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Abstract

Wwe develop a class of methods for minimizing a nondif-
ferentiable function which is the maximum of a finite number
of smooth functions. The methods proceed by solving iteratively
quadratic programming problems to generate search directions.
For efficiency the matrices in the quadratic programming prob-
lems are suggested to be updated in a variable metric way. By
doing so, the methods possess many attractive features of vari-
able metric methods and can be viewed as their natural extension
to the nondifferentiable case. To avoid the difficulties of an
exact line search, a practical stepsize procedure is also intro-
duced. Under mild assumptions the resulting method converge

globally.

* Research supported by National Science Foundation under grant
number ENG 77-02647.



1. Introduction

We are concerned with the problem of minimizing a nondiffer-
entiable function y of the following form

(1.1) y (x) = rnax (fi(x)},
i=1l,...,m

where fi (i=1,...,m) are real-valued functions defined on the n-
dimensional Euclidean space R" and have continuous second order
derivatives. The problem is also known as a minimax problem in
the literature and abounds with applications.

Variable metric method, which are also usually called quasi-
Newton methods, are effective for minimizing smooth functions.
For minimizing the nondifferentiable function y we present a class
of methods which possess many attractive features of variable
metric methods and can be viewed as their natural extention to
the nondifferentiable case. Like many other methods for mini-
mizing nondifferentiable functions, the method proceeds by
solving quadratic programming problems iteratively to generate
search directions. The matrices in the gquadratic programming
problems are preferrably updated according to the rule used in
a variable metric method. A practical stepsize procedure is also
introduced to avoid the difficulties arising from an exact line-
search. With this stepsize procedure the method can be shown
convergent globally under reasonable assumptions. Specific up-
dating schemes for the matrices and rates of convergence have
also been analyzed but they will be published somewhere else in

order not to make the paper unduly long.



The symbol ||+|| denotes the L, norm. All vectors are column
vectors and a row vector is denoted by the superscript 1. However,
for convenience a column vector in R™™ js sometimes denoted by
(x,v) even though x and v are also column vectors in Rn and R

respectively.
2. The Method
The problem to be considered is usually stated in the form

(2.1) min max {£.(x)}.

XeRN i=1,...,m 1
For any point x in R"” there is a corresponding index set I(x) =
{i : fi(X) = y(x)} where y is defined as in (1.1). It is well
known [see 2, for instance] that a necessary condition for a point,
x* say, to be a solution of Problem (2.1) is that the convex hull
conv (x*) of all the gradients fi(x*) with i ¢ I(x*) contains the

null vector; that is,
(2.2) 0 € conv(x*).

When y is convex this condition is also sufficient. If we con-
sider the minimization of a differentiable function as a special
case of Problem (2.1) with m = 1, then condition (2.2) is just
that the gradient of the objective function vanishes at a station-
ary point.

Condition (2.2) is equivalent to the statement that there
exists an m-vector v* such that

m

(2.3) (a) iil v;fi(X*) = 0,
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(b) v; =1,

=]

i=1
(c) v* 2 0,

(d) v;(y(x*) - fi(x*)) =0 i=1],...,m.

This condition is very similar to the Kuhn-Tucker condition of a
nonlinear programming problem. For this reason we may define a

Lagrangian function L(x,v) for Problem (2.1) by
n .
L(x,v) = iglvifi(x),

and may call the m-vector v* a Lagrange multiplier associated
with the stationary point x*.
The analogy between condition (2.3) and. a Kuhn-Tucker condi-
_tion is by no means a coincidence. When we put Problem (2.1)

into the following equivalent nonlinear programming form,

(2.4) Min s
(x,8) erPHL
s.t. £0x) £6  i=1,...,m,

then condition (2.3) is just the Kuhn-Tucker condition of this
problem. Actually, the proposed method is essentially the re-
cently developed variable metric method for nonlinear program-
ming [4,5,11] applied to Problem (2.4) with its special struc-
ture taken into account.

We now describe the method as follows. Having an estimate
xk of a solution to Problem (2.1) and a positive definite sym-
metric matrix Bk at the k-th iteration, we solve the following

quadratic programming problem
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. 1.7
(2.5) min =p B,p + §
(p,G)eRn+l 2 k
st £ () + fi(xk)p <6 i=1,...,m.

From a solution (pk,d) of this quadratic programming problem we
take the n-vector pk as a search direction for xk. Instead of

(2.5) we may also equivalently solve its dual problem

(2.6) minm %VTJRHRJ;v - va(xk)
veR
m
s.t. v, =1,
=1t
v20,

where Hk = 8;1 and Jk is the m x n Jacobién matrix of the vector
function f(x) = (fl(x),...,fm(x))T at the point xk. If an m-vector
vk is a solution to Problem (2.6), then the vector pk can be redis-

covered by the equality

ok = —Hk('? viE, ().
i=1 ]

A property of Problem (2.1) which is not shared by a general
nonlinear programming problem is that there is a natural function
vy which can be used to assess improvements and determine stepsizes.
To accomplish these in the general nonlinear programming case we
usually resort to a penalty function or an augmentéd Lagrangian
[6,7,11].

Once the search direction pk is obtained we determine a

stepsize oy and set xk+1 = xk + akpk. The stepsize ay is chosen

(k) (k),__.}

as the first number in a generated sequence {Bo ,81

satisfying
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(2.7) *{(xk + Bpk) < Y(xk) + wBAy

where Ak = —(pk)Tkak and 0 < w < %. We now describe how to gen-

erate the sequence (Bék),B{k),

...}. For convenience we omit
the superscript k. We try the value one first and set Bo =1
because this value works well in the smooth case [see 3, for in-
stance]. If Bj does not satisfy (2.7) then construct a quadragic

function Oj(B) which interpolates the function 6(8) = Y(xk + Bpk)

at B = 0 and B = Sj, and also satisfies the end condition

95(0) = Xk.

We let 8j+1 be the greater of 0.18j and the value of B that mini-

mizes ej(a). By a direct calculation we have

_ 2
(2.8) 8j+1 = max{o.lej, Aksj/z(xksj + 6(0) - e(ej))}.

Stepsize procedures of this type are used frequently in the smooth
case. Our procedure is also very similar to the one suggested
by Powell in his work on a general nonlinear programming method
[11). One thing which is quite uncommon is that we set Xk = —(pk)‘
rather than the usual way Xk = §'(0). Because of the special
structure of Problem (2.1), our choice is an approoriate one and
will be justified in the next section.

The simplest way to update the matrix Bk in (2.5) is to
use the identity matrix. But, for efficiency it is preferrable
to use Bk that estimates the Hessian VxxL(xk,vk_l). Mean-
while, it is also very important for the matrices {8, }

to be uniformly positive definite and bounded; that is, for some



positive number p and n,
(2.9) nxTx < xTka < prx

for all x in R® and for each k. Once condition (2.9) is main-
tained, specific updating formulas for Bk are not essential for
our analysis of global convergence. We concentrate in this paper
on the global convergence analysis of the method and will consi-
der only the general case that the matrices {Bk} satisfy condition
(2.9). A detail discussion of specific updating schemes and rates
of convergence will appear somewhere else [8].

For a better understanding of the method we compare it with
a steepest descent method of Dem'yanov [2). We recall that a
directional derivative h'(x;p) of a real-valued function h at a

point x in a direction p is the quantity defined by

h' (x;p) = lim, X ¥ tR) - h(X)

t-+0

It can be shown [1,2] that, though the function y is nondiffer-
entiable, its directional derivative y'(x;p) exists at any point
and in any direction p and can be computed by
Y '(x;p) = max {fi(x)p}.
ieI
We may call a nonzero vector s a direction of steepest descent

for the function y at a point x if

Y (x; £ min y'(x;p).
[lpl]=1

g
st
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"It is also known that the negative of the smallest vector,
measured by the lz norm, in the convex hull conv(x) is a direc-
tion of steepest descent. Therefore, a practical way to get
such a direction is to set s = -p with the vector p solving

the constrained problem

. 2
min_ | [p||
peR
s.t. p € conv(x),
m . -
or equivalently to set s = = L vifi(x) with v solving the
i=1

quadratic programming problem.

(2.10) min Lismam v
veR
m
s.t. iilvi =1,
v >0,
vi =0 for i/ I(x),

where J(x) is the Jacobian matrix of f at x. Clearly, (2.6)

is closely related to (2.10). A difference between (2.6) and
(2.10) is the appearance of a positive definite and symmetric
matrix Bk in (2.6). This is because that our method uses a
metric which may change iteratively and may not be the one in-
duced from the 12 norm. Thus, the method is characterized by

a property of a variable metric method. Another important dif-
ference is the way selecting gradients fi(x) to form a search

direction. By setting vy = 0 for all i / I(x) the steepest
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descent method takes only those gradients with i ¢ I(x). The
drawback of not considering other gradients is so severe that
the generated points may jam to a wrong point. An example il-
lustrating this phenomenon is given in [2, pp. 74). A proce-
dure to circumvent this difficulty is to replace the condition
that v, = 0 for all i £ I(x) in (2.10) by that v, = 0 for all
ie I(x;e) = {i: £,(x) - Y (x) < €} for a suitably small posi-
+ive number e. But, besides that the convergence of this method is
slow, o determine a suitable € in each iterative is not a trivial
workx in practice. However, in our proposed method, the term -va(xk)-
appearing in the objective function of the quadratic program-
ming problem (2.6) seems to be an appropriate device for
automatically selecting adequate gradients fi(xk) to form a
search direction for xk. Indeed, it will be shown that the di-
rection pk generated by solving (2.5) or (2.6) not only can avoid
a jaﬁ but also allows the more practical inexact line search
described before.

Some other related methods exist in the literature, notably
wolfe's method [12] and Lamarechal's method [9]. But they con-
sider the minimization of a nondifferentiable function which is

convex but not necessarily of form (1l.1).

3. Convergence

In this section global convergence properties of the method
will be analyzed. We will content ourselves with finding a sta-
tionary point of Problem (2.1), by which it is meant that a point,

x* say, satisfies condition (2.3) for some m-vector v*. Note



-10-

that, at the k-th iteration of the method, we solve quadratic
programming Problem (2.5) or (2.6) to find an (n + 1)=-vector

(pk,sk) and an m-vector vk satisfying the Kuhn-Tucker condition:

m oy k
(3.1) (a) B.p + ii vifi(x ) =0,

1

m
(b) v, =1,
k vk k :
(c) v?(fi(x ) + fi(x )po - Sk) =0 i=1,...,m,

@ £, 65+ o£ 8N ¢

A
O

=
[

=1,...,m,

(e) Vv 0.

v

Comparing condition (2.3) and condition (3.1) we immediately ob-

tain the following result.

Theorem 3.1: If pk = 0 then Y(xk) = Gk and the point xk is a
stationary point of Problem (2.1) with tHe vector vk as its

associated Lagrange multiplier.

When pk # 0, it is valid to use the vector pk as a search
direction if it is descent for y at the point xk. Therefore,
it is desirable that the directional derivative Y'(xk;pk) be

negative. We establish this result below.
Lemma 3.2: —(pk)Tkak 2 6k - y(xk).

Proof: Let I = {i : vt > 0}. Then we have from (3.1.c) that

for every i ¢ I

vk oK k
fi(x p = Gk fi(x ).



Thus, it follows that

m
k k, k k k, k
(3.2) vRE N (x)pT = I Vif!(xV)p
i=1 * * ieT T2
_ k _ k
= iEIvi(Gk fi(x ))
k k
2 I v.(8 -vy(x7))
ieT k
k mox
= (6§, -y(x)) I v,
k i=1 *
=6 -y (xN).

on the other hand, we have from (3.l.a) that

m
(pk)Tkak = -1 vtfi(xk)pk,
i=1

which in conjunction with (3.2) implies the desired result.

Lemma 3.3: If B ¢ (0,11, then

1G5+ 8% -y ) < -") B " + Bulp¥|)?

8

where

M= max llf;(xk + npk)l|.
ne (0,8)
i=l,...,m

Proof: Given a B in (0,1], let j be any index in the set

I(xk + Bpk). Then we have that for some n ¢ (0,B8)

k
Yy(x + Bpk) fj(xk + Bpk)
2

k ceky ko, BS K To, K k
fj(x ) + ij(x )p o+ 3 (p) fj(x + p))
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Meanwhile, we have from (3.1.d) that

A

k 'Ky K k _ 3
fj(x ) + BEI(xT)pT < fj(x ) + B8 - £5(x7))

k
(1 - BIE;(x) + 86,

A

(1 - By () + 86,

v () + Be6, - v ().

Therefore, we have

2
v+ 8% <y M)+ Bes - v )+ Bl 1p¥)12

The lemma follows directly from the above inequality and Lemma

3.2. =
Theorem 3.4: Y'(xk;pk) < -(pk)Tkak.

Proof: We first note that directional derivatives of the func-
tion y exist everywhere and in any direction. Hence the theorem

follows from Lemma 3.3 immediately.

The above theorem is an important one because it shows that
the vector pk is qualified to be a search direction at the point
xk as long as the matrix Bk is positive definite. We can further

deduce from the theorem the following result easily.

Corollary 3.5: If the point xk is a local solution to Problem

(2.1) and the matrix Bk is positive definite, then pk = 0. ||

We now, in turn, give a justification for our stepsize

procedure.
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Theorem 3.6: If pk # 0 and the matrix Bk is positive definite,
then the stepsize g has a positive value and o = B;k) for some
finite j.

Proof: For simplicity we omit the superscript k from the sequence
rp (k) L (k)

{Bg " +8, PR

sequence is positive. This is because that Bo =1 and 8j+1 > 0.18

We first observe that every element of this

3

for all j. Therefore, it suffices to show that there exists some
j such that ej satisfies inequality (2.7). Suppose that it were

not the case. Then we have that for every j
8(B.) > 8(0) + wB.A
( J) (0) 83 K
which in turn implies that

8 < max{0.1, 1/2(1 - w)}By.

i+l
Hence it follows from w < % that

lim B, = 0.

j-ben j .
But, from Lemma 3.3 and the assumption that the matrix Bk is
positive definite, we have that there exists B > 0 such that
inequality (2.7) holds for all B ¢ [0,B}]. This is a contra-
diction and hence there must be some Bj satisfying inequality

(2.7). The theorem is then completed. L

From theorem 3.1 and Corollary 3.5 it seems very reasonable
to expect that a point xk with a small pk should satisfy the
necessary condition (2.3) of a solution approximately. This

expectation is confirmed in the following theorem.
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Theorem 3.7: If the gradients fi(x) (i =1,...,m) are bounded

on the set 2 = {x: vy (x) ¢ Y(xo)} the matrices {Bk} are also bounded,
then for any € > 0 there exists a § > 0 such that if llpkll <8
then

m

(3.3) (@ 11z e el g e

i=1

0 g Vi e - £ 65 <k,

m
(c) rv, =1,

(@) v 2 0.

Proof: It is obvioﬁs that conditions (3.3.c) and (3.3.d) hold.

To show that (3.3.a) and (3.3.b) also hold, we first let

max €2 || < M
i=1,...,m 1 =1
xXef

and let

[]Bkll <M, for each k.

Assume that an € > 0 is given. Then we set
§ = min{E/Mz, c/2M2}.
1f ||pk|| < 8 for some k then we have from (3.1l.a) that

m
ko, , .k k k
1 E ke o1 1mesil s mylleI] < e

Thus (3.3.a) holds. Meanwhile, condition (3.3.b) holds trivially
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for the index i with v? = 0. Now we consider the index i with

v? > 0. Let j be in the set I(xk). Then we have from (3.l.c)

and (3.1.d) that

k
0 < o) - £ 08N = e - g v £16Me

Y(xk) -8

A

k, k
k¥ fi(x )P

k k, k
£,(x) - 6, + £10xp

nAa

-fé(xk)pk + fi(xk)pk

A

2m, | 15| I< €.

Hence the proof is completed. u

Because of Theorem 3.7 it is meaningful for the method to
produce a point x® whose corresponding quantity,]]pkll
is smaller than any given small positive tolerance. We give

this result in the following theorem.

Theorem 3.8: If the function y is bounded below and the Hessians
f;(x) (i =1,...,m) are also bounded, and if there exists a
n > 0 such that xTka 2 nxTx for all x in R" and for every k, then
either the sequence {xk} generated by the method terminates at
a stationary point of Problem (2.1) or

lim inf l]pkll = 0.

k+

Proof: Suppose that the conclusion of the theorem were false.
Then there exists an € >0 such that l|pk]| > ¢ for every k.

By the choice of the stepsize o, we have that
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y 5y - y (Xt 2 —whay
_ kTB k
= wakp kp
k2
> wnf|p |17,

Taking the sums of both sides of the above inequality and taking
into account the assumption that the function y is bounded below,

we obtain that
©> 3 112,

wna, | |p
x k

0
Since Ilpkll > € > 0 for every k, we get

(3.4) lim a, = 0.
K+ k

on the other hand, Theorem 3.6 indicates that for each kX there

(k) (k) (k)
o B Bj .

Because of (3.4) and eék) = 1, the integer j is not zero for

exists a S;k) in the sequence {B ,...} such that a =

sufficiently large k and we can define the number &k by

fk)

a, = Bj-l

(k)
]
satisfying inequality (2.7), we then have

(k) (k)

Since B 0 ,B1 soce

}

is the first number in the sequence {8

k - k k
(3.5) YT+ oypn) - Y (xT) o, Wi = —w(pk)Tkak.
ak
Let
max llf;(x)ll <M for some M > 0.

i=l,...,m
xeRD
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It follows from Lemma 3.3 that if 0 < a < n/M, then

Y(Xk

k k
+ ap ) =y (x7) < _(pk)Tkak + Cl_zbi‘lpkilz
a

k k k2
- 30 + el

A

- 0% B, 0% + 200%) 7B, P"

A

1, .k, T k
5(9 ) B,pP .

£ 0.13, <
Because of 0 lxk £ ooy
<

large k that 0 < a

and (3.4), it holds for sufficiently

X n/M and

y (X + Ekpk) -y

Lok T pk
z < -5(p7) Byp-.
k

The above inequality contradicts (3.5) because w < %. Hence

we have deduced a contradiction and the proof is completed. 'I

From Theorems 3.7 and 3.8 we immediately have the following

corollary.

Corollary 3.9: Let the assumptions of Theorems 3.7 and 3.8
hold. Then for any given positive tolerance € the method will
produce an n-vector xk and an m-vector vk satisfying condition

3.3. |

A stronger result can be obtained if we assume that the
generated points (xk} eventually move into a region where the

function vy is convex.

Theorem 3.10: If for some i the level set @, = {x : yv(x) ¢ y (x*)}

is bounded and y is convex on ﬂi, and also if there exist posi-
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tive members p and n such that nxTx < xTka < prx for all x
in R" and for every k > i, then the method calculates a
sequence of function values y(xk) (k = 0,1,2,...), that either

converges to or terminates at the least value of vy (x).

Proof: Clearly the set Qi is compact. Hence all the assump-
tions of Theorems 3.7 and 3.8 hold. Note also that the

sequence {Y(xk)} is monotonically decreasing. Thus, it suffices
to show that it has a subsequence that converges to the least
value of the function y.

By the compactness of the set ﬂi and Theifemk?.skwe hav;
that there exists a subsequence of triples {(x v ],p J)} such
that for some X in Qi and some ¥ in R™ we have xkj + X, vkj + v
and p i, 0. It follows from Theorem 3.7 that the pair (%X,V)
satisfies condition (2.3) and hence X is a stationary point of
Problem (2.1) with Vv as its Lagrange multiplier. Moreover, the
point X is actually a solution to Problem (2.1) because the
function y is convex in Qi. Therefore, the subsequence {y (x j)}
converges to y (X) that is the least value of y. Hence we com-

plete the proof.

We conclude this section with a corollary which is con-
cerning the convergence of the generated points {xk} rather
than function values. The proof is omitted because it is
straightforward and very similar to the one given in [10,

Theorem 14.1.4]).

Corollary 3.11: Let the assumptions of Theorem 3.10 hold and



-19-

let the solution set S be defined by

s={x :y(x)= minnY»(y)}.
YeR

Then

lim (inf ||xF-y||] = o.
k+o yeS

In particular, if the set S consists of a single point x*, then

lim xk = x*.
k+w

4. Conclusions

The paper is an attempt to extend the efficient variable
metric methods to a class of nondifferentiable minimization
problems. Our work is mainly motivated by a natural connection
of the problem to a general nonlinear programming problem.
This approach seems advantageous. Firstly, we can gain much
more insights into the problem through our knowledge and tech-
nigues of nonlinear programming. Secondly, the difference
between the nondifferentiable minimization problem with con-
straints and without constraints becomes nonexistent and they
can be treated in an unified way. More specifically, to solve
the ccnstrained problem

s.t. gj(x) <0 3 =1,...,9,

our method becomes to solve iteratively, instead of (2.5),

the following subproblem
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. 17T
o n 2R
’

k k .
fi(x ) + fi(x )p s i i,...,m,

nA

gj(xk) + gé(xk)p

A

0 j=1,...,9.

The theory behind this.extension can be readily developed through
the results of this paper and the results in the literature of
nonlinear programming.

The methods have not yet been seriously implemented.
But éhey are expected to be very promising because not only that
they have strong theoretical support but also that a similar

approach has achieved a great success in nonlinear programming

(4, 5, 6, 11].
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