
Variable-Latency Design by Function Speculation
D. Bañeres

Universitat Oberta de Catalunya
Barcelona, Spain

J. Cortadella
Universitat Politècnica de Catalunya

Barcelona, Spain

M. Kishinevsky
Strategic CAD Lab, Intel Corp.

Hillsboro, OR USA

Abstract—Variable-latency designs may improve the performance of
those circuits in which the worst-case delay paths are infrequently acti-
vated. Telescopic units emerged as a scheme to automatically synthesize
variable-latency circuits. In this paper, a novel approach is proposed that
brings three main contributions with regard to the methods used for
telescopic units: first, no multi-cycle timing analysis is required to ensure
the correctness of the circuit; second, the method can be applied to large
circuits; third, the circuit can be optimized for the most frequent input
patterns. The approach is based on finding approximations of critical
nodes in the netlist that substitute the exact behavior. Two cycles are
required when the approximations are not correct. These approximations
can be obtained by the simulation of traces applied to the circuit.

Experimental results on selected examples show a tangible speed-up
(15%) with a small area overhead (3%).

I. INTRODUCTION

The performance optimization of combinational circuits is usually
accomplished by reducing the delay of the critical paths after an
accurate timing analysis. This reduction is achieved by applying
different transformations on the circuit, such as logic restructuring
or gate sizing, that usually result in area and power overheads.

There is an interesting property that can be exploited in many
designs: the critical paths are infrequently activated. Instead of
defining the cycle time by the worst-case delay, a shorter cycle time
that covers a significant amount of input stimuli can be chosen. The
worst-case operations may not be accommodated in this clock period
and, therefore, more cycles may be required to complete them. These
variable-latency circuits are commonly used in long data-paths, such
as arithmetic circuits [1], to improve the performance.

Telescopic units [2]–[4] is a paradigm to automatically build
variable-latency circuits. An error detection function, referred as hold
function in [3], is computed to inform the environment at which cycle
the correct result is available at the outputs. This function externally
controls the clock period by holding the values on the registers [5]
or by adapting the clock frequency [6]. The variable-latency circuit
can be also used in an elastic design [7].

A combinational block is constructed to compute the error detec-
tion function that identifies those input patterns that require more
than one cycle to complete the execution. The function is not always
exact. A high computational cost is usually required to synthesize the
exact function that covers all these input patterns. The complexity
is equivalent to solving the false path problem, which is NP-
complete [8]. The calculation of the error detection function requires
an individual analysis of each input pattern. The proposed methods
usually resort to symbolic methods (e.g. BDDs) that simultaneously
analyze all input patterns. However, these strategies are often limited
to small or medium-size circuits.

Finally, the synthesis of telescopic units in conventional design
flows requires the definition of multi-cycle constraints that compli-
cates the design and validation flows. Moreover, they are not easy to
represent, since they are exercised by a complex set of input patterns.

This paper proposes an alternative and practical method to syn-
thesize variable-latency units. The critical paths are substituted by
non-critical signals that approximate their functionality. The error

detection function checks the correctness of each approximation with
regard the substituted signal. If the error detection function is not
activated, the cycle time is reduced due to the utilization of faster
signals in the original critical paths. If the error detection function is
activated, the exact value of the substituted signal is supplied in the
next cycle to amend the error.

A similar technique has been previously applied to some arithmetic
circuits [9]–[11]. An adder is a circuit with a long critical path (the
carry signal) that can be easily approximated with near-zero effect on
the correctness of the result. In this paper, we generalize the technique
for the automatic synthesis of any circuit.

The rest of the paper is organized as follows. Section II gives
an overview on telescopic units and presents the main contributions
of this paper. Section III introduces the basic terminology that will
be used in the paper. The details of the variable-latency scheme are
explained in Section IV, the technique is discussed in Section V and
the algorithm to optimize the cycle time is presented in Section VI.
Finally, Section VII explains how a variable-latency circuit is built
and Section VIII reports the experimental results.

II. OVERVIEW AND CONTRIBUTIONS

This section introduces the basics of the scheme for the design
of variable-latency units and the main differences with the existing
approaches for telescopic units.

Figure 1(a) shows an example of the computation of the error de-
tection function (Ferr) for a telescopic unit. The example implements
a 6-bit ripple carry adder in which each box represents a full adder.
Assuming that the delay of each full adder is 1 unit, the critical
path is 6 units. There are theoretical studies [11] that demonstrate
delays larger than 4 units are rarely activated. A possible error
detection function for this cycle time is Ferr = (A4⊕B4)(A3⊕B3),
which describes the condition when the carry c2 is 1 and the 3th

and 4th full adders propagate a carry. If the error detection function
is activated, the sum operation requires two cycles. Note that this
speculation function is not exact since it does not consider the carry
propagation at the least-significant bits of the addition. Assuming a
uniform distribution of the inputs, the probability of Ferr is 0.25,
while the probability of an exact error function would be 0.1875.

The scheme proposed in this paper is based on the speculation
of some values that approximate signals in the critical paths. Two
examples of the computation of the error detection function by
speculation are presented in Fig. 1(b)-(c). Assume that the carry c2
is selected as a speculation point. The objective is to find a simple
function that approximates the behavior of the carry signal c2 with
high probability. Figure 1(b) shows the selection of the constant zero.
In terms of area and delay, it is a good function because there is no
overhead, but the carry c2 is 1 with probability 0.375. Figure 1(c)
shows another approximation. The selected function is A2 ·B2 which
decreases the probability of error down to 0.125. The error detection
function will detect the errors by comparing the approximation with
the exact function.

978-3-9810801-5-5/DATE09 © 2009 EDAA

B4 A4

S4

B6 A6

S6

B3 A3

S3

B2 A2

S2

B1 A1

S1

 0

B6 A6

S6

B2 A2

S2

B1 A1

S1

 0

F err

 0
B A5

S5

Cout

B4 A4

S4

B3

S3

5 A3

(b)

B6 A6

S6

B1 A1

S1

 0

B5 A5

S5

Cout

B4 A4

S4

B3 A3

S3

F err

A3 2 A2

S2

B

(c)

errF

B5 A5

S5

Cout

(a)

C2

C2

C2

0
1

0
1

Fig. 1. The example of computing the error detection function for a ripple
carry adder (a) by using [3] and (b),(c) by function approximation.

In Fig. 1(b)-(c), extra logic is also depicted. This logic, explained
in Section IV, supplies the correct value of the carry c2 when the
error detection function is activated. The new design may operate
in one or two cycles, but no combinational path is longer than one
cycle. Thus, no multi-cycle timing analysis is required.

The contributions of the presented approach are next summarized:
• The speculation techniques for arithmetic circuits [10], [11] are

generalized and a method for automatic synthesis is proposed.
• The approach presented in this paper does not require multi-

cycle timing analysis. The original circuit is transformed into
a sequential circuit with two cycles. In telescopic units, it is
difficult to use conventional EDA flows because very intricate
multi-cycle constraints must be applied.

• The approach based on speculation is specially suitable for large
circuits. The choice of speculation points based on simulation
makes the approach scalable. The use of real traces may lead to
an optimization oriented to the most frequent input patterns.

• There is a negligible overhead in area on the variable-latency
designs because the approximation functions are extracted from
the internal logic. On average, a performance gain of 15.1% and
an area overhead of 3.4% is reported in the experimental results.

III. BACKGROUND

This section introduces some definitions required for the paper.
Each gate g in a netlist has an arrival time (AT (g)) based on the

worst-case delay needed to obtain the correct value. The required time
(RT (g)) is defined as the time when the correct value is expected
at the output of the gate. A gate is critical if its slack (SL(g)),
computed as RT (g)−AT (g), is negative. A critical path is a path
from primary inputs to primary outputs where all the gates are critical.
The maximum arrival time for a netlist is computed as the greatest
arrival time of the outputs. Assuming that a sequential circuit has
many combinational blocks between the registers, the cycle time is
defined as the maximum arrival time of all the combinational blocks.

The performance of the circuit is analyzed with the effective cycle
time (or effective delay). Assuming that the error detection signal Ferr
is activated with a probability Perr and the cycle time of the variable-
latency design is Cv, the effective delay is computed as follows:

De f f = Cv(1+Perr)

In the presented method, the set of gates selected to be approx-
imated are called speculation points. On each point, the function
of the gate and the chosen approximation are referred as exact and
approximation, respectively. The candidates for the approximation of
a speculation point are defined as potential candidates.

In this approach, the candidates to substitute a speculation point are
the constants 0 and 1, and gates selected from the same netlist. Note
that, new functions not included in the design [12] can be also used.
However, we observed that the area considerably increases without
an important improvement on delay.

Given two functions F(X) and G(X) where X = (x1, . . . ,xn) and a
set of k input assignments {X1, . . . ,Xk}, the equivalence probability
between F and G is defined as

Peq(F,G){X1,...,Xk} = ∑
∀Xi∈{X1,...,Xk}

p(Xi) · (F(Xi) = G(Xi))

where p(Xi) is the probability of appearance of the input assignment
Xi and the second term is one when both functions have equal value
and zero, otherwise.

The equivalence probability models the similarity between two
functions. This probability can be estimated in many ways. In this
paper, simulation with randomly generated traces has been chosen.
This strategy makes the method scalable for large circuits. In the
particular case that all input patterns are generated and they are
equiprobable, the exact equivalence probability can be calculated as
follows:

Peq(F,G)Bn =
1
2n ∑

∀Xi∈Bn

(F(Xi) = G(Xi))

However, most circuits may have input don’t care conditions
determined by the environment or the sequential behavior of the
circuit and the input vectors may not be equiprobable either. In
this cases, the use of real traces may result in an estimation of the
equivalence probability based on the real behavior of the circuit.

The global equivalence probability Pgeq computes the ratio of
correctness on the set of speculation points. This probability can
be naturally extended from the previous definition of equivalence
probability assuming that the functions F and G are multi-output
functions and each output corresponds to a speculation point. This
probability is also used to check the equivalence between a netlist
and its respective variable-latency circuit assuming that each output
corresponds to a primary output. Note that the probability of the
error detection function is the complement of the global equivalence
probability (Perr = 1−Pgeq).

IV. VARIABLE-LATENCY DESIGN

In this section, we discuss the structure of the variable-latency
units. As an example let us consider how to transform a piece
of a combinational logic into a variable-latency design with one
speculation point.

Figure 2(a) shows an example of a combinational netlist. Every
node in the graph corresponds to a combinational gate. Assume that
we want to construct a variable-latency design. Let select gate k, that
belongs to the critical paths, as a speculation point, and gate d as
its approximation. Figure 2(b) depicts the resulting netlist. The new
design has five new components:

• a primary output Ferr that indicates whether there is an error in
the approximation;

• a multiplexor that controls the output of the speculated function
and selects between the exact function (gate k) and its approxi-
mation (gate d);

l

k
F exact

(a)

(b)

approxF

FF

F err

a

c

b

d

e

f

g

h

i

j

k
m

IN
P

U
T

S

n O
U

T
P

U
T

S

Controller

Detection

Error

a

c

b

d

e

f

g

h

i

j

l

m
0

1

IN
P

U
T

S

n O
U

T
P

U
T

S

FF

Fig. 2. Transformation of a circuit to a variable-latency design.

• an error detection controller that checks if the exact and the
approximation function produce the same value;

• a flip-flop that stores the value of the error detection signal Ferr
for the next cycle for the controlling signal of the multiplexor;

• a flip-flop that stores the output of the exact function Fexact .
Note that the original combinational circuit is transformed to a
sequential circuit with two cycles. Most of the time only one cycle
pass is exercised (from gate d via the multiplexer to the primary
outputs). In rare cases a two cycle sequential path is exercised. Unlike
the telescopic units approach, the resulting circuit has no multi-cycle
combinational paths and hence does not require multi-cycle analysis.

For some input patterns the approximate function Fapprox may
produce some erroneous values. These errors can be detected by
comparing the result of the approximate function Fapprox with the
exact one Fexact . The comparison is performed by the error detection
controller which checks whether the output of both functions is
identical. In case of an error, the error detection signal Ferr is emitted
and, at the beginning of the second cycle, this signal forces the
multiplexor to select the exact output Fexact with a correct value.
In presence of an error the correct output value is produced at the
end of the second cycle.

In the example of Fig. 2(b), the effective delay minimization is
obtained using only one speculation point that cuts all the critical
paths. In general, a set of speculation cut points may be needed to cut
all critical paths. Therefore, a variable-latency design is constructed
searching for a set of speculation points that cut all the critical paths.
The details on how to find the best set and the best approximation
for each point are explained in the following section.

Figure 3 shows the error detection controller for a variable-latency
circuit with n speculation points. The controller checks whether an
error is triggered at any of the speculation points. An error activates
the error detection signal that selects the exact value in all the
multiplexors.

V. SPECULATION POINTS

This section describes the method to find the set of speculation
points. Given a targeted cycle time Cv for the variable-latency unit,
the presented method consists of:
• Identifying the critical nodes of the netlist using conventional

static timing analysis.
• Finding a list of fast approximation functions for each critical

node. These functions, called approximation candidates, can be
either constants or other nodes from the same netlist.

Ferr

0

1

0

1

0

1

F

F

F

F

F

F

approx_1

exact_1

approx_2

exact_2

approx_n

exact_n

FF

FF

FF

Controller
Detection

Error

FF

Fig. 3. Description of the error detection controller.

• Finding a set of critical nodes, called speculation points that cut
all critical paths and their substitution by the approximations
meets the target cycle time Cv.

Since the goal of the algorithm is to minimize the effective delay,
the approximation functions should be similar to the functions of the
speculation points to increase the probability of producing a valid
output in one cycle.
A. Approximation candidates

This section describes how the approximation candidates are
selected.

The similarity relationship between gates is computed using the
equivalence probability. Given two gates f and g with their respective
Boolean functions F and G, the similarity between these gates is
defined as Sim(f ,g) = max(Peq(F,G),1−Peq(F,G))

where Sim is a number in the interval [0.5,1]. The fact that
Sim(f ,g)≈ 1 indicates that f and g are similar, either with positive
or negative polarity. If Sim(f ,g) = Peq(F,G), then G is a better
approximation, otherwise G is better.

A large set of candidates is generated for each gate. Only the gates
not too close to critical primary inputs or outputs are explored. As
we describe in the next section, replacing the gates close to inputs
or outputs would not improve the delay.

A Pareto curve, commonly used in multi-criteria optimiza-
tion, is used to only store the best candidates. Given the ap-
proximation candidate g for the gate f identified with the pair
C(f ,g) = (Sim(f ,g),AT (g)), the candidate is Pareto optimal if and
only if there is no candidate C(f ,h) such that Sim(f ,h) ≥ Sim(f ,g)
and AT (h)≤AT (g), with at least one strict inequality. I.e., we identify
candidates with the smallest arrival time and the highest similarity.

Figure 4 shows a gate window in the middle of a circuit that we
use as an example for illustrating a candidate selection for gate i. Out
of all gates in this window, {a,b,c,d,e, f ,g,h}, only 5 are stored as
Pareto points. Given gate f with a set of approximation candidates
{g1, . . . ,gn}, a potential candidate for the targeted cycle time Cv is
a gate gi ∈ {g1, . . . ,gn} such that

SL(f) > AT (gi)−AT (f)+δ(MUX)

where SL(f) is the slack of gate f with regard to the targeted cycle
time Cv and δ(MUX) is the extra delay introduced by the multiplexor.

B. Cut of speculation points

This section describes how the cut of speculation points is selected.
A netlist is a directed acyclic graph G = (V ,E), where V represents

PEq

Arrival

g
h

d
a
e

a b c d e f

hg

i j

k

Fig. 4. Approximation candidates for gate i.

Algorithm 1 Speculation point exploration
Input: The netlist N, the required cycle time Cv
Output: Cut of speculation points Cutsp
1: Cutsp ⇐ Obtain initial cut in netlist N with cycle time Cv

{Refine cut of speculation points}
2: repeat
3: Speculation point: Worstsp ⇐ Select gate Cutsp with smaller similarity
4: Cut of spec. points: NewCut f wd ⇐ Explore forward from Worstsp
5: Cut of spec. points: NewCutbwd ⇐ Explore backward form Worstsp
6: Cutsp ⇐ Select cut with higher global equivalence

probability (Cutsp, NewCut f wd , NewCutbwd)
7: until there are no more changes in Cutsp and

all speculation points in Cutsp have been processed
8: return Cutsp

the gates of the netlist and E represents the set of wires. A critical cut
in the graph G is a subset of nodes Cut = { f1, · · · , fn} ⊂ V , such that
every critical path from primary inputs to primary outputs contains
some node fi ∈Cut.

Given a critical cut Cut = { f1, . . . , fn}, the cut is a minimal critical
cut if for each node fi ∈Cut, there is at least one path towards the
primary outputs that does not contain a node f j ∈Cut \{ fi}.

Not all minimal critical cuts are a valid cut of speculation points.
Let C f be the cycle time of the original fix latency circuit and
Cv be the targeted clock cycle for the new variable latency circuit.
Given a minimal critical cut Cut = { f1, . . . , fn} with their respec-
tive approximation gates AppCut = {g1, . . . ,gn} selected from their
set of potential candidates, the cut is a cut of speculation points
Cutsp = {(f1,g1), . . . ,(fn,gn)} if the next properties are satisfied:

•
C f
Cv

> 1+Perr
• AT (Ferr) = max∀ fi∈Cut(AT (fi))+δ(Ferr comp) < Cv.
• SL(fi) > AT (gi)−AT (fi)+δ(MUX).

The first property, derived from the definition of efficient cycle
time guarantees that the new design has better effective delay. The
remaining properties ensure that the cut satisfies required timing
constraints. The second property checks that the error computation fits
into the required cycle time Cv. To estimate the delay of the error de-
tection function we use the following upper bound from representing
this function as a binary tree of 2-input AND gates: δ(Ferr comp) =
δ(MUX)+δ(XNOR)+ log2(#Cut +1) ·δ(AND)+δ(NOT). The last
property ensures that the approximate computation fits into Cv.

The Algorithm 1 explains our method. The algorithm starts from
an initial cut of speculation points and refines the cut until a solution
with the smallest approximation error is found.

A greedy selection is performed to produce the initial cut
(Line 1). Given a critical path π = { f1, . . . , fn} with the respective
selected approximation candidates Appπ = {g1, . . . ,gn} such that
Sim(fi,gi) = max∀g j∈{pot candidates fi}(Sim(fi,g j)), the gate fi ∈ π

selected to cut the critical path has the best approximation can-
didate, i.e. Sim(fi,gi) = max∀ j∈{1,...,n}(Sim(f j,g j)). This process is
performed for all the critical gates until a valid cut of speculation
points is found. This process is done by ordering the critical gates
by the approximation function with the best similarity that fits the
required cycle time.

j

e

c

lk

i

a

m

h

d

b

f g

j

a

e

c

lk

i

m

h

d

b

f g

j

a

e

c

lk

i

m

h

d

b

f g

j

a

e

c

lk

i

m

h

d

b

f g

(a) (b) (c) (d)

Fig. 5. Forward exploration. (a) Starting point. Exploration of (b) gate h,
(c) gates d and e, and . (d) gates a, b and c.

This initial selection often produces a large set of points with an ir-
regular distribution across the netlist. The refinement step (Lines 2-7)
tries to optimize the global equivalence probability by searching for
other cuts within transitive fanin and fanout of the previously selected
approximation

The refinement starts by selecting the point with small similarity
(Line 3). Two types of traversal are used: forward (Line 4) from
the gate towards the primary outputs, and backward (Line 5) from
the gate towards the primary inputs. Then, the algorithm checks the
quality of the new cuts comparing their respective global equivalence
probability (Line 6). The cut with the maximal global equivalence
probability is selected as the new cut. The algorithm iterates with the
next worst speculation point. The algorithm stops when reaches a
fixed point: all the speculation points have been processed and there
are no more changes in the cut.

Let us consider in more details the forward exploration. The
backward one is similar. The exploration starts with the immediate
fanout nodes of the previously selected speculation point. Note that
only the critical gates (gates with negative slack) need to be traversed
until a cut with a higher global equivalence probability is found. This
exploration produces a better distribution of the speculation points
since the new selected gates may dominate other points in the cut.
This condition allows to remove the dominated ones because they are
no longer needed to meet the cycle time. A cut with a smaller number
of points tends to have a higher global equivalence probability.

Figure 5 shows an example of a forward exploration. Assume that
the graph shown is the critical region of a netlist. The initial cut is
{k, l,m} and the worst speculation point is gate k. The exploration
starts with its immediate fanout h. The second cut is {h, l,m}. The
next cuts are {d,e,m} and {a,b,c}. The algorithm will select the cut
with maximal global equivalence probability.

For the telescopic units approach the complexity depends on
the size of the error detection function and the Long/Short Path
Activation Functions [4]. In contrast, complexity of our algorithm
depends on two different factors: (1) the size of the critical region
of the circuit, and (2) the selected precision of the simulation. The
computation of any equivalence probability directly depends on the
number of selected input patterns.

C. Error-aware selection of the approximation for a speculation point

This section defines how the best approximation for a speculation
point is selected from the set of potential candidates. Instead of
maximizing the individual probability at each speculation point, our
selection of the best potential candidate during the refinement step is
based on maximizing the global equivalence probability of the cut.

The reason of this selection is because the gates of the cut are
not independent. They belong to the same netlist and there are
”unknown” correlations among them. Therefore, we minimize the
global error and not the local error produced at each point. This
selection contributes to increment the sharing of errors among the
speculation points.

Algorithm 2 Optimize efficient cycle time
Input: The netlist N, the cycle time Cycle min, the cycle time Cycle max
Output: Cut of speculation points Best Cut
1: Required cycle time: Cycle ob j ⇐ (Cycle min+Cycle max)/2
2: if Cycle ob j not yet explored then
3: Cut of spec. points: Cut ⇐ call Speculation point exploration(N,Cycle ob j)
4: Performance gain: Cycle e f f ⇐ Efficient delay of Cut
5: if Efficient delay improved then
6: Best Cut ⇐Cut
7: call Optimize efficient cycle time(N, Cycle min, Cycle ob j, Best Cut)
8: else
9: call Optimize efficient cycle time(N, Cycle ob j, Cycle max, Best Cut)

10: end if
11: end if

0

1

0

1

. . .

FF

FF

FF
G

Primary
Output

F

F

F

F

approx_1

1

F

Err

approx_2

2

Nodes
Choice

Fig. 6. Example of choice nodes.

VI. CYCLE TIME OPTIMIZATION

The construction of a variable-latency design depends on the
objective cycle time. However, the required cycle time may not be
specified. Algorithm 2 shows the optimization procedure.

The algorithm explores several cycle times and selects the one with
a cut that produces the best effective delay. A binary search is used to
explore the minimum number of cycle times. This type of exploration
can be performed, because, we observed there is a trade-off between
the reduction of the cycle time and the increment of the probability
Perr of the error detection function. Therefore, there is a cycle time
where there is no more performance gain because the increment of
Perr does not compensate the decrement in the cycle time.

Let C f be the cycle time of the original fix latency circuit. The
algorithm starts assigning cycle max and cycle min to the cycle time
C f and C f /2, respectively. Only the interval [C f /2,C f] is explored.
The original netlist is transformed to a sequential circuit with two
cycles. Therefore, the maximum improvement would be C f /2. On
each step of the binary search, the required cycle time Cycle ob j is
initially computed (Line 1). The speculation point exploration proce-
dure, defined on Algorithm 1, is applied (Line 3) to obtain the cut of
speculation points for Cycle ob j. The next step of the binary search
depends whether there is a performance gain with regard the previous
cut. If there is improvement the interval [Cycle min,Cycle ob j] is
explored (Line 7), otherwise [Cycle ob j,Cycle max] is processed
(Line 9).

VII. CONSTRUCTION OF THE VARIABLE-LATENCY NETLIST

One of the contributions of the proposed approach is the negligible
overhead in area. This is achieved by using the gates of the netlist as
approximation functions and reducing the number of duplicated gates.
This section describes how the construction technique detects the
minimal number of gates that must be duplicated to built a functional
variable-latency netlist.

The problem has been modeled with choices nodes similar to the
technology mapping approach proposed in [13]. A choice node is an
element which collects different options that can be selected on a
wire. Figure 6 shows an example. Assume a variable-latency design
with two speculation points. Notice that the error detection controller
has not been depicted. The choice nodes represented with a cross are

inserted on each speculation point. One option is the logic needed for
the variable-latency netlist described in Section IV. The second one
is the case when the exact function is needed. The figure shows there
is a primary output that needs a speculation point to reach the cycle
time. There is also another critical path in the netlist that needs the
exact gate F1 on its approximation function. Here, the primary output
and the other critical path need the first and the second option of the
choice node respectively. In this case, our approach only duplicates
the gate G and connects the option selected in the choice node to the
proper duplicated gate.

The choices nodes are explored in two steps. The objective is to
identify the gates that need duplication. A gate is duplicated if there
is a gate in the transitive fanout that requires the exact output of the
function of the gate and there is a speculation point in the transitive
fanin. First, the netlist is traversed backward from primary outputs
to primary inputs in DFS order to mark the gates which their exact
function is needed. Then, the netlist is processed in reverse order to
mark the gates that have speculation points in the transitive fanin.
The variable-latency netlist is built based on the decisions performed
on each choice node and whether the condition of duplication is
fulfilled. The fanins of each gate in the netlist are connected to the
proper duplicated gate based on these decisions.

VIII. EXPERIMENTAL RESULTS

Our method of synthesis of variable-latency units has been imple-
mented as an extension to SIS [14].

In this section, we describe the experimental results obtained by
our tool on the largest examples from the ISCAS99 and MCNC89
benchmarks. The results are summarized in Table I: the left part of
the table presents results after the technology-independent synthesis,
while the right side - results after the technology mapping. Columns
labelled with Fix and Var report synthesis results for the original
fixed latency examples and for the variable-latency netlists obtained
by our tool, correspondingly.

The technology-independent synthesis for the original netlists
was done by applying the algebraic script followed up by the
speed up [15] script for delay optimization.

The synthesis for the variable-latency proceeded as follows. As
a preprocessing step, the algebraic script has been applied to the
original netlist. Then the netlist has been decomposed into 2-input
gates to enable measuring the delay under the unit delay model. Then
our method of variable-latency synthesis was applied, followed by the
speed up.

As no realistic testbenches are available for these examples our al-
gorithm computed variable-latency units under assumption of random
testbenches with equally distributed inputs.

For technology mapping we used the tree-mapping algorithm
map -AFG with the gate library lib2.genlib.

The delay optimization approach has been applied to 30 largest
examples from ISCAS and MCNC. Our algorithm has found variable-
latency designs that improve the delay cost function for 13 netlists.
For other examples no improvement has been found. Our current
algorithm computes approximation functions using only existing
internal gates of the netlist. We suspect that removing this limitation
will allow to find variable-latency designs for other examples as well
(planned as future work). The examples with no improvement are not
shown in the result table.

As Table I shows, the variable-latency units obtained by our
approach improves the technology-independent delay measured by
the number of two input gate levels by 24% at the cost of 3% in the
number of nodes and a few extra flip-flops (FF) required for cutting

Technology Independent Technology Dependent CPU (sec)
Netlist Nodes Levels FF Area Delay Perr Sim + Cuts Total

Fix Var Fix Var Fix Var Fix Var DE f f (%) Cand
apex5 719 741 24 15 5 907 905 19.59 16.18 17.12 5.79 1 2 3
table3 795 966 47 31 25 1160 1445 41.31 29.59 33.27 12.43 5 12 17
dalu 1092 1098 41 27 2 1409 1491 32.81 24.04 24.31 1.14 3 3 6

C7552 1889 1901 37 28 2 2454 2463 30.53 25.90 26.20 1.14 10 15 25
s13207 2305 2362 28 21 9 2890 2964 25.82 22.56 22.61 0.21 11 23 34
s15850 3292 3470 37 26 11 3942 4286 37.29 28.45 29.08 2.21 14 21 35
b14 1 4820 5010 67 59 4 6109 6444 53.71 46.39 48.91 5.43 32 54 86
b14 5682 5722 77 59 3 6932 7054 72.60 54.68 61.67 12.79 45 103 148

b15 1 8776 8847 63 42 10 10334 10536 61.60 42.14 42.71 1.36 73 183 256
b15 9132 9193 84 57 7 10896 11167 73.39 54.81 61.90 12.93 109 377 486

b20 1 10066 10593 92 80 5 12404 12982 83.06 73.07 77.04 5.43 129 454 583
b21 1 10078 10716 86 80 6 12540 13275 82.34 73.54 77.53 5.43 123 398 521
s38584 10576 10644 27 21 10 12690 12551 24.89 20.11 20.12 0.07 90 130 220
Norm. 1.000 1.029 1.000 0.769 1.000 1.034 1.000 0.800 0.849 5.10

TABLE I
EXPERIMENTAL RESULTS ON ISCAS AND MCNC BENCHMARKS.

the speculation points and for the error detection controller. After
technology mapping the circuit delay is improved by 20% at the
cost of 3.4% area increase. The effective delay (De f f) is improved
by 16%. It takes into account that in cases of misspeculation the
circuit needs to spend an extra cycle to compute the result.

Perr reports the error detection function probability (i.e. the prob-
ability of misspeculation). The optimization algorithm is able to find
designs with a low probability of errors. However, the probability
varies from one example to the other. E.g. for s38584 the probability
of the error is 0.07%, while for b15 it is almost 13%. In both cases
our method can find the circuits with a significant improvement of
the average delay (see De f f). Moreover, for some large netlists, e.g.
b14, b14_1, the algorithm finds the variable-latency design with
just a few speculation points. Also, the area can slightly decrease for
some netlists (apex5, s38584). The runtime of the tool shows that
our technique can manage 10K gates netlists within a few minutes.
The runtime is also broken down into the time spent in simulation
and the selection of candidates, and the time to search the best cut
of speculation points.

Our method is targeting large netlists with reasonably long critical
paths which can be cut by inserting the speculation points. When
applied to small circuits of the MCNC benchmarks that have been
used for the experiments with the telescopic units in [3], [4], we
did not observe a lot of improvement as compared to the original
small netlists. These circuits, such as cc, have 5-8 levels of logic.
The algorithm did not find good approximation of the cut point nodes
since there are too few candidates to choose from and even if there are
good candidates the benefit of approximation is not significant since
the delay at cut point is already close to minimal. On the other hand,
the telescopic units methods of [3], [4] cannot handle large circuits,
since the approach explodes due to the large number of inputs patterns
that should be considered for the error detection function.

Method from [4] reports that the telescopic units for small circuits
obtains a performance gain of 25% at the cost of large area overhead
(∼ 20%). In contrast, we obtained 16% delay improvement at the cost
of 3.4% area increase for large circuits (after technology mapping).

IX. CONCLUSIONS AND FUTURE WORK

In this paper, a new technique to construct a variable-latency
design has been proposed. We use a generalization of the techniques
proposed in [10], [11] where approximation functions are used to
emulates the behavior of the circuit.

As future work, we will study the exploration of new function
as approximation function not included in the original netlist. New
functions will increase the ratio of success to create a variable-latency
design. However, the area will be negatively affected. Moreover, we

will also analyze the impact on the peformance of this optimization
on an entire system and the utilization of variable-latency design on
asynchronous circuits.

REFERENCES

[1] S. F. Oberman and M. J. Flynn, “Design issues in division and other
floating-point operations,” IEEE Transactions on Computers, vol. 46,
no. 2, pp. 154–161, 1997.

[2] L. Benini, E. Macii, M. Poncino, and G. De Micheli, “Telescopic units:
a new paradigm for performance optimization of vlsi designs,” IEEE
Transactions on Computer-Aided Design, vol. 17, no. 3, pp. 220–232,
Mar 1998.

[3] L. Benini, G. D. Micheli, A. Lioy, E. Macii, G. Odasso, and M. Poncino,
“Automatic synthesis of large telescopic units based on near-minimum
timed supersetting,” IEEE Transactions on Computers, vol. 48, no. 8,
pp. 769–779, 1999.

[4] Y.-S. Su, D.-C. Wang, S.-C. Chang, and M. Marek-Sadowska, “An
efficient mechanism for performance optimization of variable-latency
designs,” Proc. ACM/IEEE Design Automation Conference, pp. 976–
981, 2007.

[5] Y. Chen, H. Li, J. Li, and C.-K. Koh, “Variable-latency adder (vl-
adder): new arithmetic circuit design practice to overcome NBTI,” in
International Symposium on Low Power Electronics and Design, 2007,
pp. 195–200.

[6] A. Uht, “Uniprocessor performance enhancement through adaptive clock
frequency control,” IEEE Transactions on Computers, vol. 54, no. 2, pp.
132–140, 2005.

[7] J. Cortadella, M. Kishinevsky, and B. Grundmann, “Synthesis of syn-
chronous elastic architectures,” in Proc. ACM/IEEE Design Automation
Conference, Jul. 2006, pp. 657–662.

[8] P. C. McGeer and R. K. Brayton, Integration Functional and Temporal
Domains in Logic Synthesis. Kluwer Academic Publishers, 1991.

[9] S. M. Nowick, K. Y. Yun, A. E. Dooply, and P. A. Beerel, “Speculative
completion for the design of high-performance asynchronous dynamic
adders,” in Proc. International Symposium on Advanced Research in
Asynchronous Circuits and Systems, 1997, p. 210.

[10] S.-L. Lu, “Speeding up processing with approximation circuits,” Com-
puter, vol. 37, no. 3, pp. 67–73, Mar 2004.

[11] A. K. Verma, P. Brisk, and P. Ienne, “Variable latency speculative
addition: A new paradigm for arithmetic circuit design,” Proc. Design,
Automation and Test in Europe (DATE), pp. 1250–1255, March 2008.

[12] K. Ravi, K. McMillan, T. Shiple, and F. Somenzi, “Approximation
and decomposition of binary decision diagrams,” in Design Automation
Conference, 1998, pp. 445–450.

[13] E. Lehman, Y. Watanabe, J. Grodstein, and H. Harkness, “Logic decom-
position during technology mapping,” IEEE Transactions on Computer-
Aided Design, vol. 16, no. 8, pp. 813–834, Aug. 1997.

[14] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai,
A. Saldanha, H. Savoj, P. R. Stephan, R. K. Brayton, and A. Sangiovanni-
Vincentelli, “SIS: A system for sequential circuit synthesis,” U.C.
Berkeley, Tech. Rep., May 1992.

[15] K. Singh, A. Wang, R. Brayton, and A. Sangiovanni-Vincentelli, “Timing
optimization of combinational logic,” in Proc. Int. Conf. Computer-Aided
Design (ICCAD), Nov. 1988, pp. 282–285.

