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VARIABLE METRIC METHOD FOR MINIMIZATION 

William C. Davidon 

This is a method for determining numerica l ly local minima of dif­
f e r e n t i a t e functions of s eve ra l va r i ab le s . In the p rocess of locating each 
min imum, a m a t r i x which cha rac t e r i z e s the behavior of the function about 
the min imum is de termined. F o r a region in which the function depends 
quadrat ica l ly on the va r i ab le s , no m o r e than N i tera t ions a r e requi red , 
where N is the number of va r i ab l e s . By suitable choice of s tar t ing values 
and without modification of the p r o c e d u r e , l inear constra ints can be imposed 
upon the va r i ab l e s . 

1. INTRODUCTION 

The solution to many different types of physical and mathemat ica l 
p roblems can be obtained by minimizing a function of a finite number of 
va r i ab le s . Among these p rob lems a r e l e a s t - s q u a r e s fitting of exper imenta l 
data, determinat ion of sca t te r ing ampli tudes and energy eigenvalues by 
var ia t ional rmethads^, the salution of differential equations, e tc . With the 
use of h igh-speed digital compu te r s , numer ica l methods for finding the 
ntiinima of functions have rece ived inc reased attention. Some of the p r o ­
cedures which have been used a r e those of optimum gradient , (U conjugate 
g rad ien t s , ' ^ / the Newton-Raphson i terat ion,(3) and one by Garwin and 
Reich.!'*/ In many ins tances , however , a l l of these methods requi re a la rge 
number of i te ra t ions to achieve a given accuracy in locating the rainimum. 
AisTS, ^OT some behaviors of the function being minimized, the p rocedures 
do not converge. 

The method p resen ted in this paper has been developed to improve 
the speed and accuracy with which the min ima of functions cair be evaluated 
numer ica l ly . In addition, a m a t r i x charac te r iz ing the behavior of the func­
tion in the neighborhood of the min imum is de termined in the p r o c e s s . 
Linear cons t ra in ts can be imposed upon the var iables by suitable choice of 
init ial conditions, without a l te ra t ion of the p rocedure . 

2. NOTATION 

We will employ the summat ion convention: 

N 
aMbpt= Z aMb/^ . 

M = 1 



In descr ibing the i te ra t ive p rocedure , we will use symbols for m e m o r y 
locations r a t h e r than success ive values of anumber ; e.g., we would wri te 
X + 3 —^ X instead of xj + 3 = x̂ ^̂ .̂  . In this notation, the sequence of oper­
ations is general ly re levant . The following symbols will be used. 

xM: j U = l , . . . , N : the se t of N independent var iables 

f (x): the value of the function to be minimized evaluated at the 
point X. 

gn (?£)• the der ivat ives of f (x) with r e spec t to x^ evaluated at x_: 

g,, (x) = ^-=^ 
^^ ^-^ ^xM 

h ^ : a non-negat ive s y m m e t r i c m a t r i x which will be used as a 
m e t r i c in the space of the va r iab les . 

A: The de terminant of hM'̂  

£: 2 t imes • • • • • • B accuracy to which the function f (x) is 
to be minimized. 

K: an integer which specifies the number of t imes the var iables 
a r e to be changed in a random manner to test the rel iabi l i ty 
of the determinat ion of the min imum. 

3. GEOMETRICAL INTERPRETATION 

It is convenient to use geomet r ica l concepts to descr ibe the m i n i ­
mizat ion p rocedure . We do so by considering the var iables xM to be the 
coordinates of a point in an N-dimensional l inear space. As shown in 
F ig . l a , the se t of x for which f (x) i s constant forms an N-1 dimensional 
surface in this space . One of this family of surfaces passes through each x, 
and the surface about a point is cha rac t e r i zed by the gradient of the function 
at that point: 

^xM 

These N components of the gradient can in turn be considered as the coor­
dinates of a point in a different space, as shown in Fig . l b . As long a s f (x) 
is d i f f e r e n t i a t e at a l l points , there is a unique point g in the gradient space 
assoc ia ted with each point x in the posit ion space, though there may be 
m o r e than one x with the same g. 



(a) (b) 
Fig. 1 . Geometr ica l interpretat ion of xM and g (x) 

In the neighborhood of any one point A the second derivatives of 
f(x) specify a l inear mapping of changes in position, dx, onto changes in 
gradient dg, in accordance with the equation 

d g,, = 
^ £ 

P hxl^bx^ dx^ (3.1) 

The vectors dx and dg will be in the same direction only if dx is an 
eigenvector of the Hessian ma t r ix : 

^H 
SxMa V X 

If the ra t ios among the corresponding eigenvalues a re l a rge , then for mos t 
dx there will be considerable difference in the directions of these two 
vec to r s . 

All i tera t ive gradient methods , of which this is one, for locating 
the minima of functions consist of calculating g for various 2L^^ S-"- effort 
to locate those values of x for which g = 0, and for which the Hess ian 
ma t r i x is positive definite. If this ma t r i x were constant and explicitly 
known, then the value of the gradient at one point would suffice to determine 
the minimum. In that case the change des i red in g would be -g , so we 
would have 

Ax^ (3.2) 

from which we could obtain Ax^ by multiplying Eq. (3.2) by the inverse of 



the m a t r i x a f̂ 
^xM dxV However, in mos t situations of i n t e re s t . h'f 

ax/̂ ax"̂ ^ 
is not constant, nor would explicit evaluation at points that might be far from 
a min imum r e p r e s e n t the best expenditure of t ime . 

Instead, an init ial t r i a l value is a s sumed for the ma t r i x 
a^f 

axMBx^ 
This ma t r i x , denoted by h^^, specifies a l inear mapping of al l changes in 
the gradient onto changes in posit ion. It is to be symmet r i c and non-negative 
(positive definite if the re a r e no cons t ra in ts on the var iab les ) . After 
making a change in the var iable x? this t r i a l value is improved on the basis 

a f̂ 
of the actual re la t ion between the changes in g and x. If axMSx"^ is cop-

s lant , then, after N i t e ra t ions , not only will the minimum of the function be 
a^f "̂  

determined, but a lso the final value of h^ will equal ,^—,,-^ ,, . We ^ 'axMox^ 
shall subsequently d iscuss the significance of this m a t r i x in specifying the 
accuracy to which the var iab les have been determined. 

The m a t r i x h'^ can be used to assoc ia te a squared length to any 
gradient , defined by h^ StiSy- ^^ ^^^ Hess ian m a t r i x were constant and h.P'^ 

were i t s i nve r se , then j - ^ Sn^v would be the amount by which f(x) would 

exceed i ts min imum value. We therefore consider hM^ as specifying a 
m e t r i c , and when we re fe r to the lengths of vec to r s , we will imply their 
lengths using hr as the m e t r i c . We have called the method a "variable 
m e t r i c " method to ref lect the fact that h^ is changed after each i tera t ion. 

We have divided the p rocedure into,five par t s which to a la rge ex­
tent a r e logically dist inct . This not only facil i tates the presenta t ion and 
analys is of the method, but it is convenient in p rogramming the method for 
machine computation. 

4. READY: CHART 1 

The function of this sect ion is to es tabl ish a direct ion along which 
to s e a r c h for a re la t ive min imum, and to box off an in terval in this d i r e c ­
tion within which a re la t ive min imum is located. In addition, the c r i te r ion 
for te rminat ing the i te ra t ive p rocedure is evaluated. 

Those operat ions which a r e only per formed at the beginning of the 
calculation and not repea ted on success ive i te ra t ions have been included in 
Char t 1 (page 7). These include the loading of input data, init ial p r in t -ou t s , 
and the init ial calculation of the function and its gradient . This la t te r ca l ­
culation is t r ea t ed as an independent subroutine, which may on i ts init ial and 
final calculat ions include some operat ions not pa r t of the usual i tera t ion, 
such as loading opera t ions , calculation of quantit ies for repeated u se , special 
p r in t -ou t s , e tc . A counter record ing the number of i te ra t ions has been found 
to be a convenience, and is labeled I. 
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The i tera t ive pa r t of the computation begins with "READY 1." The 
direct ion of the f i rs t step is chosen by using the m e t r i c h^ in the relat ion 

- h ^ % ^ - * s ^ (4.1) 

The component of the gradient in this direct ion is evaluated through the 
re la t ion 

sM g ^ , — gs . (4.2) 

F r o m Eqs . (4.1) and (4.2) we see that -gg is the squared length of g, and 
hence the improvement to be expected in the function is -•jgg. The positive 
definiteness of hP^ i n su res that gg is negative, so that the step is in a direc­
tion which (at l ea s t init ially) d e c r e a s e s the function. If its decrease is 
within the accu racy des i red , i . e . , if gg + £ > 0 , then the min imum has been 
de termined. If not, we continue with the p rocedure . 

In a f i r s t effort to box in the min imum, we take a step which is 
a^f 

twice the size that would locate the min imum if the t r i a l hM^were r—r7"r—T, 
dxA^dx'^ 

However, in o rde r to prevent this s tep from being unreasonably large when 
the t r i a l h/^^ is a poor e s t ima te , we r e s t r i c t the step to a length such that 
(A,sM)g„, the dec rea se in the function if it continued to dec rease l inear ly , is 
not g r e a t e r than some p reass igned maxihium 2f . We then change x^ by 

x ^ + X . s ^ — x + ^ , (4.3) 

and calculate the new value of the function and i ts gradient at x"^^. If the 
project ion s^ g7̂  = g^ of the new gradient in the direct ion of the step is 
posi t ive , or if the new value of the function f"*" is g rea te r than the or iginal f, 
then the re is a re la t ive min imum along the direct ion s between x and x , 
and we proceed to "Aim" where we will interpolate its posit ion. However, 
if nei ther of these conditions is fulfilled, the function has dec reased and is 
decreas ing at the point jc"*", and we infer that the step taken was too smal l . 
If the s tep had been l imited by the p r e a s signed change in the function hM^ is 
double d. If the step had been takeji on the basis of h^^, we modify h^^ so 
as to double the squared length of s^, leaving the length of all perpendicular 
vec tors unchanged. This is accompl ished by 

h^^ + J sM sf^--*-h/^^ , (4.4) 

where i is the squared length of s^. This doubles the determinant of h^^. 
The p r o c e s s is then repea ted , s ta r t ing from the new position* 



5. AIM: CHART 2 

The funct ion of t h i s s e c t i o n i s to e s t i m a t e the l oca t ion of the r e l a ­
t ive m i n i m u m within the i n t e r v a l s e l e c t e d by " R e a d y . " A l s o a c o m p a r i s o n 
i s m a d e of the i m p r o v e m e n t e x p e c t e d by going to t h i s m i n i m u m wi th tha t 
f r o m a s t e p p e r p e n d i c u l a r to t h i s d i r e c t i o n . 
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I n a s m u c h a s the i n t e r p o l a t i o n i s a long a one -d im.ens iona l i n t e r v a l , 
i t i s c o n v e n i e n t to p lo t the funct ion a long th i s d i r e c t i o n a s a s i m p l e g r a p h 
(see F i g . 2). 

The v a l u e s of f and f"*" of the funct ion a t po in t s j^andjcT" a r e known, 
and so a r e i t s s l o p e s , gg and gg, a t t h e s e two p o i n t s . We i n t e r p o l a t e for 
the l oca t i on of the m i n i m u m by choos ing the " s m o o t h e s t " c u r v e sa t i s fy ing 
the b o u n d a r y cond i t ions a t x -̂̂ -d x+, n a m e l y , the c u r v e def ined a s the one 
which m i n i m i z e s 

I da f d ^ 
da^ 



Fig. 2 

Plot of f (x) along a 
one-dimensional interval . 

a=o a = X 

over the curve . This is the curve formed by a flat spring fitted to the 
known ordinates and slopes at the end points, provided the slope is smal l . 
The resul t ing curve is a cubic, and its slope at any a (0 <a<A. ) is given by 

gM - g, 
2a . a- (gs + gs + 2 z ) . (5.1) 

where 

3(f - f+) , ^ + 

The root of Eq. (5.1) that corresponds to a minimum lies between 
0 and X in vir tue of the fact that gg < 0 and ei ther gg > 0 or z < gg + g+. It 
can be expressed as 

where 

and 

°^min = ^(1 - a) 

gt+Q 
a =-

>s g . +2Q 
(5.2) 

Q = (5 gsgtf 

The par t i cu la r form of Eq. (5.2) is chosen to obtain maximum accuracy, 
which might otherwise be lost in taking the difference of near ly equal 
quanti t ies . The amount by which the minimum in f is expected to fall be ­
low f"*" is given by 

'{X-aX) 
d a g s ( a ) =— (g+ + z + 2Q) a^ X (5.3) 



The anticipated change is now compared with what would be expected from 
a perpendicular s tep. On the basis of the m e t r i c h.P'^, the step to the opti­
mum point in the (N-1)-dimensional surface perpendicular to s^ through 
x"*"̂  is given by 

Q+ 
- h M ^ g + + - y - s M ^ t M . (5.4) 

The change in f to be expected from this s tep is ^ t ^ gu- Hence, the 
decision whether to interpolate for the minimum along ŝ  or to change x by 
use of Eq. (5.4) is made by comparing gf = t^ gu with express ion (5.3). 

The purpose of allowing for this option is to improve the speed of 
convergence when the function is not quadra t ic . Consider the situation of 
F ig . 3. The optimum point between jc and 2£̂  is point A. However, by going 
to point B, a g rea te r improvement can be made in the function. When the 
behavior of the function is descr ibed by a curving valley, this option is of 
pa r t i cu la r value, for it enables success ive i terat ions to proceed around 
the curve without backtracking to the local minimum along each step. How­
ever , if evaluation of the function at this new position does not give a better 
value than that expected from the interpolation, then the interpolated position 
is used. Should the new position be bet ter as expected, it is then des i red to 
modify h^ to incorporate the new information obtained about the function. 
The full step taken is s tored at s^, and its squared length is the sum of the 
squares of the step along ŝ  and the perpendicular step# The component in 
the step direct ion of the resul t ing gradient is s tored at ggg and these ' 

quanti t ies a r e used in the section "Dres s" in a manner to be described. 

Fig . 3 

I l lustrat ion of procedure for nonquadratic 
functions. Point A is the optimum point 
along (x, x"^); point B is the location for 
the new t r i a l . 

For the interpolated s tep, we set 

a x ^ + (1 - a ) x + / ^ — ^ t ^ . (5.5) 

By direct use of the xM instead of the sM grea te r accuracy is obtained in 
the event that a is smal l . After making this interpolation, we proceed to 
" F i r e . " 



6. FIRE: CHART 3 

The purposes of this section a r e to evaluate the function and its 
gradient at the interpolated point and to de termine if the local minimum 
has been sufficiently well located. If so , then the ra te of change of g ra ­
dient is evaluated (or, m o r e accura te ly , X t imes the ra te of change) by 
interpolat ing from its values at x, xj", and at the interpolated point. 

If the function were cubic, then f at the interpolated point would 
be a min imum, the component of the gradient at this point along s_ would 
be zero , and the second der ivat ive of the function at the minimum along 
the line would be 2 Q / X . However , as the function will general ly be m o r e 
complicated, none of these p roper t i e s of f and i ts der ivat ives at the in te r ­
polated point will be exactly sat isf ied. We designate the actual value of f 
and its gradient at the in te rpola te^ point by f and gu. The component of 
g„ along s. is s^ g^ = ^ g . Should f be g rea t e r than f or f+ by a significant 
amount (> e), the interpolat ion is not cons idered sat isfactory and a new one 
is made within that pa r t of the or iginal in terva l for which f at the end 
point is s m a l l e r . 

F r o m the values of the gradient gn, gn, and gu a t th ree points along 
a l ine , we can interpolate to obtain i ts r a t e of change at the interpolated 
point. With a quadra t ic interpolat ion for the gradient , we obtain 

(gM-gM)T^ + ( g j - g ^ ) ^ - ^ ĝ us ' (^-^^ 

where X gus ^^ ^^^ r a t e of change of the gradient at the interpolated point. 
The component of g„g in the d i rec t ion of s, namely, sM g^g = ggg, can be 
exp re s sed as 

If the in terpola ted point were a min imum, then gg = 0 and ggg = 2Q. 

An additional c r i t e r ion imposed upon the interpolation is that the 
f i r s t t e r m on the left of Eq. (6.2) be s m a l l e r in magnitude than Q. Among 
other things, this insu res that the in terpolated value for the second der iva ­
tive is posi t ive . If this c r i t e r ion is not fulfilled, no interpolat ion is made , 

uv and the m a t r i x h is changed in a l e s s sophist icated manner . 
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7. DRESS: CHART 4 

The purpose of this sect ion is to modify the m e t r i c h^ on the bas is 
of information obtained about the function along th^ direct ion _s. The new 
h " is to have the p roper ty that (h^^)' g^g - X gM, and mus t retain the infor­
mat ion which the preceding i te ra t ions had given about the function. 

If the vector h" g^g = t^ were in the direct ion of s^, then it would 
be sufficient to add to h/^^ a naatrix propor t ional to sZ-'-s .̂ If tM is not in the 
di rect ion of sM, the smal l e s t squared length for the difference between sM 

and {h.P^ + as '^s^)g^g is obtained when a = --r . For this value of a , 
gss ^ 

K^ , 
the squared length of the difference is to - ^^ where to is the squared 
length oi namely , OjUs^vs' When th i s quajotity is sufficiently smal l 
(< e), the m a t r i x hM'̂  undergoes the change: 

- ^ hM ^ . (7.1) 

The corresponding change in the de terminant of h ^ ^ i s 

^ A _ - ^ A . (7.2) 
gss 

When the vec tors tM and sM a r e not sufficiently col inear , it is nece s sa ry to 
modify hf^ by a m a t r i x of rank two ins tead of one, i .e . , 

h M ^ - : ^ + - ^ s ^ s ^ - ^ h / ^ ^ . (7.3) 
to gss 

Then the change in the deternainant of hH'^ is 

^ g S S 

to 
A . (7.4) 

After the m a t r i x is changed, the i te ra t ion is complete; after printing out 
whatever information is des i r ed about this pa r t of the calculation, a new 
i t e ra t ion is begun. This is repea ted unti l the function is min imized to with­
in the accuracy requ i red . 

8. STUFF: CHART 5 

The purposes of this sect ion a r e to t es t how well the function has 

a^ f 
been min imized and to t e s t how well the nnatrix hP^ approximates a xMax"^ 
at the min imum. This is done by displacing point x from the location of the 
min imum in a random di rec t ion . 
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The displacement of point 3c is chosen to be a unit length in t e r m s 
a ^ f 

of h^^ as the m e t r i c . When h/^^ ~ II ?̂  P •;s V 

f by half the square of the length of the step. 

, such a step will increase 

If the direct ion were to be randomly distr ibuted, then it would not 
be sat isfactory to choose the range of each component of t^ independently; 
r a the r , the range for the t^ should be such that h^^^ tjLt ty is bounded by 
preass igned values . However, this refinement has not been incorporated 
into the char ts nor the computer p r o g r a m . The length of the step is an input 
p a r a m e t e r , P , so that the function should inc rease by -5-P^ when each 
random step is taken. 

Significance of h^^: 

We examine a l e a s t - s q u a r e s analysis to i l lus t ra te how the initial 
t r i a l value for h^^ is chosen, and what its final value signifies. In this 
case , the function to be minimized will be chosen to beX / 2 , where X^ is 
the s ta t i s t ica l m e a s u r e of goodness of fit. The functionX / 2 is the natura l 
logar i thm of the re la t ive probabili ty for having obtained the observed set 
of data as a function of the var iab les X^ being determined. 

The m a t r i x h^'^ 
a ^ f 

,v • • a x M a x 
cor re la t ions among the var iables by 

then specifies the spreads and 

<AxMAx^> / d^x (xM_ <xM»(x^ - <x^^ >) e"^ 
- Y V 2 

/ d N. X e 
w^ 

^\l^^ (8.1) 



The diagonal e lements of hM^ give the m e a n - s q u a r e uncertainty for each of 
the va r i ab le s , while the off-diagonal e lements determine the cor re la t ions 
among them. The full significance of this ma t r i x (the e r r o r ma t r ix ) is to 
be found in various works on s ta t i s t ics . (5) It enables us to determine the 
uncer ta in ty in any l inear function of the va r i ab les , for, if u = a^ x^, then 

<u> = a ^ < x M > 

< (Au)2> ^ a^ a^ (<xM x^> - <xM><xV » 

cLj / c l ' 
p. °-v 

h ^ ^ . (8.2a) 

If u is a m o r e genera l function of x, then if in a Taylor expansion about the 
value of j £ der ivat ives higher than f i r s t can be ignored, we have 

<u (x)> = u « s » 

< A u ( x ) > 2 = : ^ ( < x > ) | ^ « x » h / ^ ^ . (8.2b) 

If it is possible to es t imate the accuracy with which the var iables 
a r e de termined, the use of such e s t ima tes in the init ial t r i a l value of h^^ 
will speed the convergence of the minimizat ion p rocedure . Suppose, for 
example , that to fit some set of exper imenta l data, it is es t imated that the 
var iab les xM have the values: 

x^= 3 . 0 + 0 . 1 

x2 = 28.0+ 2 

x3 = 10* + 10^ . . (8.3) 

Then, the init ial values for xM and hM^ would be 

xM = (3.0 28.0 10^) 

0 
4 
0 l O y . (8.4) 

If this es t imate is even c o r r e c t to within a couple of o r d e r s of magnitude, 
the number of i te ra t ions requ i red to locate the minimum niay be substan­
tial ly l e s s than that for some m o r e a r b i t r a r y choice, such as the unit 
ma t r i x . 

If it is des i r ed to impose l inear constra ints on the va r i ab les , this 
can be readi ly done by s tar t ing with a m a t r i x h^ which is no longer pos i ­
tive definite, but which has zero eigenvalues . Fo r the const ra ints 



a.jji_ xP = a 

b;^x/^ = ]8, e tc . , (8.5) 

the m a t r i x hH' mus t be chosen so that 

hM^ av = 0 

hM^ bv - 0 , (8.6) 

and the s ta r t ing value for xM mus t satisfy Eq. (8.5). For example, if x^ is 
to be held constant, a l l e lements of hH-^ in the th i rd row and th i rd column 
a r e set equal to zero and x^ is se t equal to the constant value. 

When cons t ra in ts a r e imposed, ins tead of setting A equal to the de­
te rminant of h^ (=0), it is set equal to the product of the-non-zero eigen­
value of h/^^. Then, except for round-off e r r o r s , not only will the conditions 
(8.6) be p r e s e r v e d in subsequent i t e ra t ions , but a lso A will continue to equal 
the product of non-zero e igenvalues . 

Though A is not used in the calculat ions , its value may be of in te res t 
in es t imat ing how well the var iab les have been determined, since2h/-^M gives 

the sum of the eigenvalues of hP^, while A gives their product. The square 
root of each of these eigenvalues is equal to one of the pr incipal semiaxes 
of the el l ipse formed by a l l x̂  for which f (x) exceeds its min imum value by-j. 

9. CONCLUSION 

The minimizat ion method descr ibed has been coded for the IBM-704 
using F o r t r a n . Exper ience is now being gathered on the operat ion of the 
method with d iverse types of functions. P a r t s of the p rocedure , not incor ­
porat ing al l of the provis ions descr ibed h e r e , have been in use for some 
t ime in l e a s t - s q u a r e s calculat ions for such computations a s the analysis 
of TT-P sca t te r ing exper imen t s , 1°) for the analysis of delayed neutron ex­
per iments , (7 ) and s imi l a r computat ions . Though full mathemat ica l analysis 
of i ts stabil i ty and convergence has not been m a d e , genera l considerat ions 
and numer i ca l exper ience with it indicate that minima of functions can be 
general ly m o r e quickly located than in a l te rna te p rocedures . The ability of 
the m e t r i c , hF'^, to accumulate information about the function and to compen­
sate for i l l -condit ioned g ^ is the p r i m a r y reason for this advantage. 

The author wishes to thank Dr. G. Per low and Dr. M. Peshkin for 
valued discuss ions and suggest ions , and Mr. K. Hi l l s t rom for ca r ry ing out 
the computer p rog ramming and operat ion. 



APPENDIX * 

If we have the gradient of the function at a point in the neighborhood 
-1 a ^ f 

of a min imum together with G , where _G= ^ ^^ y , then, neglecting 
t e r m s of higher o rde r , the location of the minimum would be given in 
m a t r i x notation by 

X G-^ V . (1) 

In the method to be descr ibed , a t r i a l m a t r i x is used for G~ and a step 
de termined by Eq. (1 ) is taken. F r o m the change in the gradient resul t ing 
from this s tep, the t r i a l value is improved and this procedure is repeated. 
The changes made in the t r i a l value for CT^ a r e r e s t r i c t ed to keep the hunt­
ing procedure " reasonab le" r e g a r d l e s s of the nature of the function. Let 
H be the t r i a l value for G"'^. Then the step taken will be to the point 

X + - X - H V . (2) 

The gradient at x+, V"*", is then evaluated. Let D = V - V be the change in 
the gradient as a r e su l t of the step S = x+ - x = -H V. We form the new 
t r i a l m a t r i x by 

Hjv = H/,^ + a (HV^)^ (H V + )^ . (3) 

The constant a is de te rmined by the following two conditions: 

1. The ra t io of the de terminant of II to that of J i should be between 
R~ and R, where R is a p reass igned constant g rea te r than 1. 
This is to prevent undue changes in the t r i a l ma t r i x and, in 
pa r t i cu la r , if H is posit ive definite, H^ will be positive definite 
a l so . 

2. The non-negat ive quantity 

A = D H"*" D + S (H+) ^ S - 2 S • D (4) 

is to be minimized . This quantity vanishes when S = H. D. The a which 
sat isf ies these r e q u i r e m e n t s , together with the corresponding A, as functions 
of N =V+HV+ a n d M =V+ HV , a r e as follows: (8) 

*The following method is a descr ip t ion of a simplified method embody­
ing some of the ideas of the p rocedure p resen ted in this r epo r t . 



Range of M a A 

M < - N / ( R - 1) l / ( M - N) 0 
- N / ( R - 1) < M < N / ( R + 1) ( 1 / R N ) - ( 1 / N ) (N - M + MR)yRN 
N / ( R + I ) < M < N R / ( R + 1) (N - 2 M ) / N ( M - N ) 4 M (N - M ) / N 

N R / ( R + 1) < M < N R / ( R - 1) ( R / N ) - ( 1 / N ) (M + N R - MR)yRN 
N R / ( R - 1) < M I / ( M - N ) 0 (5) 

The dependence of A on M is bel l -shaped, symmet r i c about a maximum at 
M = N / 2 , for which a = 0 and A = N. 

After forming the new t r i a l m a t r i x H"*", the next s tep is taken in 
accordance with Eq. (2) and the p r o c e s s repeated , provided tha tN =V"*"HV"*" 
is g r ea t e r than some p reass igned G. When the gradient is constant, it can 
be wri t ten as 

V = G . ( x - | ) . (6) 

If u is an eigenvector of HG with eigenvalue one, then it will be an eigen­
vector of H+G with eigenvalue one as well , since 

H+Gu = HGu + a HV"*" (V+HGu) 

= u + a H V + [ VHG (l - HG) u] 

= u . (7) 

F u r t h e r m o r e , when A = 0, 

H+ G S = H_+ D = S , (8) 

so that S becomes another such eigenvector . After no more than N steps 
(for which A = 0), H will equal G~^ and the following step will be to the exact 
min imum. 

The ent i re p rocedure is covariant under an a r b i t r a r y l inear coordi­
nate t ransformat ion . Under these t ransformat ions of x, V t r ans fo rms as a 
covariant vec tor , C t r ans fo rms as a covariant tensor of 2nd rank, and H 
t r ans fo rms as a cont ravar ian t t ensor of 2nd rank. The in t r ins ic cha rac t e r ­
i s t ics of a pa r t i cu la r hunting calculation a r e determined by the eigenvalues 
of the mixed tensor HG, and the components of the init ial value of (x - | ) 
along the direct ion of the corresponding e igenvectors . Since success ive 
steps will br ing HG c lose r to unity, convergence will be rapidly acce lera t ing 
even when G itself is i r r e g u l a r . Constra ints of the form b • x = c can be 
improved by using an init ial H which annuls b, i .e . , 

H • b = 0 

and choosing the ini t ial vector x such that it sat isf ies b • x = c. Then al l 
s teps taken will be perpendicular to b and this inner product will be con­
served. F o r example , if it is des i r ed to hold one component of x constant, 
al l the e lements of II corresponding to that component a r e initially set equal 
to ze ro . 
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