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ABSTRACT: India responded to the severe acute respiratory syndrome (SARS) coronavirus disease 2019 (COVID-19)

pandemic through a three-phase nationwide lockdown: 25March–14April, 15April–3May, and 4–17May 2020.We utilized

this unique opportunity to assess the impact of restrictions on the air quality of Indian cities. We conducted comprehensive

statistical assessments for the air quality index (AQI) and criteria pollutant concentrations for 91 cities during the lockdown

phases relative to the preceding seven days (prelockdown phase of 18–24March 2020) and to corresponding values from the

same days of the year in 2019. Both comparisons show statistically significant countrywide mean decrease in AQI (33%),

PM2.5 (36%), PM10 (40%), NO2 (58%), O3 (5%), SO2 (25%), NH3 (28%), and CO (60%). These reductions represent a

background or the lower bound of air quality burden of industrial and transportation sectors. The northern region was most

impacted by the first two phases of the lockdown, whereas the southern region was most affected in the last phase. The

northeastern region was least affected, followed by the eastern region, which also showed an increase in O3 during the

lockdown. Analysis of satellite-retrieved aerosol optical depth (AOD) shows that effects of restrictions on particulate

pollution were variable—locally confined in some areas or having a broader impact in other regions. Anomalous behavior

over the eastern region suggests a differing role of regional societal response or meteorological conditions. The study results

have policy implications because they provide the observational background values for the industrial and transportation

sector’s contribution to urban pollution.
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1. Introduction

India is home to about one-half of the world’s 20 most pol-

luted cities, with emissions fueled by industry, vehicle exhaust,

and power plants owing to the fast-paced development through

the 1990s (Ghude et al. 2016; Garaga et al. 2018). India’s toxic

air claimed 1.24 million deaths in 2017, accounting for nearly

12.5% of the total deaths. Of these fatalities, approximately

0.67 million have been attributed to ambient particulate matter

and 0.48 million are from household air pollution (Balakrishnan

et al. 2019). As a result, Indian cities are important locales for

understanding the complex relationship between human activity

and air pollution.

The inadvertent, worldwide modification of anthropogenic

activity caused by restrictions imposed to combat the spread of

severe acute respiratory syndrome (SARS) coronavirus disease

2019 (COVID-19) was particularly noteworthy in India. As a

background, following the reports of the first cases of pneumonia

associated with COVID-19 on 31 December 2019 in Wuhan,

China, the World Health Organization (WHO) declared

COVID-19 a Public Health Emergency of International Concern

on 31 January. The first case of COVID-19 in India was reported

on 30 January 2020 in Thrissur, Kerala, for an individualwho had

traveled back from China. Within a few weeks, India experi-

enced a jump in COVID-19 confirmed cases crossing 100. The

WHO declared the COVID-19 outbreak a pandemic on

12 March 2020. In response, the government of India (GoI)

initiated on 22 March a 14-h voluntary public curfew. This was

followed by a complete lockdown of major cities and districts

where COVID-19 cases were detected. The outbreak was sub-

sequently declared an epidemic in more than a dozen states and

union territories, and the provisions of the Epidemic Diseases

Act (1897) were invoked. On 24 March, the GoI ordered a na-

tionwide phase-I lockdown for 21 days, impacting India’s entire

1.3 billion population. On 14 April, the lockdown was extended

for phase II until 3May 2020 and was further extended from 4 to

17 May as phase III of the lockdown. During each lockdown,

some relaxations or changes in rules were established, adapting

to the local and regional situation (Lancet 2020).

The restrictions on social distancing and self-quarantine

measures enforced during the three-phase lockdown caused

reduced emissions from industrial sources, vehicle exhaust, and

coal-fired power plants throughout the country. This study

utilized the COVID-19 restrictions as a social experiment to
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analyze the impact of human activity on the air quality of 91

Indian cities (Table S1 in the online supplemental material).

Air quality across the different cities was examined for the fol-

lowing days in 2020: 1) prelockdown5 7 days (18–24 March), 2)

lockdown phase I 5 21 days (25 March–14 April), 3) lockdown

phase II5 19 days (15April–3May), and 4) lockdownphase III5

14 days (4–17 May). The air quality for the corresponding days in

the preceding year (2019) was used as a reference to analyze the

impact of COVID-19 lockdown on urban air quality across India

in this premonsoon period.

2. Materials and methods

We utilized the daily mean values of air quality index (AQI)

and concentrations of seven criteria air pollutants (PM2.5,

PM10, O3, SO2, NO2, NH3, and CO) from 91 cities (Fig. 1). The

time of interest for this study is from 18 March to 17 May 2020,

and the corresponding days of 2019. We also used satellite

retrievals of aerosol optical depth (AOD) to give a larger spatial

perspective than can be provided by in situ observations. In ad-

dition to countrywide analysis, we also conducted a case study for

the Kolkata–Howrah region to explore more-detailed synergies

between pandemic lockdown and air quality.

a. In situ and satellite observations of air quality

Air quality monitoring is an integral part of air quality risk

management nationwide. In this regard, the National Air

Monitoring Program (NAMP) was set up by the Central

Pollution Control Board (CPCB 2014) to measure the status of

air quality, spatiotemporal trends and to control and regulate

pollutants from different sources to meet the air quality stan-

dards in cities across India. As part of this monitoring,

continuous monitoring systems that provide data on a near-

real-time basis are installed in a number of cities. Data for 91

cities were extracted from the CPCB portal for 1) AQI bulletin

(https://cpcb.nic.in/AQI_Bulletin.php) and 2) air pollutants

and meteorological data (https://app.cpcbccr.com/ccr/#/caaqm-

dashboard/caaqm-landing). The daily concentrations of seven

criteria pollutants were used for each lockdown phase. The AQI

captures various air pollutants for which national air quality

standards have been established to safeguard public health.

There are six AQI categories, namely, good (0–50), satisfactory

(51–100), moderately polluted (101–200), poor (201–300), very

poor (301–400), and severe (401–500). Also, derived level-3

AOD from a Moderate Resolution Imaging Spectroradiometer

(MODIS) aboard Terra was used for the analysis. The MODIS

AOD fields were used for a twin comparison of urban versus

nonurban locales to assess the background and the urban changes.

b. Considering missing air pollution data

Some of the statistical analysis methods utilized are not

amenable to missing observations, which is a prevalent prob-

lem in air quality studies (Hadeed et al. 2020). Missing in situ

air pollution observations can result from malfunctions and

errors, power outages, computer system crashes, pollutant

levels lower than detection limits, and filter changes (Imtiaz

and Shah 2008; Li et al. 2007). Prior studies have identified

three different types of missing data scenarios in air pollution

studies, namely, missing completely at random (MCAR), miss-

ing at random (MAR), and not missing at random (NMAR)

(Little and Rubin 2002; Schafer 1999). The MAR criterion was

found for 7% of missing data found in the datasets used in

this study.

We utilized a regression method for estimating missing

values. A regression model was fitted for each criterion air

pollutant missing values, with the air pollutant as covariates

(Taghavi-Shahri et al. 2020). Since the dataset has a monotone

missing data pattern, the process is repeated sequentially for

pollutants with missing values (Yuan 2016) as
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That is, for a pollutant Yj with missing values, a regression

model is fitted with the adjacent nonmissing cities (stations).

The fitted model has the regression parameter estimates
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where y1, y2, . . . , y(j21) are the covariate values of the first j2 1

pollutants and zi is a calculated normal deviate. The above

regressionmodel was employed to fill in themissing data for air

quality datasets utilized in the study.

c. Bivariate correlation (BC) and t test

We utilize a simple correlation of AQI between 2019 and

2020 for the days of the year corresponding to prelockdown

through lockdown phase III (Liu et al. 2019; Kumar et al. 2020).

A correlation coefficient is used to determine the strength and

direction of association of AQI between the two years. Positive

and negative correlations indicate similar and opposing tem-

poral trends between 2019 and 2020, respectively, while the

magnitude of the correlation indicates the strength of this as-

sociation. Statistical significance of the correlation was also

determined using the t test. Denoting AQI for any given day of

2019 and 2020 as AQIi and AQIi
0, respectively, correlation

coefficient r is defined as

�
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where N is the number of observations and the overbar indi-

cates the mean of the variable for the timeframe applicable. To

test whether the association is merely apparent and might have

arisen by chance, we use the t test (two tailed) with p# 0.05 as

t5 r

ffiffiffiffiffiffiffiffiffiffiffiffi

n2 2

12 r2

r

. (4)
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d. Detection of the trend; magnitude of the slope

1) MK TEST

The Mann–Kendall (MK) test is the rank-based nonpara-

metric test to detect trends in environmental data (e.g., Emami

et al. 2018). It is based on the test statistic S defined as

S5 �
n21

i51
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n

j5i11

sgn(x
j
2 x

i
), (5)

where x1, x2, . . . , xn represent n data points and xj represent the

data point at the time j.

An S with high positive value is an indicator of an increasing

trend, and a low negative value indicates a decreasing trend:
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When n $ 10, the statistic S is approximately normally dis-

tributed with the mean

E(S)5 0, (7)

and its variance is
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where n is the number of data points, m is the number of tied

groups (a tied group is a set of sample data having the same

value), and ti is the number of data points in the ith group. The

standardized test statistic Z is computed as follows:
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The null hypothesis H0, meaning that no significant trend is

present, is accepted if the test statistic Z is not statistically

significant, that is,2Za/2,Z,Za/2, whereZa/2 is the standard

normal deviate.

2) TSE

The slope of n pairs of data points was estimated using the

Theil–Sen estimator (TSE; Theil 1950; Sen 1968), which is

given by the following relation:

T
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where xj and xi present as data values at a time j and i (j . 1),

respectively. The median of the N values Ti is considered as

Sen’s estimator of the slope, which is calculated by the formula

Q
i
5

8

>

>

>

<

>

>

>

:

TN11

2

N5 odd

1

2

�

T
N

2
1

T
N12

2

�

N5 even

9

>

>

>

=

>

>

>

;

. (11)

The positive value Qi indicates an increasing trend, and a

negative valueQi indicates a decreasing trend in the time series

(Xu et al. 2010), while its value indicates the steepness of the

trend. To determine whether the median slope is statistically

different from zero, the confidence interval of Qi a specific

probability is estimated.

The confidence interval about the time slope (Hollander and

Wolfe 1973; Gilbert 1987) can be computed as follows:

C
a
5Z

12a/2
ffiffiffiffiffiffiffiffiffiffi

Var(S)
p (12)

In this study, the confidence interval was computed at the 0.05

significance level (a5 0.05). Then,M15 (N2 Ca)/2 andM25

(N 1 Ca)/2 are computed. The lower and upper limits of the

confidence intervalQmin andQmax are theM1th largest and the

(M2 1 1)th largest of the N ordered slope estimates (Gilbert

1987). The slope Qi is statistically different from zero if the two

limits (Qmin,Qmax) have a similar sign. Sen’s slope estimator has

been widely used in air pollutant time series (e.g., Ravindra et al.

2020; Gray et al. 2019; Emami et al. 2018; Lang et al. 2019).

e. VR analysis

The principal component analysis (PCA) is a multivar-

iate statistical tool used for reducing the dimensionality

FIG. 1. Locations of the 91 air quality observation sites used in

the study (filled circles). Of these, 27 locations (shown using blue

and black circles) are chosen for additional analysis on the basis of

statistically significant trends. Major geographical regions within

the Indian subcontinent (and referred to in the main text) are

highlighted using different colors, with the associated descriptions

being provided in the map legend.
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of a dataset involving a large number of interrelated pol-

lutants. The change of coordinates used in PCA is known

as varimax rotation (VR). The VR method (Kaiser 1958)

is a widely used orthogonal tool to separate subregions

of homogenous air pollutant concentrations (Parveen and

Ahmad 2020; Chen and Bloom 2019). The VR method

attempts to retain the maximum Q value (Yu and

Chang 2000):

FIG. 2. Taylor diagram for theAQI data during the (a) prelockdown period (2019 vs 2020) and (b) lockdown period

(2019 vs 2020).

FIG. 3. (a)–(d) Correlation between AQI values during the prelockdown and lockdown period of 2020 and the corresponding days in

2019 and (a0)–(d0) the statistical significance p of the computed correlation. for the (a),(a0) prelockdown and phases (b),(b0) 1; (c),(c0) 2; and

(d),(d0) 3 of the lockdown.
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where n denotes the number of cities,Aij represents the loading

of the ith city on the jthVR–principal component (PC), hi is the

commonality of the ith city, andRjk denotes the score of the kth

pollutant for the jth rotated PC. The procedure of the VR

technique aims to maximize the variances of the squared cor-

relation r between each rotated PC and the time series air

pollutant data. To further identify the interactions between

cities’ backward trajectories and possible subregions, this study

employed the VR technique on air pollutants data for all sta-

tistically significant cities derived from the MK test and TSE.

3. Results and discussion

The nationwide lockdown enforced restrictions, social

distancing, and self-quarantine measures, which restricted

transportation and industrial activity. During the stringent

nationwide lockdown, skies across India were generally noted

to be an unusual, azure blue (Picheta 2020). The countrywide

pollution level dropped by 69%. The country witnessed 32%,

43%, and 41% decreases in PM2.5, SO2, and NO2, respectively,

during the lockdown period relative to prelockdown. On the

other hand, the ground level O3 increased by 7% as compared

with prelockdown. This increase in the O3is likely due to in-

creased insolation due to reduced aerosols and the reduction in

theNOx levels, causing an ideal setup for in situ photochemical

oxidant reactions (Aneja et al. 1994). Among the different

pollutants, PM2.5 had a maximum reduction across most cities.

a. Premonsoon meteorological conditions and urban air

quality in India

There are close linkages between urban air quality and the

complex heating and dynamical processes associated with large-

scale circulation (Collier et al. 2018). In the western and southern

regions, April is the warmest month; for northern regions, it is

May. Temperatures average around 328–408C across most of the

country. The March–May average temperatures were higher

than normal over most of the meteorological subdivisions of

northwest, west, and central India and some subdivisions across

south India (India Meteorological Department 2020). The at-

mospheric pressure is typically low across the country due to the

warm surface conditions, and such a low pressure system often

has high wind and ventilation potential, causing pollutants to be

dispersed or washed by rain. As the intertropical convergence

zone (ITCZ) begins to move toward the north, aerosol species

are also transported long distances toward the tropical regions

(Niyogi et al. 2007). Additionally, local urban meteorological

processes in the Indian subcontinent can affect the AOD and

level of air pollutants, which change the air quality during the

premonsoon season.

b. Response of urban AQI to 2020 lockdown

Taylor diagrams for the prelockdown and lockdown period

are used to examine how the overall variability of AQI for the

91 cities was affected by the COVID-19 restrictions (Fig. 2).

Any given dataset is located in the Taylor diagram space at a

radial distance from the origin, and azimuthal angle (measure

counterclockwise from the x axis) that are proportional to its

standard deviation so and to its correlation r with respect to a

reference, respectively. Further, the standard deviation of the

reference sr is plotted on the x axis. Distance between the data

and reference locations on the diagram is proportional to its

centered root-mean-square error (RMSE). The 2019 AQI data

from the 91 cities for the same dates during which prelockdown

(Fig. 2a) and lockdown (Fig. 2a) occurred in 2020 are used as

reference points in the Taylor diagram (Fig. 2).

The so and r for AQI are 30.2 and 0.65 during prelockdown,

which decreases to 20.0 and 0.60 during the lockdown period,

respectively. However, during the same period, the RMSE

and sr increased from 32 to 38 and from 35 to 49. Thus, the

Taylor diagrams (Fig. 2) show a notable contrast in the overall

variability of AQI between the prelockdown and lockdown

FIG. 4. Spatial distribution of 27 cities that exhibits statistically

significant AQI trends ($1.96) during the different phases of the

lockdown (black circles). Major (MA) and minor (MI) industrial

regions are shown using light green and yellow polygons, respec-

tively. The details are as follows:Hugli region (MA01), Chottanagpur

industrial belt (MA02), Vishakhapatnam–Guntur belt (MA03),

Gurgaon–Delhi–Meerut (MA04), Ahmedabad–Baroda region

(MA05), Mumbai–Pune cluster (MA06), Bangalore–Tamil Nadu

region (MA07), Kollam–Thiruvanathapuram belt (MA08), Ambala–

Amritsar (MI01), Saharanpur–Muzaffarnagar (MI02), Indore–Dewas–

Ujjain (MI03), Jaipur–Ajmer (MI04), Kolhapur–South Kannada

(MI05),NorthernMalabar (MI06),MiddleMalabar (MI07),Adilabad–

Nizamabad (MI08),Allahabad–Varanasi–Mirsapur (MI09), Bhojpur–

Munger (MI10), Durg–Raipur (MI11), Bilaspur–Korba (MI12), and

Brahmaputra Valley (MI13).
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periods. The dominant cause for the differing behavior is due

to a substantial reduction in AQI standard deviation (Dso ;

210.2) during the lockdown, relative to reference observations

(Dsr 5 14). Note that these changes in so indicate an overall

reduction in the amplitude of the time series of AQI due to

COVID-19 restrictions. Reduction in AQI correlation (Dr 5

20.05) between prelockdown and lockdown periods is indic-

ative of spatial and temporal differences in how the amplitude

of AQI time series is affected during the lockdown.

1) CORRELATION ANALYSIS

As a part of the spatiotemporal analysis, we first examined

the spatial variability of correlation for the 2019 and 2020 AQI

time series separately for prelockdown and lockdown phases I–III

(Fig. 3). During the prelockdown phase, the majority of the

stations (74%) show correlations that are not statistically

significant (Fig. 3a). Of the 26% of the stations with statisti-

cally significant correlation, 13% show a negative correlation.

These cities were primarily distributed in the western, south-

ern, central, and eastern regions of India. Some of the cities

with higher values of negative correlation include Pune

(20.45),Ahmedabad (20.43), andThiruvananthapuram (20.37).

Nonsignificant negative correlations are indicative of cities

where voluntary slowdown of human activities were occur-

ring prior to nationwide lockdown. During the lockdown, the

proportion of cities with statistically significant correlation

increased to 88%, 86%, and 85%, with 45%, 38%, and 37% of

the cities showing negative correlation (lowering of pollution)

during lockdown phases I–III (Fig. 3). Higher (absolute) magni-

tudes of correlation coefficient were found over northern (e.g.,

Patiala with 20.6 during phase I), central (e.g., Singrauli with

20.67 during phase II), and northwest (e.g., Guwahati with

20.64 during phase III) regions of India.

Note that the differences between the lockdown stages could

be potentially related to progressive relaxation of restrictions.

During phase I, a limited number of retail activities were

allowed to operate with a reduced workforce. During phases II

and III, additional relaxations included the opening of agri-

cultural businesses (dairy, aquaculture, and plantations) and

farm supply businesses. Cargo transport via trucks, trains, and

air transportation were also allowed to operate.

2) AQI CHANGE ANALYSIS

We computed the significance and magnitude of the AQI

trends for all cities using the nonparametric (distribution free)

MK trend test and TSE, respectively. Using this analysis, we

identified 27 cities with AQI showing a statistically decreasing

trend (improved air quality) during at least one of the lock-

down phases. Of these, 8, 13, and 6 cities exhibit a decreasing

trend during phases I, II, and III of the lockdown. We found a

TABLE 1. The change and magnitude of AQI in the cities for different phases of lockdown.

City Code Populationa Criteria pollutants dropped MK (Z) valueb Sen’s slope Remarksc

Alwar ALW 341 383 SO2 22.46 21.246 L1.0

Amaravati AMV 103 400 SO2 22.60 21.232 L1.0

Amritsar AMS 1 183 705 CO 23.12 21.781 L1.0

Bengaluru BEN 8 499 399 SO2 22.52 21.455 L3.0

Brajrajnagar BJN 80 403 PM2.5 22.95 28.167 L2.0

Bulandshahr BDS 235 310 SO2 22.17 24.500 L2.0

Chandrapur CHD 321 036 NH3 22.53 21.143 L2.0

Dewas DEW 289 438 NO2 23.36 24.588 L2.0

Guwahati GWH 968 549 NO2 22.18 24.000 L1.0

Howrah HOW 1 370 448 NO2 23.39 21.627 L1.0

Jorapokhar JPK 96 821 CO 21.97 21.000 L2.0

Kanpur KAN 2 920 067 NO2 23.89 24.167 L2.0

Kolkata KOL 14 112 536 NO2 23.57 23.000 L1.0

Lucknow LKW 2 901 474 NO2 22.84 23.615 L2.0

Mandikhera MDK 24 750 CO 22.21 23.000 L2.0

Mumbai MUB 18 414 288 PM2.5 22.98 21.429 L2.0

Muzaffarpur MFP 393 724 NO2 22.66 26.275 L1.0

Navi Mumbai NMB 194 999 NO2 22.09 20.845 L1.0

Pali PAL 229 956 NO2 22.24 21.063 L2.0

Patna PTN 2 046 652 NO2 23.82 23.412 L2.0

Ratlam RTM 273 892 SO2 22.03 24.600 L3.0

Satna SAT 283 004 CO 22.24 21.533 L2.0

Singrauli SGU 220 295 NO2 22.31 26.500 L2.0

Solapur SLP 951 118 NH3 22.31 22.167 L3.0

Talcher TLH 40 841 PM10 22.36 24.295 L3.0

Tirupati TUP 459 985 NH3 22.20 21.500 L3.0

Visakhapatnam VSK 1 730 320 CO 22.31 21.833 L3.0

a Population figures denote only city population (Census of India 2011; https://censusindia.gov.in/2011-common/censusdata2011.html).
b 27 cities under statistically significant AQI changes at $1.96 or #0.05 level of 91 cities.
cL1.0, L2.0, and L3.0 represent different lockdown phases.

62 EARTH INTERACT IONS VOLUME 25

Unauthenticated | Downloaded 08/26/22 02:31 PM UTC

https://censusindia.gov.in/2011-common/censusdata2011.html


majority of the stations with a statistically significant decreas-

ing trend to be located close to industrial locations (Fig. 4). The

highest magnitudes of negative trends indicate by TSE are

found over central and eastern regions, with the maximum

value occurring at Brajrajnagar (28.17) (Table 1). We also

examined which of the criteria pollutant showed maximum

percentage decrease in concentration relative to the prelock-

down period. We found NO2 to experience the maximum

percentage drop in association with the negative AQI trends

(Table 1). One of the features of these results is that while the

general perception has been that air quality improved during

the lockdown, the statistical measures indicate there is con-

siderable spatiotemporal variability in the results.

We grouped the 27 cities according to regions within which

they are located and computed the regional average time series

of AQI and criteria pollutant concentrations for 2019 and 2020.

These time series show that the mean AQI for 2020 remained

consistently smaller than that for 2019 (Fig. 5). Standard der-

ivation of AQI also diminished during 2020. The paired t test

shows that there are statistically significant differences in AQI

between 2019 and 2020 for all regions and during all phases.

Maximum percentage reduction in AQI exceeding 54% occurs

in the southern region during the third phase of the lockdown

(Fig. 5f) while the northern region experiences the highest

percentage reduction in AQI during the first two phases of the

lockdown (Fig. 5a). All regions, with the exception of eastern

and northeastern regions showAQI reductions exceeding 30%

during all phases of the lockdown. The northeastern region

experiences the least reduction in AQI, exceeding 10% only

during phase III. The eastern region also shows anomalous

behavior relative to other regions, experiencing only 16.6%

reduction in AQI during phase I of the lockdown (Fig. 5c).

Region-averaged time series of PM2.5 show some patterns

similar to that for AQI (Fig. 6). The maximum percentage

reduction of PM2.5 exceeding 65% occurs over the southern

region during phase III (Fig. 6f) while the northern region

shows the highest percentage reduction during phase II and III

(Fig. 6a). Least percentage reductions in PM2.5 are found over

the eastern and western regions. Percentage reductions in NO2

during all three phases are highest in the southern region

(Fig. 7f). Least reduction in NO2 is found over the northeastern

region during the third phase (Fig. 7d). Northern and eastern

regions also show differing behavior, with the percentage re-

duction of NO2 being less than one-half of that experienced by

other regions during phases II and III. Regionally averaged O3

also show statistically significant reductions ranging from 0.4%

to 33% in all regions with the exception of the eastern region

(Fig. 8). Concentrations of O3 for the eastern region increase

during all phases and exceeding 49% during both phases II and

III (Fig. 8c). This increase is likely due to increased insolation

due to reduced aerosols and reduced NOx levels, resulting in

an ideal setup for in situ photochemical oxidant reactions

(Aneja et al. 1994). Of the other pollutants, NH3, CO, and SO2

show maximum percentage reduction in the northern, central,

FIG. 5. Time series of AQI for the 27 stations with statistically significant decreasing trends averaged as a function of geographical

region. The green and red solid lines are mean AQI time series for 2019 and 2020, respectively. Green and red shading show the bounds

defined by mean plus/minus 1 standard deviation. Vertical dashed lines in the panels indicate the date ranges for the three phases of the

lockdown. The mean difference in AQI values between 2019 and 2020 and the corresponding percentage change (in parentheses) during

each phase of the lockdown are also shown.
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and western regions during all phases of the lockdown (Table 2).

Minimum percentage reductions of these variables occur either

over eastern or northeastern regions. The PM10 pollutant show

behavior very similar to PM2.5 for most regions.

We also examined nationwide average changes in AQI and

pollutants between 2020 and 2019 for the 27 stations that showed

statistically significant trends. This analysis showed average de-

crease inAQI, PM2.5, PM10, NO2, O3, SO2, NH3, and CO of 33%,

36%, 40%, 58%, 5%, 25%, 28%, and 60%.We also compared the

differences between the prelockdown and lockdown periods of

2020 and found amean reduction inAQI, PM2.5, PM10, NO2, SO2,

NH3, and CO of 69%, 32%, 27%, 41%, 43%, 12%, and 17%. On

the other hand, there was a mean 7% increase in O3 during the

lockdownwhen relative to the prelockdownperiod.However, this

is also likely due to the seasonal increase in O3 concentration, not

only related to the lockdown period. This was verified by exam-

ining the differences in O3 concentration between the prelock-

down and lockdown days of the year for 2019.We found a similar

seasonal increase for that year also, with themagnitude of increase

being higher for 2019. Thus, the nationwide average effect of

lockdown on O3 concentrations is to cause a reduction.

When all the 91 stations are considered, the maximum

number of cities (43 of 91) experiencing statistically significant

reductions in AQI occurred during the second phase of the

lockdown, with lesser numbers being affected during the first

(27) and third (20) phases.

c. Major pollutants in the cities under changing AQI during

COVID lockdown

Bartlett’s test of sphericity revealed that the air pollutants

were correlated and nonorthogonal. This suggests that PCA

can be effectively used for understanding the variability in the

air pollutant data (McNeil et al. 2005; Azid et al. 2014). The

Kaiser–Meyer–Olkin test was performed to find the sampling

adequacy for the different phases (Dziuban and Shirkey 1974).

These two statistical tests confirmed that the data used are

‘‘adequate’’ and can be used for subsequent analysis. The

variance factor (VF) technique was used in this analysis to

clarify the relationship among factors (Bartuccelli et al. 2006).

After VR, from seven PCs, only two VFs were selected with

an eigenvalue greater than 1.00 for prelockdown, lockdown

phase I, lockdown phase II, and lockdown phase III, as 53.33%,

54.52%, 61.77%, and 62.48%of the varianceof the air pollutants,

respectively. Despite the cumulative variance being less than

70%, the factors’ cutoff point was determined using a screen plot

for each case. The eigenvalue less than 100 (,1.00) are neglected

because of confounding with more important factors. That is,

multicollinearity was present among air pollutants.

The VFs with values greater than 0.500 were set as the se-

lection threshold, which exhibits moderate to strong loadings

on the VR factors. Table 3 summarizes the constituents satis-

fying the 0.5 factor-loading threshold. These variables are

PM2.5, PM10, NH3, NO2, and O3 for prelockdown. For lock-

down phase I, PM2.5, PM10, SO2, NO2, and NH3 are the main

air pollutants. For lockdown phases II and III, additionally, O3

is also identified as a major source. These pollutants are then

classified as the major contributing pollutants at the statisti-

cally significant cities (decreasing AQI) in India.

The VF1 contributes about 31.44% of the air pollutant data

variation in the case of the prelockdown period. It has high

loadings from three variables: PM2.5 (0.844), PM10 (0.891), and

NH3 (0.746). This factor can be interpreted as a measure of

FIG. 6. As in Fig. 5, but for PM2.5.
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primary and secondary pollutants. As a secondary particulate

precursor, NH3 also contributes to the formation of particulate

aerosols in the atmosphere. The VF1 highlights that about

30.19% of the variation in the air pollutant data is in the case of

lockdown phase I, and the contributions are from PM2.5

(0.881), PM10 (0.830), and SO2 (0.757). The variation in the air

pollutants in the case of lockdown phase II for VF1 also con-

tributes about 34.09%. This phase shows the significance of

FIG. 8. As in Fig. 5, but for O3.

FIG. 7. As in Fig. 5, but for NO2.
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PM2.5 (0.777), PM10 (0.683), SO2 (0.667), and O3 (0.777) on the

air quality changes. For lockdown phase III, VF1 yields 36.45%

of the variation for the same four pollutants: PM2.5 (0.765),

PM10 (0.692), SO2 (0.750), and O3 (0.792).

TheVF2 confirms 22.09%of the variance for the prelockdown

period. It highlights the loading in NO2 (0.541) and O3 (0.874).

In lockdown phase I, VF2 exhibits 24.33% of the variance. It

shows signs of high loading in NO2 (0.899) and NH3 (0.827).

Conversely, 27.68% of the variance is associated with VF2 for

lockdown phase II, with loading from PM10 (0.566), NO2 (0.798),

and NH3 (0.851). The VF2 also yields 26.02% of the variance for

lockdown phase III, with loading in PM10 (0.500), NO2 (0.745),

and NH3 (0.864). The contribution of criteria pollutants after

varimax rotation is summarized in Table 4.

The loadings and factor scores pertaining to the air pollutant

patterns are found by grouping into subcriteria pollutants.

Factor scores are composites of the air pollutants that are used

to make the latent factor into an observed air pollutant level to

give it a scale. Each factor is a linear combination of all air

pollutants with each eigenvector (weighed for each variable).

The factor is positive when the air pollutants with greater

weight take high values and negative otherwise. Table 5 dis-

plays the factor scores for the 27 cities following VR. These

scores are standardized, with a zero mean, and about two-

thirds of the values lie between 61.00. Scores beyond 61.00,

therefore, are unusually high or low.

The concentration of these criteria pollutants is related to

the primary pollutant (SO2 and NH3), secondary pollutant

TABLE 2. Themean difference in concentrations of PM10, SO2, NH3, and CO between 2020 and 2019 for the three phase of lockdown as

a function of geographic region. The differences are computed for the 27 stations that showed statistically significant decreasing trends.

The percentage change is shown in parentheses. Air quality stations within each region are shown in the second column. Units of all

criteria pollutants are in micrograms per meter cubed except CO, which is in milligrams per meter cubed.

Pollutant drop (%) respect to 2019

Region Air quality stations

Lockdown

phases PM10 SO2 NH3 CO

Northern Alwar, Amritsar, Mandikhera, Pali L1.0 253.3

(237.7%)

21 (26.5%) 213.9 (51.8%) 0.5 (68.3%)

L2.0 292.5

(261.7%)

23.9 (23%) 25.7 (30.5%) 20.2

(231.1%)

L3.0 284.7 (56%) 0.3 (2.4%) 217.9

(261.1%)

20.3

(235.3%)

Central Bulandshahr, Dewas, Kanpur,

Lucknow, Ratlam, Satna, Singrauli

L1.0 254.2

(231.7%)

28.7 (33.6%) 25.6 (24.3%) 23.1

(280.1%)

L2.0 245.9

(228.9%)

25.4 (22.8%) 21.9 (29.3%) 24.3

(285.4%)

L3.0 267.5 (37.5%) 211.1

(42.4%)

24.4

(223.4%)

22.8

(283.1%)

Eastern Brajrajnagar, Howrah, Jorapokhar,

Kolkata, Muzaffarpur, patna,

Talcher

L1.0 247.8 (235%) 22.4 (13.7%) 20.7 (23.5%) 20.1

(27.4%)

L2.0 257.7

(248.3%)

24.6 (26.3%) 24.5

(224.7%)

0.1 (11.7%)

L3.0 257.2 (41%) 21 (26.8%) 21.3 (28.2%) 20.2

(224.3%)

Northeastern Guwahati L1.0 264.2

(261.5%)

24.7 (21.8%) 20.6 (23.7%) 20.2

(221.4%)

L2.0 241 (52.9%) 24.6 (23.5%) 20.2 (21.5%) 20.3

(238.9%)

L3.0 210.5 (18.7) 26 (29%) 26.9

(253.8%)

20.1

(218.4%)

Western Chandraour, Mumbai, Navi Mumbai,

Solapur

L1.0 251.5

(242.3%)

213

(256.3%)

26.9 (33.7%) 20.9

(255.1%)

L2.0 255.8

(251.1%)

29.6 (45%) 22.7

(215.1%)

20.9

(260.6%)

L3.0 52.6 (248.8%) 27.2 (33.2%) 28.4

(241.5%)

20.9

(260.6%)

Southern Amaravati, Bengaluru, Tirupati,

Visakhapatnam

L1.0 236 (244.6%) 1.7 (17.6%) 23.2 (24.3%) 20.2

(233.8%)

L2.0 241.1 (52.3%) 0.7 (8.2%) 211.2

(260.6%)

20.3

(241.6%)

L3.0 270.9 (63.3%) 0.0 (0.2%) 28.8

(253.2%)

20.3 (242%)
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(NO2 and O3), and nongaseous primary and secondary pol-

lutants (PM2.5 and PM10).

4. Case study: Kolkata–Howrah region

The Kolkata–Howrah region lies near the banks of River

Hooghly in eastern India. This region is one of the largest trade

and commerce center in India and is located about 150 km

north of the Bay of Bengal (BoB), over the Gangetic delta

plains. To accommodate the increasing population and its ex-

panding demands for housing, transport, material goods, and a

range of services, the pressure on land and environmental re-

sources has continued to increase since the early days of its

urban history. The increase in vehicular traffic, industrial

emission, and intensive use of land conversion for urban de-

velopment have multiplier effects on the region’s air quality.

The region’s annual travel demand has increased at a rate of

5.2% to vehicular traffic between the 1990s and 2019.

For this region, data from 10West Bengal Pollution Control

Board air quality monitoring stations is analyzed. A number of

metropolitan cities in India showed significant improvement in

the ambient air quality during the COVID-19 pandemic.

Typically, the regions with historically higher levels of PM2.5,

PM10, NO2, and O3 pollutants yielded the most significant

drops in pollution. Consistent with the broader finding,

the Kolkata–Howrah region showed considerably improved

air quality during the pandemic due to lockdown as well as

rainfall spells.

For the corresponding period in 2019, the AQI varied be-

tween 100 and 300 for different air monitoring stations in the

region like Baranagar, Kolkata, and Ghusuri, Howrah (West

Bengal Pollution Control Board 2020). Even before the lock-

down period, the AQI hovered between 100 and 260 across

different air monitoring stations.

The effect of winds on NO2 concentrations in the Kolkata–

Howrah region was examined using a pollution rose diagram.

Figure 9 shows the concentration for 25 March to 17 May 2020

for the air quality monitoring stations in the Kolkata–Howrah

region. Except for Fort William, Rabindra Sarobar, and

Victoria, the wind pattern in most stations were in the south

and southwest wind direction. The minimum and maximum

speeds were between 0.20 and 2.90m s21 for Rabindra Sarobar

(interior green space location) and Ghusuri (riverside indus-

trial). The average speed is 0.92m s21 across the different

stations. Most of the NO2 was sourced (transportation and

industries) from the south and southwestern parts of the re-

gion. The greater the distance from the pollution source, the

larger effect of wind direction and wind speed on horizontal

dilution and mixing layer height is expected, which controls

dispersion in the lower atmosphere.

a. Station-based changes in criteria pollutants

Figure 10 shows the station-based changes in the daily

concentrations of pollutants for 10 stations of the Kolkata–

Howrah region for the periods of lockdown phase I, lockdown

phase II, and lockdown phase III. Overall, around 49%, 45%,

TABLE 4. Contribution (%) of the pollutants after varimax rotation. The boldface type corresponds to the selection thresholds in Table 3.

Before lockdown Lockdown phase I Lockdown phase II Lockdown phase III

Pollutants VFI VF2 VFI VF2 VFI VF2 VFI VF2

PM2.5 32.39 1.21 36.75 3.26 25.28 10.03 22.93 8.99

PM10 36.05 0.00 32.57 4.18 19.52 16.53 18.76 13.74

NO2 3.09 18.93 1.12 47.50 1.43 32.90 2.66 30.44

NH3 25.28 1.76 0.96 40.20 0.20 37.34 0.15 40.96

SO2 2.57 13.83 27.10 1.29 19.16 0.31 22.06 1.84

CO 0.22 14.90 0.02 0.00 9.09 2.85 8.88 2.30

O3 0.40 49.36 1.47 3.58 25.32 0.06 24.55 1.73

TABLE 3. Variance factors after varimax rotation, and the possible source pollutants in the cities. VFs with absolute values greater than

0.500 (boldface type) were set as the selection threshold.

Before lockdown Lockdown phase I Lockdown phase II Lockdown phase III

Pollutants VFI VF2 VFI VF2 VFI VF2 VFI VF2

PM2.5 0.844 0.137 0.881 0.236 0.777 0.441 0.765 0.405

PM10 0.891 20.003 0.830 0.267 0.683 0.566 0.692 0.500

NO2 0.261 0.541 0.154 0.899 0.185 0.798 0.261 0.745

NH3 0.746 20.165 0.143 0.827 0.070 0.851 0.061 0.864

SO2 0.238 0.462 0.757 20.148 0.676 0.077 0.750 20.183

CO 0.070 0.480 20.023 0.007 0.466 20.235 0.476 0.205

O3 20.094 0.874 0.176 0.247 0.777 20.034 0.792 0.178

Eigenvalue 2.25 1.49 2.56 1.26 3.04 1.28 3.26 1.12

Variability (%) 31.44 22.09 30.19 24.33 34.09 27.68 36.45 26.02

Cumulative (%) 31.44 53.53 30.19 54.52 34.09 61.77 36.45 62.48
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78%, 45%, 47%, 34%, and 8% decreases in PM2.5, PM10, NO2,

NH3, SO2, CO, and O3, respectively, were found during the

three lockdown phases relative to prelockdown days (Table 6).

The significant decrease in NO2 (78%) as compared with

particulate matter (PM) could be due to its relation to the

combustion of fossil fuels (coal, gas, and oil), especially as used

in vehicles and off-road equipment during long-term lock-

downs. Conversely, PM2.5 (49%) is the other prominently de-

creasing pollutants. The SO2 levels were reduced by 47% in the

Kolkata–Howrah region. The largest source of SO2 in the at-

mosphere is the burning of fossil fuels by power plants and

other industrial facilities. Importantly, notable decreases in

concentrations of NO2, PM2.5, and SO2 were found for Fort

William (94%), Rabindra Bharati University (60%), and

Ghusuri (68%) in the lockdown phases. For instance, as com-

pared with an average decrease of 79% in the prelockdown to

lockdown phase I, NO2 concentration in prelockdown to

lockdown phase II decreased by 87%, indicating the direct

effect of lockdown. A similar conclusion can also be derived for

PM2.5 and SO2 in other stations. A slight increase in all seven

criteria pollutant concentrations was observed in lockdown

phase II as compared with lockdown phase I and lockdown

phase III. This increase is in response to changes in the re-

strictions on power plants and coal-based powered energy for

essential commodity production during lockdown phase III.

Interestingly, an overall decrease in O3 (8%) was observed in

lockdown phases as compared with prelockdown. The highest

decreases are found at Victoria (42%), with an increase also

noted inGhusuri (99%) and Jadavpur (26%) as compared with

other stations. Ghusuri and Jadavpur reported an increase in

O3 levels likely due to significant decreases of NO2 (85% and

77%, respectively) relative to volatile organic compounds

(VOCs) and premonsoon high temperatures. There was also a

significant decrease in CO (34%) due to restrictions on out-

door transports or heavy machinery that burn fossil fuels. The

maximum reduction was found in Victoria (49%). Moreover,

the maximum NH3 concentrations also decreased by 71% at

Rabindra Bharati University monitor.

b. Spatiotemporal pattern of PM2.5, NO2, and SO2

The overall spatiotemporal pattern of air pollutants signifi-

cantly varied between prelockdown to the different lockdown

phases (Fig. 11). For phase I from 25 March to 14 April, con-

centrations for PM2.5, NO2, and SO2 were reduced by 23%,

85%, and 38%. The second phase, from 15 April to 3 May,

reduced PM2.5, NO2, and SO2 by 54%, 33%, and 26%, re-

spectively. The third phase, from 4 to 17 May, substantially

increased in PM2.5 and NO2 by 5% and 207%, respectively,

relative to phase II. SO2 significantly decreased by 77%

as compared with lockdown phase I (38%) and lockdown

phase II (26%). The lockdown rules demarcated cities in three

zones—red, orange, and green—based on COVID-19 risk

profiling during lockdown phase III. The GoI allowed some

activities depending on the geographic risk profiles. These

TABLE 5. Derived standardized factor scores after varimax rotation.

Before lockdown Lockdown phase I Lockdown phase II Lockdown phase III

City Code VFI VF2 VFI VF2 VFI VF2 VFI VF2

Alwar ALW 0.434 20.448 20.889 0.920 20.561 0.479 20.384 0.445

Amaravati AMV 21.496 20.794 21.007 20.211 21.118 20.216 21.156 20.805

Amritsar AMS 20.642 20.696 20.947 20.467 20.349 20.097 20.024 20.007

Bengaluru BEN 21.020 0.592 20.504 20.841 20.487 20.806 20.455 20.197

Brajrajnagar BJN 0.550 1.108 2.772 21.609 2.417 20.998 2.285 21.384

Bulandshahr BDS 1.498 1.924 0.882 0.608 2.395 0.255 2.392 20.115

Chandrapur CHD 20.849 0.746 0.687 20.024 0.459 0.228 0.571 20.567

Dewas DEW 20.155 0.898 0.189 0.138 1.230 0.093 1.121 20.740

Guwahati GWH 1.519 20.980 1.521 0.184 20.598 20.205 20.734 20.054

Howrah HOW 20.228 0.301 20.256 20.523 20.730 20.680 20.531 20.676

Jorapokhar JPK 20.374 1.823 0.081 1.042 20.035 0.488 0.935 0.677

Kanpur KAN 0.982 20.679 20.300 0.244 0.175 0.643 0.683 0.724

Kolkata KOL 20.344 0.006 20.448 20.212 20.831 20.602 20.932 20.539

Lucknow LKW 1.725 20.606 1.870 20.964 0.643 0.510 0.568 20.306

Mandikhera MDK 20.331 0.352 20.601 0.349 20.432 1.456 20.273 1.089

Mumbai MUB 21.072 20.570 20.716 20.688 20.853 20.596 20.915 20.336

Muzaffarpur MFP 20.130 1.648 0.118 1.298 20.207 0.407 0.095 0.886

Navi Mumbai NMB 0.330 20.360 20.476 20.216 0.177 20.818 20.594 20.236

Pali PAL 1.527 21.025 1.522 0.190 20.603 20.197 20.742 20.051

Patna PTN 0.335 20.836 20.313 20.655 20.730 20.245 0.054 20.367

Ratlam RTM 0.080 1.759 0.118 20.602 1.280 20.707 1.134 20.782

Satna SAT 21.146 21.582 21.352 20.407 20.621 20.103 20.877 20.513

Singrauli SGU 2.141 20.536 0.715 3.814 0.700 3.953 0.281 4.073

Solapur SLP 20.818 20.753 20.753 21.019 20.546 20.761 21.215 0.636

Talcher TLH 20.899 0.618 0.269 20.300 1.449 21.391 1.034 0.443

Tirupati TUP 21.421 20.690 21.055 20.650 20.619 20.786 20.823 21.041

Visakhapatnam VSK 20.196 21.220 21.127 0.601 21.603 0.698 21.499 20.258
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exemption-based activities show a direct response in terms of

the increase in the level of PM2.5 and NO2 in the lockdown

phase III for the Kolkata–Howrah region.

The station-based pollutant concentration differences (pre-

lockdown to lockdown phase I, lockdown phase I to lockdown

phase II, and lockdown phase II to lockdown phase III) were

calculated based on the simple average of PM2.5, NO2, and SO2

for each station and shown in a spatial map (Fig. 11). The PM2.5

and SO2 levels are smallest from lockdown phase II to lock-

down phase III as compared with from prelockdown to lock-

down phase I and from lockdown phase I to lockdown phase II.

The concentration of NO2 is least from lockdown phase I to

lockdown phase II.

In summary, what emerges from this city-specific analysis is

that there are a number of interactive and possible counter-

factual outcomes related to unknown and localized increases in

air pollution even when lockdown should have reduced them,

likely because of feedback of local meteorology.

5. Local versus large-scale impacts

The variable results of lockdown on the air quality changes

across the 91 cities considered led us to ask whether it would be

possible to extract the influence of local versus the large-scale

(meteorological) impact on the air quality. Wang et al. (2020),

for instance, found that, for the lockdown in China, poor me-

teorological conditions led to amodest increase in air pollution

levels. We identified pairs of a city with a nearby relatively

pristine locale that can be studied in tandem (Table S2 in the

online supplemental material). A total of 10 such pairs could be

identified: two each in the north, south, east, west, and central

part of the country. Most, if not all, of the air quality monitor-

ing, is done within cities, and there was no remote background

reference that could be found from in situ measurements. As a

result, monthly averaged data for three months (March–May

2019 and March–May 2020) were analyzed from the daily

MODIS satellite-based AOD and are shown in Fig. 12. The

AOD grids covered the following 10 cities: Ahmedabad,

Bengaluru, Bhopal, Bhubaneswar, Chennai, NewDelhi, Jaipur,

Kanpur, Kolkata, and Mumbai. The corresponding remote

locations considered were 10 national forest/biosphere reserve

(BR) sites: Nilgiri BR, Nanda Devi BR, Nokrek BR,

Sundarban BR, Similipal BR, Dihang–Dibang, Pachmarhi BR,

Khangchendzonga, Agasthyamalai BR, and Achanakmar–

Amarkantak BR. The assumption was that the AOD over

these locations was less likely to be affected by the human ac-

tivity in the city and represented the large-scale or background

reference. The difference between the pairs is expected to

FIG. 9. Pollution rose plots of NO2 (mgm
23) for air quality monitoring stations (3–10m above ground level) in Kolkata–Howrah region.

(a) Ballygunge, (b) Belurmath, (c) Bidhannagar, (d) Fort William, (e) Ghusuri, (f) Jadavpur, (g) Padmapukur, (h) Rabindra Sarobar,

(i) Rabindra Bharati University, and (j) Victoria locations.
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provide a measure of local restrictions over the city relative to

the changes due to large-scale meteorological changes that are

not related to the restrictions in the local anthropogenic activ-

ities (Table 7).

The results shown in Fig. 13 indicate a clear impact of

lockdown on the AOD levels in the city as compared with the

reference forest sites. Mumbai, Bengaluru, Chennai, Bhopal,

Ahmedabad, Jaipur, Kanpur, and Delhi saw AOD values that

FIG. 10. Chord diagram illustrating the interrelationships between criteria pollutants for the Kolkata–Howrah region for

(a) Ballygunge, (b) Bidhannagar, (c) Belurmath, (d) Fort William, (e) Ghusuri, (f) Jadavpur, (g) Padmapukur, (h) Rabindra Sarobar,

(i) Rabindra Bharati University, and (j) Victoria air quality stations. Each panel contain three chord diagrams corresponding to three

phases of the lockdown. Nodes in the chord diagram, indicated by partitions of the circumference, represent criteria pollutants PM2.5,

PM10, NO2, NH3, SO2, CO, and O3, beginning in the lower left and proceeding clockwise. The thickness of arcs between nodes is

proportional to the strength of the connection.

TABLE 6. The changes (%) in seven criteria air pollutants in three phases in lockdown as compared with before lockdown. Boldface type

indicates maximum change in air pollutants as compared with other stations.

Station Premises Code PM2.5 PM10 NO2 NH3 SO2 CO O3

Ballygunge Residential BLG 251 235 271 251 257 243 226

Bidhannagar Commercial and residential BDN 238 244 267 234 241 29 238

Belur Math Religious tourist BLM 245 252 284 252 243 237 242

Fort William Open and green space FTW 251 239 294 259 245 236 214

Ghusuri Industrial GUS 251 253 285 227 268 239 199

Jadavpur Residential JDP 252 245 277 250 212 229 128

Padmapukur Residential PMP 248 242 273 258 243 214 216

RabindraSarabor Green space RBS 254 243 257 231 254 236 222

Rabindra Bharati University Residential RBU 260 249 281 271 265 242 23

Victoria Green space VCT 245 251 288 215 243 249 242

Overall changes (%) — 249 245 278 245 247 234 28
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are between 40% and 60% of the levels noted for a similar

period in the previous year. Interestingly, a similar reduction

could be noted in the reference forest/BR sites, indicative of a

much broader improvement in the regional air quality (i.e., not

just for the city scale). On the other hand, the AOD concen-

trations were typically high in the cities and noncity (forest)

sites of eastern India (Kolkata, Bhubaneswar, Nokrek

National Park, Sunderban BR, and Similipal BR). This is likely

due to temperature increases and strong westerly winds, emis-

sions and transformation, andpossible particulate transport from

the Thar Desert and Arabian Peninsula as compared with other

parts of the country during premonsoon months (e.g., Kumar

et al. 2020).

The AOD levels were high in Bhubaneswar, Delhi, Kanpur,

Kolkata, Mumbai, and Jaipur relative to nearby noncity sites

both before and after lockdown periods. The magnitude of

change in AOD levels in forested sites is indistinguishable in

lockdown and prelockdown phases during the study period.

The results of vehicular emission, indicating a significant re-

striction during the lockdown, show a substantially decreased

FIG. 11. Spatial maps of average concentration of (a) PM2.5, (b) NO2, and (c) SO2, for the Kolkata–Howrah region. These plots

demonstrate the interdifference map of different lockdown phases: (top) Prelockdown minus lockdown phase I, (middle) lockdown

phase I minus phase II, and (bottom) lockdown phase II minus phase III.
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pollutant level over the city (60%) as well as improved ambient

air quality over the city. Thus, the selected cities show a sig-

nificant reduction in the AOD levels due to local restricted

human activities, as expected, and an insignificant change

could be attributed to the large-scale impact. A similar aspect

was noted in a recent study by Sathe et al. (2021).

The differences in monthly mean AOD patterns over dif-

ferent regions of the country also suggest that the distribution

of aerosol emissions and burdens are quite different across the

urban regions.

The positive anomaly in the country’s eastern region be-

tween urban centers and forest sites needs to be examined

further because pairwise comparisons are often assumed as

representative of the broader context, and this may not be the

effect of vehicular emission. In both references of the studies

(urban centers and forest sites), to some extent, AOD level

decreases are significant during the lockdown as compared

with prelockdown.

6. Conclusions

This study examined the changes in air pollution across 91

cities in India caused by the COVID-19 lockdown in 2020. The

lockdown in India was in three stages, with the restrictions

imposed being modified depending upon conditions that exis-

ted during each stage. The AQI and pollutant concentrations

during the three phases of lockdown was compared with both

the corresponding values for the seven days preceding the

lockdown (prelockdown phase) and for the same days of the

year from 2019. Correlation of AQI computed using 2019 and

2020 paired values shows the values to be statistically insig-

nificant for most stations during the prelockdown time period.

However, during the three phases of the lockdown, most sta-

tions show a statistically significant correlation with 37% or

more exhibiting negative correlation.

Of the 91 stations analyzed, 27 stations showed statistically

negative significant trends and majority of these stations are

found to be located in the vicinity of the major or minor in-

dustrial regions. We compared the AQI and criteria pollut-

ant concentrations of these cities during the lockdown with

corresponding values during the same days in 2019. The spa-

tial variability of this comparison was analyzed by region-

ally grouping the stations with statistically significant trends.

This analysis showed that northern regions to be most im-

pacted during the first two phases of the lockdown while the

southern region was most affected during the third phase. The

FIG. 12. Monthly mean, satellite-derivedMODIS aerosol optical depth over the Indian subcontinent for (a),(a0)March; (b),(b0) April; and

(c),(c0) May of (top) 2019 and (bottom) 2020.
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northeastern region is least affected during all phases of the

lockdown. The eastern region is also less affected than other

regions and shows a consistent increase in O3 during the

lockdown. This is likely due to the reduction in PM (PM2.5 and

PM10) as well as NO2 and VOCs. The pattern of decrease in

PM2.5 and NO2 accompanied by an increase in O3 concen-

trations over Indian cities have also been reported for cities

in northern China, western Europe, Southeast Asia, and the

United States. Nationwide average values of AQI, PM2.5,

PM10, NO2, O3, SO2, NH3, and CO decreased by 33%, 36%,

40%, 58%, 5%, 25%, 28%, and 60% during lockdown when

compared with values for corresponding days in 2019. These

reductions can be considered lower bounds of air quality bur-

dens or the background levels associated with transportation

and industrial sectors. We also compared the AQI and criteria

pollutant concentrations during the lockdown phases with

FIG. 13. The large-scale impacts of restricted human activities across India: differences of the anomaly (from city to forest) of monthly

average AOD during (a) March, (b) April, and (c) May (20192 2020) over cities, the AOD difference between city and forest during (d)

prelockdown (2020) and (e) lockdown period (2020), and difference for each city of monthly average AOD during (f) March, (g) April,

and (h) May (2019 2 20) over cities. Locations of the urban and forest sites are shown in the map inset using red and green circles,

respectively.

TABLE 7. The magnitude of mean AOD differences between city and nearby forest sites in selected cities.

Cities

Height

MSL

(m)

Nearby

forest

Height

MSL

(m)

Distance

from

city (km)

Before lockdown Lockdown

AOD0319 AOD0419 AOD0519 AOD0320 AOD0420 AOD0520

Ahmedabad 53 Pachmai BR 1067 780 0.078 0.090 0.120 20.070 0.092 20.026

Bangalore 920 Nilgiri BR 1100 190 0.039 0.055 0.052 20.093 0.000 0.006

Bhopal 527 Pachmai BR 1067 207 0.024 0.038 0.017 20.024 0.033 20.039

Bhubaneswar 58 Similpal BR 900 162 0.124 0.028 0.030 0.166 0.045 0.048

Chennai 6.7 Nilgiri BR 1100 370 0.229 0.090 0.115 0.057 20.009 20.126

Delhi 215 Nanda

Devi BR

3500 510 0.444 0.416 0.479 0.423 0.404 0.459

Jaipur 431 Nanda

Devi BR

3500 760 0.125 0.100 0.131 0.124 0.068 0.123

Kanpur 126 Nanda

Devi BR

3500 615 0.394 0.348 0.375 0.415 0.352 0.438

Kolkata 9.14 Sunderban

BR

2 105 0.331 0.121 0.148 0.311 0.349 0.230

Mumbai 14 Pachmai BR 1067 910 0.122 0.189 0.173 0.012 0.151 0.116
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corresponding values during the prelockdown period, which

also show significant decreases. Overall, 43 of the 91 cities

experienced an improvement in air quality during the second

phase as opposed to 27 and 20 cities during phase I and phase

III, respectively.

Anomalous behavior over the eastern region, coupled with

additional analysis of Kolkata–Howrah region suggests that

regional differences in meteorology and societal response to

lockdown could be responsible for differing behavior in these

areas. Further, analysis of satellite-derived aerosol column

burden shows that the effect of lockdown on PM2.5 differed

depending on the region, with the reductions being localized in

some areas (e.g., Kolkata) and broadscale (e.g., Delhi, north-

ern India) in other areas.

The above findings have environmental policy implications

because they provide estimates of air quality impacts of in-

dustrial and transportation sectors rooted in observations

rather than models. Further analysis considering the differing

nature of restrictions imposed during the three phases could

better isolate human-activity-based contributions to air qual-

ity. For example, while the lockdown in Delhi (one of the most

highly polluted cities in the world) yielded a reduction in cri-

teria pollutants such as PM2.5, NO2, and SO2, it did not result in

a statistically significant decreasing trend in AQI for the study

period. Such patterns could indicate the level of adherence by

local populations to COVID-19 restrictions imposed by the

GoI and the long-range transport aspects that continue to af-

fect this region (Kanawade et al. 2020).
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