= ∅.
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On the other hand

‖u‖
L p(·)
1

= ‖u‖L p(·) + ‖∇u‖L p(·) ≤ 1 + c̃

R
‖1BR(x)‖L p(·) ≤ 1 + c̃

R
|AR |1/p+

AR (25)

and

|x − z|1−s/p(x) ≤ (2R)1−s/p(x) ≤ (2R)
1−s/p−

AR . (26)

Using (25) and (26) in (24)

1 ≤ Csob
1 + c̃

R
|AR |1/p+

AR (2R)
1−s/p−

AR ≤ 2 Csob (1 + c̃) |AR |1/p+
AR R

−s/p−
AR

follows, therefore

|AR | ≥
(

1

2 Csob (1 + c̃)

)p+
AR

R
s
p+AR
p−AR ≥ C p+

Rs R
s
p+AR −p−AR

p−AR ,

whereC = min{1, 1/(2 Csob (1+ c̃))}. Finally, we use inequality (22) (from the proof
of Theorem 3.3) to obtain

R
s
p+AR −p−AR

p−AR ≥
(
R

(p+
AR

−p−
AR

)
)s/p−

≥
((

1

log(e + 1/(2R))

)Clog-log 1

2(p+−p−)

)s/p−

,

hence the desired estimate

|AR | ≥ C p+

2s(p+−p−)/p− Rs
(

1

log(1/R)

)sClog-log/p−

follows whenever R ≤ Tcrit/2. ��

4 Remarks

Using the Lebesgue differentiation theorem one can prove that if � ⊂ R
n satisfies the

n-measure density condition, then |�̄ \ �| = 0, see [21]. We are led to:

Question 4.1 Assume that � ⊂ R
n satisfies the log n-measure density condition. Is it

true that |�̄ \ �| = 0?

If a domain satisfies the cone condition, then it also satisfies the measure density
condition, see [5] for example. The standard example of a domain which satisfies
the measure density condition but not the cone condition is � = ] − 10, 10 [2\K ,

where K is the von Koch snowflake curve with Hausdorff dimension log 4/ log 3.
Furthermore, it turns out there exists an open subset � in R

n satisfying the n-measure
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density condition such that ∂� is a graph and � does not satisfy the cone condition
[8].7
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