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VARIABLE FUNCTIONAL RESPONSES OF A MARINE
PREDATOR IN DISSIMILAR HOMOGENEOUS

MICROHABITATSI

ROMUALD N. LIPCIUS2 AND ANSON H. HINES
Smithsonian Environmental Research Center, P.O. Box 28, Edgewater, Maryland 21037-0028 USA

Abstra~t. Adul~ s~ft-shelled cla~s (Mya arenaria) persist at low densities in Chesapeake Bay
sandy habItats despIte Intense predatIon by blue crabs (Callinectes sapidus). Clam persistence may be
a conse~':lence of variation in blue crab foraging rates as a function of clam density and sediment
composItIon. In laboratory aquaria, we measured the functional responses (prey consumption per
predator as a function of prey density) of large blue crabs to six densities of adult soft-shelled clams
buried at natural depths in two sediment types (mud and sand). Functional responses in sand and
mud were differentiated statistically by analyses of (1) residuals and residual sums ofsquares ofdiscrete
and continuous-time models, and (2) the exponent {3 of a general functional response model.
. <?rab predation rates were significantly higher in mud than sand, and functional responses differed

sIgnI~cantly between .these two substrates. Blue crabs displayed type III (sigmoid) density-dependent
functIonal responses I.n sand, an? type II (de~elerating rise to an upper asymptote) inversely density
d.ep~ndent responses In mud. RISk of mortalIty for clams decreased sharply in sand at low densities
sImIlar t? those observed in the field near the end of the annual period of active predation. These
observ~tIons (1) suggest that variable blue crab functional responses result in microhabitat-specific
mortal~ty rates of be?-thic prey, .and (2) indicate that functional responses can differ significantly
accordIng to the physIcal propertIes of topographically simple habitats.

Key words: blue crabs; Callinectes sapidus; foraging behavior; functional responses; habitat vari
ation; Mya arenaria; predation; predator-prey dynamics.

INTRODUCTION

Quantitative analyses of the functional response, the
relationship between prey consumption per predator
and prey density (Solomon 1949, Holling 1959, 1965),
provide information on the mechanisms underlying
predator-prey dynamics. Functional responses are con
veniently classified into four general types (Hassell 1978,
Taylor 1984), although there are numerous theoreti
cally possible forms (Abrams 1982). The type I re
sponse increases linearly to a plateau, and has been
observed in aquatic filter-feeding invertebrates (Hassell
1978). The type II response rises at a decelerating rate
to an upper asymptote, and was thought to be char
acteristic of invertebrates because of their limited
learning capacity until Hassell et al. (1977) identified
several examples of the type III response in inverte
brates. The type III response is sigmoid, density de
pendent, and most common in vertebrates (Hassell
1978). The key difference between type II and type III
responses is that in the type III response there is a
change from an increasing to a decreasing risk of mor
tality as prey density diminishes to a low level, whereas
the risk of mortality increases with decreasing prey
density in the type II response. Hence, a type III re
sponse imparts stability to predator-prey dynamics at
low prey densities in deterministic models (Hassell

1 Manuscript received 19 August 1985; revised and ac
cepted 1 January 1986.

2 Virginia Institute of Marine Science, School of Marine
Science, The College of William and Mary, Gloucester Point,
Virginia 23062 USA.

1978), and limits population bounds and fluctuations
in stochastic models (Murdoch 1979). The type IV
response is dome-shaped, with decreasing rates of pre
dation at high densities (Taylor 1984). In order to un
derstand the relationships between environmental con
ditions and predator-prey interactions, the form of the
functional response must be specified for predator-prey
systems.

Until recently, functional responses were considered
to be invariant for specific predator-prey combinations
(see Murdoch and Oaten 1975, Hassell 1978). That is,
a predator could display a type II response with prey
species A, and type III response with prey species B,
but the responses remained unchanged for each of the
prey species in all situations. However, the form of the
functional response varies according to environmental
conditions (Murdoch and Oaten 1975, Hassell 1978,
Abrams 1982). In particular, increased habitat heter
ogeneity resulted in a shift from type II to type III
responses in a net-spinning caddis larva (Hildrew and
Townsend 1977), a larval dragonfly (Folsom and Col
lins 1984), and a predatory mite (Kaiser 1983).

Environmental variation also includes gradual
changes in physical properties across topographically
simple habitats (e.g., the transition from mud to sand
upon approach from subtidal areas to a beach). Despite
the abundant evidence for modifications in species
composition across such habitat gradients (Gray 1974,
Rhoads 1974, Pearson and Rosenberg 1978), research
is lacking on the effects of these gradients upon func
tional responses. In addition, most analyses of func-
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tional responses have not differentiated statistically be
tween type II and type III responses; rather, most curves
are fitted by visual inspection (see review by Livdahl
and Stiven 1983).

In this paper we investigate the functional responses
of the blue crab, Callinectes sapidus, to the soft-shelled
clam, Mya arenaria. We (1) examine the variation in
form of functional responses in laboratory microhab
itats differing by sediment composition, (2) describe
model-fitting and curve-fitting approaches that differ
entiate statistically between type II and type III re
sponses, (3) use Monte Carlo simulation techniques to
determine whether prey mortality within microhabi
tats is random, and (4) relate these results to the abun
dance and distribution patterns of the predator and
prey in nature.

The predator-prey system

The experimental system comprises the blue crab,
Callinectes sapidus (Arthropoda: Crustacea: Portuni
dae), and the soft-shelled clam, Mya arenaria (Mol
lusca: Bivalvia: Myacidae). Callinectes is a large (up to
200 mm carapace width) epibenthic omnivore that in
habits soft-bottom coastal areas in the northwest At
lantic Ocean, GulfofMexico, and Caribbean Sea (Wil
liams 1984). Blue crabs consume fish, crabs, shrimp,
mollusks, plant matter, and conspecifics, although in
faunal bivalve mollusks such as Mya form a major
component of the diet (Laughlin 1982). In Chesapeake
Bay, Callinectes is abundant and actively foraging from
late spring through autumn, after which it overwinters
buried in subtidal areas (Van Engel 1958).

Mya is a temperate-water infaunal suspension feeder
that ranges up to 80 mm in shell length, and is found
most abundantly in sandier substrates of Chesapeake
Bay (Hines and Comtois 1985). Mya abundance in
creases in late winter and spring after recruitment pe
riods, and decreases sharply when predators become
active in late spring and summer (Holland et al. 1980).
The distinct and discordant population cycles of Cal
linectes and Mya suggest that Callinectes predation re
duces Mya abundance significantly. However, some
large, adult Mya persist in nature (Virnstein 1977, 1979,
Holland et al. 1980), suggesting that factors associated
with large size, such as burial depth or low density,
provide protection from predation. In addition, natural
populations of Mya exhibit a Deevey (1947) type III
survivorship curve, indicating that juveniles suffer
heavy mortality, while larger adults have increased sur
vivorship (Brousseau 1978b, Commito 1982). Thus
the field studies indicate that a key issue in understand
ing the interaction between Callinectes and Mya is to
determine those factors promoting persistence ofadult
Mya despite intense predation by Callinectes.

In laboratory experiments, large Mya attain a partial
refuge from Callinectes predation by deep burial (Blun
don and Kennedy 1982b), but not by size or shell
strength (Blundon and Kennedy 1982a). Since deeper

burial does not provide an absolute refuge (Blundon
and Kennedy 1982b), it appears that other factors pro
mote persistence of large Mya. In nature, Mya is more
abundant in sand than mud (Holland et al. 1977,
Mountford et al. 1977, Hines and Comtois 1985), sug
gesting that sediment composition may modify pre
dation intensity upon Mya. In addition, low densities
ofadult Mya survive annually, indicating that density
dependent predation may be critical in the Callinectes
Mya interaction. Thus, we contrasted the form of Cal
linectes functional responses to Mya in sand and mud,
and related our findings to natural fluctuations in prey
abundance and distribution.

MATERIALS AND METHODS

Experimental animals and procedures

Adult Mya arenaria (48-60 mm shell length) from
Chesapeake Bay were held in closed-system, indoor
aquaria and gradually acclimated to the experimental
temperature of 25° ± 0.5°C. Salinities in the field and
laboratory remained at 10-130/00. Laboratory photo
period was maintained at natural autumnal levels (L:D
12: 12). Nighttime lighting for behavioral observations
was provided by red fluorescent lights, which do not
inhibit crustacean behavior patterns significantly (Lip
cius and Hermkind 1982). Clams were fed locally col
lected phytoplankton.

Adult Callinectes sapidus (130-140 mm carapace
width, a representative dominant size class in Chesa
peake Bay) were collected by otter trawl at the mouth
of the Rhode River, Maryland. Ten intermolt males
that were healthy and fed actively were chosen for
experimental trials. These crabs were held under sim
ilar conditions to M ya, and fed ad libitum with live
Mya and frozen fish.

There were six 220-L experimental tanks (1.2 m
length x 0.3 m width); three of these held sand and
three mud. Each tank was filled to a sediment level 25
cm above the tank bottom, and brackish water was
added to a level 25 cm above the sediment surface.
This layout allowed six concurrent trials and random
ized interspersion of clam density treatments (Under
wood 1981, Hurlbert 1984).

We used six experimental clam densities of 2, 4, 6,
8, 16, and 32 clams per tank (5.6-89.0 clams/m2

), rep
resenting the lower range of natural Mya densities in
Chesapeake Bay. Twenty-four hours before the initi
ation of a trial, healthy clams exhibiting vigorous si
phon-withdrawal reflexes were buried in the tanks by
covering them with sediment until their anterior (bot
tom) tips were :::::: 15 cm below the sediment surface.
Sufficient time was provided for clam siphons to reach
the sediment surface. The mud and sand in experi
mental and holding tanks were collected from field sites
that differed significantly in sediment composition, and
were known to harbor populations of Mya (Sand: 40%
medium sand, 30% fine sand, 30% fine silt and clay;
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TABLE 1. Burial depths and survivorship of Mya arenaria buried initially at ::::::: 15 cm and held for 3 or 21 d without crabs.
Burial depths were measured as the vertical distance from the bottom of the clam to the sediment surface.

After 3 d After 21 d

Sand Mud Sand Mud

No. of clams 10 10 10 10
Survivorship (%) 100 100 100 90

Burial depths (cm)
Mean 14.49 14.54 14.84 14.96
SE 0.28 0.30 0.39 0.48
Range 13.1-15.8 13.2-15.9 13.4-17.3 13.0-17.2

Mud: 30% fine sand, 70% fine silt and clay). Crabs were
starved for 48 h prior to each trial. A trial began when
a single Callinectes was introduced into a tank well
before dark (about 1200-1300), and ended upon re
moval ofthat crab 72 h later. Five trials were conducted
at each clam density. Surviving clams and umbos of
eaten clams were counted to ensure that all clams were
accounted for. Control trials were run under equivalent
conditions, but without Callinectes. Satiation levels of
Callinectes were determined by performing the feeding
experiments as described previously, but with Mya
spread uniformly across a hard bottom that prevented
clam burial.

Tests ofbiological assumptions

We eliminated potentially confounding effects of
sediment type upon Mya survivorship and burial depth
by conducting control experiments without Calli
nectes. Clams buried at 15 cm for 3 and 21 d remained
at those burial depths regardless of sediment type (Ta
ble 1). Survivorship after 72 h (3 d) was 100% in sand
and mud, with surviving clams displaying healthy si
phon-withdrawal reflexes (Table 1). In addition, clam
length and burial depth were not correlated across the
small size range used in the experiment (ANCOVA;
grouping variable: sediment type; covariate: shell length;
F = 0.84, df = 1,17, P > .35). These results indicated
that our experimental differences in Mya survivorship
were purely a consequence of variation in Callinectes
predation intensity.

Analyses and specific models of
functional responses

The numbers and proportions of eaten clams were
analyzed by two-way ANOVA (SAS Institute 1982).
Proportions were used in addition to the numbers eaten
because the respective patterns for type II and type III
curves differ significantly at low prey densities. Tests
ofnormality and equality ofvariance (Sokal and Rohlf
1981) indicated that the raw numbers (F' = 1.04, df=
29,29, P > .25) and arcsine square-root transformed
proportions (F' = 1.55, df= 29,29 P = .24) were both
appropriate for ANOVA. In the absence of significant
factor interactions, treatment means were contrasted
by t tests set at a Bonferroni experimentwise error rate
of 0.05 (Harris I975).

Several functional response models have been de
veloped to characterize the type of response, and to
estimate biologically meaningful parameters (Table 2).
These models can be grouped into continuous-time
models (Holling 1959, Hassell 1978) and discrete-time
models (Royama 1971, Rogers 1972, Hassell et al. 1977,
Hassell 1978). Continuous-time models relate the
number of encounters of a predator with prey (Ne ),

whether successful or not, to a function ofprey density
(Nt), whereas discrete-time models relate the number
of prey eaten (Na ) to prey density (Table 2). The prey
encounter and consumption functions of prey density
involve several parameters. Handling time (Th ) is de
fined as the time from the initial encounter of the pred
ator with a prey, through the capture, ingestion, and
digestion ofthe prey, until a new search begins (Hassell
1978). The instantaneous search rate (a') is a measure
ofthe success ofencounters with prey in type II models,
whereas band c replace a' in type III models to account
for the dependence of search rate upon prey density
(Hassell 1978). Discrete-time models integrate over the
total feeding period of a predator, and therefore ac
count for significant decreases in prey density as the
predator consumes prey (Royama 1971, Rogers 1972,
Hassell 1978). In contrast, continuous-time models best
represent situations where prey density remains nearly
constant through the feeding period (Hassell 1978).

Regressions using linearized forms of the preceding
functional response models may yield biased or statis
tically invalid parameter estimates (Hassell 1978,
Livdahl and Stiven 1983). Hence, we used nonlinear
least squares analyses (SAS Institute 1982) to estimate
parameters and fit to the data. Analyses ofcontinuous
time models used the Marquardt method (Marquardt
1963, SAS Institute 1982) with specified partial deriv
atives. Analyses of discrete-time models used the de
rivative-free multivariate secant method (Ralston and
Jennrich 1979, SAS Institute 1982) because of the
problem of deriving partial derivatives of a function
with the dependent variable (N;J on both sides of the
equation (Table 2).

We established several criteria to determine the most
appropriate and statistically valid functional response
models:

1) The Fvalue of the regression had to be significant
at the .05 level.
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TABLE 2. Nonlinear functional response models.

Equation
type

Model
type Equation References

Continuous II

III

N = a'-T-Nt

e I + (a'· Th-Nt )

N = b-T-N/
e I + (c· Nt) + (b- T h - N/)

Holling 1959

Hassell I 978

Discrete II Royama 1971,
Rogers 1972

III Hassell et al.
1977

IIIb Hassell et al.
1977

Symbol Type Definition Models

N e Variable No. encounters with prey Continuous II, III
N a Variable No. prey eaten Discrete II, III, IIIb
Nt Variable No. prey available All
T Constant Total time available for foraging (h) All
Th Parameter Handling time (h)* All
a' Parameter Instantaneous search rate II
b, c Parameters Replace a' to estimate variable search rate III, IIIb

* Handling time includes the time from attack initiation, through subjugation and feeding, and until initiation of the search
for a subsequent prey (Hassell 1978).

of the functional response curve (Real
1979, Emlen 1984).

Monte C~arlo simulation analyses ofclam
spatial mortality patterns

We recorded the locations of dead and surviving
clams in trials using 16 and 32 clams per tank in order
to determine if blue crabs foraged randomly in the
experimental tanks. Conventional analyses of spatial
pattern (e.g., nearest neighbor analyses, Clark and Ev
ans 1954) were inappropriate for our data because of
constraints imposed by experimental procedures and
crab feeding rates. That is, all clams were spaced uni
formly in experimental tanks, and crabs consumed

When {3 = 0, the curve becomes linear, when {3 = 1,
the curve is type II (decelerating rise to an asymptote),
and when {3 > 1, the curve is type III (sigmoid) (Real
1979). Thus, a statistical test of the parameter {3 is also
a test of the form of the functional response. We tested
the estimates of {3 with standard t tests (Chatterjee and
Price 1977).

The general functional response models were ana
lyzed by linear regressions of the log transformation of
Eq. 1 (Real 1979), and tested for appropriate fit as
described for the specific functional response models.
The assumption of homogeneity of variance of the
transformed variable was tested with Hartley's F max

procedure (Sokal and Rohlf 1981), assuring statistical
validity of the linearization.

(1)

numbers of prey eaten,
the maximum feeding rate (satiation),
initial prey density,
the density of prey at which N a = 0.5K,
and
the parameter associated with the form{3

Analyses ofgeneral functional response models

In order to provide an unequivocal statistical test of
the form of the functional responses, free of the po
tential problems associated with analyses of specific
functional response models (Hassell 1978, Livdahl and
Stiven 1983), we used the general functional response
model derived by Real (1977, 1979):

K·Nf3
N = t

a X+ N/

2) The residual sum of squares had to be the lowest
of the possible models.

3) The residuals about the predicted values had to
be distributed randomly, as determined by binomial
tests of the full data set and partial data set. Partial
data sets consisted of the middle range (6, 8, and 16)
of prey densities. These partial binomial tests were
conducted because we noticed that in situations where
the residuals appeared nonrandom, their systematic
variation was positive at one end of the curve or line
and negative at the other end, thereby cancelling out
in the complete binomial test.
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varying numbers of clams in trials, ranging from 3-9
clams/72 h. Hence, we employed Monte Carlo simu
lation analyses (Hammersley and Handscombe 1964,
Bard 1974) to test for spatial mortality patterns ofMya
(Appendix).

RESULTS

Behavior

Most crab activity (foraging, prey capture, feeding,
walking, and swimming) was observed during simu
lated darkness, and resembled natural behavior pat
terns (Halusky 1975, Nishimoto and Herrnkind 1978).

Feeding rates of the experimental crabs did not vary
significantly among individuals (ANOYA; F = 0.92,
df = 3,12, P > .25). Satiation was reached on the av
erage at 8.25 clams'crab- I'(72 h)-I. Blue crab activity
levels, as measured by hourly point scans of behavior
(Lipcius and Hermkind 1982), appeared to differ be
tween mud and sand trials, being 30% higher in mud,
but this difference was not statistically significant (Bi
nomial Test; Z = 1.13, P = .129). In addition, there
was no detectable edge effect (i.e., crabs potentially
consuming more clams from the periphery of experi
mental tanks, as measured in the 32-clam trials). In
sand, a nonsignificantly higher proportion ofclams was
eaten from the center than the edge, whereas in mud,
a nonsignificantly higher proportion was eaten from
the edge (ANOYA; sand: 0.20 vs. 0.11; mud: 0.14 vs.
0.28; N = 5, P = .12). Hence, the functional responses
of Callinectes to Mya were a consequence only of sed
iment composition and Mya density.

Analyses and specific models offunctional
responses

Consumption rates of Callinectes differed signifi
cantly by sediment type and clam density (ANOYA;
Sediment type: F= 45.7, df= 1,48, P < .0001; Clam
density: F= 24.5, df= 5,48, P < .0001); the interaction
effect was not significant (ANOYA, F = 1.1, df = 5,48,
P > .25). On average, Callinectes consumed signifi
cantly more clams over 72 h in mud than sand (Table
3). Consumption rates at high clam densities (8-32
clams per tank) were well below the mean satiation
level (8.25 clams·crab- I. [72 h]-I) in sand, but ap
proached the satiation level in mud (Table 3). In ad
dition, significantly more clams were consumed at the
upper three densities (8, 16, and 32 clams per tank)
than at the lowest two (2 and 4 clams per tank), re
gardless of sediment type (Table 3).

The proportions of clams eaten differed significantly
by sediment type, but not by clam density (ANOYA;
Sediment type: F = 43.0, df = 1,48, P < .0001; clam
density: F= 0.67, df= 5,48, P > .5). The interaction
effect between sediment type and clam density was
significant (ANOYA, F = 3.2, df = 5,48, P < .025),
precluding contrasts among treatment means (Under
wood 1981). Callinectes consumed proportionately

TABLE 3. The effects ofsediment composition and clam den
sity on crab consumption rates.

Mean consumption rate*
(clams· crab- I.[72 h]-I)

A. Sediment composition
Sand 2.5
Mud 4.5

B. Clam density (clams/0.36-m2 tank)
2 1.1

JJ]]4 1.9
6 3.4
8 4.2

16 4.7
32 5.8

* Results ofBonferroni contrasts at an experimentwise error
rate of .05. Within each section of the table, consumption
rates that are not significantly different share a common brack
et.

more clams in mud (60-90%) than in sand (17-54%),
with a pronounced interaction effect due to major dif
ferences in consumption rates at low clam densities.
With only 2-6 clams per tank, much lower percentages
ofclams were eaten in sand (17-35%) than in mud (80
90%).

The functional responses of Callinectes were signif
icantly different as a consequence of sediment com
position (Fig. 1). In sand, the functional response was
sigmoid (Fig. la), and best described by the type III
continuous-time equation:

0.216N/
N = ----------

a 1 + 0.143Nt + 0.039N/

as indicated by the nonlinear least squares analyses
(Table 4). Density-dependent consumption rates were
evident at densities from 0-8 clams per tank (Fig. 1a).
As indicated by the slope of the functional response
curve, the maximum risk of mortality for Mya oc
curred at ~4-8 clams per tank (Fig. 1a). Discrete-time
models had higher residual sums of squares, and were
characterized by nonrandom residuals about the pre
dicted values when contrasted with continuous-time
models (Table 4).

In mud, the functional response of Callinectes ex
hibited a decelerating rise to an asymptote (Fig. 1b),
and was best described by the type II continuous-time
equation:

1.512NtN =-----
a 1 + 0.193Nt

as indicated by the nonlinear analyses (Table 4). The
mortality risk of Mya decreased with increasing clam
density (Fig. 1b).

The significant difference between the functional re
sponses of Callinectes in sand and mud was reflected
in the relationship between the mean proportional
mortality rate of Mya and clam density (Fig. 2). In
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(a) SAND ( b) MUD

3224168o

Satiation

3224168

o K...I.._---.l__........__---.&. ....."

o

DENSITY (no. clams/tank)

FIG. 1. Functional responses of blue crabs feeding at six densities of soft-shelled clams. The fitted curves are from the
continuous-time models presented in the text. Predicted satiation levels (- - -) increase isometrically at a linear rate up
to the average satiation level of 8.25 clams-crab- 1 '(72 h)--l. Means (±SE) of five trials conducted at each clam density are
plotted for (a) sand and (b) mud.

TABLE 4. Results of nonlinear least squares analysis of functional responses (no. clams eaten). Equations of models given
in Table 2. Underlined values indicate the selected model. Parameter estimates were significantly >0 in the selected models,
as defined by 95% confidence intervals.

Discrete-time models Continuous-time models

Sediment Feature Type II Type III Type IIIb Type II Type III

Sand Parameter estimates

a' 0.003 0.007
b

0.1

0.017
2.0
5.6

0.058
20.0

0.10 10.0

0.003
0.143

13.0

Mud:j:

Summary statistics

Regression ss (df)
Residual ss (df)
Fvalue
Regression ss 7 total ss (%)

Binomial test (partial)
Binomial test (complete)

Parameter estimates

a'

b

240.0 (2) 261.3 (3) 236.4 (2) 263.6 (2) 268.6 (3)
66.0 (28) 44.7 (27) 69.6 (28) 42.4 (28) 37.4 (27)
50.9*** 52.8*** 47.5*** 87.3*** 64.4***
78.4 85.4 77.3 86.1 87.8

*** NS *** NS NS

NS * NS NS NS

0.007 0.021
0.015 0.186 0.015
2.0 20.0 1.3

4.1 4.1 5.1 9.2 5.5

Summary statistics

Regression ss (df)
Residual ss (df)
Fvalue
Regression ss -7- total ss (%)

Binomial test (partial)
Binomial test (complete)

556.9 (2)
160.1 (28)
48.7***
77.7

***
***

552.1 (2)
164.9 (28)
46.8***
77.0

***
***

471.7(2)
245.3 (28)

26.8***
65.8

§

***

681.9 (2)
35.1 (28)

272.7***
95.1

NS

NS

642.8 (3)
74.2 (27)
77.9***
89.7

NS

NS

* p < .05, ** P < .01, §P < .005, *** P < .001.
t Th = handling time in hours. Includes time from attack initiation until initiation of the search for subsequent prey.
:j: In addition, a type II linear reciprocal-transformation model (Livdahl and Stiven 1983) was fit to the data from mud

trials, but explained less of the total variance (69.2%) than the discrete-time or continuous-time models.



TABLE 5. Linear regression results of log-transformed gen
eral functional response models (Real 1977, 1979). The
transformed dependent variable met assumptions of nor
mality and equality of variance.

Monte Carlo simulation analyses ofclam
spatial mortality patterns

In the Monte Carlo simulation analyses of nearest
neighbor distances (NND), significant deviations from
a random distribution are identified by probability
levels below 0.025 (indicating clumping) or above 0.975
(indicating overdispersion). Of the 14 testable trials in
sand and mud at densities of 16 and 32 clams per tank,
only one NND value was significant, suggesting over
dispersion in that trial (Table 6). All other trials had
nonsignificant probability levels (Table 6), without any
general tendency, indicating that spatial mortality pat
terns of Mya in the tanks were random.

DISCUSSION

Blue crab predation intensity and
prey persistence

The functional response analyses showed that adult
Mya obtained refuge from Callinectes predation at low
densities in sand, but not in mud. Our low Mya ex
perimental densities (6-22 clams/m2) were similar to
those reported for large Mya surviving in sandy sedi
ments until autumn in Chesapeake Bay (0.2-12 clams/
m 2 , Cory and Redding 1977) and Essex Bay, Massa
chusetts (9-19 clams/m2 , Brousseau 1978b). In muddy
sediments, Mya occur in low numbers and rarely sur
vive through summer (A. Hines, personal observation).
In addition, survivorship depends on the burial depth
ofclams (Blundon and Kennedy 1982b). Our mortality
rates for Mya exposed to Callinectes were similar to
those of Blundon and Kennedy (1982b) when com
pared at similar clam densities and burial depths (~500/0

mortality at 15 cm depth and 50-60 clams/m2). How
ever, their depth-dependent responses and our density
dependent responses suggest that clam density and
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Analyses ofgeneral functional response models

Analyses using the general functional response mod
el (Eq. 1) (Real 1977, 1979) corroborated the results
of the preceding analyses. The functional response was
sigmoid (type III) in sand, with ~ (2.29) significantly
different from 0 and 1 (Table 5). In mud, the functional
response was convex (type II), with ~ not significantly
different from 1 (~ = 0.81) and significantly different
from 0 and 2 (Table 5). Thus the tests of {3, and hence,
of the form of the functional responses, verified that
the curves differed significantly according to sediment
composition, with the type III response most appro
priate in sand, and type II in mud (Table 5).

sand, very few of the available clams were consumed
at low densities, whereas greater percentages were eaten
at high densities (Fig. 2). The reduction in the pro
portional mortality rate in sand at low densities sig
nifies (1) a density-dependent sigmoid relationship be
tween predation rate and prey density, and (2) the
existence ofa partial refuge from predation below some
density. In this case, that density appears to be ~4-8

clams per tank (11-22 clams/m2).

In mud, almost all available clams were consumed
at low densities, with the proportional mortality rate
decreasing at intermediate densities, and then increas
ing slightly at higher densities as the crabs approached
their satiation level (Fig. 2). This pattern is indicative
of an inversely density-dependent relationship, which
is characterized by a type II functional response and
lowest mortality risk at high prey densities. The in
creased proportional mortality rate at highest densities
may have been "wasteful killing" (10hnson et al. 1975),
since a few clams in the high-density treatments were
only partially consumed, suggesting that nontraditional
functional response models (Abrams 1982) may also
be appropriate in this situation.

16 24

DENSITY

(no. clams/tank)

FIG. 2. Proportional mortality rates ofMya at six densities
exposed to Callinectes predation. Data are means (±SE) of
five trials conducted at each clam density.
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TABLE 6. Monte Carlo simulation analysis of spatial patterns of Mya arenaria mortality in treatments with 32 and 16 clams
per 0.36-m2 tank. The Monte Carlo simulations were run on the nearest neighbor distances (NND) between eaten clams.

Mean NND (cm) Median NND (cm)

Clam density No. clams Monte Carlo Monte Carlo
Sediment (no.ltank) Trial eaten Observed probability Observed probability

Sand 32 1 3 35.5 0.72 30.6 0.88
2 3 40.4 0.85 30.6 0.88
3 5 19.2 0.57 12.0 0.14
4 6 12.2 0.14 6.0 0.10
5 6 19.6 0.84 16.2 0.79

all 25.4 0.88 16.2 0.86
16t 1 4 16.5 0.27 16.5 0.50

2 5 16.8 0.38 18.0 0.94
all 16.7 0.16 17.3 0.61

Mud 32 1 6 18.6 0.76 12.0 0.27
2 6 12.0 0.13 12.0 0.27
3 7 9.6 0.04 6.0 0.19
4 7 19.3 0.97 16.2 0.95
5 9 12.7 0.55 12.0 0.54

all 14.4 0.42 12.0 0.23
16t 1 3 18.0 0.17 18.0 0.71

2 5 26.1 0.99* 15.0 0.63
all 22.1 0.41 16.5 0.56

* P < .05, two-sided test.
t Data on spatial mortality patterns are available for only 4 of the 10 trials in the 16-clam treatments.

burial depth interact to enhance the refugium potential
of selected habitats. Hence, irrespective of potential
recruitment differences across sandy and muddy sed
iments, the collective evidence suggests that natural
populations of deeper dwelling adult Mya are more
likely to persist at low densities in sandy habitats be
cause ofreduced predation rates by Callinectes in these
habitats.

Local persistence of Mya may also be affected by a
suite of other environmental and biotic factors
throughout its range, including summer anoxia (Seliger
et al. 1985), the combined effect of high temperatures
and low salinities following intense tropical storms
(Cory and Redding 1977), intraspecific competition
(Peterson 1982a, b), edaphic parameters (Appeldoom
1983), gradients in salinity and temperature (Ulan
owicz et al. 1982, Appeldoom 1983), hydrodynamic
features (Matthiessen 1960), demersal fish (Orth 1975,
Vimstein 1977, Kelso 1979, Holland et al. 1980), and
predatory snails (Edwards and Huebner 1977, Wiltse
1980, Commito 1982). However, despite the numer
ous potential sources ofdisturbance and mortality, Mya
arenaria populations recover (Cory and Redding 1977,
Brousseau 1978b), probably due to the high fecundity
of survivors (Brousseau 1978a). Hence the regional
persistence of Mya appears to depend on density-de
pendent factors modified by local environmental con
ditions, the degree of disturbance by density-indepen
dent factors, and the life-history characteristics of local
populations. (See Zajac and Whitlatch [1985] for a dis
cussion of the potential interactions of these factors.)

Predation intensity of blue crabs is in turn affected
by various physical and biotic variables. Our results
suggest that activity levels and prey encounter rates of

Callinectes differ according to sediment composition
and are correlated with prey density. In nature, Cal
linectes may migrate from low-density to high-density
prey patches, such that local patterns in prey abun
dance and distribution determine the diet ofindividual
Callinectes (Laughlin 1982). Other factors such as an
oxia (Seliger et al. 1985) may reduce the extent ofavail
able feeding areas, as may intraspecific interference
(Ens and Goss-Custard 1984) when blue crab densities
are high. Thus the character and intensity of predation
by Callinectes will vary greatly according to local con
ditions, and conclusions regarding its predator-prey
dynamics must be tailored to specific environmental
circumstances.

Functional responses, habitat variability, and
predator-prey dynamics

Our key finding in relation to predator-prey dynam
ics is that the functional response of an invertebrate
predator can vary significantly in form as a conse
quence of subtle differences in microhabitat physical
structure. Blue crabs preying upon soft-shelled clams
exhibited a type II functional response in mud, and a
type III response in sand. Reduced penetrability of
sandy sediments probably reduces prey encounter rates
because blue crabs search for prey by probing the sub
strate with the tips of their walking legs, where che
mosensory and tactile setae are located. Reduced en
counter rates may lead to lowered activity levels, which
subsequently reduce encounter rates further, or result
in emigration from areas of low prey density. Handling
time did not appear to differ significantly in the two
sediments, because blue crabs rapidly extracted and
ate clams once a clam was detected. The proposed
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differences in encounter rates have been observed in
other predators, and have led to changes from type II
to type III functional responses (Hassell 1978, Abrams
1982).

Previous experiments have documented alterations
in functional responses as a consequence of differences
in prey quality and habitat heterogeneity (Murdoch
1969, Hassell et al. 1977, Hildrew and Townsend 1977,
Akre and Johnson 1979, Kaiser 1983, Folsom and CJI
lins 1984, Ohman 1984), but not the physical prop
erties characterizing microhabitats. A possible ana
logue to our findings may be fish foraging at different
light levels, which affect the ability of visual predators
to detect prey. The zooplanktivorous Abramis brama
exhibited a change in response from type II to type III
in decreased light, although the altered response may
also have been due to differing prey distributions under
various light regimes (Townsend and Risebrow 1982).

Several field experiments and observations show that
prey density and differences in the physical structure
of homogeneous microhabitats alter foraging rates of
predators. Pacific shorebirds reduced densities of in
faunal prey in mudflats with low sand content, but
avoided foraging in nearby flats with higher sand con
tent (Quammen 1982, 1984). Similar patterns occur in
Atlantic shorebirds (Myers et al. 1980), and are likely
due to the reduced penetrability ofsediments with high
sand content (Grant 1984). Sediment composition also
affected predation rates by blue crabs on the hard clam,
Mercenaria mercenaria (Arnold 1984). Adult littleneck
clams, Protothaca staminea, inhabiting intertidal sand
gravel beaches suffered relatively higher mortality rates
at higher densities when exposed to predation by can
erid crabs (Boulding and Hay 1984), as did an infaunal
clam, Chione cancellata, exposed to whelk and blue
crab predation (Peterson 1982a). Similarly, the bio
mass of amphipods, Corophium volutator, consumed
by wading birds was positively correlated with am
phipod density (Goss-Custard 1970). Hence, the col
lective field and laboratory evidence indicates that
predator foraging and prey mortality rates vary signif
icantly across gradients in prey availability, habitat
heterogeneity, and the physical properties of micro
habitats.

Varying mortality risks of prey as a function of the
physical structure of habitat patches have been iden
tified in populations residing in coral reefs (Kohn 1983)
and seagrass meadows (Orth 1977, Heck and Orth 1980,
Orth et al. 1984, Virnstein et al. 1984). This factor
complements the role ofhabitat heterogeneity in mod
ifying the susceptibility of prey to predators, and dem
onstrates the need to specify the precise and potentially
subtle characteristics of the habitat and prey influenc
ing predator-prey dynamics.
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APPENDIX

Separate Monte Carlo simulations of the nearest neighbor
distance (NND) between eaten clams were run for each unique
combination of number of clams eaten, clam density, and
sediment type. Each simulation required the following steps:

1) Each of the 16 or 32 possible clam locations was assigned
a unique set of Cartesian coordinates (x,y).

2) A random number generator drew the required number
ofsets ofCartesian coordinates, with the number ofsets equal
to the observed number of clams eaten.

3) The mean and median NND ofthat draw were computed
using the sets of Cartesian coordinates.

4) Steps 1-3 were repeated for a total of 10000 draws,
resulting in frequency distributions ofmean and median NND
values.

5) The observed NND values were calculated using the
Cartesian coordinates of the observed locations ofeaten clams.

6) The cumulative probabilities of the observed NND val
ues were determined directly from the frequency distributions
derived from the Monte Carlo simulations.


	Variable functional responses of a marine predator in dissimilar homogeneous microhabitats
	Recommended Citation

	tmp.1586638197.pdf.sQjhi

