
JOURNAL OF LATEX CLASS FILES, VOL. , NO. , 1

Variable-Length Particle Swarm Optimisation for
Feature Selection on High-Dimensional

Classification
Binh Tran, Member, IEEE, Bing Xue, Member, IEEE, and Mengjie Zhang, Senior Member, IEEE

Abstract—With a global search mechanism, Particle Swarm
Optimisation (PSO) has shown promise in feature selection. How-
ever, most of the current PSO-based feature selection methods
use a fix-length representation, which is inflexible and limits
the performance of PSO for feature selection. When applying
these methods to high-dimensional data, it not only consumes
a significant amount of memory but also requires a high
computational cost. Overcoming this limitation enables PSO to
work on data with much higher dimensionality which has become
more and more popular with the advance of data collection tech-
nologies. In this study, we propose the first variable-length PSO
representation for feature selection, enabling particles to have
different and shorter lengths, which defines smaller search space
and therefore, improves the performance of PSO. By rearranging
features in a descending order of their relevance, we facilitate
particles with shorter lengths to achieve better classification
performance. Furthermore, using the proposed length changing
mechanism, PSO can jump out of local optima, further narrow
the search space and focus its search on smaller and more fruitful
area. These strategies enable PSO to reach better solutions in
a shorter time. Results on ten high-dimensional datasets with
varying difficulties show that the proposed variable-length PSO
can achieve much smaller feature subsets with significantly higher
classification performance in much shorter time than the fixed-
length PSO methods. The proposed method also outperformed
the compared non-PSO feature selection methods in most cases.

Index Terms—Classification, data mining, feature selection,
particle swarm optimisation, high-dimensional data.

I. INTRODUCTION

Recently, feature selection (FS) has become an essen-

tial technique in data preprocessing especially on high-

dimensional data. With the tremendous growth in data collec-

tion technologies, the number of features collected in many

machine learning applications becomes increasingly larger.

However, the existence of irrelevant and redundant features

in these datasets may obscure the relevant ones, which sig-

nificantly degrades the performance of many learning algo-

rithms. Therefore, with the aim of eliminating irrelevant and

redundant features, FS helps in improving the accuracy and

interpretability of the learnt models, shortening the learning

time, and reducing the storage space of the dataset [1].

Researchers have proposed a large number of FS meth-

ods for classification problems, which can be classified into

wrapper and filter approaches [2]. While a wrapper method

B. Tran, B. Xue, and M. Zhang are with the School of Engineering
and Computer Science, Victoria University of Wellington, Wellington 6140,
New Zealand (e-mail: binh.tran@ecs.vuw.ac.nz; bing.xue@ecs.vuw.ac.nz;
mengjie.zhang@ecs.vuw.ac.nz)

evaluates the goodness of a feature subset using a classification

algorithm, a filter method is based solely on the intrinsic

characteristic of the training data. Therefore, wrappers can

usually obtain better classification performance than filters, but

with higher computation time. Filter methods are also said to

be more general than wrappers. Therefore, a combination of

these two approaches has also been proposed to combine their

strengths [3].

Although being studied for decades, FS is still a challenging

task especially on high-dimensional data due to its huge search

space. FS is a combinatorial optimisation problem with 2n

possible combinations, where n is the number of original

features. In other words, the search space grows exponentially

with the number of features.

By ranking features individually, feature ranking or fea-

ture weighting methods [4] usually scale well with high-

dimensional data. Features are ranked based on their degrees

of relevance to the target concept. Then a predefined number

of top-ranked features will be selected to form the final

subset. However, it is difficult to determine an appropriate

number of features to select without a certain amount of

domain knowledge or extensive trials. Furthermore, there can

be two-way, three-way or multi-way complex interactions

among features [5]. An individually weakly relevant feature

may become highly useful when combined with other features

and vice versa. By evaluating features independently, these

methods can not handle feature interactions. In addition, the

top-ranked features may be redundant, which may degrade

the performance of classification algorithms. An improvement

of feature ranking approaches is to append a second stage

where a heuristic search is applied to the top-ranked features

to remove less relevant and redundant features [6]. However,

since features are individually ranked in the first stage, this

approach may fail to identify multi-way feature interactions.

In contrast with feature ranking, feature subset selection

methods can evaluate the whole feature subset at once, which

can better deal with feature interactions. Sequential forward

selection (SFS) [7] and backward FS methods (SBS) [8] are

typical feature subset selection methods. SFS (SBS) gradually

adds (removes) features until no further improvement. While

SFS can be efficient in high-dimensional data, SBS is too

expensive to apply to these datasets [3]. However, using a

greedy search, SFS and similar methods are prone to be stuck

in local optima, especially in a search space with thousands of

features. A global search technique is needed to explore this

huge search space better.



JOURNAL OF LATEX CLASS FILES, VOL. , NO. , 2

Particle Swarm Optimisation (PSO) proposed by Kennedy

and Eberhart [9] is a population-based algorithm which is

well-known with global search ability. Simulating the social

behaviour of bird flocking, PSO works by maintaining a swarm

of particles, each of which represents a candidate solution. By

communicating their best found solutions, these particles can

fly towards more fruitful areas and discover better solutions.

PSO has been applied and shown promise in many problems

[10], [11]. However, most of its applications are usually on low

dimensionality with tens or hundreds of features [12], [13].

Its performance on high-dimensional data with thousands of

features or more is still limited due to the following limitations

which motivate us to propose a new PSO-based FS method.

A. Motivations

First of all, most of the PSO-based FS methods in the

literature use the fix-length representation. In other words, all

the particles in the population have the length which is equal

to the original number of features. With this representation,

PSO usually requires a significant amount of memory and

computation time when applying to FS on high-dimensional

data. This limitation hinders PSO’s applications on problems

with hundreds of thousands of features, which become more

popular in recent years. Furthermore, representation is the

main factor in defining the size of the search space. An

effective and flexible representation can help PSO achieve

better solutions. In this study, we propose the first PSO-based

FS algorithm with a variable-length representation, so called

VLPSO.

Different particles can have different lengths (i.e. numbers

of features). Therefore, they may focus on different areas of

the search space. Based on this ability, we propose a new

initialisation method called population division, which divides

the population into divisions of particles with different lengths

to provide an appropriate level of diversity for the whole

population.

Furthermore, to encourage the short-length particles to find

good feature subsets, we rearrange features in the descending

order of their importance or relevance to the target concept.

In other words, features are ranked based on a feature ranking

method before applying PSO. In this way, the most important

features can always be selected by any particle in the swarm.

On the other hand, particles with longer lengths will have

the potential to include less relevant features, enabling PSO

to detect possible feature interactions that can lead to better

feature subsets.

To facilitate particles with different lengths to learn from

each other, VLPSO adopts the updating mechanism proposed

in the comprehensive learning PSO (CLPSO) [14], which

is a PSO variant. By allowing any particle to become an

exemplar for others to learn from, CLPSO encourages diversity

of the swarm and eliminates the need for specifying a specific

communication topology. Furthermore, different dimensions

of a particle can also learn from different particles. These

characteristics of CLPSO enable our variable-length particles

to choose appropriate exemplars easier. CLPSO has achieved

significantly better results than many other PSO variants on

many complex multimodal functions [14], [15]. However, to

the best of our knowledge, CLPSO has never been applied

to FS. In this study, we will apply CLPSO to FS with some

adjustments. Firstly, the exemplar assignment in CLPSO needs

to be adjusted to suit the newly proposed representation.

Additionally, the probability used to choose exemplars in

CLPSO is based on the index of the particle, which may

limit its performance. Therefore, VLPSO will use an adaptive

learning probability recently proposed in [15] to overcome this

limitation.

Furthermore, we propose a length changing mechanism

to alleviate the premature convergence, which is a common

problem of PSO, especially on high-dimensional data. This

mechanism enables particles to change length during the

evolution. It helps PSO escape from local optima and move

to more fruitful areas in the search space.

Additionally, PSO is well-known with the capability of

quickly detecting fruitful regions; however, once there, it

may not perform a refined local search well in complex

search space to compute the optimum with high accuracy

[16]. Local search has been combined with PSO to overcome

this drawback [3]. Therefore, we also combine VLPSO with

local search to further improve VLPSO performance on high-

dimensional data.

Besides search mechanism, feature evaluation is another

critical component of a FS method.

Although wrapper methods usually obtain better classifi-

cation performance than filters, using classification accuracy

solely may not be sufficiently powerful to distinguish the sub-

tle difference between feature subsets. When working on high-

dimensional data, classification algorithms require a much

larger number of instances to maintain their performance due

to the curse of dimensionality, which is usually not satisfied in

reality. Therefore, we combine the strengths of both wrapper

and filter approaches aiming to provide a smoother fitness

landscape to facilitate the search process.

To avoid adding a notable amount of computation, we use

a hybrid evaluation method of K-nearest neighbour (KNN)

and a distance measure proposed in [3]. Since both use on

the same distance measure in their calculations, the increase

in evaluation time is neglectable.

B. Goals

The main goal of this paper is to propose the first variable-

length representation in PSO for effective and efficient FS.

Specifically, we will investigate the following research objec-

tives:

• How to design particles with different lengths that can

communicate smoothly with each other;

• Whether the feature subsets selected by the proposed

algorithm are smaller and achieve similar or better clas-

sification performance than the original feature sets, and

the subsets selected by standard PSO and other compared

PSO-based FS methods;

• Whether incorporating a local search procedure helps

the proposed method achieve even higher classification

accuracy;



JOURNAL OF LATEX CLASS FILES, VOL. , NO. , 3

• Whether the proposed methods significantly reduce the

running time of PSO on high-dimensional data;

• Whether the proposed methods outperform traditional FS

methods; and

• How effective and efficient the proposed strategies help

PSO improve its performance on high-dimensional data.

II. BACKGROUND AND RELATED WORK

A. Particle Swarm Optimisation

As a population based algorithm, PSO [9] maintains a

swarm of particles. Each particle has a position which rep-

resents a candidate solution and a velocity showing the speed

and direction that the particle should move in the next iteration.

A particle’s position and velocity are encoded in two vectors of

n real numbers where n is the dimensionality of the problem.

Particle’s position is evaluated based on a fitness function.

Then the best position that each particle has explored so far

(pbest) is recorded and shared with other particles. In the

conventional PSO, a fully connected topology is used to find

the best position of the whole population (gbest). In other

topologies which do not connect all particles, gbest is replaced

with a local best (lbest). These best positions are used to

update a particle’s velocity which then defines its position as

shown in Eqs. (1) and (2).

v
t+1
id = w ∗ vtid + c1 ∗ r1i ∗ (p

t
id − x

t
id) + c2 ∗ r2i ∗ (p

t
gd − x

t
id) (1)

x
t+1
id = x

t
id + v

t+1
id (2)

where vtid and xt
id are the velocity and position of the ith

particle in dimension d at time t. w is the inertia weight

representing the moving momentum of the particles. ptid and

ptgd are pbest and gbest positions in dimension d at time t. c1
and c2 are acceleration constants, and r1 and r2 are random

values uniformly distributed in [0, 1].

When applying PSO to FS, each real value ranging from 0

to 1 in the position vector indicates whether the corresponding

feature should be selected or not based on a predefined

threshold (e.g. 0.6).

B. Comprehensive Learning PSO

Comprehensive Learning PSO (CLPSO) proposed by Liang

et al. in [14] is a variant of continuous PSO in which a

particle can learn from pbest of any particle. This strategy

helps PSO maintain the diversity of the swarm and hence

alleviate the common problem of premature convergence in

PSO. Furthermore, while in standard PSO, all dimensions of

a particle’s velocity are updated based on its pbest and gbest,
CLPSO enables different dimensions to learn from pbest of

different particles including its own. The decision of choosing

itself or another particle as an exemplar depends on a learning

probability called Pc ranging from 0.05 to 0.5. Each particle

has its own Pc. Eq. (3) is used to calculate Pc for the ith

particle.

Pci = 0.05 + 0.45
exp

10(i−1)
S−1

exp10 − 1
(3)

where S is the population size.

To set an exemplar for a dimension d of the ith particle,

CLPSO generates a random number. If this number is greater

than Pci, d learns from its own pbest; otherwise, a tournament

selection with the size of 2 will be used to choose the exemplar

for d. Therefore, besides a position and a velocity vector,

CLSPO has another vector to record exemplars, which are the

indexes of the chosen particles, for all dimensions. Exemplars

of a particle remain unchanged until it stops improving for

α iterations. Therefore each particle also counts how many

iterations that its pbest has not been changed. When this count

exceeds α, all exemplars of this particle are renewed. With

these changes, CLPSO uses Eq. (4) to update velocity.

v
t+1
id = w ∗ vtid + c ∗ rid ∗ (p

t
exmplr(id)d − x

t
id) (4)

where exmplr(id) returns the exemplar of particle i in dimen-

sion d.

C. PSO for FS in Classification on High-Dimensional Data

PSO has been proposed and shown promise in FS [17].

An increased interest in PSO has shown through a growing

number of papers proposing PSO-based FS methods in the

past ten years [12].

Both filter or wrapper approaches have been proposed in

PSO-based FS methods. In filter methods, different measures

were proposed to evaluate feature subsets such as rough

set [18], fuzzy consistency [19], mutual information, and

entropy [20]. On the other hand, feature evaluation methods

in wrappers are based on the classification performance of a

learning method [17]. Combination of both approaches has

also been proposed [3].

To improve PSO performance for FS, researchers have

also proposed many improvements in updating mechanisms of

gbest [17], pbest [3] and particles [21], [22], communication

topology [23], initialisation [17], and representation [24].

Readers are referred to [12] for more comprehensive survey.

In this section, we only focus on reviewing those methods that

improve PSO representation.

Reducing PSO search space by explicitly eliminating redun-

dant features is an effective way to improve PSO performance.

In [24], Lane et al. used a statistical clustering method to group

similar features into the same cluster. Then, during the evo-

lutionary process, some features with the highest probability

(i.e. velocity) from each cluster were selected. Results showed

that these methods could select a smaller number of features

to achieve similar or better classification performance than all

features and the compared methods. However, it is not easy

to choose an appropriate number of features that should be

selected from each cluster.

Among the early PSO variants, binary PSO [25] seems to

significantly reduce the search space over continuous PSO (and

also the memory space) when it restricts the position vector

into binary values. However, using velocity solely to update its

position, binary PSO cannot achieve a good performance [26].

Different updating mechanisms have been proposed to improve

its performance [22], [26]. Nevertheless, these methods still

use a fixed-length representation, which cannot scale well



JOURNAL OF LATEX CLASS FILES, VOL. , NO. , 4

when the number of features reaches hundreds of thousands

or even millions.

To provide a better solution for discrete optimisation prob-

lems, Chen et al. [27] proposed a set-based PSO method (S-

PSO) in which a particle is encoded as a crisp set of elements.

Velocity is a set of elements and their corresponding possibil-

ities. Results on the travelling salesman and multidimensional

knapsack problems showed that S-PSO and its variants [28]

were promising in solving discrete problems. However, the

position and velocity representations in S-PSO require even

more memory than standard PSO.

Another set-based representation (named SBPSO) was pro-

posed by Langeveld et al. [29] where the position is a set of

elements while velocity is a set of operation pairs representing

adding or removing elements. To avoid early convergence,

velocity is updated using not only the pbest and lbest sets

but also two more sets generated by two proposed operators.

One is a random removal of some elements that appear in

current position, pbest and lbest sets. Another operator is

adding some elements that are not in these three sets using a k-

tournament selection that involves further fitness evaluations,

which may lead to much higher computation time if the fitness

function is costly. Results on knapsack problems showed that

SBPSO performed significantly better than other three discrete

PSO algorithms. However, the sensitivity analysis of SBPSO

showed that its performance is sensitive to parameters used in

the velocity formula [29].

In summary, although many PSO-based FS methods have

been proposed to improve PSO performance in FS, not many

studies addressed the limitation of the PSO representation in

solving FS [12]. A new representation that can improve the

scalability of PSO for FS, especially on high-dimensional data,

is still missing. In the following section, we will propose a

new approach to tackling the limitation of the fixed-length

representation in PSO for FS.

III. THE PROPOSED METHOD

This section starts with a description of the proposed

variable-length representation along with the exemplar assign-

ment and an adaptive learning probability that are adjusted

based on CLPSO. It then introduces the population division,

feature ranking and length changing strategies that are enabled

by the variable-length representation. Finally, it presents the

hybrid fitness function, the overall algorithm of VLPSO and

the local search that is combined with VLPSO.

A. Variable-Length PSO Representation

The proposed variable-length representation aims to im-

prove the scalability of PSO for FS on higher dimensional

problems and reduce the computation time required when

using a fix-length PSO method for FS.

The proposed representation is still vector-based as the tradi-

tional PSO; however, each particle will have a different length

L. VLPSO is developed based on the CLPSO [14] which

was described in Section II-B. Fig. 1 shows the representation

of a VLPSO particle with length L, which has three vectors

including the position, velocity and exemplar. Two additional

Learning Probability (Pc)  = 0.25       Renew Exemplar Count = 3

1 2 3 4 5

0.8 0.3 0.9 0.4 0.1

Velocity: 

0.6 0.2 0.7 ... 0.5

1 2 3 ... L

0.1 0.2 0.5 0.4 0.1 0.2 0.4 0.3 ... 0.2

8 7 5 6 2 3 7 8 ... 1

Position: 

Exemplar: 

Dimension: 

Fig. 1. Representation of a VLPSO particle with length L

variables record its learning probability (Pc) and the renew

exemplar count (i.e. the number of iterations that pbest has

not been improved).

The velocity and position updating in VLPSO follow Eqs.

(4) and (2), respectively.

B. Exemplar Assignment

In the original CLPSO, any particle can be used as an

exemplar for a dimension of any particle. However, since

different VLPSO particles have different lengths, the exemplar

chosen for a particular dimension needs to have the corre-

sponding dimension. In other words, the exemplar’s length

must exceed that dimension. Therefore, we propose a new

exemplar updating mechanism for VLPSO, whose pseudocode

is shown in Algorithm 1. The main difference between this

method with the original one in CLPSO is that the two

exemplars (p1 and p2) are randomly sampled (Lines 9-10) until

both of them satisfy the above mentioned condition. However,

if this condition is not met after a number of attempts, its own

pbest will be used as the exemplar. In this method, the number

of attempts is simply set to the population size.

Algorithm 1: Exemplar Assignment

input : Particle i
output: Exemplar for each dimension of Particle i

1 begin
2 L← the length of particle i;
3 for d = 1 to L do
4 Rnd← a random value drawn from a uniformly

distribution;
5 Pci ← Pc of particle i;
6 if (Rnd >= Pci) then
7 exemplar[d]← i;
8 else
9 p1 ← randomly pick a particle that is different

from i and has a length longer than d;
10 p2 ← randomly pick a particle that is different

from i and p1 and has a length longer than d;
11 if (p1.fitness is better than p2.fitness) then
12 exemplar[d]← p1;
13 else
14 exemplar[d]← p2;
15 end
16 end
17 end
18 Return exemplar;
19 end



JOURNAL OF LATEX CLASS FILES, VOL. , NO. , 5

C. Adaptive Learning Probability

In the original CLPSO, the probability of choosing exem-

plars for each dimension of a particle (Pc) is set based on

its identity or index in the population and kept unchanged

during the evolutionary process. As can be seen from Eq. (3),

particles with a smaller index will have smaller Pc than those

with a greater index. Therefore, according to the use of Pc for

choosing exemplars in CLPSO, it is more likely that the small-

index particles will follow its own pbest. However, to locate a

better position or solution, particles should learn from particles

with better fitness. Therefore, only those particles with better

fitness should have smaller Pc, so that they can continue to

exploit their good direction to find better pbest. In contrast,

the worse particles should learn from the better ones. With this

rationale, Yu et al. [15] proposed to calculate Pc for a particle

based on its fitness rank instead of its index. As shown in Eq.

(5), the proposed strategy assigns a smaller Pc for a particle

with a smaller rank (i.e. a fitter particle). In this study, we

adopt this strategy since it has shown promise in improving

the performance of CLPSO for function optimisation [15].

Pci = 0.05 + 0.45
exp

10(rank(i)−1)
S−1

exp10 − 1
(5)

where S is the population size and rank(i) is the rank of

particle i. The best particle in the swarm will be ranked 1.

D. Population Division

Based on the variable-length representation, VLPSO enables

particles in the population to have any length that is smaller

than the dimensionality of the problem. However, this may

degrade PSO performance since particles will not learn much

from each other when they are too different. Therefore, instead

of setting a different length for each particle, we divide the

whole population into a predefined number of divisions. In

this way, we divide the search space into smaller subspaces,

which can improve PSO’s performance, especially in such a

large and complex search space as in high-dimensional data.

The number of particles (or size) of each division (DivSize)

is calculated based on the population size (PopSize) and the

number of divisions (NbrDiv) as shown in Eq. (6). Particles

in the same division will have the same length. The length

of particles in a division V (ParLenV ) is calculated based

on Eq. (7), where the maximum length (MaxLen) is the

dimensionality of the problem. Note that within a division,

particles with the same length can represent different feature

subsets with different feature subset sizes. For example, two

particles of length 8 represent two solutions, 10100001 and

10001111, which show which features are selected from the

first 8 features of the given dataset. They are corresponding to

two feature subsets, {F1, F3, F8} and {F1, F5, F6, F7, F8}
which have the feature subset size of 3 and 5, respectively.

Note that the dth dimension always represents the dth feature

in all particles. This enables particles to learn from each other

despite of their different lengths.

DivSize =
PopSize

NbrDiv
(6)

1 1000 2000 3000 4000 5000Feature :

ParLen of Div.1

Div.2

Div.3

Div.4

Div.5

Fig. 2. An example of population division for a problem with 5000 features
and the number of division is 5.

Particle’s 
Length:

Particle’s 
Length:

Before: Max Length = 5000

1 2 3 4 5

1000 2000 3000 4000 5000

Division:

600 1200 3000 1800 2400

After: Max Length = 3000

Best
Division

Fig. 3. An example of length changing in a swarm with 5 divisions.

ParLenV = MaxLen ∗
V

NbrDiv
(7)

Fig. 2 shows an example of the particle lengths in a problem

with 5000 features and the number of divisions is set to 5.

The length of all particles in Division 1 will be 1000. They

will search for good feature subsets in the first 1000 features.

Similarly, Division 2 will focus on feature subsets in the first

2000 features.

E. Feature Ranking

To rearrange features in the descending order of their

relevance, we can use any measure to evaluate features. In this

study, we use the symmetric uncertainty (SU) [30] since it is

a non-parametric measure and commonly used in FS methods

[6], [31]. SU is a normalised version of information gain (IG)

to evaluate feature relevance. To rank features, we use SU as

shown in Eq. (8) to measure the correlation between a feature

F and the class label C. The higher a feature correlates to the

class label, the better it is.

SU(F,C) =

[

IG(F |C)

H(F ) +H(C)

]

(8)

IG(F |C) = H(F )−H(F |C) (9)

where H(F ) is the entropy of F and H(F |C) is the condi-

tional entropy of F given C. The value of SU(F,C) ranges

from 0 to 1, where 1 represents the most relevant feature.

F. Length Changing

During the evolutionary process, to help PSO jump out of

possible local optima, we propose a length changing mech-

anism to direct particles to more fruitful areas in the search

space, enabling PSO to reach better solutions in a shorter time.

Particularly, when gbest does not change for a predefined



JOURNAL OF LATEX CLASS FILES, VOL. , NO. , 6

number of iterations, we calculate the average fitness of all

particles in each division and resize the particles to scale PSO

search into the best division. In other words, the particle length

of the best division will become the maximum length of the

swarm after length changing. During this process, we keep the

particles in the best division unchanged and resize those in

the other divisions to a shorter length than the new maximum

length. The process automatically changes the particles’ length

by cutting or appending more dimensions at the end of the

representation while keeping the learnt knowledge in the other

dimensions. The number of dimensions being cut or appended

is dynamically calculated based on the new length and the

current length.
Fig. 3 shows a demonstration of this process on a swarm

with five divisions. Initially, particle length of division 1, 2,

3, 4 and 5 are 1000, 2000, 3000, 4000, and 5000, respec-

tively. Suppose the third division is be the best division with

the highest average fitness, it is kept unchanged and 3000

becomes the new maximum length of the swarm. However,

particle length of division 1, 2, 4 and 5 will be changed to

600, 1200, 1800, and 2400, respectively. Therefore, the last

400, 800, 2200 and 2600 dimensions will be cut in particle

representations of division 1, 2, 4 and 5, respectively.
Algorithm 2 shows the pseudocode of the length changing

procedure. If the current length of particles in a division is

shorter than the new length, then more dimensions will be

appended and randomly initialised (Lines 12-16); otherwise,

the exceeding dimensions will be removed (Lines 18-21).
Since the maximal length of particles is always getting

shorter every time particles’ length is changed, another benefit

of this mechanism is a dramatically reduction in the PSO

computation time.
This length changing is applied when gbest does not

improved for a number of iterations (β). β should be large

enough for PSO to converge, and small enough for PSO to

avoid being stuck in local optima for too long. Therefore, we

conducted a sensitivity analysis as described in Section IV-D

to choose suitable values for β and the number of divisions.

G. Fitness Function

To combine the strengths of the wrapper and filter methods

without significantly increasing the computation time, VLPSO

uses the fitness function proposed in [3] to combine the ac-

curacy of K-nearest neighbour (KNN) and a distance measure

[32] using a weight (γ) as shown in Eq. (10). While the

classification accuracy can measure the performance of the

feature subset, the distance measure can approximate how far

these features can separate instances of different classes and

unite those of the same class.

fitness = (γ · accuracy + (1− γ) · distance) (10)

To deal with unbalanced data in many high-dimensional

datasets, we used a balanced accuracy [33] calculated based

on Eq. (11) for the first component in the fitness function.

Leave-one-out cross validation on the training data is used to

evaluate the performance of KNN.

balanced accuracy =
1

c

c
∑

i=1

TPRi (11)

Algorithm 2: Length Changing Procedure

input : Current swarm
output: New swarm

1 begin
2 NbrDiv ← Number of divisions of the current swarm;
3 MaxLen← Max length of particles in the current

swarm;
4 Calculate the average fitness of each division;
5 BestLen← Particles’ length of the best division;
6 if (BestLen 6= MaxLen) then
7 k ← 1;
8 for each division v (different from the best division)

do
9 NewLen← BestLen× k ÷NbrDiv;

10 if (Length of particles in v < NewLen) then
11 Append more dimensions to particles in

dividion v to have NewLen dimensions;
12 Randomly initialise the new dimensions;
13 Calculate fitness of these particles;
14 k = k + 1;
15 else
16 if (Length of particles in v > NewLen)

then
17 Remove the last dimensions of particles

in dividion v to have NewLen
dimensions;

18 Calculate fitness of these particles;
19 k = k + 1;
20 end
21 end
22 end
23 Calculate Pc for all particles using Eq. (5);
24 Renew exemplar of particles; // Algorithm 1

25 end
26 end

where c is the number of classes of the problem, and TPRi is

the true positive ratio or the proportion of correctly identified

instances in class i. Since there is no bias to any specific class,

the weight for each class is set to 1/c.
The distance measure is calculated based on Eq. (12), which

aims at maximising the distance between instances of different

classes (Db) and minimising the distance between instances of

the same class (Dw).

distance =
1

1 + exp−5(Db−Dw)
(12)

where

Db =
1

M

M
∑

i=1

min
{j|j 6=i,class(Ii) 6=class(Ij)}

Dis(Ii, Ij) (13)

Dw =
1

M

M
∑

i=1

max
{j|j 6=i,class(Ii)=class(Ij)}

Dis(Ii, Ij) (14)

where M is the number of instances in the training set. The

distance between two instances Dis(Ii, Ij) can be measured

based on any distance approximation methods. In this study,

we use Manhattan measure since it is preferable than Eu-

clidean distance metric for high-dimensional data [34]. To

appropriately apply this distance measure, the training data

is scaled to the range of [0,1].



JOURNAL OF LATEX CLASS FILES, VOL. , NO. , 7

H. VLPSO Overall Algorithm

Fig. 4 shows the flowchart of VLPSO algorithm. It has

three inputs, the number of divisions (NbrDiv), the maximum

iterations that pbest is not improved to renew exemplars (α)

for a particle, and the maximum iterations that gbest is not

changed (β) to change particles’ lengths. VLPSO starts with

rearranging features based on the feature ranking described

in Section III-E. After that, it initialises all divisions in the

first loop, then calculates the learning probability Pc and

assigns exemplars for each particle. The second loop is the

evolutionary process. It repeats until reaching the maximum

number of iterations. During this evolution, if gbest is not

improved for β times, length changing procedure is called.

Pc is also adapted based on Eq. (5).

The computation time of the proposed method and the

baseline methods can be divided into two parts, time for

PSO updating and time for fitness evaluation, in which fitness

evaluation usually accounts for a much larger portion between

the two. The former can be calculated based on the number of

iterations (I), the number of particles (P ), and the length of

the particles which is equal to the number of original features

(N ) for PSO and ECLPSO. By dividing the population into D
divisions, each of which has P/D particles with the particle

length of 1∗N/D, 2∗N/D, ..., or D∗N/D = N , the proposed

method reduces the time for PSO updating by half. For the

fitness evaluation, the computation time highly depends on the

number of features selected by each particle, which is hard to

estimate and dataset-dependent. However, in the worse case

that all particles select all features, the proposed method still

takes only half of the time required by the baseline methods

due to its shorter particle lengths.

I. VLPSO with Local Search

To further improve the performance of VLPSO on high

dimensional classification problems, we apply local search

to pbest which was proposed in [3]. We call the combined

method of VLPSO with local search as VLPSO-LS. This local

search process aims to find a better solution surrounding the

newly found pbest by randomly removing some redundant

features and adding more relevant ones. The SU measure

based on Eq. (8) is also used to evaluate feature relevance

and redundancy in this process.

Given a binary vector corresponding to the feature subset

of pbest, the local search procedure conducts a given number

of tries. The more local search tries, the better solution can be

found. Therefore, we set the number of tries to 100, which

is equal to the maximum number of iterations PSO runs.

However, thanks to the fast fitness evaluation used in the local

search, 100 evaluations will not cost as much as in PSO.

Each local search try considers to flip a random portion of

pbest based on a given flipping size to create a new pbest.
The size of the random portion is dynamically determined

and proportional to the current pbest size. 25% is chosen to

encourage removing more redundant features and adding more

relevant ones in one local search try. The flipping process

will scan features in this random portion to remove selected

features if they are redundant and add non-selected features

Rearrange features in the descending order of SUC;
Div = 1;

DivSize = PopSize / NbrDiv;
ParLen =  MaxLen * Div / NbrDiv;
Initialise DivSize particles with length ParLen;
Update fitness and pbest for these particles;
Div ++;

Div <= NbrDiv

Calculate Pc for all particles using Eq. (5);
Assign exemplar for all particles;   // Algorithm 1
Set renewExmpl for all particles to false;

Stopping criterion

For each particle p in the population:
If (renewExmpl[p] is true) 

Exemplar_Assignment(p);    // Algorithm 1
renewExmpl[p] = false;

Update velocity and position using Eqs. (4) & (2);
Update fitness and pbest;
If (pbest is not improved for α times) 

renewExmpl[p] = true
Update gbest;

Return gbest;

False

True

False

True

           LengthChanging();   // Algorithm 2

gbest not improved for β times

renewExmpl of any particles is true

Calculate Pc for all particles using Eq. (5);

True

False

False

True

Fig. 4. Overall variable-length PSO algorithm.

if they are relevant. A feature is defined as redundant if it

is more correlated to other selected features than to the class

label. A feature is relevant if it is more correlated to the class

than the average correlation of all the selected features in the

random portion. Therefore, the number of features actually

flipped is not only dynamically determined by the current

pbest size but also the characteristic of the dataset. As a result,

the performance of the local search is not highly sensitive to

the values of these two related parameters.

If a better pbest is found, it will replace the current

one. Each local search try involves an evaluation process.

Therefore, a significant number of evaluations will be added,

which substantially increases the computation time. Therefore,

to speed up VLPSO-LS, we also use the fast fitness evalua-

tion strategy [3], which calculates the new distance between

instances by adding to or subtracting from the current distance

the value difference in features that are added or removed

from the current pbest, respectively. Since a small portion of

pbest is flipped in one local search try, this strategy saves a

significant amount of computation, leading to much shorter

evaluation time.

The frequency of applying local search can be predefined

to compromise between its effectiveness and efficiency. When

the trigger condition is satisfied, VLPSO-LS applies the local

search procedure to the newly found pbest.



JOURNAL OF LATEX CLASS FILES, VOL. , NO. , 8

TABLE I
DATASETS

Dataset #Features #Ins. #Class %Smallest
class

%Largest
class

SRBCT 2,308 83 4 13 35

Leukemia 1 5,327 72 3 13 53

DLBCL 5,469 77 2 25 75

9Tumor 5,726 60 9 3 15

Brain Tumor 1 5,920 90 5 4 67

Brain Tumor 2 10,367 50 4 14 30

Prostate 10,509 102 2 49 51

Leukemia 2 11,225 72 3 28 39

11Tumor 12,533 174 11 4 16

Lung Cancer 12,600 203 5 3 68

IV. EXPERIMENT DESIGN

A. Datasets

We used ten gene expression datasets with thousands

of features that are publicly available on http://www.gems-

system.org. Table I shows the number of features, instances,

classes, and the percentage of instances in the smallest and

largest class of each dataset. As can be seen from Table I, these

datasets have a much smaller number of instances compared to

the number of features. They are also highly unbalanced data.

These characteristics make them become very challenging

problems for both FS and classification.

B. Experiment Setting

Due to the small number of instances in these datasets, 10-

fold cross validation is used to create training and test sets for

the experiments (no validation set involved). One fold is kept

as unseen test data, never used during the FS process. The

remaining 9 folds form the training data. Only the training

data is used to during the FS process. After FS is finished, the

training and test sets will be transformed based on the selected

features and put into KNN to evaluate the performance of the

FS method.

C. Baseline Methods

To evaluate the performance of VLPSO and VLPSO-LS,

we compared the classification accuracy of KNN using the

features selected by both methods with the original full feature

sets, and the feature subsets selected by standard PSO (or PSO

for short). They are also compared with the comprehensive

learning PSO enhanced with the adaptive learning probability

[15] described in Section III-C, which we call ECLPSO for

presentation convenience. All the compared methods will use

the same fitness function and settings for common parameters.

We also compare our methods with a recently proposed PSO-

based feature selection method for high-dimensional classi-

fication using a competitive swarm optimizer (CSO) [21].

In this method, all particles are divided into two groups

where pairwise comparison are applied and the better particle

between the two will be used as an exemplar for the other.

KNN is also used to evaluate feature subsets. We run the code

provided by the authors on the same settings as other compared

methods.

TABLE II
PARAMETER SETTINGS

Parameters Settings

Population Size #features/20 (restriction to 300)

Maximum iterations 100

c1 = c2 or c 1.49445

w 0.9− 0.5 ∗ current iteration
max iteration

Threshold for selected feature 0.6

Communication topology Fully connected (PSO)

Max iterations for renew exem-
plars (α)

7 (ECLPSO, VLPSO, VLPSO-
LS)

Local search tries 100 (VLPSO-LS)

Local search flipping size 25% of current pbest’s size
(VLPSO-LS)

Number of divisions 12 (VLPSO, VLPSO-LS)

Max iterations for length chang-
ing (β)

9 (VLPSO, VLPSO-LS)

We also compared VLPSO-LS with three traditional FS

methods, which are the linear forward selection (LFS), the

correlation-based FS (CFS) [35], and the fast correlation-

based FS method (FCBF) [6]. We chose these feature subset

selection methods because of their popularity and the ability

to automatically determine the number of selected features

as our proposed methods. LFS is derived from the sequential

forward selection (SFS) where features are gradually added

until no further improvement in classification accuracy. By

restricting the number of features to be considered in each

step, LFS [36] runs faster and finds smaller feature subsets

with better classification performance than SFS. While LFS

uses a wrapper approach, CFS is a filter FS method using the

correlation measure to bias towards feature subset containing

more relevant features and less redundant ones. Since best-

first search is too expensive, especially on high-dimensional

data, we ran CFS with a greedy forward selection. Unlike LFS

and CFS, FCBF is a two-stage FS method where features are

first ranked using the correlation measure and sorted in the

descending order of relevance. Then a heuristic search is used

to scan the ordered list to remove redundant features. Weka

[37] was used to run the three methods with their default

settings.

D. Parameter Settings

Table II shows the parameter settings used in the experi-

ments. As can be seen from Table I, the datasets have very

different numbers of features ranging from 2,000 to 12,000. To

deal with the large difference in the search space of different

datasets, we set the population size to one twentieth of the

number of features, but limited to 300 due to limited memory

for computation. The parameter settings for the local search in

VLPSO-LS are the same as in [3]. The maximum iterations for

renewing exemplars (α) is set to 7 as suggested in [14]. The

threshold for selected feature is usually set to 0.5 or slightly

larger [17], [38]. Within a reasonable range, e.g. [0.5, 0.7],

the value of this parameter does not significantly influence the

selection process as investigated in [38]. The reason is during

the evolutionary process PSO can automatically update the



JOURNAL OF LATEX CLASS FILES, VOL. , NO. , 9

*

94.0

94.5

95.0

95.5

96.0

96.5

3 4 5 6 7 8 9 10 11 12 13 14

Divisions

Ac
cu

ra
cy

MaxIter 6 7 8 9 10

Fig. 5. Average results of 60 combinations of two parameters (number of divisions and maximum iterations to change particles’ lengths).

particles’ position values to make a feature become selected

or not. PSO position updating is guided by fittest particles

with better feature subsets. Therefore, PSO can adjust particle

position values to make them higher or lower than the given

threshold so that the feature subsets can obtain better fitness.

We chose 0.6 to slightly prefer a smaller number of features

at the early stage of the evolution.

The numbers of divisions and maximum iterations that

gbest stays unchanged before changing particles’ lengths (β)

are new parameters that were proposed for variable-length

PSO. Therefore, we conducted an experiment (sensitivity anal-

ysis) to find the appropriate values of these two parameters.

The DLBCL dataset was used in this experiment because it

has a medium size compared with other datasets. VLPSO-LS

was run with 12 different values for the number of divisions

ranging from 3 to 14, and 5 values from 6 to 10 for the

maximum iterations to change particles’ lengths, resulting in

60 combinations of these two parameters. Each combination

was run 30 times. Fig. 5 shows the average test results of each

combination with the best accuracy marked with an asterisk

(*). The best combination was {12 divisions, 9 iterations}
which VLPSO and VLPSO-LS used for all datasets.

Since PSO is a stochastic algorithm, 30 independent runs

of each method with 30 different seeds are executed on each

training set. As a result, each PSO method is run 300 times

(30 runs x 10 folds) for each dataset. The average classifi-

cation accuracies are reported and compared using Wilcoxon

statistical significance test [39], with a 5% significance level.

Experiments were runs on PC with Intel Core i7-4770 CPU

@ 3.4GHz and a total memory of 8GB.

V. RESULTS AND DISCUSSIONS

Table III shows the best and average test accuracy of KNN

using the original feature set (“Full”), and the feature subset

returned by the four PSO-based FS methods on each dataset.

The reported accuracy is the balanced accuracy calculated

using Eq. (11). The third and fourth columns show the running

time (in minutes) and feature subset sizes. The smallest

running time, size and the highest average accuracy obtained

on each dataset are bold. Columns S1 and S2 display the

Wilcoxon significance test results (with a significance level of

0.05) of the corresponding method over VLPSO and VLPSO-

LS, respectively. “+” or “–” means the result is significantly

better or worse than the proposed method and “=” means they

are similar in the Wilcoxon tests. In other words, the more

“–”, the better the proposed methods.

TABLE III
AVERAGE TEST RESULTS.

Dataset Method Time(m) Size Best Mean ± Std S1 S2

SRBCT

Full 2308.0 87.08 - -
PSO 8.2 1119.4 92.50 89.51 ± 1.56 - -
ECLPSO 7.5 1054.8 90.42 88.10 ± 1.57 - -
CSO 19.9 85.4 100.00 93.29 ± 3.52 - -
VLPSO 1.4 49.1 100.00 99.67 ± 0.52 =
VLPSO-LS 2.1 71.4 100.00 99.75 ± 0.45

DLBCL

Full 5469.0 83.00 - -
PSO 47.6 2681.0 86.33 83.67 ± 1.52 - -
ECLPSO 44.2 2491.3 86.33 82.44 ± 2.01 - -
CSO 394.8 30.1 100.00 94.30 ± 4.05 + =
VLPSO 7.4 48.1 93.33 86.51 ± 2.88 -
VLPSO-LS 8.8 59.9 99.17 96.13 ± 1.90

9Tumor

Full 5726.0 36.67 - -
PSO 39.2 2811.9 45.00 42.72 ± 1.42 - -
ECLPSO 39.2 2605.5 45.00 41.33 ± 1.48 - -
CSO 373.4 220.3 68.33 59.50 ± 3.72 + +
VLPSO 6.2 44.2 61.67 55.11 ± 4.71 =
VLPSO-LS 6.2 61.9 70.00 56.78 ± 5.23

Leuk1

Full 5327.0 79.72 - -
PSO 41.2 2615.5 87.36 80.60 ± 2.55 - -
ECLPSO 36.3 2427.9 87.64 80.88 ± 2.28 - -
CSO 251.8 170.1 96.81 88.45 ± 3.90 - -
VLPSO 6.4 54.7 97.92 93.31 ± 2.34 =
VLPSO-LS 7.9 59.3 95.42 93.75 ± 1.56

Brain1

Full 5920.0 72.08 = -
PSO 66.7 2917.2 77.08 73.73 ± 2.21 + -
ECLPSO 60.0 2710.0 77.08 73.87 ± 2.37 + -
CSO 462.1 207.6 86.67 79.93 ± 3.09 + +
VLPSO 9.8 26.8 79.17 71.19 ± 3.52 -
VLPSO-LS 13.0 102.1 81.25 75.54 ± 2.79

Leuk2

Full 11225.0 89.44 - -
PSO 120.6 5535.7 92.22 89.83 ± 1.00 - -
ECLPSO 125.6 5115.6 92.22 89.82 ± 1.20 - -
CSO 1845.2 88.6 98.33 91.72 ± 3.16 = -
VLPSO 16.9 35.2 94.44 91.56 ± 1.67 -
VLPSO-LS 18.3 61.2 96.67 95.39 ± 0.95

Brain2

Full 10367.0 62.50 - -
PSO 80.5 5117.2 67.08 61.99 ± 2.91 - -
ECLPSO 73.6 4718.7 68.75 63.20 ± 2.60 - -
CSO 950.8 90.43 90.83 80.44 ± 6.28 + +
VLPSO 12.1 81.5 73.33 66.78 ± 4.10 -
VLPSO-LS 13.7 61.4 82.92 73.25 ± 4.30

Prostate

Full 10509.0 85.33 - -
PSO 160.6 5193.7 88.33 86.00 ± 1.49 - -
ECLPSO 152.5 4818.5 88.33 85.46 ± 1.41 - -
CSO 2369.9 357.2 95.17 88.99 ± 2.68 = -
VLPSO 22.6 26.4 94.17 89.82 ± 2.28 -
VLPSO-LS 25.8 56.4 97.17 92.58 ± 1.47

Lung

Full 12600.0 78.05 - -
PSO 574.2 6234.7 82.72 78.77 ± 1.53 - -
ECLPSO 503.1 5739.7 81.64 77.91 ± 1.98 - -
CSO 5565.9 226.4 93.79 87.72 ± 2.93 - -
VLPSO 70.1 176.1 94.08 89.47 ± 2.18 =
VLPSO-LS 307.1 242.9 93.71 90.17 ± 2.10

11Tumor

Full 12533.0 71.42 - -
PSO 418.5 6205.0 75.59 71.81 ± 1.75 - -
ECLPSO 366.7 5731.7 74.09 71.09 ± 1.20 - -
CSO 6288.6 588.6 84.47 79.52 ± 2.35 = -
VLPSO 65.8 246.7 85.16 80.81 ± 2.32 -
VLPSO-LS 99.0 367.4 86.51 82.81 ± 2.09



JOURNAL OF LATEX CLASS FILES, VOL. , NO. , 10

A. VLPSO Results

1) VLPSO versus Full: As can be seen from Table III, the

numbers of features selected by VLPSO on all datasets were

one to two orders of magnitude smaller than the original size

with the best ratio of 1/398 in Prostate. Among all the com-

pared methods, VLPSO obtained the smallest feature subsets

on almost all datasets. With the smallest size, feature subsets

returned by VLPSO significantly improved the performance of

KNN on eight out of ten datasets. The highest improvement

was seen on 9Tumor with 18.4% increase on average and 25%

in the best case. On SRBCT, the proposed method selected

less than 50 features to achieve 100% accuracy in almost all

300 runs, which is more than 12% improvement on Full. On

Brain1, VLPSO selected about 27 out of 5920 features to

obtain a similar classification performance as Full on average

and 7% higher accuracy in the best case.

2) VLPSO versus Standard PSO: Although PSO reduced

the original feature sets by half, VLPSO still selected at

least an order of magnitude fewer features than PSO on all

datasets and achieved significantly better performance than

PSO on nine datasets with the highest improvement of 12.7%

on Leuk1. The highest dimensionality reduction was seen

in Prostate where VLPSO selected 197 times fewer features

than PSO and still improved 3.8% on the average PSO

performance. Only on Brain1, VLPSO obtained 2.5% lower

average accuracy than PSO while selected 109 times fewer

features. However, the best accuracy achieved by VLPSO on

Brain1 is still 2% higher than PSO.

3) VLPSO versus ECLPSO: Although ECLPSO selected

a smaller number of features than PSO on all datasets, its

performance was quite similar to PSO with a maximum 2%

difference in accuracy. Compared with ECLPSO, VLPSO also

selected a much smaller number of features and achieved

significantly better performance on all datasets except for

Brain1.

4) VLPSO versus CSO: Compared with VLPSO, CSO

selected more features on nine datasets. On Prostate, CSO

selected 357 features while VLPSO selected 26 features only.

In terms of classification accuracy, VLPSO achieved a signif-

icantly better or similar classification performance as CSO on

six datasets, and worse on the remaining four datasets.

In summary, VLPSO won 32, draw 4 and lost 4 out of

the 40 comparisons in terms of classification performance

while selecting the smallest feature subsets in almost all cases.

Its results indicated that VLPSO conducted a much better

search than the compared methods. VLPSO effectiveness is

contributed by two mechanisms, the population division and

length changing, which are enabled by using the variable-

length representation to encode candidate solutions with dif-

ferent lengths. The population division distributes particles in

the swarm into different areas of the search space, which

effectively ensures the diversity of the swarm. Furthermore,

when there is a sign of being stuck in local optima, the pro-

posed length changing mechanism enabled particles to change

their search space without throwing away the knowledge that

they have learnt so far. This mechanism also gradually adjusts

PSO search to focus on smaller and more fruitful areas,

enabling PSO to find much smaller feature subsets with better

discriminating ability.

B. VLPSO-LS Results

1) VLPSO-LS versus Full: As can be seen from Table III,

the number of features selected by VLPSO-LS on all datasets

was one to two orders of magnitude smaller than the original

size. The features selected by VLPSO-LS helped KNN obtain

significantly better accuracy than using Full on all datasets

with an increase of more than 10% on seven datasets. On

9Tumor, VLPSO-LS subsets obtained 20% higher accuracy

than Full on average and 33% higher in the best case.

2) VLPSO-LS versus Standard PSO and ECLPSO: The

results of significance test shown in Column S2 showed that

VLPSO-LS outperformed PSO on all datasets while selected

16 to 92 times smaller number of features. Seven out of ten

datasets witnessed an increase of at least 10% on average

accuracy with the highest improvement of 14% on 9Tumor.

3) VLPSO-LS versus ECLPSO: Comparison between

ECLPSO and VLPSO-LS yields a similar pattern as with PSO

where VLPSO-LS selected 14 to 85 times smaller number of

features than ECLPSO to achieve significantly better perfor-

mance on all datasets.

4) VLPSO-LS versus CSO: Although CSO selected a much

smaller number of features than PSO and ECLPSO, its feature

subsets were still up to 6.3 times larger than VLPSO-LS on

eight datasets. VLPSO obtained significantly better classifi-

cation performance than CSO on six datasets that had up to

6.4% higher average accuracy, similar on one and worse on the

remaining three datasets, namely 9Tumor, Brain1 and Brain2.

5) VLPSO-LS versus VLPSO: As shown in Table III,

VLPSO-LS selected slightly more features than VLPSO on

almost all cases to further improve the performance of VLPSO

on six datasets. The highest improvement was on DLBCL

with 9.6% higher accuracy. On Leuk2, VLPSO-LS selected

20 features less than VLPSO while increased VLPSO accu-

racy by 6.5% on average and 9.6% in the best case. While

VLPSO obtained a similar or worse performance than Full

and other PSO methods on Brain1, VLPSO-LS significantly

outperformed the others on this dataset.

In summary, VLPSO-LS won 42, draw 5 and lost 3 out of

50 comparisons. The results of VLPSO-LS indicated that by

removing redundant features and adding more relevant ones,

the local search strategy helped VLPSO fine tune its solutions

to achieve the highest accuracy on all the datasets.

C. Computation Time

As can be seen from the third column of Table III, the fastest

algorithm among all the five compared methods is VLPSO.

Although VLPSO-LS performed more fitness evaluations, it

is the second-fastest method with only a slightly longer time

than VLPSO. PSO and ECLPSO, in third place, are similar

with their running time 5 to 8 times longer than VLPSO on

all datasets. Finally, CSO required the longest running time

at 14 to 109 times longer than VLPSO. This may be due to

the strategy of recording the historical fitness values of all



JOURNAL OF LATEX CLASS FILES, VOL. , NO. , 11

0 20 40 60 80 100

65
75

85
SRBCT

0 20 40 60 80 100

60
80

Leuk1

0 20 40 60 80 100

60
70

80
90

DLBCL

0 20 40 60 80 100

60
80

10
0

9Tumor

0 20 40 60 80 100

90
11

0
14

0

Brain1

0 20 40 60 80 100

60
10

0
14

0 Brain2

0 20 40 60 80 100

60
10

0
14

0

Prostate

0 20 40 60 80 100

60
70

80
90

Leuk2

0 20 40 60 80 100

35
0

45
0

11Tumor

0 20 40 60 80 100

25
0

35
0

Lung

Without Length Changing With Length Changing

Fig. 6. The average feature subset size of the whole swarm from iteration 10 to 100 in both scenarios with and without using length changing.

previously selected feature subset in an archive to avoid re-

evaluating the same solution. This strategy has been shown

to be effective in [21] where the largest dataset had 1588

features. However, when the number of features increases to

tens of thousands of features, the evaluation time saved seemed

to be affected by the time needed for matching the archived

solutions which used a fix-length representation with its length

equal to the original number of features.

In summary, the variable-length PSO-based methods re-

quired a much shorter running time than the traditional fix-

length ones. Section VI will further investigates the differences

in evolutionary processes that contribute to the effectiveness

and efficiency of the proposed methods.

D. The Effect of Length Changing

To investigate the effect of length changing, we analyse the

results of VLPSO-LS with (W) and without (WO) applying

length changing mechanism, which is shown in Table V given

in the Appendix. Compared to WO, W obtained up to 10

fewer features on all datasets except for Lung where it selected

1.8 more features on average. In terms of the classification

accuracy, W results were significantly better than WO on

DLBCL and similar on the remaining datasets. Furthermore,

W saved up to 14% of WO running time on all datasets.

Fig. 6 shows the average feature subset size of the whole

swarm from iteration 10 (i.e. just after the first time length

changing is applied in the evolutionary process) to 100 in both

scenarios. The figure shows that length changing dramatically

reduced particle lengths, which required a shorter time for PSO

updating.

E. Comparisons with Traditional Methods

To see if the proposed methods performed better than the

traditional FS methods, we compared the results of VLPSO-

LS with those returned from LFS, CFS and FCBF, all of

which can automatically determine the number of features that

should be selected. Table IV showed the running time, the

returned feature subset size, and the best and mean accuracy

of each method. Column S showed the results of Wilcoxon

significance test compared the corresponding method over

VLPSO-LS using the same symbols and meanings as in Table

III. The smallest size, the highest average and best accuracy

obtained on each dataset are bold.

TABLE IV
VLPSO-LS VERSUS TRADITIONAL METHODS.

Dataset Method Time (s) Size Best Mean ± Std S

SRBCT

LFS 25.0 7.1 91.67 -
CFS 243.3 112.3 99.17 -
FCBF 1.4 69.0 98.75 -
VLPSO-LS 123.3 71.4 100.00 99.75 ± 0.45

DLBCL

LFS 56.3 5.9 83.33 -
CFS 778.4 86.3 93.00 -
FCBF 1.6 66.1 94.83 -
VLPSO-LS 527.3 59.9 99.17 96.13 ± 1.90

9Tumor

LFS 52.9 9.7 26.67 -
CFS 341.2 44.0 56.67 =
FCBF 1.7 33.7 55.00 =
VLPSO-LS 371.4 61.9 70.00 56.78 ± 5.23

Leuk1

LFS 51.9 5.4 85.14 -
CFS 778.4 79.4 92.08 -
FCBF 1.4 48.5 89.86 -
VLPSO-LS 471.5 59.3 95.42 93.75 ± 1.56

Brain1

LFS 77.9 12.2 63.33 -
CFS 2973.0 151.9 76.67 +
FCBF 2.8 104.6 73.75 -
VLPSO-LS 781.6 102.1 81.25 75.54 ± 2.79

Leuk2

LFS 143.4 4.7 89.44 -
CFS 5653.0 129.5 94.44 -
FCBF 4.1 77.5 95.56 =
VLPSO-LS 1099.1 61.2 96.67 95.39 ± 0.95

Brain2

LFS 113.9 9.1 77.50 +
CFS 3182.2 101.1 77.50 +
FCBF 2.7 66.2 77.50 +
VLPSO-LS 820.6 61.4 82.92 73.25 ± 4.30

Prostate

LFS 158.2 5.9 90.17 -
CFS 2537.4 80.4 92.17 =
FCBF 3.4 66.1 92.17 =
VLPSO-LS 1550.5 56.4 97.17 92.58 ± 1.47

Lung

LFS 358.8 8.5 79.62 -
CFS 85179.1 517.0 93.76 +
FCBF 56.7 439.4 92.71 +
VLPSO-LS 18425.0 242.9 93.71 90.17 ± 2.10

11Tumor

LFS 309.3 17.3 61.76 -
CFS 57340.7 361.6 80.04 -
FCBF 31.1 349.6 80.57 -
VLPSO-LS 5941.5 367.4 86.51 82.81 ± 2.09

1) VLPSO-LS versus LFS: As can be seen from Table IV,

LFS selected less than 20 features on all datasets, obtaining

the smallest feature subset of all the compared methods.

However, these smallest subsets obtained significantly lower

accuracy than VLPSO-LS on nine datasets with more than

10% difference on five cases. On 9Tumor, VLPSO-LS selected

52 more features to achieve 30% higher accuracy than LFS

on average and 43% higher in the best case. Only on Brain2,

VLPSO-LS obtained a lower average accuracy than LFS, but

in the best case, VLPSO-LS still achieved more than 5%

higher accuracy than LFS. The results indicate that the linear

forward search in LFS was trapped in local optima in a very



JOURNAL OF LATEX CLASS FILES, VOL. , NO. , 12

early stage, resulting in minimal but low performance feature

sets.

2) VLPSO-LS versus CFS: Compared with CFS, VLPSO-

LS selected fewer features on eight datasets to obtain signifi-

cantly better accuracies on five, and similar on two. Although

both had a similar classification performance on 9Tumor,

VLPSO-LS still obtained 14% higher accuracy in the best case.

On Brain1 and Lung, VLPSO-LS had 1-3% lower average

accuracy; however, with much smaller feature subsets and

could achieve better accuracy in the best case. We also note

that although CFS is a deterministic and filter FS method, its

running time is two times longer than VLPSO-LS on the small

SRBCT dataset, and nine times on the large 11Tumor dataset.

This indicates that VLPSO-LS better scale to high-dimensional

data than CFS.

3) VLPSO-LS versus FCBF: The fourth column of Table

IV showed that the difference in feature subset size between

VLPSO-LS and FCBF was very small on all datasets except

Lung, where VLPSO-LS selected about a half of FCBF.

With a similar size, feature subsets of VLPSO-LS obtained a

significantly better accuracy than FCBF on five datasets, and

similar on two. Selecting 11 more features on Leuk1, VLPSO-

LS achieved 3.9% higher accuracy than FCBF on average and

5.6% higher in the best case. On Brain2, although VLPSO-LS

had 4.3% lower average accuracy, its best accuracy is still 5.4$

higher than FCBF. We also note that FCBF scaled very well

to high-dimensional data and it is the fastest method among

the four, which is an advantage of a filter and ranking FS

method. However, the inferior results of FCBF suggested that

the heuristic search of FCBF in the second stage might get

stuck in local optima while the global search helped PSO

overcome this problem to obtain better results.

In summary, among 30 comparisons with the three methods,

VLPSO-LS won 19 cases, drew 6 and lost 5. The results

showed that VLPSO-LS achieved a significantly better per-

formance than the traditional methods in reasonable running

time.

VI. FURTHER ANALYSIS

We have shown so far that in most cases, VLPSO and

VLPSO-LS achieved much better performance than the com-

pared FS methods in terms of classification accuracy, di-

mensionality reduction and computation time. In this sec-

tion, we will further investigate their performance to reveal

the contributions of different components to improving PSO

search capability. Specifically, we will investigate the effect of

variable-length representation and the local search. Note that

the results shown in all figures of this section are averaged

over the 30 runs.

A. Efficiency of Variable-Length PSO Representation

First of all, we will investigate the effect of variable-length

representation on the tremendous reduction of computation

time. Since all the four PSO-based FS methods used the same

population size, the maximum number of iterations, and the

fitness function, their running time difference is contributed

by the feature subset size which affected the fitness evaluation

time and the length of particles which affected the particle

updating time. To investigate these differences, we plot the

average feature subset size of a particle in each iteration of

all the four methods and the particles’ maximum length of the

two proposed methods in Figs. 7 and 8, respectively.
As can be seen from Fig. 7, the subset sizes of PSO and

ECLPSO particles started quite large and slightly increased

over the whole evolutionary process. On the other hand,

starting at about half size of PSO, VLPSO witnessed a steady

decrease in the first 40 iterations and then a slight decline in

the remaining stage. Starting at the same point as VLPSO,

VLPSO-LS dramatically dropped to a very small size in the

first several iterations and kept stable till the end. These figures

clearly showed that the fitness evaluation time in VLPSO and

VLPSO-LS are significantly reduced thanks to the small subset

sizes of all particles.
In addition to the small evaluation time, the particle up-

dating time of the variable-length PSO is also much smaller.

With a fix-length representation, PSO and ECLPSO spent a

fixed amount of time to update particles with the length of the

original number of features in every iteration. On the other

hand, using the size division strategy, VLPSO and VLSPO-

LS spent much shorter time to update their particles from

the first iteration to the end. Furthermore, after each length

changing, the particle lengths even get significantly shorter.

Fig. 8 showed the maximum length of particles in VLPSO

and VLSPO-LS changing during the evolutionary process of

all datasets. The figures showed that the maximum length

dramatically dropped in the first 40 iterations and slightly

decreased after that. The significant impact of particle lengths

on the running time can be shown in the Lung dataset. In this

dataset, while the average feature subset sizes of VLPSO-LS

were much smaller than VLPSO in the first 40 iterations as

shown in Fig. 7, the particles’ maximum length in VLPSO-LS

is much larger than VLPSO as shown in Fig. 8, which makes

VLPSO-LS had a much longer running time than VLPSO as

shown in Table III.

B. Effectiveness of Variable-Length PSO Representation

Secondly, we will investigate the effect of variable-length

representation on the size and accuracy of the returned feature

subsets. Fig. 9 and 10 show the changing of gbest size

and fitness during the evolutionary process. Note that the

fitness values are calculated based on Eq. (10), which is

a combination of KNN accuracy and the distance measure.

Therefore, these values hardly reached the value of 1.
As shown in Fig. 9, from the beginning of the run, gbest

size of the two variable-length PSO methods was already way

smaller than the fixed ones. By dividing particles into different

length divisions, the swarm in the proposed methods could

have a higher diversity than the baseline methods. This enabled

them to find much smaller feature subsets from the early stage

of the evolutionary process. By removing redundant features

from pbest, VLPSO-LS had an even smaller gbest size than

VLPSO from the beginning and kept nearly unchanged to the

end. On the other hand, VLSPO’s gbest maintained a gradual

decrease over the whole evolutionary process and reached a

smaller subset size than VLPSO-LS at the end.



JOURNAL OF LATEX CLASS FILES, VOL. , NO. , 13

0 20 40 60 80 100

0
4
0
0

8
0
0

SRBCT

0 20 40 60 80 100

0
1
0
0
0

2
5
0
0 Leuk1

0 20 40 60 80 100

0
1
0
0
0

2
5
0
0 DLBCL

0 20 40 60 80 100

0
1
0
0
0

2
5
0
0

9Tumor

0 20 40 60 80 100

0
1
0
0
0

2
5
0
0

Brain1

0 20 40 60 80 100

0
2
0
0
0

5
0
0
0 Brain2

0 20 40 60 80 100

0
2
0
0
0

5
0
0
0 Prostate

0 20 40 60 80 100

0
2
0
0
0

5
0
0
0

Leuk2

0 20 40 60 80 100

0
2
0
0
0

5
0
0
0

11Tumor

0 20 40 60 80 100

0
2
0
0
0

5
0
0
0

Lung

PSO ECLPSO VLPSO VLPSO−LS

Fig. 7. The average feature subset size of the whole swarm in 100 iterations.

20 40 60 80 100

5
0
0

1
5
0
0

SRBCT

20 40 60 80 100

0
2
0
0
0

5
0
0
0 Leuk1

20 40 60 80 100

0
2
0
0
0

5
0
0
0

DLBCL

20 40 60 80 100

0
2
0
0
0

5
0
0
0

9Tumor

20 40 60 80 100

0
2
0
0
0

5
0
0
0

Brain1

20 40 60 80 100

0
4
0
0
0

1
0
0
0
0 Brain2

20 40 60 80 100

0
4
0
0
0

1
0
0
0
0 Prostate

20 40 60 80 100

0
4
0
0
0

1
0
0
0
0 Leuk2

20 40 60 80 100

2
0
0
0

8
0
0
0

Lung

20 40 60 80 100

2
0
0
0

8
0
0
0

11Tumor

VLPSO VLPSO−LS

Fig. 8. The average particle maximum length in 100 iterations.

0 20 40 60 80 100

2
0
0

6
0
0

SRBCT

0 20 40 60 80 100

0
1
0
0
0

2
5
0
0 Leuk1

0 20 40 60 80 100

0
1
0
0
0

2
5
0
0 DLBCL

0 20 40 60 80 100

0
1
0
0
0

2
5
0
0

9Tumor

0 20 40 60 80 100

0
1
0
0
0

2
5
0
0

Brain1

0 20 40 60 80 100

0
2
0
0
0

5
0
0
0 Brain2

0 20 40 60 80 100

0
2
0
0
0

5
0
0
0 Prostate

0 20 40 60 80 100

0
2
0
0
0

5
0
0
0

Leuk2

0 20 40 60 80 100

1
0
0
0

4
0
0
0

11Tumor

0 20 40 60 80 100

0
2
0
0
0

5
0
0
0

Lung

PSO ECLPSO VLPSO VLPSO−LS

Fig. 9. The average feature subset size of gbest in 100 iterations.

As shown in Fig. 10, with a small subset size, VLPSO’s

gbest obtained a much higher fitness than the baseline methods

from the first iteration and continued to improve to the

end. Using an informative local search to remove redundant

features and add more relevant ones, VLPSO-LS’s gbest
even had much better fitness than VLPSO. The gap between

gbest’s fitness of both methods varied in different datasets;

however, with the same trend which is getting closer at the

end. The gap’s magnitude may reflect the complexity of the

corresponding search space. For example in SRBCT, a small

dataset with 2038 features, this gap is quite small, and the

significance test on 30 runs showed that both methods obtained

a similar classification accuracy while VLPSO-LS selected

20 more features than VLPSO. On the other hand, on such

datasets with a greater number of classes and features as

9Tumor and 11Tumor, the gap is quite large even at the end.

VII. CONCLUSIONS

This study aims to propose a new PSO representation that

can have a variable and dynamic length for FS on high-

dimensional data. The goal was achieved by proposing a new

variable-length PSO-based FS method where particles in a

swarm can have different lengths which can also be changed

during the evolutionary process. The results showed that the

proposed variable-length PSO-based methods achieved a much

smaller feature subset with better classification performance

in a shorter time than the traditional fixed-length methods.

By having shorter and dynamic lengths to encode particles,

PSO maintains a better diversity in the swarm and requires

a much smaller number of updating operations. The proposed

length changing mechanism also helped PSO jump out of local

optima and focus its search on a more fruitful area.



JOURNAL OF LATEX CLASS FILES, VOL. , NO. , 14

0 20 40 60 80 100

0
.7

8
0
.8

4
0
.9

0 SRBCT

0 20 40 60 80 100

0
.7

8
0
.8

4
0
.9

0 Leuk1

0 20 40 60 80 100

0
.7

4
0
.8

0
0
.8

6

DLBCL

0 20 40 60 80 100

0
.4

5
0
.6

0
0
.7

5

9Tumor

0 20 40 60 80 100

0
.6

5
0
.7

5

Brain1

0 20 40 60 80 100

0
.7

0
0
.8

0

Brain2

0 20 40 60 80 100

0
.7

4
0
.8

0
0
.8

6 Prostate

0 20 40 60 80 100

0
.8

0
0
.8

6

Leuk2

0 20 40 60 80 100

0
.7

0
0
.8

0

11Tumor

0 20 40 60 80 100

0
.6

5
0
.7

5
0
.8

5

Lung

PSO ECLPSO VLPSO VLPSO−LS

Fig. 10. The average fitness of gbest in 100 iterations.

The proposed variable-length PSO-based method has shown

promise in FS. It can also be applied to other tasks. In the

proposed representation, each dimension is updated separately

without taking into account other dimensions. This may limit

the performance of PSO in FS on problems which have strong

interactions between features for target prediction. Taking this

information into account when selecting features may help

PSO obtain even better results, but it is very hard to achieve.

This direction will be considered in our future work.

ACKNOWLEDGMENT

This work was supported in part by the Marsden Fund

of New Zealand Government under Contracts VUW1509

and VUW1615, Huawei Industry Fund E2880/3663, and the

University Research Fund at Victoria University of Wellington

209862/3580, and 213150/3662.

APPENDIX

TABLE V
COMPARED RESULTS OF VLPSO-LS IN BOTH SCENARIOS WITH (W) AND

WITHOUT (WO) USING THE LENGTH CHANGING MECHANISM

Dataset Method Time(m) Size Best Mean ± Std S

SRBCT
WO 2.10 76.3 100.00 99.89 ± 0.29 =
W 2.05 71.4 100.00 99.75 ± 0.45

DLBCL
WO 9.14 62.5 98.33 95.03 ± 2.00 -
W 8.79 59.9 99.17 96.13 ± 1.90

9Tumor
WO 7.19 67.6 63.33 55.89 ± 3.93 =
W 6.19 61.9 70.00 56.78 ± 5.23

Leuk1
WO 8.74 61.8 97.64 93.63 ± 2.09 =
W 7.86 59.3 95.42 93.75 ± 1.56

Brain1
WO 13.39 107.6 82.08 76.15 ± 3.41 =
W 13.03 102.1 81.25 75.54 ± 2.79

Leuk2
WO 20.64 65.4 98.33 95.26 ± 1.37 =
W 18.32 61.2 96.67 95.39 ± 0.95

Brain2
WO 14.99 67.0 79.58 73.50 ± 3.55 =
W 13.68 61.4 82.92 73.25 ± 4.30

Prostate
WO 27.14 61.0 96.17 92.49 ± 1.93 =
W 25.84 56.4 97.17 92.58 ± 1.47

Lung
WO 312.96 241.1 94.19 90.14 ± 2.14 =
W 307.08 242.9 93.71 90.17 ± 2.10

11Tumor
WO 102.09 377.3 85.96 82.79 ± 1.84 =
W 99.02 367.4 86.51 82.81 ± 2.09

REFERENCES

[1] M. Dash, “Feature selection via set cover,” in Proceedings of IEEE

Knowledge and Data Engineering Exchange Workshop, Nov 1997, pp.
165–171.

[2] I. Guyon and A. Elisseeff, “An introduction to variable and feature
selection,” Journal of Machine Learning Research, vol. 3, pp. 1157–
1182, 2003.

[3] B. Tran, B. Xue, and M. Zhang, “A PSO based hybrid feature selection
algorithm for high-dimensional classification,” in Proceedings of IEEE

Congress on Evolutionary Computation, 2016, pp. 3801–3808.

[4] Y. Sun, IEEE Transactions on Pattern Analysis and Machine Isntelli-

gence, vol. 29, no. 6, pp. 1035–1051, 2007.

[5] A. Jakulin and I. Bratko, “Testing the significance of attribute interac-
tions,” in Proceedings of the 21st International Conference on Machine

Learning (ICML). ACM, 2004, pp. 52–59.

[6] L. Yu and H. Liu, “Feature selection for high-dimensional data: A
fast correlation-based filter solution,” in Proceedings of the 20th on

International Conference on Machine Learning (ICML), 2003, pp. 856–
863.

[7] A. Whitney, “A direct method of nonparametric measurement selection,”
IEEE Transactions on Computers, vol. C-20, no. 9, pp. 1100–1103,
1971.

[8] T. Marill and D. M. Green, “On the effectiveness of receptors in
recognition systems.” IEEE Transactions on Information Theory, vol. 9,
no. 1, pp. 11–17, 1963.

[9] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm
theory,” in Proceedings of the 6th International Symposium on Micro

Machine and Human Science, 1995, pp. 39–43.

[10] C. Sun, Y. Jin, R. Cheng, J. Ding, and J. Zeng, “Surrogate-assisted co-
operative swarm optimization of high-dimensional expensive problems,”
IEEE Transactions on Evolutionary Computation, vol. 21, no. 4, pp.
644–660, 2017.

[11] C. Yue, B. Qu, and J. Liang, “A multi-objective particle swarm optimizer
using ring topology for solving multimodal multi-objective problems,”
IEEE Transactions on Evolutionary Computation, vol. PP, no. 99, pp.
1–13, 2017. [Online]. Available: doi:10.1109/TEVC.2017.2754271

[12] B. Xue, M. Zhang, W. N. Browne, and X. Yao, “A survey on evolutionary
computation approaches to feature selection,” IEEE Transactions on

Evolutionary Computation, vol. 20, no. 4, pp. 606–626, 2016.

[13] X. Li and X. Yao, “Cooperatively coevolving particle swarms for large
scale optimization,” IEEE Transactions on Evolutionary Computation,
vol. 16, no. 2, pp. 210–224, 2012.

[14] J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar, “Comprehensive
learning particle swarm optimizer for global optimization of multimodal
functions,” IEEE Transactions on Evolutionary Computation, vol. 10,
no. 3, pp. 281–295, June 2006.

[15] X. Yu, Y. Liu, X. Feng, and G. Chen, “Enhanced comprehensive learning
particle swarm optimization with exemplar evolution,” in Proceedings of

the 11th International Conference on Simulated Evolution and Learning

(SEAL). Springer International Publishing, 2017, pp. 929–938.

[16] P. J. Angeline, Evolutionary optimization versus particle swarm opti-

mization: Philosophy and performance differences. Springer Berlin
Heidelberg, 1998, pp. 601–610.

[17] B. Xue, M. Zhang, and W. N. Browne, “Particle swarm optimisation
for feature selection in classification: Novel initialisation and updating
mechanisms,” Applied Soft Computing, vol. 18, pp. 261–276, 2014.

[18] H. H. Inbarani, A. T. Azar, and G. Jothi, “Supervised hybrid feature
selection based on pso and rough sets for medical diagnosis,” Computer

methods and programs in biomedicine, vol. 113, no. 1, pp. 175–185,
2014.

[19] B. Chakraborty and G. Chakraborty, “Fuzzy consistency measure with
particle swarm optimization for feature selection,” in IEEE International

Conference on Systems, Man, and Cybernetics, 2013, pp. 4311–4315.

[20] R. Tahmasebifar, M. K. Sheikh-El-Eslami, and R. Kheirollahi, “Point
and interval forecasting of real-time and day-ahead electricity prices by a



JOURNAL OF LATEX CLASS FILES, VOL. , NO. , 15

novel hybrid approach,” IET Generation, Transmission and Distribution,
vol. 11, no. 9, pp. 2173–2183, 2017.

[21] S. Gu, R. Cheng, and Y. Jin, “Feature selection for high-dimensional
classification using a competitive swarm optimizer,” Soft Computing,
vol. 22, no. 3, pp. 811–822, 2018.

[22] H. Banka and S. Dara, “A Hamming distance based binary particle
swarm optimization (HDBPSO) algorithm for high dimensional feature
selection, classification and validation,” Pattern Recognition Letters,
vol. 52, pp. 94–100, 2015.

[23] A. Moaref and V. S. Naeini, “A particle swarm optimization based
on a ring topology for fuzzy-rough feature selection,” in the 13th

Iranian Conference on Fuzzy Systems (IFSC), 2013, pp. 1–6. [Online].
Available: doi:10.1109/IFSC.2013.6675598

[24] M. Lane, B. Xue, I. Liu, and M. Zhang, “Gaussian based particle
swarm optimisation and statistical clustering for feature selection,” in
Evolutionary Computation in Combinatorial Optimisation (EvoCOP).
Springer Berlin Heidelberg, 2014, vol. 8600, pp. 133–144.

[25] J. Kennedy and R. Eberhart, “A discrete binary version of the particle
swarm algorithm,” in IEEE International Conference on Systems, Man,

and Cybernetics, vol. 5, 1997, pp. 4104–4108.
[26] B. H. Nguyen, B. Xue, and P. Andreae, “A novel binary particle swarm

optimization algorithm and its applications on knapsack and feature
selection problems,” in The 20th Asia Pacific Symposium of Intelligent

and Evolutionary Systems (IES). Springer International Publishing,
2017, pp. 319–332.

[27] W.-N. Chen, J. Zhang, H. S. Chung, W.-L. Zhong, W.-G. Wu, and Y.-
H. Shi, “A novel set-based particle swarm optimization method for
discrete optimization problems,” IEEE Transactions on Evolutionary

Computation, vol. 14, no. 2, pp. 278–300, 2010.
[28] T. Hino, S. Ito, T. Liu, and M. Maeda, “Set-based particle swarm

optimization with status memory for knapsack problem,” Artificial Life

and Robotics, vol. 21, no. 1, pp. 98–105, 2016.
[29] J. Langeveld and A. P. Engelbrecht, “Set-based particle swarm opti-

mization applied to the multidimensional knapsack problem,” Swarm

Intelligence, vol. 6, no. 4, pp. 297–342, Dec 2012.
[30] W. H. Press, S. Teukolsky, W. Vetterling, and B. Flannery, “Numerical

recipes in C,” Cambridge University Press, vol. 1, p. 3, 1988.
[31] Q. Song, J. Ni, and G. Wang, “A fast clustering-based feature subset

selection algorithm for high-dimensional data,” IEEE Transactions on

Knowledge and Data Engineering, vol. 25, pp. 1–14, 2013.
[32] H. Al-Sahaf, A. Al-Sahaf, B. Xue, M. Johnston, and M. Zhang,

“Automatically evolving rotation-invariant texture image descriptors by
genetic programming,” IEEE Transactions on Evolutionary Computa-

tion, vol. 21, no. 1, pp. 83–101, 2017.
[33] G. Patterson and M. Zhang, “Fitness functions in genetic programming

for classification with unbalanced data,” in Proceedings of the 20th

Australian Joint Conference on Artificial Intelligence (AI). Springer
Berlin Heidelberg, 2007, pp. 769–775.

[34] C. C. Aggarwal, A. Hinneburg, and D. A. Keim, “On the surprising
behavior of distance metrics in high dimensional space,” in International

Conference on Database Theory. Springer, 2001, pp. 420–434.
[35] M. A. Hall, “Correlation-based feature selection for discrete and nu-

meric class machine learning,” in Proceedings of the 7th International

Conference on Machine Learning, 2000, pp. 359–366.
[36] M. Gutlein, E. Frank, M. Hall, and A. Karwath, “Large-scale attribute

selection using wrappers,” in IEEE Symposium on Computational Intel-

ligence and Data Mining, 2009, pp. 332–339.
[37] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.

Witten, “The weka data mining software: an update,” ACM SIGKDD

Explorations Newsletter, vol. 11, no. 1, pp. 10–18, 2009.
[38] G. Azevedo, G. Cavalcanti, and E. Filho, “An approach to feature

selection for keystroke dynamics systems based on PSO and feature
weighting,” in IEEE Congress on Evolutionary Computation (CEC’07),
2007, pp. 3577–3584.

[39] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics

Bulletin, vol. 1, no. 6, pp. 80–83, 1945.

Binh Tran (S’14) received her B.E. in Computer
Science from Cantho University, Vietnam, in 1998,
the M.Sc. degree in Applied Computer Science from
Free University of Brussels, Belgium, in 2002, and
the PhD degree in computer science in 2018 at
Victoria University of Wellington, New Zealand. She
is currently a Post Doctoral Research Fellow in
the School of Engineering and Computer Science
at Victoria University of Wellington. Her research
interests are in evolutionary computation, feature
manipulation including feature selection and con-

struction, high dimensional data, and machine learning.
Ms. Tran is a member of the IEEE Computational Intelligence Society

(CIS). She has been serving as a reviewer for over 10 international journals
and conferences in the field such as IEEE TEVC, IEEE TCYB, Applied Soft
Computing, IEEE CEC, GECCO, SEAL, AAAI.

Bing Xue (M’10) received the B.Sc. degree from
the Henan University of Economics and Law,
Zhengzhou, China, in 2007, the M.Sc. degree in
management from Shenzhen University, Shenzhen,
China, in 2010, and the PhD degree in computer
science in 2014 at Victoria University of Wellington,
New Zealand. She is currently a Senior Lecturer
in School of Engineering and Computer Science
at Victoria University of Wellington. Her research
focuses mainly on evolutionary computation, feature
selection, feature construction, multi-objective opti-

misation, image analysis, transfer learning, data mining, and machine learning.
She has over 100 papers published in fully refereed international journals
and conferences and most of them are on evolutionary feature selection and
construction.

Dr Xue is currently the Chair of the IEEE Task Force on Evolutionary
Feature Selection and Construction, IEEE Computational Intelligence Society
(CIS), Vice-Chair of the IEEE CIS Data Mining and Big Data Analytics
Technical Committee, and Vice-Chair of IEEE CIS Task Force on Transfer
Learning and Transfer Optimisation. She is also an Associate Editor/member
of Editorial Board for five international journals and a reviewer of over 50
international journals. Dr Xue is the Finance Chair of IEEE Congress on
Evolutionary Computation (CEC) 2019, a Program Co-Chair of the 31th
Australasian AI 2018, ACALCI 2018, and the 7th International Conference
on SoCPaR2015, and she is also a tutorial chair, special session chair, or
publicity chair for many other international conferences.

Mengjie Zhang (M’04-SM’10) received the B.E.
and M.E. degrees from Artificial Intelligence Re-
search Center, Agricultural University of Hebei,
Hebei, China, and the Ph.D. degree in computer
science from RMIT University, Melbourne, VIC,
Australia, in 1989, 1992, and 2000, respectively. He
is currently Professor of Computer Science, Head
of the Evolutionary Computation Research Group,
and the Associate Dean (Research and Innovation)
in the Faculty of Engineering. His current research
interests include evolutionary computation, particu-

larly genetic programming, particle swarm optimization, and learning classifier
systems with application areas of image analysis, multi-objective optimization,
feature selection and reduction, job shop scheduling, and transfer learning. He
has published over 350 research papers in refereed international journals and
conferences.

Prof. Zhang is a Fellow of Royal Society of New Zealand and have
been a Panel member of the Marsden Fund (New Zealand Government
Funding). He is also a senior member of IEEE and a member of ACM.
He is currently chairing the IEEE CIS Intelligent Systems and Applications
Technical Committee, and the immediate Past Chair for the IEEE CIS Emer-
gent Technologies Technical Committee and the Evolutionary Computation
Technical Committee, and a member of the IEEE CIS Award Committee.
He is a vice-chair of the IEEE CIS Task Force on Evolutionary Feature
Selection and Construction, a vice-chair of the Task Force on Evolutionary
Computer Vision and Image Processing, and the founding chair of the IEEE
Computational Intelligence Chapter in New Zealand. He is also a committee
member of the IEEE NZ Central Section.


