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Abstract

Background

There is interest in using convolutional neural networks (CNNs) to analyze medical imaging

to provide computer-aided diagnosis (CAD). Recent work has suggested that image classifi-

cation CNNs may not generalize to new data as well as previously believed. We assessed

how well CNNs generalized across three hospital systems for a simulated pneumonia

screening task.

Methods and findings

A cross-sectional design with multiple model training cohorts was used to evaluate model

generalizability to external sites using split-sample validation. A total of 158,323 chest radio-

graphs were drawn from three institutions: National Institutes of Health Clinical Center (NIH;

112,120 from 30,805 patients), Mount Sinai Hospital (MSH; 42,396 from 12,904 patients),

and Indiana University Network for Patient Care (IU; 3,807 from 3,683 patients). These

patient populations had an age mean (SD) of 46.9 years (16.6), 63.2 years (16.5), and 49.6

years (17) with a female percentage of 43.5%, 44.8%, and 57.3%, respectively. We

assessed individual models using the area under the receiver operating characteristic curve

(AUC) for radiographic findings consistent with pneumonia and compared performance on

different test sets with DeLong’s test. The prevalence of pneumonia was high enough at

MSH (34.2%) relative to NIH and IU (1.2% and 1.0%) that merely sorting by hospital system

achieved an AUC of 0.861 (95% CI 0.855–0.866) on the joint MSH–NIH dataset. Models

trained on data from either NIH or MSH had equivalent performance on IU (P values 0.580

and 0.273, respectively) and inferior performance on data from each other relative to an

internal test set (i.e., new data from within the hospital system used for training data; P val-

ues both <0.001). The highest internal performance was achieved by combining training

and test data fromMSH and NIH (AUC 0.931, 95% CI 0.927–0.936), but this model
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demonstrated significantly lower external performance at IU (AUC 0.815, 95% CI 0.745–

0.885, P = 0.001). To test the effect of pooling data from sites with disparate pneumonia

prevalence, we used stratified subsampling to generate MSH–NIH cohorts that only differed

in disease prevalence between training data sites. When both training data sites had the

same pneumonia prevalence, the model performed consistently on external IU data (P =

0.88). When a 10-fold difference in pneumonia rate was introduced between sites, internal

test performance improved compared to the balanced model (10×MSH risk P < 0.001; 10×
NIH P = 0.002), but this outperformance failed to generalize to IU (MSH 10× P < 0.001; NIH

10× P = 0.027). CNNs were able to directly detect hospital system of a radiograph for

99.95% NIH (22,050/22,062) and 99.98%MSH (8,386/8,388) radiographs. The primary limi-

tation of our approach and the available public data is that we cannot fully assess what other

factors might be contributing to hospital system–specific biases.

Conclusion

Pneumonia-screening CNNs achieved better internal than external performance in 3 out of

5 natural comparisons. When models were trained on pooled data from sites with different

pneumonia prevalence, they performed better on new pooled data from these sites but not

on external data. CNNs robustly identified hospital system and department within a hospital,

which can have large differences in disease burden and may confound predictions.

Author summary

Whywas this study done?

• Early results in using convolutional neural networks (CNNs) on X-rays to diagnose dis-

ease have been promising, but it has not yet been shown that models trained on X-rays

from one hospital or one group of hospitals will work equally well at different hospitals.

• Before these tools are used for computer-aided diagnosis in real-world clinical settings,

we must verify their ability to generalize across a variety of hospital systems.

What did the researchers do and find?

• A cross-sectional design was used to train and evaluate pneumonia screening CNNs on

158,323 chest X-rays from the National Institutes of Health Clinical Center (NIH; n =

112,120 from 30,805 patients), Mount Sinai Hospital (42,396 from 12,904 patients), and

Indiana University Network for Patient Care (n = 3,807 from 3,683 patients).

• In 3 out of 5 natural comparisons, performance on chest X-rays from outside hospitals

was significantly lower than on held-out X-rays from the original hospital system.

• CNNs were able to detect where a radiograph was acquired (hospital system, hospital

department) with extremely high accuracy and calibrate predictions accordingly.
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What do these findings mean?

• The performance of CNNs in diagnosing diseases on X-rays may reflect not only their

ability to identify disease-specific imaging findings on X-rays but also their ability to

exploit confounding information.

• Estimates of CNN performance based on test data from hospital systems used for model

training may overstate their likely real-world performance.

Introduction

There is significant interest in using convolutional neural networks (CNNs) to analyze radiol-

ogy, pathology, or clinical imaging for the purposes of computer-aided diagnosis (CAD) [1–5].

These studies are generally performed utilizing CNN techniques that were pioneered on well-

characterized computer vision datasets, including the ImageNet Large Scale Visual Recogni-

tion Competition (ILSVRC) and the Modified National Institute of Standards and Technology

(MNIST) database of hand-drawn digits [6,7]. Training CNNs to classify images from these

datasets is typically done by splitting the dataset into three subsets: train (data directly used to

learn parameters for models), tune (data used to choose hyperparameter settings, also com-

monly referred to as “validation”), and test (data used exclusively for performance evaluation

of models learned using train and tune data). CNNs are trained to completion with the first

two, and the final set is used to estimate the model’s expected performance on new, previously

unseen data.

An underlying premise of the test set implying future generalizability to new data is that the

test set is reflective of the data that will be encountered elsewhere. Recent work in computer

vision has demonstrated that the true generalization performance of even classic CIFAR-10

photograph classification CNNs to new data may be lower than previously believed [8]. In the

biomedical imaging context, we can contrast “internal” model performance on new, previously

unseen data gathered from the same hospital system(s) used for model training with “external”

model performance on new, previously unseen data from different hospital systems [9,10].

External test data may be different in important ways from internal test data, and this may

affect model performance, particularly if confounding variables exist in internal data that do

not exist in external data [11]. In a large-scale deep learning study of retinal fundoscopy, Ting

and colleagues noted variation in the performance of CNNs trained to identify ocular disease

across external hospital systems, with the areas under the receiver operating characteristic

curve (AUCs) ranging from 0.889 to 0.983 and image-level concordance with human experts

ranging from 65.8% to 91.2% on external datasets [4]. Despite the rapid push to develop deep

learning systems on radiological data for academic and commercial purposes, to date, no

study has assessed whether radiological CNNs actually generalize to external data. If external

test performance of a system is inferior to internal test performance, clinicians may errone-

ously believe systems to be more accurate than they truly are in the deployed context, creating

the potential for patient harm.

The primary aim of this study was to obtain data from three separate hospital systems and

to assess how well deep learning models trained at one hospital system generalized to other

external hospital systems. For the purposes of this assessment, we chose the diagnosis of pneu-

monia on chest X-ray for both its clinical significance as well as common occurrence and sig-

nificant interest [2]. We reproduced the CheXNet model of Rajpurkar and colleagues, whose
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internal performance on National Institutes of Health Clinical Center (NIH) data has previ-

ously been reported [2]. We extended upon this work to evaluate the model’s internal perfor-

mance when trained on data from a different hospital system and to demonstrate how this

model generalized to external hospital systems not used for model training. By training and

testing models on different partitions of data across three distinct institutions, we sought to

establish whether a truly generalizable model could be learned, as well as which factors affect-

ing external validity could be identified to aid clinicians when assessing models for potential

clinical deployment.

Methods

Datasets

This study was approved by the Mount Sinai Health System Institutional Review Board; the

requirement for patient consent was waived for this retrospective study that was deemed to

carry minimal risk. Three datasets were obtained from different hospital groups: NIH (112,120

radiographs from 1992 to 2015), Indiana University Network for Patient Care (IU; 7,470 radio-

graphs, date range not available), and Mount Sinai Hospital (MSH; 48,915 radiographs from

2009 to 2016) [1,12]. This study did not have a prospective analysis plan, and all analyses per-

formed are subsequently described.

CNNs

Deep learning encompasses any algorithm that uses multiple layers of feed-forward neural net-

works to model phenomena [13]. Classification CNNs are a type of supervised deep learning

model that take an image as input and predict the probability of predicted class membership as

output. A typical use of CNNs is classifying photographs according to the animals or objects they

contain: a chihuahua, a stove, a speedboat, etc. [6]. Many different CNN architectures have been

proposed, including ResNet-50 and DenseNet-121 used in this paper, and improving the perfor-

mance of these models is an active area of research [14,15]. In practice, CNNs are frequently pre-

trained on large computer vision databases, such as ImageNet, rather than being randomly

initialized and trained de novo. After pretraining, the CNNs are then fine-tuned on the dataset of

interest. This process of pretraining followed by fine-tuning reduces training time, promotes

model convergence, and can regularize the model to reduce overfitting. A difficulty of using these

models is that there are few formal guarantees as to their generalization performance [16]. In this

paper, we use CNNs both to preprocess and to predict pneumonia in radiographs.

Preprocessing: Frontal view filtering

NIH data contained only frontal chest radiographs, whereas IU and MSH data contained both

frontal and lateral chest radiographs and were found to contain inconsistent frontal and lateral

labels on manual review. A total of 402 IU and 490 MSH radiographs were manually labeled as

frontal/lateral and randomly divided into groups (IU: 200 train, 100 tune, 102 test; MSH: 200

train, 100 tune, 190 test) and used to train ResNet-50 CNNs to identify frontal radiographs

[14]. A total of 187/190 MSH and 102/102 IU test radiographs were accurately classified. The

datasets were then filtered to frontal radiographs using these CNNs, leaving a total of 158,323

radiographs (112,120 NIH, 42,396 MSH, and 3,807 IU) available for analysis (S1 Fig).

Preprocessing: Generating labels for pathology

IU radiographs were manually labeled by curators after review of the accompanying text radi-

ology reports [12]. NIH radiographs were labeled automatically using a proprietary natural
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language processing (NLP) system based on expanding sentences as parse trees and using

handcrafted rules based on the MESH vocabulary to identify statements indicating positive

pathology [1].

MSH radiographs did not initially include labels, so a subset of radiographic reports was

manually labeled to train an NLP algorithm that could infer labels for the full dataset. A total

of 405 radiographic reports were manually labeled for cardiomegaly, emphysema, effusion,

hernia, nodule, atelectasis, pneumonia, edema, and consolidation. To evaluate the NLP algo-

rithm’s performance, these were split into train and test groups (283 and 122, respectively). A

previously described NLP concept extraction model based on 1- and 2-gram bag-of-words fea-

tures with Lasso logistic regression was trained to identify reports mentioning pneumonia

[17]. AUC, sensitivity, and specificity at a 50% classification threshold are reported in S1

Table. The NLP model was then refit with all 405 manually labeled reports and used to process

all unlabeled reports. As reports positive for hernia occurred too infrequently to use this NLP

algorithm, reports were automatically labeled as positive for hernia if the word “hernia”

appeared in the report.

Preprocessing: Separation of patients across train, tune, and test groups

As NIH and MSH data contained patient identifiers, all NIH and MSH patients were separated

into fixed train (70%), tune (10%), and test (20%) groups (S2 Fig). IU data did not contain

patient identifiers. In the case of pneumonia detection, 100% of IU data was reserved for use as

an external test set. IU data were used for training only to detect hospital system and in this

case were separated into fixed train (70%), tune (10%), and test (20%) groups using an identi-

fier corresponding to accession number (e.g., which radiographs were obtained at the same

time on the same patient). Test data were not available to CNNs during model training, and all

results reported in this study are calculated exclusively on test data.

Preprocessing: Identifying MSH portable scans from inpatient wards and
the emergency department

Of 42,396 MSH radiographs, 39,574 contained a label indicating whether they were portable

radiographs; 31,838 were labeled as portable. We identified a subset of 31,076 MSH portable

radiographs that documented the department of acquisition, with 28,841 from inpatient wards

and 2,235 from the emergency department.

Model training

PyTorch 0.2.0 and torchvision were used for model training [18]. All images were resized to

224 × 224. CNNs used for experiments were trained with DenseNet-121 architecture with an

additional dense layer (n = 15) attached to the original bottleneck layer and sigmoid activation

(for binary classification) or a linear layer with output dimension equal to that of the classifica-

tion label followed by softmax activation (for n> 2 multiclass prediction) [15]. This additional

dense layer was added to facilitate extraction of bottleneck features in a reduced dimension. A

DenseNet architecture with weights pretrained to ImageNet was chosen to facilitate compari-

son with recent work on pneumonia detection in radiographs by Rajpurkar and colleagues

and for its state-of-the-art results on standard computer vision datasets [2]. All models were

trained using a cross-entropy loss function with parameter update by stochastic gradient

descent with momentum, initial learning rate 0.01, momentum 0.9, and weight decay 0.0001.

Learning rate was decayed by a factor of 10 after each epoch with no improvement in valida-

tion loss, and training was stopped after three epochs with no improvement in validation loss.

Variable generalization performance of deep learning–based pneumonia detection
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Internal and external performance testing

To assess how individual models trained using single datasets would generalize compared to a

model trained simultaneously on multiple datasets, we trained CNNs to predict nine overlap-

ping diagnoses (cardiomegaly, emphysema, effusion, hernia, nodule, atelectasis, pneumonia,

edema, and consolidation) using three different train set combinations: NIH, MSH, and a

joint NIH–MSH train set. We were interested only in the prediction of pneumonia and

included other diagnoses to improve overall model training and performance. For each model,

we calculated AUC, accuracy, sensitivity, and specificity for four different test sets: joint NIH–

MSH, NIH only, MSH only, and IU. We report differences in test AUC for all possible inter-

nal–external comparisons. We consider the joint MSH–NIH test set the internal comparison

set for the jointly trained model. We additionally report differences in test AUC between a

jointly trained MSH–NIH model and individual MSH–NIH test sets. The classification thresh-

old was set to ensure 95% sensitivity on each test set to simulate model use for a theoretical

screening task. After external review of this analysis, a trivial model that ranked cases based

only on the average pneumonia prevalence in each hospital system’s training data and

completely ignored radiographic findings was evaluated on the MSH–NIH test set to evaluate

how hospital systems alone can predict pneumonia in the joint dataset. We include calibration

plots across all reported comparisons as supporting information.

Hospital system and department prediction

After training models for pneumonia and evaluating their performance across sites, additional

analysis was planned to better understand a CNN’s ability to detect site and department and

how that could affect pneumonia prediction. We trained a CNN to predict hospital systems

from radiographs to assess whether location information was directly detectable from the

radiograph alone. Radiographs from all three hospital systems were utilized to learn a model

that could identify the hospital system from which a given radiograph was drawn. To develop

this concept more granularly, for MSH radiographs, we further identified from which hospital

unit individual radiographs were obtained (inpatient wards, emergency department). In all

cases, we report the classification accuracy on a held-out test set.

Sample activation maps

We created 7 × 7 sample activation maps, following Zhou and colleagues, to attempt to under-

stand which locations in chest radiographs provided strong evidence for hospital system [19].

For this experiment, we specifically identify radiographs from the NIH. For a sample of NIH

test radiographs (n = 100), we averaged the softmax probability for each subregion calculated

as

P hospital ¼ NIHjradiographi;j

� �

¼
eYi;j NIH

eYi;j NIH þ eYi;j MSH þ eYi;j IU
; ð1Þ

where i,j corresponds to the subregion at the ith row and jth column of the final convolutional

layer (7 × 7 = 49 subregions), where each

Yi;j Hospital System ¼
P

ðBk Hospital System � Xk;i;jÞ þ B
0 Hospital System; ð2Þ

where the sum is performed over the K final convolutional layers, and Xk,i,j represents the acti-

vation at the ith row and jth column of the kth final convolutional layer. To characterize how

many different subregions were typically involved in NIH hospital system classification, we

report the mean, minimum, and maximum number of subregions that predicted NIH
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decisively (probability� 95%). To illustrate the contribution of particularly influential features

(e.g., laterality labels) to classification, we present several examples of heatmaps generated by

calculating Yi,j NIH − Yi,j MSH − Yi,j IU for all i,j subregions in an image and subtracting the

mean. This additional calculation was necessary to distinguish their positive contribution in

the context of many subregions contributing positively to classification probability.

Engineered relative risk experiment

We wished to assess the hypothesis that a CNN could learn to exploit large differences in

pathology prevalence between two hospital systems in training data by calibrating its predic-

tions to the baseline prevalence at each hospital system rather than exclusively discriminating

based on direct pathology findings. This would lead to strong performance on a test dataset

consisting of imbalanced data from both hospital systems but would fail to generalize to data

from an external hospital system. To test this hypothesis, we simulated experimental cohorts

that differed only in relative disease prevalence and performed internal and external evalua-

tions as described above. Five cohorts of 20,000 patients consisting of 10,000 MSH and 10,000

NIH patients were specifically sampled to artificially set different levels of pneumonia preva-

lence in each population while maintaining a constant overall prevalence: NIH Severe (NIH

9.9%, MSH 0.1%), NIHMild (NIH 9%, MSH 1%), Balanced (NIH 5%, MSH 5%), MSHMild

(MSH 9%, NIH 1%), and MSH Severe (MSH 9.9%, NIH 0.1%). The sampling routine also

ensured that males and females had an equal prevalence of pneumonia. We refer to these as

“engineered prevalence cohorts.” Train, tune, and test splits consistent with prior modeling

were maintained for these experiments. CNNs were trained on each cohort in the fashion pre-

viously described, and test AUCs on internal joint MSH–NIH and external IU data were

compared.

Statistical methods

To assess AUC differences between classification models, we used either the paired or

unpaired version of DeLong’s test for ROC curves as appropriate [20]. Comparisons between

proportions were performed utilizing χ2 tests, and proportion CIs were calculated using the

Clopper-Pearson interval. All P values were assessed at an alpha of 0.05. Statistical analysis was

performed using R version 3.4 with the pROC package and scikit-learn 0.18.1 [21,22].

Results

Datasets

The average age of patients in the MSH cohort was 63.2 years (SD 16.5 years), compared to

49.6 years (SD 17 years) in the IU cohort and 46.9 years (SD 16.6 years) in the NIH cohort

(Table 1).

Positive cases of pneumonia were remarkably more prevalent in MSH data (34.2%) than in

either NIH (1.2%, χ2 P< 0.001) or IU (1.0%, P< 0.001) data.

Internal and external performance testing

Overall, the internal performance of pneumonia detection CNNs significantly exceeded exter-

nal performance in 3 out of 5 natural comparisons (Fig 1, Table 2). CNNs trained to detect

pneumonia at NIH had internal test AUC 0.750 (95% CI 0.721–0.778), significantly worse

external test AUC 0.695 at MSH (95% CI 0.683–0.706, P< 0.001), and comparable external

test AUC 0.725 at IU (95% CI 0.644–0.807, P = 0.580). CNNs trained to detect pneumonia at

MSH had internal test AUC 0.802 (95% CI 0.793–0.812), significantly worse external test AUC
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0.717 at NIH (95% CI 0.687–0.746, P< 0.001), and comparable external test AUC 0.756 at IU

(95% CI 0.674–0.838, P = 0.273). A jointly trained MSH–NIH model had internal test AUC

0.931 (95% CI 0.927–0.936), significantly greater than external test AUC 0.815 at Indiana (95%

CI 0.745–0.885, P = 0.001). The jointly trained model had stronger internal performance com-

pared to either constituent site individually (MSH AUC 0.805, 95% CI 0.796–0.814, P< 0.001;

NIH AUC 0.733, 95% CI 0.703–0.762, P< 0.001) (Table 2). A trivial model that ranked cases

based only on the average pneumonia prevalence in each hospital system achieved AUC 0.861

(95% CI 0.855–0.866) on the joint MSH–NIH test set. Calibration plots comparing model

performance across hospital systems demonstrated a wide range of calibration slopes (mini-

mum 0.047 for train MSH and predict NIH, maximum 10.4 for train NIH and predict MSH;

S3–S14 Figs).

Hospital system and department prediction

A CNN trained to identify hospital systems accurately identified 22,050 / 22,062 (99.95%, 95%

CI 0.9991–0.9997) of NIH, 8,386 / 8,388 (99.98%, 95% CI 0.9991–1.0000) of MSH, and 737 /

771 (95.59%, 95% CI 0.9389–0.9693) of IU test radiographs, and hospital system was a larger

source of variation in image data principal components than pneumonia (S15 Fig). To identify

radiographs originating at a specific hospital system, such as NIH, CNNs used features from

many different image regions (Fig 2A); the majority of image subregions were individually

able to predict the hospital system with�95% certainty (35.7 / 49, 72.9%, minimum 21,

maximum 49, N = 100 NIH radiographs). Laterality labels were particularly influential (Fig 2B

and 2C).

A CNN trained to identify individual departments within MSH accurately identified 5,805 /

5,805 (100%, 95% CI 0.9993–1.0000) of inpatient radiographs and 449 / 449 (100%, 95% CI

0.9918–1.0000) of emergency department radiographs. Patients who received portable

Table 1. Baseline characteristics of datasets by site.

Characteristic IU MSH NIH

Patient demographics

No. patient radiographs 3,807 42,396 112,120

No. patients 3,683 12,904 30,805

Age, mean (SD), years 49.6 (17.0) 63.2 (16.5) 46.9 (16.6)

No. females (%) 643 (57.3%) 18,993 (44.8%) 48,780 (43.5%)

Image diagnosis frequencies

Pneumonia, No. (%) 39 (1.0%) 14,515 (34.2%) 1,353 (1.2%)

Emphysema, No. (%) 62 (1.6%) 1,308 (3.1%) 2,516 (2.2%)

Effusion, No. (%) 142 (3.7%) 19,536 (46.1%) 13,307 (11.9%)

Consolidation, No. (%) 26 (0.7%) 25,318 (59.7%) 4,667 (4.2%)

Nodule, No. (%) 104 (2.7%) 569 (1.3%) 6,323 (5.6%)

Atelectasis, No. (%) 307 (8.1%) 16,713 (39.4%) 11,535 (10.3%)

Edema, No. (%) 45 (1.2%) 7,144 (16.9%) 2,303 (2.1%)

Cardiomegaly, No. (%) 328 (8.6%) 14,285 (33.7%) 2,772 (2.5%)

Hernia, No. (%) 46 (1.2%) 228 (0.5%) 227 (0.2%)

�Sex data available for 1,122 / 3,807 IU, 42,383 / 42,396 MSH; age data available for 112,077 / 112,120 NIH.

Abbreviations: IU, Indiana University Network for Patient Care; MSH, Mount Sinai Hospital; NIH, National

Institutes of Health Clinical Center; No., number.

https://doi.org/10.1371/journal.pmed.1002683.t001
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radiographs on an inpatient floor had a higher prevalence of pneumonia than those in the

emergency department (41.1% versus 32.8%, respectively, P< 0.001).

Engineered relative risk experiment

Artificially increasing the difference in the prevalence of pneumonia between MSH and NIH

led to CNNs that performed increasingly well on internal testing but not external testing (S2

Table). CNNs trained on engineered prevalence cohorts of NIH and MSH data showed stron-

ger internal AUC on a joint NIH–MSH test set when the prevalence of pneumonia was imbal-

anced between the two hospital systems in the training dataset with MSH Severe AUC 0.899

(95% CI 0.885–0.914, P< 0.001), MSHMild AUC 0.860 (95% CI 0.839–0.882, P< 0.001),

NIHMild AUC 0.807 (95% CI 0.778–0.836, P = 0.002), and NIH Severe AUC 0.849 (95% CI

0.826–0.871, P< 0.001) than when it was balanced with AUC 0.739 (95% CI 0.707–0.772) (Fig

3A and 3B).

Fig 1. Pneumonia models evaluated on internal and external test sets. Amodel trained using both MSH and NIH
data (MSH + NIH) had higher performance on the combinedMSH + NIH test set than on either subset individually or
on fully external IU data. IU, Indiana University Network for Patient Care; MSH, Mount Sinai Hospital; NIH, National
Institutes of Health Clinical Center.

https://doi.org/10.1371/journal.pmed.1002683.g001
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Internal MSH–NIH performance of all models trained on imbalanced cohorts was signifi-

cantly better than their corresponding external performance on IU (external MSH Severe

AUC 0.641, 95% CI 0.552–0.730, P< 0.001; MSHMild AUC 0.650, 95% CI 0.548–0.752,

P< 0.001; NIHMild AUC 0.703, 95% CI 0.616–0.790, P = 0.027; NIH Severe AUC 0.683, 95%

CI 0.591–0.775, P< 0.001). Internal MSH–NIH performance did not significantly exceed

external IU performance for Balanced (0.739, 95% CI 0.707–0.772 versus 0.732, 95% CI 0.645–

0.819, P = 0.880).

Discussion

We have demonstrated that pneumonia-screening CNNs trained on data from individual or

multiple hospital systems did not consistently generalize to external sites, nor did they make

predictions exclusively based on underlying pathology. Given the significant interest in using

deep learning to analyze radiological imaging, our findings should give pause to those consid-

ering rapid deployment of such systems without first assessing their performance in a variety

Table 2. Internal and external pneumonia screening performance for all train, tune, and test hospital system combinations. Parentheses show 95% CIs.

Train/ Tune
Site

Comparison
Type�

Test Site (Images) AUC Accuracy Sensitivity Specificity PPV NPV

NIH Internal NIH (N = 22,062) 0.750 (0.721–
0.778)

0.255 (0.250–
0.261)

0.951 (0.917–
0.973)

0.247 (0.241–
0.253)

0.015 (0.013–
0.017)

0.998 (0.996–
0.999)

External MSH (N = 8,388) 0.695 (0.683–
0.706)

0.476 (0.465–
0.486)

0.950 (0.942–
0.958)

0.212 (0.201–
0.223)

0.401 (0.390–
0.413)

0.884 (0.866–
0.901)

External IU (N = 3,807) 0.725 (0.644–
0.807)

0.190 (0.178–
0.203)

0.974 (0.865–
0.999)

0.182 (0.170–
0.195)

0.012 (0.009–
0.017)

0.999 (0.992–
1.000)

Superset � MSH + NIH
(N = 30,450)

0.773 (0.766–
0.780)

0.462 (0.456–
0.467)

0.950 (0.942–
0.957)

0.403 (0.397–
0.409)

0.160 (0.155–
0.166)

0.985 (0.983–
0.987)

Superset � MSH + NIH + IU
(N = 34,257)

0.787 (0.780–
0.793)

0.470 (0.464–
0.475)

0.950 (0.942–
0.957)

0.418 (0.413–
0.424)

0.148 (0.144–
0.153)

0.987 (0.985–
0.989)

MSH Internal MSH (N = 8,388) 0.802 (0.793–
0.812)

0.617 (0.607–
0.628)

0.950 (0.942–
0.958)

0.432 (0.419–
0.446)

0.482 (0.469–
0.495)

0.94 (0.930–
0.949)

External NIH (N = 22,062) 0.717 (0.687–
0.746)

0.184 (0.179–
0.190)

0.951 (0.917–
0.973)

0.175 (0.170–
0.18)

0.014 (0.012–
0.016)

0.997 (0.994–
0.998)

External IU (N = 3,807) 0.756 (0.674–
0.838)

0.099 (0.089–
0.109)

0.974 (0.865–
0.999)

0.090 (0.081–
0.099)

0.011 (0.008–
0.015)

0.997 (0.984–
1.000)

Superset � MSH + NIH
(N = 30,450)

0.862 (0.856–
0.868)

0.562 (0.557–
0.568)

0.950 (0.942–
0.957)

0.516 (0.510–
0.522)

0.19 (0.184–
0.197)

0.989 (0.987–
0.990)

Superset � MSH + NIH + IU
(N = 34,257)

0.871 (0.865–
0.877)

0.577 (0.572–
0.582)

0.950 (0.942–
0.957)

0.537 (0.532–
0.543)

0.180 (0.174–
0.185)

0.990 (0.989–
0.992)

MSH + NIH Internal MSH + NIH
(N = 30,450)

0.931 (0.927–
0.936)

0.732 (0.727–
0.737)

0.950 (0.942–
0.957)

0.706 (0.700–
0.711)

0.279 (0.271–
0.288)

0.992 (0.990–
0.993)

Subset † NIH (N = 22,062) 0.733 (0.703–
0.762)

0.243 (0.237–
0.249)

0.951 (0.917–
0.973)

0.234 (0.229–
0.240)

0.015 (0.013–
0.017)

0.997 (0.996–
0.999)

Subset † MSH (N = 8,388) 0.805 (0.796–
0.814)

0.630 (0.619–
0.640)

0.950 (0.942–
0.958)

0.451 (0.438–
0.465)

0.491 (0.478–
0.504)

0.942 (0.933–
0.951)

External IU (N = 3,807) 0.815 (0.745–
0.885)

0.238 (0.224–
0.252)

0.974 (0.865–
0.999)

0.230 (0.217–
0.244)

0.013 (0.009–
0.018)

0.999 (0.994–
1.000)

Superset � MSH + NIH + IU
(N = 34,257)

0.934 (0.929–
0.938)

0.732 (0.727–
0.737)

0.95 (0.942–
0.957)

0.709 (0.703–
0.714)

0.258 (0.250–
0.266)

0.993 (0.991–
0.994)

�Superset = a test dataset containing data from the same distribution (hospital system) as the training data as well as external data.

† Subset = a test dataset containing data from fewer distributions (hospital systems) than the training data.

Abbreviations: AUC, area under the receiver operating characteristic curve; IU, Indiana University Network for Patient Care; MSH, Mount Sinai Hospital; NIH,

National Institutes of Health Clinical Center; NPV, negative predictive value; PPV, positive predictive value.

https://doi.org/10.1371/journal.pmed.1002683.t002
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of real-world clinical settings. To our knowledge, no prior studies have assessed whether radio-

logical CNNs generalized to external datasets. We note that the issue of not generalizing exter-

nally is distinct from typical train/test performance degradation, in which overfitting to

training data leads to lower performance on testing data: in our experiments, all results are

reported on held-out test data exclusively in both internal and external comparisons. Perfor-

mance of the jointly trained MSH–NIH model on the joint test set (AUC 0.931) was higher

than performance on either individual dataset (AUC 0.805 and 0.733, respectively), likely

because the model was able to calibrate to different prevalences across hospital systems in the

joint test set but not individual test sets. A simple calibration-based non-CNNmodel that used

hospital system pneumonia prevalence only to make predictions and ignored image features

achieved AUC 0.861 because of the large difference in pneumonia prevalence between the

MSH and NIH test sets. Calibration plots confirmed that a model trained on NIH data was

poorly calibrated to MSH and vice versa.

By engineering cohorts of varying prevalence, we demonstrated that the more predictive a

hospital system was of pneumonia, the more it was exploited to make predictions, which led to

poor generalization on external datasets. We noted that metallic tokens indicating laterality

often appeared in radiographs in a site-specific way, which made site identification trivial.

However, CNNs did not require this indicator: most image subregions contained features

indicative of a radiograph’s origin. These results suggest that CNNs could rely on subtle differ-

ences in acquisition protocol, image processing, or distribution pipeline (e.g., image compres-

sion) and overlook pathology. Radiological imaging of the same modality from different

hospital systems can have markedly different CNN image feature distributions, as we

highlighted in S3 Fig. Many of these features encode hospital processes, and many (e.g., site,

scanner) may be associated with the prevalence of disease. This can lead to strong internal per-

formance that is not realized on data from new sites. Even in the absence of recognized con-

founders, we would caution, following Recht and colleagues, that “current accuracy numbers

are brittle and susceptible to even minute natural variations in the data distribution” [8].

A difficulty of using deep learning models in medicine is that they use a massive number of

parameters, making it difficult to identify the specific variables driving predictions and

Fig 2. CNN to predict hospital system detects both general and specific image features. (A) We obtained activation heatmaps from our trained model and averaged
over a sample of images to reveal which subregions tended to contribute to a hospital system classification decision. Many different subregions strongly predicted the
correct hospital system, with especially strong contributions from image corners. (B-C) On individual images, which have been normalized to highlight only the most
influential regions and not all those that contributed to a positive classification, we note that the CNN has learned to detect a metal token that radiology technicians place
on the patient in the corner of the image field of view at the time they capture the image. When these strong features are correlated with disease prevalence, models can
leverage them to indirectly predict disease. CNN, convolutional neural network.

https://doi.org/10.1371/journal.pmed.1002683.g002
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complicating the traditional understanding of model overfitting. Best-practice guidelines

within the biomedical literature put a heavy emphasis on identifying all features used and

transparently reporting model coefficients to promote the development of reproducible, clini-

cally relevant models [23,24]. This level of transparency is fundamentally incompatible with

deep learning. The DenseNet-121 used in our analysis had 6,963,081 parameters, and the

methods available to interrogate which features were driving model predictions remain inexact

(e.g., heatmaps). With this large number of parameters, we note that the phenomenon of deep

learning models failing to generalize externally is distinct from the traditional understanding

of overfitting in the statistical literature. If allowed to train indefinitely, a CNN would overfit

Fig 3. Assessing how prevalence differences in aggregated datasets encouraged confounder exploitation. (A) Five cohorts of
20,000 patients were systematically subsampled to differ only in relative pneumonia risk based on the clinical training data sites.
Model performance was assessed on test data from the internal hospital systems (MSH, NIH) and from an external hospital system
(IU). (B) Although models perform better in internal testing in the presence of extreme prevalence differences, this benefit is not seen
when applied to data from new hospital systems. The natural relative risk of disease at MSH, indicated by a vertical line, is quite
imbalanced. IU, Indiana University Network for Patient Care; MSH, Mount Sinai Hospital; NIH, National Institutes of Health
Clinical Center; ROC, receiver operating characteristic; RR, relative risk.

https://doi.org/10.1371/journal.pmed.1002683.g003
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in a traditional sense and would fail to generalize both internally and externally. We followed

standard practices in training deep learning models to ensure internal generalization between

the training data and held-out test data. Specifically, we used a tune set to assess internal gener-

alization performance after every step of optimization, and we stopped training early at the

point when the tune performance stopped improving. We note that in this process, each of the

train, tune, and test sets were drawn from the same distribution. The ability of a radiological

CNN to perform well in external testing on “‘plausibly related’ populations,” which may differ

significantly in their underlying data distributions, will be critical for the real-world utility and

adaptation of such models [24].

Even the development of customized deep learning models that are trained, tuned, and

tested with the intent of deploying at a single site are not necessarily a solution that can control

for potential confounding variables. At a finer level, we found that CNNs could separate porta-

ble radiographs from the inpatient wards and emergency department in MSH data with 100%

accuracy and that these patient groups had significantly different prevalences of pneumonia. It

was determined after the fact that devices from different manufacturers had been used in the

inpatient units (Konica Minolta) and emergency department (Fujifilm), and the latter were

stored in the picture archiving and communication system (PACS) in an inverted color scheme

(i.e., air appears white) along with distinctive text indicating laterality and use of a portable scan-

ner. While these identifying features were prominent to the model, they only became apparent

to us after manual image review. If certain scanners within a hospital are used to evaluate

patients with different baseline disease prevalences (e.g., intensive care unit [ICU] versus outpa-

tient), these may confound deep learning models trained on radiological data. Fully external

testing—ideally on a collection of data gathered from a varied collection of hospitals—can reveal

and account for such sampling biases that may limit the generalizability of a model.

The development of CNN architectures specifically adapted to accommodate radiological

imaging is an important step towards building stronger models. Entire high-resolution radio-

logical images are often aggressively downsampled (e.g., to 224 × 224 pixels) to facilitate

“transfer learning,” i.e., fine-tuning preexisting CNN architectures that have been pretrained

to ImageNet [15]. While practically convenient, these models are not optimal for the radiologi-

cal context, as they ignore essential domain information about the problem (e.g., pneumonia

is present in the lungs), and the low-resolution images they require eliminate valuable radio-

graphic findings. Both factors can lead to an increased reliance on confounding factors in mak-

ing predictions. CNN architectures designed specifically to accommodate radiological imaging

have demonstrated promising early results, and more work in this area is needed [25–27].

While our analysis found degradation of model performance on external test sets, we note

that it is possible for external test set performance to be either better or worse than internal.

Many different aspects of dataset construction (e.g., inclusion criteria, labeling procedure) and

the underlying clinical data (pathology prevalence and severity, confounding protocolized var-

iables) can affect performance. For example, a model trained on noisily labeled data that

included all available imaging might reasonably be expected to have lower internal test perfor-

mance than if tested externally on a similar dataset manually selected and labeled by a physi-

cian as clear examples of pathological and normal cases.

In addition to site-specific confounding variables that threaten generalizability, there are

other factors related to medical management that may exist everywhere but undermine the

clinical applicability of a model. As has been noted, chest tubes that treat pneumothorax fre-

quently appear in studies positive for pneumothorax in NIH data; a CNN for pneumothorax

may learn to detect obvious chest tubes rather than a subtler pneumothorax itself [28]. If such

a model were deployed in an emergency department, it might inaccurately negatively diagnose

patients presenting with pneumothorax because they lacked a chest tube. A CNN for
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pneumonia could potentially learn that radiographs obtained with portable scanners were

more likely to contain pneumonia and assign such radiographs a higher probability of disease.

Models exploiting such confounding factors that reflect common medical practice may even

generalize well but ultimately have limited clinical utility. If CNN-based systems are to be used

for medical diagnosis, they must be tailored to carefully considered clinical questions, prospec-

tively tested at a variety of sites in real-world-use scenarios, and carefully assessed to determine

how they impact diagnostic accuracy.

There are several limitations to this study. Most notably, without more granular details on

the underlying patient populations, we are unable to fully assess what factors might be contrib-

uting to the hospital system–specific biasing of the models. The extremely high incidence of

pneumonia in the MSH dataset is also a point of concern; however, we attribute this to differ-

ences in the underlying patient populations and variability in classification thresholds for

pathology. First, a majority of MSH radiographs were portable inpatient scans, ordered for

patients too unstable to travel to the radiology department for a standard radiograph. In con-

trast, all IU radiographs were outpatient. While the inpatient/outpatient mix from NIH is not

reported, we believe it likely contains a substantial outpatient percentage given that the inci-

dence of pneumonia is similar to IU. Second, our NLP approach for MSH assigned positive

ground truth labels more liberally than NIH or IU, marking a study as positive for pathology

when a radiologist explicitly commented on it as a possibility in a report, indicating that the

radiographic appearance was consistent with the finding. Different radiologists may have dif-

ferent thresholds at which they explicitly include a possible diagnosis in their reports.

Researchers working in this area will continually have to make decisions about their classifica-

tion threshold for labeling a study positive or negative. We believe that either of these two fac-

tors can drive large differences in prevalences of pathology across datasets, and this variation

can confound diagnostic CNNs.

An additional limitation was that radiologic diagnoses are made in the context of a patient’s

history and clinical presentation, something not incorporated into our approach. Positive find-

ings on chest radiograph are necessary but not sufficient for the diagnosis of pneumonia,

which is only made when the patient also exhibits a “constellation of suggestive clinical fea-

tures” [29]. Finally, the relatively small size and low number of pneumonia cases in IU data led

to wide CIs in IU test AUC and may have limited our ability to detect external performance

degradation in some cases. Nevertheless, many key comparisons achieved statistical signifi-

cance with even this smaller external dataset.

Conclusion

Pneumonia-screening CNNs achieved better internal than external performance in 3 out of 5

natural comparisons. When models were trained on pooled data from sites with different

pneumonia prevalence, they performed better on new pooled data from these sites but not on

external data. CNNs robustly identified hospital system and department within a hospital,

which can have large differences in disease burden and may confound predictions.

Supporting information

S1 Table. Performance of NLP algorithm on 30% test data.NLP, natural language process-

ing.

(XLSX)

S2 Table. Internal and external pneumonia screening performance with MSH–NIH train-

ing cohorts with varying engineered prevalences of pneumonia by hospital system.MSH,
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Mount Sinai Hospital; NIH, National Institutes of Health Clinical Center.

(XLSX)

S1 Fig. Preprocessing diagram.

(TIF)

S2 Fig. STARD cohort splitting diagram.

(TIF)

S3 Fig. Calibration plot (train MSH, predict IU). IU, Indiana University Network for Patient

Care; MSH, Mount Sinai Hospital.

(TIF)

S4 Fig. Calibration plot (train MSH, predict MSH).MSH, Mount Sinai Hospital.

(TIF)

S5 Fig. Calibration plot (train MSH, predict MSH–NIH).MSH, Mount Sinai Hospital; NIH,

National Institutes of Health Clinical Center.

(TIF)

S6 Fig. Calibration plot (train MSH, predict NIH).MSH, Mount Sinai Hospital; NIH,

National Institutes of Health Clinical Center.

(TIF)

S7 Fig. Calibration plot (train MSH–NIH, predict IU). IU, Indiana University Network

for Patient Care; MSH, Mount Sinai Hospital; NIH, National Institutes of Health Clinical

Center.

(TIF)

S8 Fig. Calibration plot (train MSH–NIH, predict MSH).MSH, Mount Sinai Hospital; NIH,

National Institutes of Health Clinical Center.

(TIF)

S9 Fig. Calibration plot (train MSH–NIH, predict MSH–NIH).MSH, Mount Sinai Hospital;

NIH, National Institutes of Health Clinical Center.

(TIF)

S10 Fig. Calibration plot (train MSH–NIH, predict NIH).MSH, Mount Sinai Hospital;

NIH, National Institutes of Health Clinical Center.

(TIF)

S11 Fig. Calibration plot (train NIH, predict IU). IU, Indiana University Network for Patient

Care; NIH, National Institutes of Health Clinical Center.

(TIF)

S12 Fig. Calibration plot (train NIH, predict MSH).MSH, Mount Sinai Hospital; NIH,

National Institutes of Health Clinical Center.

(TIF)

S13 Fig. Calibration plot (train NIH, predict MSH–NIH).MSH, Mount Sinai Hospital;

NIH, National Institutes of Health Clinical Center.

(TIF)

S14 Fig. Calibration plot (train NIH, predict NIH).NIH, National Institutes of Health Clini-

cal Center.

(TIF)
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S15 Fig. Distribution of images’ embedded principal components. Principal component

analysis was performed on each image’s bottleneck features and colored to reveal the distribu-

tion of hospital systems and pneumonia. MSH images are largely separable from radiographs

acquired at IU and NIH. IU, Indiana University Network for Patient Care; MSH, Mount Sinai

Hospital; NIH, National Institutes of Health Clinical Center.

(TIF)
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