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VARIABLE METRIC METHOD FOR MINIMIZATION

William C. Davidon

This is a method for determining numerically local minima of dif-
ferentiable functions of several variables. In the process of locating each
minimum, a matrix which characterizes the behavior of the function about
the minimum is determined. For a region in which the function depends
quadratically on the variables, no more than N iterations are required,
where N is the number of variables. By suitable choice of starting values
and without modification of the procedure, linear constraints can be imposed
upon the variables.

1. INTRODUCTION

The solution to many different types of physical and mathematical
problems can be obtained by minimizing a function of a finite number of
variables. Among these problems are least-squares fitting of experimental
data, determination of scattering amplitudes and energy eigenvalues by
variational mrethods, the solution of differential equations, etc. With the
use of high-speed digital computers, numerical methods for finding the
minima of functions have received increased attention. Some of the pro-
cedures which have been used are those of optimum gradient,(l) conjugate
gradients,(z) the Newton-Raphson iteration,(3) and one by Garwin and
Reich.(4) In many instances, however, all of these methods require a large
number of iterations to achieve a given accuracy in locating the minimum.
Also, for some behaviors of the function being minimized, the procedures
do not converge.

The method presented in this paper has been developed to improve
the speed and accuracy with which the minima of functions cam be evaluated
numerically. In addition, a matrix characterizing the behavior of the func-
tion in the neighborhood of the minimum is determined in the process.
Linear constraints can be imposed upon the variables by suitable choice of
initial conditions, without alteration of the procedure.

2. NOTATION

We will employ the summation convention:

N
alb by = 3 alby
p=1



In describing the iterative procedure, we will use symbols for memory
locations rather than successive values of anumber; e.g., we would write
x + 3 —= x instead of x; + 3 = x;4;. In this notation, the sequence of oper-
ations is generally relevant. The following symbols will be used.

xM: wu=1, ..., N: the set of N independent variables

f(x): the value of the function to be minimized evaluated at the
point x.
g (x): the derivatives of f (x) with respect to x* evaluated at x:

gy (¥) = aaffj)

hH*Y. a non-negative symmetric matrix which will be used as a
metric in the space of the variables.

A: The determinant of h*¥
abso/w'/'a .
€ 2 times AN 2ccuracy to which the function f (x) is

to be minimized.

K: an integer which specifies the number of times the variables
are to be changed in a random manner to test the reliability
of the determination of the minimum.

3. GEOMETRICAL INTERPRETATION

It is convenient to use geometrical concepts to describe the mini~
mization procedure. We do so by considering the variables xM to be the
coordinates of a point in an N-dimensional linear space. As shown in
Fig, la, the set of x for which f (x) is constant forms an N-1 dimensional
surface in this space. One of this family of surfaces passes through each x,
and the surface about a point is characterized by the gradient of the function
at that point:

g () = 2]

These N components of the gradient can in turn be considered as the coor-
dinates of a point in a different space, as shown in Fig. 1b. As long as f (x)
is differentiable at all points, there is a unique point g in the gradient space
associated with each point x in the position space, though there may be
more than one x with the same g.



(a)

Fig. 1. Geometrical interpretation of xM and g, (x)

In the neighborhood of any one point A the second derivatives of
f(x) specify a linear mapping of changes in position, dx, onto changes in
gradient dg, in accordance with the equation

& f

Ve = Sy (3.1)

The vectors dx and dg will be in the same direction only if dx is an
eigenvector of the Hessian matrix:

JxMHdyxY

|5

If the ratios among the corresponding eigenvalues are large, then for most
dx there will be considerable difference in the directions of these two
vectors.

All iterative gradient methods, of which this is one, for locating
the minima of functions consist of calculating g for various x in an effort
to locate those values of x for which g = 0, and for which the Hessian
matrix is positive definite. If this matrix were constant and explicitly
known, then the value of the gradient at one point would suffice to determine
the minimum. In that case the change desired in g would be -g, so we
would have - -

0% f

- 14
TBL T SeAox? A% ©.2)

from which we could obtain Ax¥ by multiplying Eq. (3.2) by the inverse of



the matrix “ —-B—2£—

xH 5x7/ dxHyxV
is not constant, nor would explicit evaluation at points that might be far from
a minimum represent the best expenditure of time.

However, in most situations of interest,

f -1
Instead, an initial trial value is assumed for the matrix ” <Ii~v " .
oxMox

This matrix, denoted by hH¥, specifies a linear mapping of all changes in

the gradient onto changes in position. It is to be symmetric and non-negative
(positive definite if there are no constraints on the variables). After

making a change in the variable x, this trial value is improved on the basis

of the actual relation between the changes in g and x. If a}—{gz_af;{—ﬂ”i is con-
stant,then, after N iterations, not only will the minimum of the function be
z -1
determined, but also the final value of MY will equal I —i—f—"— We
0 x HdxV

shall subsequently discuss the significance of this matrix in specifying the
accuracy to which the variables have been determined.

The matrix h #¥can be used to associate a squared length to any
gradient, defined by 1 atd 8u8y- If the Hessian matrix were constant and h#¥

were its inverse, then %_h,liv 8.8 would be the amount by which f(x) would

exceed its minimum value. We therefore consider hH4¥ as specifying a
metric, and when we refer to the lengths of vectors, we will imply their
lengths using K as the metric. We have called the method a "variab]re
metric" method to reflect the fact that h*’ is changed after each iteration.

We have divided the procedure into five parts which to a large ex-
tent are logically distinct. This not only facilitates the presentation and
analysis of the method, but it is convenient in programming the method for
machine computation.

4. READY: CHART 1

The function of this section is to establish a direction along which
to search for a relative minimum, and to box off an interval in this direc-
tion within which a relative minimum is located. In addition, the criterion
for terminating the iterative procedure is evaluated.

Those operations which are only performed at the beginning of the
calculation and not repeated on successive iterations have been included in
Chart 1 (page 7). These include the loading of input data, initial print-outs,
and the initial calculation of the function and its gradient. This latter cal-
culation is treated as an independent subroutine, which may on its initial and
final calculations include some operations not part of the usual iteration,
such as loading operations, calculation of quantities for repeated use, special
print-outs, etc. A counter recording the number of iterations has been found
to be a convenience, and is labeledl.
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The iterative part of the computation begins with "READY 1." The
direction of the first step is chosen by using the metric hM? in the relation

-n*? gv——sp'° (4.1)

The component of the gradient in this direction is evaluated through the
relation

SIJ' gu,"“"' gs . (4’.2)

From Egs. (4.1) and (4.2) we see that -gg is the squared length of g, and
hence the improvement to be expected in the function is -% gs- The positive
definiteness of h®¥ insures that gg is negative, so that the step is in a direc-
tion which(at least initially) decreases the function. If its decrease is
within the accuracy desired, i.e., if g5 + € >0, then the minimum has been
determined. If not, we continue with the procedure.

In a first effort to box in the minimum, we take a step which is

twice the size that would locate the minimum if the trial h#¥were

Bxﬂ EBXV "
However, in order to prevent this step from being unreasonably large when
the trial h®" is a poor estimate, we restrict the step to a length such that
(Xs:u)g‘u, the decrease in the function if it continued to decrease linearly, is
not greater than some preassigned maxiimum 2f . We then change x* by

gt ——xTH (4.3)

3

-

and calculate the new value of the function and its gradient at xt*, If the
projection st "I; = g of the new gradient in the direction of the step is
positive, or if the new value of the function ft is greater than the orlglnal f,
then there is a relative minimum along the direction s between x and xT,
and we proceed to "Aim" where we will interpolate its position. However,
if neither of these conditions is fulfilled, the function has decreased and is
decreasing at the point 5”', and we infer that the step taken was too small.

If the step had been limited by the preassigned change in the function hH? is
double d. If the step had been taken on the basis of WY, we modify h*¥ so
as to double the squared length of sH, leaving the length of all perpendicular
vectors unchanged. This is accomplished by

ald +% gk gV —w= WUV , (4.4)

where 4 is the squared length of s¥. This doubles the determinant of hHV.
The process is then repeated, starting from the new position.



5. AIM: CHART 2

The function of this section is to estimate the location of the rela-
tive minimum within the interval selected by "Ready." Also a comparison
is made of the improvement expected by going to this minimum with that
from a step perpendicular to this direction.

2
AIM e d 22 : 023 X 4
. f- o ; gg + Q-2
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Inasmuch as the interpolation is along a one-dimensional interval,
it is convenient to plot the function along this direction as a simple graph
(see Fig. 2).

The values of f and f' of the function at points iandicj' are known,
and so are its slopes, g4 and g;', at these two points. We interpolate for
the location of the minimum by choosing the "smoothest" curve satisfying
the boundary conditions at x and xt, namely, the curve defined as the one
which minimizes

A 2
£1)
f da (docz

0

2
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Fig. 2

Plot of f (x) along a
one-dimensional interval.

a=o a=\

over the curve. This is the curve formed by a flat spring fitted to the
known ordinates and slopes at the end points, provided the slope is small.
The resulting curve is a cubic, and its slope at any a (0 <a< ) ) is givenby

20 a? +
gs(®) = gg - (gs +2) +57 (gs * 85 t+ 22), (5.1)
where
3(f - £F
zZ = _i.____—)-’- gs + g-s'-

A

The root of Eq. (5.1) that corresponds to a minimum lies between
0 and X in virtue of the fact that g5 < 0 and either g3 >0 or z <ggt g;. It
can be expressed as

% min = >‘(1 - a) s
where
+
gs tQ -z
a= j (5.2)
gs - gs +2Q
and

+

Q= (2° - gsgs)l/z

The particular form of Eq. (5.2) is chosen to obtain maximum accuracy,
which might otherwise be lost in taking the difference of nearly equal
quantities. The amount by which the minimum in f is expected to fall be-
low ft is given by

A

dags(a)=%(g;+z+zo)a2x . (5.3)
(A-aX)



The anticipated change is now compared with what would be expected from
a perpendicular step. On the basis of the metric hH#¥, the step to the opti-
mum point in the (N-1)-dimensional surface perpendicular to s* through
xTH is given by

+
-hMY gf +§;—s# —=th (5.4)

The change in f to be expected from this step is 3tH g/j. Hence, the
decision whether to interpolate for the minimum along s or to change x by
use of Eq. (5.4) is made by comparing gf = t# g,ﬂ with expression (5.3).

The purpose of allowing for this option is to improve the speed of
convergence when the function is not quadratic. Consider the situation of
Fig. 3. The optimum point between x and _)5_"" is point A, However, by going
to point B, a greater improvement can be made in the function. When the
behavior of the function is described by a curving valley, this option is of
particular value, for it enables successive iterations to proceed around
the curve without backtracking to the local minimum along each step. How-
ever, if evaluation of the function at this new position does not give a better
value than that expected from the interpolation, then the interpolated position
is used. Should the new position be better as expected, it is then desired to
modify Y to incorporate the new information obtained about the function.
The full step taken is stored at s, and its squared length is the sum of the
squares of the step along s and the perpendicular step, The component in
the step direction of the resulting gradient is stored at ggg and these:

quantities are used in the section "Dress" in a manner to be described.

Fig. 3

Illustration of procedure for nonquadratic
functions. Point A is the optimum point
along (x, xT); point B is the location for
the new trial.

For the interpolated step, we set
axM+ (1 - a)xtH—¢H | (5.5)

By direct use of the xM instead of the st greater accuracy is obtained in
the event that a is small. After making this interpolation, we proceed to
"Fire."

11



6. FIRE: CHART 3

The purposes of this section are to evaluate the function and its
gradient at the interpolated point and to determine if the local minimum
has been sufficiently well located. If so, then the rate of change of gra-
dient is evaluated (or, more accurately, A times the rate of change) by
interpolating from its values at x, x¥, and at the interpolated point.

If the function were cubic, then f at the interpolated point would
be a minimum, the component of the gradient at this point along s would
be zero, and the second derivative of the function at the minimum along
the line would be ZQ/k., However, as the function will generally be more
complicated, none of these properties of f and its derivatives at the inter-
polated point will be exactly satisfied. We designate the actual value of f
and its gradient at the interpolated point by f and EH' The component of
gu along s is sM 8y = 8- Should f be greater than f or ft by a significant
amount (> €), the interpolation is not considered satisfactory and a new one
is made within that part of the original interval for which f at the end
point is smaller,

From the values of the gradient g, g‘“, and gzl at three points along
a line, we can interpolate to obtain its rate of change at the interpolated
point. With a quadratic interpolation for the gradient, we obtain

- a + — y1l-a
- — + : - —_— ) 6.1
(B -gu) 73 + (8- By 4 — 8us (6.1)
wherejl\" g, is the rate of change of the gradient at the interpolated point.

The component of gus in the direction of s, namely, sH Bus = Bss» Can be

expressed as

- a l-a
Es <-1—_~a - T) + 2Q —» ggg . (62)

If the interpolated point were a minimum, then gs = 0 and ggg = 2Q.

An additional criterion imposed upon the interpolation is that the
first term on the left of Eq. (6.2) be smaller in magnitude than Q. Among
other things, this insures that the interpolated value for the second deriva-
tive is positive. If this criterion is not fulfilled, no interpolation is made,
and the matrix h"*” is changed in a less sophisticated manner.

12
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7. DRESS: CHART 4

The purpose of this section is to modify the metric Y on the basis
of information obtained about the function along the direction s. The new
hM* is to have the property that (bMV) g,s = » s#, and must retain the infor-
mation which the preceding iterations had given about the function.

If the vector hM¥ gps = t* were in the direction of sk, then it would
be sufficient to add to h#¥ a matrix proportional to sts?. If th is not in the
direction of sM, the smallest squared length for the difference between sM

. 1
and (hHV + as H5V)g,, s is obtained when a = X -7 For this value of a,

8ss
2
the squared length of the difference is ty - Ez_s where ty is the squared
grs,

length of namely, hp'vgps 8us" When this quantity is sufficiently small
(€ €), the matrix h#¥ undergoes the change:

hio (2 D) gugy ey . (7.1)
gss 4

The corresponding change in the determinant of h*¥ is

Moy _on . (7.2)

Bss

When the vectors tH and s# are not sufficiently colinear, it is necessary to
modify ¥ by a matrix of rank two instead of one, i.e.,
tht A

+
to 8ss

hHY - st sV —w=nH? | (7.3)

Then the change in the determinant of Y is

3:‘3& A—e= A . (7.4)
0

After the matrix is changed, the iteration is complete; after printing out
whatever information is desired about this part of the calculation, a new
iteration is begun. This is repeated until the function is minimized to with-
in the accuracy required.

8. STUFF: CHART 5

The purposes of this section are to test how well the function has

1
been minimized and to test how well the matrix h#V approximates ” 3 x/J‘ax "

at the minimum. This is done by displacing point x from the location of the
minimum in a random direction.



DRESS 1,2,3

52

50 51
1.
tHe - x huv gys—-—tl"'
32

tH gy.s

=t ()

54

*Colinear ————m

59

)‘_IA-—A

Iss

60

thv
te

e Ll

55

Mssp wn

56

hHY 4 (—)‘- -—I-)sf‘ sLmhW¥

9ss

hHY —)-‘—si‘ sVwh iV
Oss

57

ITERATION PRINT

ouT

CHART 4: DRESS

58

I+1-1
f—t
EP,-QF

READY 1

a1



16

STUFF 62 66
-1 61 63 64 65
RANDOM NOS Y CALL f, g
K - 1—=K ! : L I sty ) /’——x xH + s —emx b a
—t K AT x#
67
READY 2
FINAL
PRINTOUT

@ CHART 5 STUFF

The displacement of point x is chosen to be a unit length in terms
v . ________ . .
of h*¥ as the metric. When hMV “ S x'U‘ S <7 “ , such a step will increase
f by half the square of the length of the step.

If the direction were to be randomly distributed, then it would not
be satisfactory to choose the range of each component of ty independently;
rather, the range for the ty should be such that Y ty ty is bounded by
preassigned values. However, this refinement has not been incorporated
into the charts nor the computer program. The length of the step is an input

parameter, P, so that the function should increase by = P? when €ach
random step is taken. 2

Significance of h#V:

We examine a least-squares analysis to illustrate how the initial
trial value for h*¥ is chosen, and what its final value signifies. In thls
case, the function to be minimized will be chosen to beXZ/Z where x?2
the statistical measure of goodness of fit. The funct1onxz/2 is the natural
logarithm of the relative probability for having obtained the observed set
of data as a function of the variables X" being determined.

-1
The matrix h4? HWH then specifies the spreads and

correlations among the variables by

2/2
f aNx (xM - <MD - <%V >) e X /

dex e-X% @

<AXIu' AXV> =

~htY (8.1)
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The diagonal elements of W give the mean-square uncertainty for each of
the variables, while the off-diagonal elements determine the correlations
among them. The full significance of this matrix (the error matrix) is to
be found in various works on statistics.(5) It enables us to determine the
uncertainty in any linear function of the variables, for, if u = ay xM, then

<u> =a; <xk>
<BuP>=a; ay KxMxV>- <xbocx? >)
= ay ay ald . (8-23)

If u is a more general function of x, then if in a Taylor expansion about the
value of x derivatives higher than first can be ignored, we have

<u (x)> =u (Kx>)

<hu ()>* =58 (<x>)a (<x) Y (5.25)

If it is possible to estimate the accuracy with which the variables
are determined, the use of such estimates in the initial trial value of h#V
will speed the convergence of the minimization procedure. Suppose, for
example, that to fit some set of experimental data, it is estimated that the
variables xM have the values:

x*= 3.0+ 0.1

x*=28.0t 2
x*=10* + 10? . . (8.3)

Then, the initial values for xM and h#¥Y would be

xH = (3.0 28.0 10%)
0.01 0 0
wHY ={ 0 4 0
0 0 10* . (8.4)

If this estimate is even correct to within a couple of orders of magnitude,
the number of iterations required to locate the minimum may be substan-
tially less than that for some more arbitrary choice, such as the unit
matrix.

If it is desired to impose linear constraints on the variables, this
can be readily done by starting with a matrix h*Y which is no longer posi-
tive definite, but which has zero eigenvalues. For the constraints



a“X“' =
b# xM = B, etc., (8.5)

the matrix h*” must be chosen so that

h[.iV ay 0

hH4Y by = 0 ) (8.6)

and the starting value for x* must satisfy Eq. (8.5). For example, if x° is
to be held constant, all elements of h*¥ in the third row and third column
are set equal to zero and x® is set equal to the constant value,

When constraints are imposed, instead of setting A equal to the de-
terminant of h*¥ (=0), it is set equal to the product of the non-zero eigen-
value of h#¥. Then, except for round-off errors, not only will the conditions
(8.6) be preserved in subsequent iterations, but also A will continue to equal
the product of non-zero eigenvalues.

Though Ais not used in the calculations, its value may be of interest
in estimating how well the variables have been determined, since%h“ﬂ gives

the sum of the eigenvalues of h¥, while A gives their product. The square
root of each of these eigenvalues is equal to one of the principal semiaxes

of the ellipse formed by all x for which f (x) exceeds its minimum value by %.

9. CONCLUSION

The minimization method described has been coded for the IBM-704
using Fortran. Experience is now being gathered on the operation of the
method with diverse types of functions. Parts of the procedure, not incor-
porating all of the provisions described here, have been in use for some
time in least-squares calculations for such computations as the analysis
of 1-P scattering experiments,(é) for the analysis of delayed neutron ex-
periments,(7) and similar computations. Though full mathematical analysis
of its stability and convergence has not been made, general considerations
and numerical experience with it indicate that minima of functions can be
generally more quickly located than in alternate procedures. The ability of
the metric, h®¥, to accumulate information about the function and to compen-
sate for ill-conditioned g is the primary reason for this advantage.

The author wishes to thank Dr. G. Perlow and Dr. M. Peshkin for
valued discussions and suggestions, and Mr. K. Hillstrom for carrying out
the computer programming and operation.
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APPENDIX *
If we have the gradient of the function at a point in the neighborhood
o2 :
of a minimum together with Q”l, where G = “ 'g;ﬁéi}? ” , then, neglecting

terms of higher order, the location of the minimum would be given in
matrix notation by

E=x-G1V . 1)

In the method to be described, a trial matrix is used for G™! and a step
determined by Eq. (1) is taken. From the change in the gradient resulting
from this step, the trial value is improved and this procedure is repeated.
The changes made in the trial value for G™' are restricted to keep the hunt-
ing procedure "reasonable" regardless of the nature of the function. Let
H be the trial value for _9__1, Then the step taken will be to the point

xt = x - H vV . (2)
The gradient at x%, v, is then evaluated. Let D = V+ -  be the change in
the gradient as a result of the step S = xt - x = -HV. We form the new
trial matrix by

+
Hjy = Hyy +a(H v*)u ®mv*), . (3)
The constant a is determined by the following two conditions:

1. The ratio of the determinant of _I:I_+ to that of H should be between
R7! and R, where R is a preassigned constant greater than 1.
This is to prevent undue changes in the trial matrix and, in
particular, if H is positive definite, L—If will be positive definite
also.

2. The non-negative quantity

1
A=DH*D+sH") s5-25'D (4)

is to be minimized. This quantity vanishes when S = E‘*‘ D. The a which
satisfies these requirements, together with the corresponding A, as functions
of N=VTHV* and M =V HV , are as follows: (8)

*The following method is a description of a simplified method embody-
ing some of the ideas of the procedure presented in this report.

19



Range of M a A
M<-N/R - 1) 1/(M - N) 0
-N/(R-1)<M<N/(R+1) (1/RN) - (1/N) (N - M + MR)?RN
N/(R+1) <M <NR/(R+1) (N-2M)/N(M-N) 4M(N - M)/N
NR/(R+1) <MK NR/(R-1) (R/N)- (1/N) (M + NR - MR)%RN
NR/(R - 1)< M 1/(M - N) 0 (5)

The dependence of Aon M is bell-shaped, symmetric about a maximum at
M = N/2, for which a = 0 and A= N.

After forming the new trial matrix HT, the next step is taken in
accordance with Eq. (2) and the process repeated, provided thatN =VtHVt
is greater than some preassigned €. When the gradient is constant, it can
be written as

V=Gx-£) (6)

If u is an eigenvector of HG with eigenvalue one, then it will be an eigen-
vector of E"‘_@_ with eigenvalue one as well, since

H'Gu =HGu +a HV' (V1 HGu)
=u +aHVT[VHG (1 - HG) u]
=u - (7)
Furthermore, when A = 0,
H*Gs =H'D=5 , (8)

so that S becomes another such eigenvector. After no more than N steps
(for which A = 0), H will equal Q_'l and the following step will be to the exact
minimum.

The entire procedure is covariant under an arbitrary linear coordi-
nate transformation. Under these transformations of %,V transforms as a
covariant vector, G transforms as a covariant tensor of 2nd rank, and H
transforms as a contravariant tensor of 2nd rank. The intrinsic character-
istics of a particular hunting calculation are determined by the eigenvalues
of the mixed tensor HG, and the components of the initial value of (x - ¢)
along the direction of the corresponding eigenvectors. Since successive
steps will bring HG closer to unity, convergence will be rapidly accelerating
even when G itself is irregular. Constraints of the form b - x = ¢ can be
improved by using an initial H which annuls b, i.e.,

H-b=0

and choosing the initial vector x such that it satisfies b - x = c. Then all
steps taken will be perpendicular to b and this inner product will be con-
served. For example, if it is desired to hold one component of x constant,
all the elements of H corresponding to that component are initially set equal
to zero.
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When the function is known to be quadratic, the first condition can be
dispensed with, in which case a = (M -~ N)™}, A = 0.



