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Abstract: This paper addresses the Electric Vehicle Routing Problem with Simultaneous Pickup and
Delivery (EVRP-SPD), in which electric vehicles (EVs) simultaneously deliver goods to and pick up
goods from customers. Due to the limited battery capacity of EVs, their range is shorter than that of
internal combustion vehicles. In the EVRP, in addition to the depot and the customers, there are also
charging stations (CS) because EVs need to be charged when their battery is empty. The problem is
formulated as an integer linear model, and an efficient solution is proposed to minimize the total
distance traveled. To create a feasible initial solution, Clarke and Wright’s savings algorithm is used.
Several variants of variable neighborhood search are tested, and the reduced-variable neighborhood
search algorithm is used to find the best solution in a reasonable time. Computer experiments
are performed with benchmark instances to evaluate the effectiveness of our approach in terms of
solution quality and time. The obtained results show that the proposed method can achieve efficient
solutions in terms of solution quality and time in all benchmark instances.

Keywords: electric vehicle routing; simultaneous pickup and delivery; variable neighborhood search;
savings algorithm

MSC: 90-08

1. Introduction

In recent years, research and development of alternative energy sources have accel-
erated as countries seek to reduce their energy dependence on fossil fuels. As in many
other areas, regulations are being introduced to avoid environmental problems associated
with logistical activities. One of the concepts developed to reduce the economic, social,
and environmental impacts of urban transportation in growing cities is the concept of
sustainable urban logistics. Sustainable urban logistics can be defined as the use of vehicles
that use sustainable resources to distribute goods in cities. Many logistics and e-commerce
companies currently use EVs for transportation in urban areas because they are quiet and
do not produce carbon emissions. Despite these advantages, the need for on-road charging
due to the limited range of EVs creates new difficulties in planning and managing logistics
activities carried out with EVs. Therefore, it is important to create an ideal charging plan
for EVs that takes into account impacts on total travel time and route length.

In this paper, we discuss sustainable urban transportation through the problem of
routing EVs with simultaneous pickup and delivery (EVRP-SPD), a variant of the Vehicle
Routing Problem (VRP) well known in the literature. As shown in Figure 1, the amount of
cargo in the EVs increases and decreases based on the SPD constraint, depending on the
pickup and delivery requirements of the customers. The vertical bars in red, green, and gray
represent the load to be picked up or delivered by the EV and the state of charge (SoC) of the
EV. The horizontal bars in red and green represent the pickup and delivery requirements of
the customers, respectively. In general terms, the goal of the EVRP is to efficiently route
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a fleet of EVs to serve customer demand. This is done with respect to optimizing a given
objective function, which is (usually) the total travel distance (to be minimized). Due to
difficulties arising from the limited range of EVs and simultaneous pickup and delivery,
it is often not possible to derive an optimal solution for large instances. Thus, a variable
neighborhood search (VNS)-based solution is proposed to solve the given problem.
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Figure 1. An illustration of the EVRP-SPD.

To obtain a feasible initial solution for the metaheuristic solution approach, a method
based on the Clark and Wright Savings Algorithm is developed. It generates an initial
solution that takes into account the assumptions and properties of EVRP-SPD. While
VNS systematically modifies (shakes) the neighborhood structures, it ensures that the
determined solution does not get stuck in a local optimum. It also provides strong search
performance by intensifying the search in the neighborhood (local search). In addition
to the classical operators for shaking and local search, we have also applied well-known
operators for searching large neighborhoods, called “destroy and repair”, to improve the
performance of VNS.

The main contribution of this work can be summarized as follows:

• An integer programming model for EVRP-SPD is developed, which is the first time it
has been studied in the literature.

• A new set of instances is created based on the benchmark instances proposed by Schnei-
der et al. [1]. Customer demands in the original dataset are recalculated in accordance
with the method used by Salhi and Nagy [2] to create pickup and delivery demands.

• A modified Clark and Wright sparse algorithm is proposed to obtain a feasible initial
solution to the problem.

• Different neighborhood structures are extensively tested on the benchmark instances,
and the performance of the structures in terms of algorithm speed and efficiency
are shown.

• Several VNS variants are investigated, and the results are compared in detail.

In this paper, we address a particular variant of the EVRP, where goods are assumed to
be transported from different origins to different destinations, and each customer has both
delivery and pickup needs that must be met simultaneously. The structure of the paper is
as follows: Section 2 reviews the scientific literature, while Section 3 proposes an integer
linear programming model for EVRP-SPD. Section 4 describes the solution heuristics,
neighborhood structures, and operators used to find the best solutions for benchmark
instances. In Section 5, optimal solutions for small instances derived from the CPLEX solver
are compared with the heuristic solution method in terms of solution quality and CPU time.
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In addition, some illustrative numerical examples are analyzed. Finally, in Section 6, the
conclusions are presented, and some future work is described.

2. Literature Review

The Vehicle Routing Problem (VRP) was first introduced in the literature by Dantzig
and Ramser [3]. The VRP is an important combinatorial optimization problem in trans-
portation and logistics. The classical VRP is defined as finding routes that serve a given
number of customers, where the routes start and end at a central depot, each customer
is served exactly once, the total time is constrained, and the vehicle capacity is limited.
The main objective is generally to minimize costs. The VRP has been expanded to include
several variants as different constraints have been added from real-world uses.

Interest in the Electric Vehicle Routing Problem (EVRP) has been increasing in recent
years, as the use of EVs in logistics operations has increased. EVRP is an NP-hard problem
in which routing and charging plans are optimized simultaneously [4]. Charging strategy
assumptions can be classified as partial and fully charging. Charging the battery fully
takes longer, so it affects the solution in terms of time. Partial charging of the battery is
more practical because it takes less time. The battery only needs to be charged enough to
visit customers on the route and return to the depot, eliminating unnecessary charging
time. In addition, charging EVs at the depot is cheaper than at charging stations, and
the overall cost of charging can be reduced with partial charging [5,6]. Felipe, Ortuño,
Righini, and Tirado [6]; Bruglieri et al. [7]; and Keskin and Catay [8] have considered partial
charging strategies in which battery charging of EVs is adjusted at each charging station.
Desaulniers et al. [9] proposed the EVRPTW and designed four variants with single or
multiple charges per tour and partial or full charges.

Montoya et al. [10] developed a mixed-integer linear programming formulation with a
nonlinear charging function and a hybrid metaheuristic to minimize the total time (driving
and charging time). They tried to find an efficient charging plan under the fixed route
assumption. Lin et al. [11] focused on the EVRP by taking into account the effect of payload
on the battery consumption rate. They assumed charging time of EVs is constant, and EV
load capacity was not considered. Erdoĝan and Miller-Hooks [12] developed a modified
Clarke and Wright Savings heuristic to solve the Green Vehicle Routing Problem. Some
assumptions included constant charging time and linear energy consumption with distance
traveled. On the contrary, Kancharla and Ramadurai [13] assumed nonlinear charging
time and load-dependent energy consumption. Strehler et al. [14] proposed a solution
approach for a mixed fleet in which electric and hybrid vehicles are routed based on
different strategies. In this context, they developed a mathematical model for both types
of vehicles that tries to find the shortest path, use recyclable sources, and find charging
stations. In the literature, there are other studies that assume nonlinear charging times,
such as Froger et al. [15], Keskin et al. [16], and Koç et al. [17].

In the real world, when deciding on the size of the fleet and the characteristics of the
EVs in the fleet, companies must consider customer demand, the characteristics and quan-
tity of the loads to be transported, regional legal obligations, the physical characteristics
of the demand points, and so on. In the literature, this problem is commonly referred to
as the fleet size and mix (FSM) problem, and there are studies that focus on this problem
in electric vehicle routing. Goeke and Schneider [18] studied the EVRPTW with a mixed
fleet (E-VRPWTMF) of EVs and internal combustion engine vehicles. They investigated
the effects of load and various objectives. They developed an accurate model for energy
consumption. Hiermann et al. [19] considered time windows and charging stations to solve
the electric fleet size and vehicle mix routing problem (E-FSMFTW). Hiermann et al. [20]
presented a routing problem for a mixed fleet with different vehicle types, e.g., internal
combustion engine vehicles, plug-in hybrids, and EVs.

In real-world applications, the time window is another essential constraint for EVRP.
Schneider, Stenger, and Goeke [1] studied the EVRP with a time window (EVRPTW) for the
first time in the literature. They assumed charging would be linear and EVs would be fully
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charged. Keskin, Laporte, and Catay [16] considered that charging stations have limited
capacity. They also assumed time windows and time-dependent waiting times using a
queuing system for charging stations. Lu et al. [21] considered the impact of traffic during
peak hours for the time-dependent EVRP.

The location of charging stations has been combined with EVRP in some recent studies.
Yang and Sun [22] presented the problem of battery-swap station locations for EVs with
that capacity (BSS-EV-LRP). The authors developed models and four-phase and two-phase
heuristic methods to solve the problem. Li-Ying and Yuan-Bin [23] presented the multiple
EV charging station siting problem with time windows (EV-MCS-LRPTW) to optimize both
infrastructure selection and charging station siting. Schiffer and Walther [5], Hof et al. [24],
and Gatica et al. [25] proposed a novel EV location system that can simultaneously find
charging stations and route EVs. Zhang et al. [26] constructed the routing problem for
finding electric battery replacement stations with stochastic requirements. Paz et al. [27]
proposed the electric location routing problem with time windows for multiple depots. The
Electric Vehicles Integrated Planning Problem (EVs-IPP) was presented by Arias et al. [28].
The optimal placement of charging stations was performed considering the routes of EVs
and the impact on the power-distribution system. Chen et al. [29] propose the problem of
location and routing battery swap stations with time windows and a mixed fleet of electric
and conventional vehicles (BSS-MF-LRPTW). Çalık et al. [30] assumed a heterogeneous
fleet of EVs with limited capacity in solving the EVLRP.

One of the extensions of the EVRP is the pickup-and-delivery problem (PDP), where a
customer must either be delivered or picked up. To the best of our knowledge, there are six
journal articles in the current literature that propose different approaches to solving the elec-
tric vehicle routing problem with pickup and delivery and time windows (EVRP-PDP-TW).
In this context, Lin, Zhou, and Wolfson [11] introduced the assumption that vehicle load
affects battery consumption, and Zhao and Lu [31] considered a heterogeneous EV fleet
with fixed charging times at charging stations. Grandinetti et al. [32] and Yang et al. [33]
also proposed a homogeneous EV fleet with a linear charging function. Goeke [34] and
Ahmadi et al. [35] both assume partial charging with linear and nonlinear charging func-
tions, respectively. Ghobadi et al. [36] propose a multi-depot pickup and delivery problem
for EVs with fuzzy time windows. Soysal et al. [37] studied the impact of stochastic battery
discharge of EVs by visiting battery swap stations instead of charging stations for EVRP-
PDP. Nolz et al. [38] developed an ALNS-based procedure to solve EVRP-PDP under the
assumptions of a linear charging function, partial charging, and a heterogeneous EV fleet.

In summary, the current EVRP literature is limited to studies in which customer demand
implies either delivery only or non-simultaneous delivery and pickup. To our knowledge,
there is no study of EVRP in the literature that considers simultaneous pickup and delivery.
Table 1 provides a summary of the literature on EVRP with pickup and delivery.

Table 1. EVRP with pickup and delivery in the literature.

Paper SPD PDP TW PD BSS MD DM ECM OCM TM HEF PC CF

Grandinetti, Guerriero,
Pezzella, and Pisacane [32] X X X X L

Lin, Zhou, and Wolfson [11] X X X X L
Goeke [34] X X X X L

Zhao, and Lu [31] X X X X X FT
Soysal, Cimen, and Belbag [37] X X X

Ahmadi, Tack, Harabor, and
Kilby [35] X X X X NL

Ghobadi, Tavakkoli
Moghadam, Fallah, and

Kazemipoor [36]
X X X X FT
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Table 1. Cont.

Paper SPD PDP TW PD BSS MD DM ECM OCM TM HEF PC CF

Yang, Ning, Tong, and
Shang [33] X X X X X L

Nolz, Absi, Feillet, and
Seragiotto [38] X X X L

SPD: Simultaneous Pickup and Delivery; PDP: Pickup and Delivery Problem; TW: Time Windows; PD: Partial
Delivery; BSS: Battery Swap Station; MD: Multi-Depot; DM: Distance Minimization; ECM: Energy Cost Minimiza-
tion; OCM: Other Costs Minimization; TM: Time Minimization; HEF: Heterogenous Fleet; PC: Partial Charging;
L: Linear Charging Function; FT: Fixed Time; NL: Non-linear Charging Function.

3. Mathematical Model

In this work, we address the problem of designing a network that simultaneously
delivers/picks up freight from a central depot to customers and vice versa using EVs that need
to visit multiple charging stations due to their limited range. In this context, the assumptions
of EVRP-SPD can be formulated as follows: A group of customers is located in a distribution
network in which customers require both deliveries and pickups. Partial deliveries and partial
pickups are not allowed. Each customer must be served once for both operations with a given
fleet of identical EVs; the EV fleet is homogeneous. Each vehicle leaves the central depot with
the total amount of goods to be delivered and returns to the depot with the total amount of
goods picked up. The vehicle load cannot exceed the vehicle capacity at any time during the
tour. The capacity of the depot is unlimited. An EV visiting the charging station leaves with a
full load; partial loads are not allowed. Charging stations may be visited more than once by
the same EV. It is assumed that EVs are charged at a constant rate at charging stations. The
objective function is to minimize the total distance traveled by the EVs.

An integer-model program based on three index nodes with the following notation is
proposed for EVRP-SPD:

Notation and Sets
nd = number of depots
nr = number of charging stations
nc = number of customers
nk = number of EVs
ND = the set of depot {1, . . . , nd}
NR = the set of charging stations {nd + 1, . . . , nd + nr}
NC = the set of customers {nd + nr + 1, . . . , nd + nr + nc}
NRC = the set of charging stations and customers {nd + 1, . . . , nd + nr + nc}
NDRC = the set of depots, charging stations and customers {nd, . . . , nd + nr + nc}
N = the set of nodes {1, . . . , nd + nr + nc}
Nk = the set of EVs at the depot {1, . . . , nk}
Parameters
dij = distance from nodes i to j
Qk = maximum loading capacity of EV k
BCk = maximum battery capacity of EV k
gk = charging rate of EV k
hk = energy consumption rate of EV k
Dj = delivery goods demand of customer j (∀j ∈ NC)

Pj = pick− up goods demand of customer j(∀j ∈ NC)

Decision Variables

xkij =

{
1, i f node j visited by EV k after node i;
0, otherwise

(∀k ∈ Nk , ∀i, j ∈ ND ∪ NR ∪ Nc)

Ukij = amount of goods to be delivered by EV k on the arc (i, j) (∀i, j ∈ N, ∀k ∈ Nk)

Vkij = amount of goods picked− up by EV k on the arc (i, j) (∀i, j ∈ N, ∀k ∈ Nk)

BSCaik = charge level of EV k upon arrival at node i (∀i ∈ N, ∀k ∈ Nk)
BSCdik = charge level of EV k at departure from node i (∀i ∈ N, ∀k ∈ Nk)
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MODEL
Min Z = ∑

k∈Nk

∑
i∈N

∑
j∈N

dij ∗ xkij (1)

∑k∈Nk
∑i∈N xkij = 1, ∀j ∈ NC (2)

∑i∈N xkji −∑i∈N xkij = 0, ∀k ∈ Nk , ∀j ∈ N (3)

∑j∈N′RC
xkij ≤ 1, ∀k ∈ Nk , ∀i ∈ ND (4)

∑j∈N′RC
xkji ≤ 1, ∀k ∈ Nk , ∀i ∈ ND (5)

Ukij = 0, ∀i ∈ NRC , ∀j ∈ ND, ∀k ∈ Nk (6)

Vkji = 0, ∀i ∈ NRC , ∀j ∈ ND, ∀k ∈ Nk (7)

Ukij + Vkij ≤ Qk ∗ xkij, ∀i, j ∈ N, ∀k ∈ Nk (8)

xkii = 0, ∀i ∈ N, ∀k ∈ Nk (9)

BSCaik ≥ 0, ∀i ∈ N, ∀k ∈ Nk (10)

BSCdik = BCk, ∀i ∈ ND, ∀k ∈ Nk (11)

BSCajk ≤ BSCaik −
(
hk ∗ dij

)
∗ xkij + BCk ∗

(
1− xkij

)
, ∀i ∈ NC , ∀j ∈ N, i 6= j, ∀k ∈ Nk (12)

BSCajk ≤ BSCdik −
(
hk ∗ dij

)
∗ xkij + BCk ∗

(
1− xkij

)
, ∀i, j ∈ N, i 6= j, ∀k ∈ Nk (13)

BSCaik ≤ BSCdik, ∀i ∈ N, ∀k ∈ Nk (14)

BSCdik ≤ BCk, ∀i ∈ N, ∀k ∈ Nk (15)

BSCaik = BSCdik, ∀i ∈ NC, ∀k ∈ Nk (16)

BSCdik = BCk, ∀i ∈ NR, ∀k ∈ Nk (17)

∑i∈N Ukij = ∑i∈N Ukji, ∀j ∈ NR, ∀k ∈ Nk (18)

∑i∈N Vkij = ∑i∈N Vkji, ∀j ∈ NR, ∀k ∈ Nk (19)

∑k∈Nk
∑i∈N Ukij −∑k∈Nk

∑
i∈N

Ukji = Dj, ∀j ∈ NRC (20)

∑k∈Nk
∑i∈N′DRC

Vkij −∑k∈Nk
∑i∈N′DRC

Vkji = Pj, ∀j ∈ NRC (21)

dij ≥ xkji, ∀i, j ∈ N, ∀k ∈ Nk (22)

xkij ∈ {0, 1}, ∀k ∈ Nk, ∀i, j ∈ ND ∪ NR ∪ NC (23)

Ukij, BSCaik, BSCdik, Vkij ≥ 0, ∀i, j ∈ N, ∀k ∈ Nk (24)

The objective function (1) aims to minimize the total distance traveled by EVs. Con-
straint (2) ensures that each customer is visited exactly once, while Constraint (3) ensures
that EVs depart immediately after visiting a customer or charging station, and that EVs
leaving the depot return to the depot. Constraints (4), (5), and (22) allow EVs to be used
only when needed at the depot. Constraint (6) states that no goods are delivered in EVs
returning to the depot from the customer. Constraint (7) states that no goods will be picked
up in EVs traveling from the depot to the customer. Constraint (8) states that the total
number of goods picked up and to be delivered by the EV shall not exceed the capacity of
the EV. Constraint (9) prevents the formation of a sub-tour with an element by preventing
a trip from the current node to the node itself. Constraint (10) ensures that the charge
level of EV k upon arrival at node i shall not be negative. Constraint (11) states that EVs
leave the depot fully charged. Constraint (12) ensures that the charge level of vehicle k
arriving at node j is less than or equal to the charge level arriving at node i. Constraint (13)
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ensures that the charge level of vehicle k arriving at node j is less than or equal to the charge
level at departure from node i. Constraints (14)–(17) are other constraints related to the
battery state of charge. Constraint (18) states that the amount of goods to be delivered
by an EV visiting the charging station remains the same, while Constraint (19) states that
the amount of goods picked up remains the same. Constraints (20) and (21) ensure that
customer demand for the goods to be delivered and the goods to be picked up are satisfied
by the same EV. Constraints (23) and (24) define the nature of the variables.

4. The Proposed Solution Methodology

Considering the complexity of the problem, we developed a metaheuristic solution
approach based on the VNS algorithms to solve the EVRP-SPD. Several variants of the
VNS solution approach were implemented in this methodology. A modified Clark and
Wright Savings algorithm, which takes into account the assumptions and characteristics of
the problem, was developed to obtain a feasible initial solution. Algorithm 1 details the
creation of a feasible initial solution. In addition to the shaking and local search operators
of the VNS, we also used well-known destruction and repair operators to improve the
performance of the VNS. VNS was first proposed by Mladenović and Hansen [39]. The
basic idea is to explore distant neighborhoods of the current solution and switch to a new
solution only when improvement has been achieved. It is widely used to solve different
variants of VRPs [1,7,29,40–45]. In this paper, we integrated the features of the proposed
problem into the VNS. The details of the proposed solution approach are described in
Algorithm 2.

4.1. Construction of the Initial Solution

To generate a feasible initial solution, we employ the savings heuristic proposed by
Clarke and Wright [46] for EVRP-SPD. There are variations of saving heuristics developed
for VRP and its extensions in the literature, but to our knowledge, a version for EVRP-SPD
does not yet exist. To this end, we have adapted a savings heuristic that takes into account
the limited range of EVs and simultaneous pickup and delivery.

Unlike the original method, a greedy insertion operator inserts a charging station with
the maximum savings value (minimum insertion cost) into the back–forth tour (depot–
customer–depot). If the battery constraint is not met even after the charging station is
added, the relevant tour is removed, and the customer in the tour is added to the list
of unvisited customers (Lunvisited). A savings list is generated that includes each pair of
customers in back-and-forth tours and the savings values of those pairs. To calculate the
savings values of each pair of customers, we used the formulation proposed by Clarke and
Wright [46]. In Equation (25), di0, d0j, and dij represent the distances between the depot and
customer i, the depot and customer j, and customer i and customer j, respectively.

sij = di0 + d0j − dij (25)

After the saving list is created, the list is sorted in descending order of savings values.
Then, tours involving those customers are merged, starting with the pair of customers with
the greatest savings value. If the new tour violates vehicle capacity, the merge is canceled,
the relevant customer pair is removed from the savings list, and the merge continues with
the next customer pair with the highest savings value. If the new tour violates battery
constraint, the charging station with the minimum insertion cost is added to the tour.
Minimum insertion cost represents the one that increases the tour distance the least among
all possible charging stations, which, when added to the tour, makes the tour convenient. If
feasibility cannot be achieved even after the charging station is added, a second charging
station is not added, and the merge process is canceled. The relevant customer pair is
removed from the savings list. The cycle continues with the next customer pair with the
highest savings value until there are no pairs of customers left on the savings list. After
merging of the tours is complete, the customers that have not yet been visited (Lunvisited)
are inserted into the created tours using a greedy insertion operator.
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Algorithm 1 Modified CW Savings Algorithm for EVRP-SPD

1: Start
2: while There are customers not added to the routes do
3: Create back-forth (BF) tours (depot-customer-depot)
4: if EV charge level insufficient to complete the tour then
5: Add the CS with the lowest cost to the tour
6: if energy constraint is not met then
7: Cancel the tour and remove from tour list
8: Add customer to the list of unvisited customers
9: else
10: Add the tour to the tour list
11: end if
12: else
13: Add the BF tour to the tour list
14: end if
15: end while
16: Create savings list by computing the savings
17: Sort the savings in descending order
18: while the savings list is not empty do
19: Select two BF tours with largest savings
20: if customer(s) have already been added to the current tours then
21: Cancel the merge
22: Remove the relevant customer pair from the savings list
23: else
24: Check remaining capacity of EV
25: if capacity constraint is not met then
26: Cancel the merge
27: Remove the relevant customer pair from the savings list
28: else
29: Check remaining charge level of EV
30: if energy constraint is not met then
31: Add CS to the tour with minimum cost
32: if energy constraint is not met then
33: Cancel the merge
34: Remove the relevant customer pair from the savings list
35: else
36: Merge selected BF tours
37: Update the tour list
38: end if
39: else
40: Merge selected BF tours
41: Update the tour list
42: end if
43: end if
44: end if
45: Update the savings list based on new tour list
46: end while
47: Add customers from the list of unvisited customers to existing tours using the greedy
insertion operator
48: End

4.2. Variable Neighborhood Search

Metaheuristics are expected to explore the solution space efficiently to find good-quality
solutions and to do so as quickly as possible. By using multiple neighborhood structures and
changing them systematically during the search, VNS has an excellent ability to explore the
search space and shows superior performance over its competitors [1,7,21,24,43,47–49]. While
shaking operators are used to diversify the search and to explore different neighborhoods,
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local search operators are used to find the local optima of a particular neighborhood.
Therefore, it is crucial to choose the best neighborhood operators to obtain high-quality
solutions to the problem.

Algorithm 2 VNS Framework

1: Function VNS Variants (x, kmax, N)
2: fbest ← x Initial Solution
3: while the stopping condition is not fulfilled do
4: k← 1
5: while k ≤ kmax do
6: x′ ← Shake (x, k, N);
7: x′′ ← Local Search (x′, N);
8: Neighborhood Change: Sequential or Pipe or Cyclic (x, x′′ , k);
9: if f(x′′ ) < fbest then
10: x ← x′′ ; fbest = f(x);
11: end if
12: end while
13: end while
14: Return x

In this work, different VNS variants, such as reduced VNS (RVNS), basic VNS (BVNS),
general VNS (GVNS), nested VNS (NVNS), and random VNS (RNDVNS), and different
neighborhood change steps, such as sequential, pipe, and cyclic, were tested to solve
the EVRP-SPD. The purpose of the neighborhood change steps is to guide the VNS in
exploring the solution space. In other words, it decides which neighborhood to explore
after the incumbent solution and which solution or solutions to accept as the new in-
cumbent solution(s). Commonly used neighborhood change steps are sequential, pipe,
and cyclic [50]. In sequential neighborhood change, exploration continues in the first
neighborhood structure of the new incumbent solution if improvement in the incumbent
solution occurs in any neighborhood structure; otherwise, exploration continues in the
next neighborhood. Regardless of whether there is improvement in the incumbent solution
in the current neighborhood, exploration continues in the next neighborhood structure
in the cyclic neighborhood change step, whereas in the pipe neighborhood change step,
exploration continues in the current neighborhood. In this work, sequential, pipe, and
cyclic neighborhood change steps are used in the VNS variants. Details can be found
in Table 2.

Table 2. Neighborhood change steps considered in VNS variants.

NCS BVNS GVNS RVNS RNDVNS NVNS

Sequential (v4) - (v1) (v7) (v10)
Pipe - (v5) (v2) (v8) (v11)

Cyclic - (v6) (v3) (v9) (v12)

Reduced VNS is a variant of the VNS heuristic introduced by Mladenović and
Hansen [39] for solving combinatorial optimization problems [51–53]. RVNS is practi-
cal for large instances where local search is computationally intensive. Instead of searching
for all solutions of a neighborhood structure, RVNS randomly selects one solution and
immediately performs the neighborhood change step. Another variant of VNS is basic
VNS, which examines neighborhood structures in a predefined order. If the solution im-
proves when any neighborhood structure is applied, the search should be restarted at the
first structure [54]. Therefore, BVNS uses a sequential step to change the neighborhood.
General VNS uses local search with variable neighborhood descent (VND) within the
BVNS scheme [55]. A simplification of VNS, called nested VNS, consists of applying a
VNS variant to each point of a predefined nested (combined) neighborhood structure as
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a local search procedure [56]. Random VNS (RNDVNS) differs from BVNS by selecting
the nearest neighborhood structure to visit. RNDVNS consists of randomly selecting an
unvisited neighborhood to continue the search when a neighborhood structure cannot find
an improved solution [57]. This variant does not depend on a predetermined order of visits
to neighborhood structures.

For a pseudocode overview of the VNS and its variants, see Algorithm 2. First,
the algorithm takes as input an initial solution generated by the modified C&W savings
algorithm. A local search phase is used to improve the solution, and a shaking phase is used
to avoid local minima traps. The neighborhood change step is performed sequentially until
a predefined stop condition is satisfied. In this study, a reasonable time limit considering
the problem size of datasets is applied as a termination criterion on the same hardware
configuration. Thus, a fair performance comparison among algorithms is provided.

4.3. Neighborhood Structures

The neighborhood structures used in this work are described below. They are based
on neighborhoods used in the VRP and EVRP literature. Four inter-route operators (replace,
cross, exchange, and shift) and five intra-route operators (swap, 2-opt, 3-opt, insert cus-
tomer, and insert charging station) are used, while six removal operators (Shaw customer,
maximum distant n customer, random n customer, minimum capacity route, random route,
and maximum distant one customer removal) are used in the shaking step. When a removal
operator is used in the shaking step, repair operators (inserting a distance base, inserting a
greedy customer, and creating a route from the list of removed customers) are used in the
local search step. Further, four operators for best move (best swap of customers, best swap
of all customers and charging stations), best insertion, and best reverse route) are used in
the local search step. See Table 3 for details on the neighborhood structures.

Table 3. VNS neighborhood structures.

Name Applied to Name Applied to

Shaking Step C CS Local Search Step C CS

Swap X Best Swap Customer X
2-Opt X Best Swap All X X
3-Opt X X Best Insert X
Insert Customer (C) X Best Reverse Route X X
Insert Charging Station (CS) X
Replace X
Cross X
Exchange X
Shift X

Shaking Step Description C CS

Shaw Customer Removal SeedC (Random), C (Similarity) X
Maximum Distant N Customer Removal N (Random), C (Distance) X
N Random Customer Removal N (Random), C (Random) X
Minimum Capacity Route Removal R (Min Cap) X X
Random Route Removal R (Random) X X
Maximum Distant One Customer Removal C (Distance) X

Local Search Step C CS

Distance Base Insertion Distance Change (Calc by Whole Route) X
Greedy Customer Insert Distance Change (Calc by Pred. and Succ. Nodes) X

Create a Route from List of Removed Creates Routes from Single Customers that Cannot be
Added to the Same Route X

C: Customer, CS: Charging Station.
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5. Numerical Investigations
5.1. Implementation

Experiments with the proposed solution approaches and CPLEX were performed on a
machine with an Intel Core i7-9750H CPU with 6 cores at 2.60 GHz and at least 16GB RAM.
The mathematical model we developed for EVRP-SPD was solved using CPLEX 12.1 in
one-threaded mode for small instances. The proposed algorithms were coded in MATLAB,
a simple and effective programming language. Moreover, each experiment was performed
in one-threaded mode using the asynchronous structure of the Parallel Computing Toolbox
of MATLAB R2020b. Thus, by taking advantage of this parallel computing structure,
replications of the experiments were obtained sooner than if the experiments had been run
in sequence. CPLEX, on the other hand, was used to obtain exact results for small instances
and to confirm that the VNS algorithms can reach these optimal results.

5.2. Generation of EVRP-SPD Instances

There is no available instance set for EVRP-SPD, as the problem has not yet been
studied in the literature. Therefore, we created new instance sets to test our solution
approach. EVRP-SPD instances were derived from EVRP-TW instance sets by Schneider,
Stenger, and Goeke [1]. The original instance sets have 36 small and 56 large instances,
but in this study 36 small and 34 large instances were derived from the instance sets by
Schneider, Stenger, and Goeke [1] for EVRP-SPD. While all large instances from Schneider,
Stenger, and Goeke [1] are identical in terms of customer and charging station locations,
the 34 large instances differed in terms of pickup and delivery requirements, battery, and
load capacity of EVs in EVRP-SPD. The small instances consisted of 5, 10, and 15 customers,
and the large instances included 100 customers and 21 charging stations. There were three
types of instances in terms of geographical distribution of customer coordinates: random
distribution (R), clustered distribution (C), and a combination of both (RC).

One of the precautions taken in the datasets used was to redetermine customer demand
in accordance with the model. The simultaneous pickup and delivery constraint requires
two different sets of demand data for each customer, for both pickup and delivery. In this
context, customer demand was recalculated in the original dataset, as in the method used
by Salhi and Nagy [2].

In this method, a coefficient ki = min(xi/yi, yi/xi) is determined based on the coor-
dinates of each customer (xi, yi). Then, this coefficient and customer demand (qi) of the
original dataset are used to calculate the delivery (Di) and pickup (Pi) demand of each
customer. The equations Di = ki ∗ qi and Pi = ki ∗ qi are used for delivery and pickup
demand, respectively.

5.3. Neighborhood Structure Tests on Instances

In this section, 26 neighborhood structures were tested on three types of instances with
respect to the geographic distribution of customer coordinates (C, R, and RC) to decide
which neighborhoods to use and in what order. All operators of the shaking and local search
steps started with the same solution (x) in their own step, since it is important that each
operator competes under the same conditions. New neighborhoods (Ns, s = 1, . . . , smax)
explored by each operator in the shaking step are determined as the incumbent solutions
(x′) for each local search operator. Then, new neighborhoods (Nl , l = 1, . . . , lmax) are
explored by each operator in the local search. Similarly, the fitness values of the newly
explored neighborhoods are compared, and the best one is determined as the incumbent
solution (x′′ ), so that one iteration is completed. This cycle continues until the established
termination criteria are met. In summary, the average success rate (ASRk) of each operator
can be calculated as follows:
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ASRk = 100 ∗ (NSk/NTk) (26)

where NSk represents the number of successes of the k’th operator. Success means that
a new neighborhood with better fitness is explored. NTk represents the total number
of attempts of the k’th operator. The average success rates of the most successful op-
erators used in this work are shown in descending order for small and large instances
in Figures 2 and 3, respectively.

Algorithm 3 Neighborhood Structure (NS) Performance Test Algorithm

1: Function Fair Performance Comparison
2: Select the set of NS for Shake Phase (SHi, i = 1, . . . , imax)
3: Select the set of NS for Local Search Phase (LSj, j = 1, . . . , jmax)
4: NoSSHi ← 0 // Initialize No of Success for SHi
5: NoSLSj ← 0 // Initialize No of Success for LSj
6: NoTSHi ← 0 // Initialize No of Total Usage for SHi
7: NoTLSj ← 0 // Initialize No of Total Usage for LSj
8: ASRSHi : Average Success Rate of SHi
9: ASRLSj : Average Success Rate of LSj
10: xbest ← Initial Solution by Modified CW Savings
11: while the stopping condition is not fulfilled do
12: x ← xbest ;
13: for i = 1 : imax do
14: x′i ← Shake (x, SHi);
15: NoTSHi = NoTSHi + 1 ;
16: if f(x′i)

< f(x)then
17: NoSSHi = NoSSHi + 1 ;
18: end if
19: if f(x′i)

< fbest then
20: xbest = x′i ;
21: end if
22: for j = 1 : jmax do
23: x′′j ← Local Search (x′i , LSj);
24: NoTLSj = NoTLSj + 1;
25: if f(x′′j )

< f(x′i)
then

26: NoSLSj = NoSLSj + 1;
27: end if
28: if f(x′′j )

< fbest then

29: xbest = x′′j ;
30: end if
31: end for
32: end for
33: end while
34: for i = 1 : imax do
35: ASRSHi = 100× NoSSHi ÷ NoTSHi ;
36: end for
37: for j = 1 : jmax do
38: ASRLSj = 100× NoSLSj ÷ NoTLSj ;
39: end for
40: Return xbest, ASRSHi , ASRLSj
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When operators were ranked by success rate, similar results were obtained for three
different customer location groups (C, R, and RC), but different results were obtained in
terms of problem size. For this reason, the same set of operators was used for the three
types of instances. Since the success rates of the operators were different for large and small
problems, two sets of operators were created in which the operators and their order were
different. The operators that could not improve the solution, i.e., with a success rate of zero
(ASRk = 0%), were eliminated. Moreover, each neighborhood structure was ordered in



Mathematics 2022, 10, 3108 14 of 22

descending order of success rate to reduce the solution time. The operator sets to solve all
the problems in the corresponding instances are listed in Table 4.

Table 4. Operator sets employed in small-sized and large-sized instances.

Small-Sized Instances Large-Sized Instances

Shake Shake
Replace Replace

Exchange Shift
Cross Exchange
Shift Cross

InsertCS InsertCS
Swap MinCapRouteRem

NRandCustRem RandRouteRem
2-Opt NRandCustRem

MaxDistant1CustRem MaxDistantNCustRem
ShawCustRem ShawCustRem

MaxDistantNCustRem MaxDistant1CustRem
RandRouteRem Swap

MinCapRouteRem SingleCustRRem
3-Opt InsertC

InsertC

Local Search Local Search

BestSwapALL BestInsert
BestInsert BestSwapALL

BestSwapC BestSwapC
BestRoutebyCS BestRoutebyCS

DistBasedCustIns DistBasedCustIns
GreedyInsert GreedyInsert

LremTo1Route LremTo1Route

5.4. Numerical Results

Small test instances for EVRP-SPD were used to analyze the performance of our VNS-
based solution approaches. For this purpose, the instances were solved with VNS variants,
and the results were compared with the optimal solution found by the commercial solver
CPLEX 12.1 using the EVRP-SPD formulation presented in Section 3.

An overview of the results is given in Tables 5 and 6. For both CPLEX and VNS, the
computation time in seconds is given in column t. For the solutions obtained with CPLEX,
the distance traveled (column f ) corresponds to the optimal solution. For VNS, column f
provides the best solution found in six runs, and column ∆ f denotes the gap to the traveled
distance found by CPLEX.

The results show that the proposed solution heuristic is able to optimally solve small
EVRP-SPD instances in only a few seconds. If CPLEX finds an optimum within 7200 s, we
always obtain the optimal solution, regardless of the structure or size of the instance. For
all large instances, CPLEX is not able to find an optimal solution or an upper bound within
7200 s. The results show that the proposed solution approach can identify highly efficient
vehicle routes that utilize the available charging stations.

A total of six instances, two of each instance type (C, R, and RC), were selected from
the large instances and solved with VNS variants. The results are shown in Table 7, where
the computation time for all tests was limited to 2400 s. For the solutions obtained, column
f indicates the best solution found in six runs, and column ∆ f denotes the distance to the
best solution found within all VNS variants. The bottom row gives the average values of
the gaps for each variant. As can be seen in Table 7, the smallest average of the gaps belongs
to RVNS with cyclic neighborhood change step (V3) and GVNS with cyclic neighborhood
change step (V6). After that, the order continues as follows: V7, V1, V9, V2, V8, V5, V12,
V10, and V11.
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Table 5. Comparison of CPLEX vs. VNS variant results on small-sized instances.

Reduced VNS Basic VNS General VNS
CPLEX V1 Seq V2 Pipe V3 Cyclic V4 Seq V5 Pipe V6 Cyclic

Instance f t ∆f f t ∆f f t ∆f f t ∆f f t ∆f f t ∆f f t ∆f

C101C5 208.9 1.35 0% 208.9 0.05 0.00% 208.9 0.03 0.00% 208.9 0.05 0.00% 208.9 0.16 0.00% 208.9 0.16 0.00% 208.9 0.13 0.00%
C103C5 154.5 1.2 0% 154.5 0.17 0.00% 154.5 0.17 0.00% 154.5 0.2 0.00% 154.5 0.7 0.00% 154.5 0.34 0.00% 154.5 0.36 0.00%
C206C5 201.55 1.92 0% 201.55 0.03 0.00% 201.55 0.03 0.00% 201.55 0.03 0.00% 201.55 0.08 0.00% 201.55 0.06 0.00% 201.55 0.08 0.00%
C208C5 158.48 1.34 0% 158.48 0.06 0.00% 158.48 0.08 0.00% 158.48 0.08 0.00% 158.48 0.06 0.00% 158.48 0.06 0.00% 158.48 0.09 0.00%

R104C5 * 136.69 1.75 0% 136.69 0 - 136.69 0 - 136.69 0 - 136.69 0 - 136.69 0 - 136.69 0 -
R105C5 * 139.48 1.23 0% 139.48 0 - 139.48 0 - 139.48 0 - 139.48 0 - 139.48 0 - 139.48 0 -
R202C5 128.78 1.29 0% 128.78 1.73 0.00% 128.78 0.23 0.00% 128.78 0.33 0.00% 128.78 0.75 0.00% 128.78 0.36 0.00% 128.78 0.33 0.00%
R203C5 179.06 1.37 0% 179.06 0.22 0.00% 179.06 0.2 0.00% 179.06 0.2 0.00% 179.06 16.36 0.00% 179.06 6.14 0.00% 179.06 6.14 0.00%

RC105C5 208.43 1.89 0% 208.43 0.13 0.00% 208.43 0.13 0.00% 208.43 0.23 0.00% 208.43 0.75 0.00% 208.43 0.41 0.00% 208.43 0.34 0.00%
RC108C5 211.53 1.36 0% 211.53 0.25 0.00% 211.53 0.23 0.00% 211.53 0.22 0.00% 211.53 0.83 0.00% 211.53 0.41 0.00% 211.53 0.39 0.00%
RC204C5 176.39 2.54 0% 176.39 3.17 0.00% 179.16 1.36 1.60% 176.39 0.2 0.00% 179.16 1.13 1.60% 179.16 0.52 1.60% 179.16 0.52 1.60%
RC208C5 167.98 2.29 0% 167.98 0.02 0.00% 167.98 0.02 0.00% 167.98 0.02 0.00% 167.98 0.06 0.00% 167.98 0.05 0.00% 167.98 0.05 0.00%
C101C10 260.01 4.85 0% 260.01 5.67 0.00% 260.01 3.13 0.00% 260.01 7.36 0.00% 265.75 9.52 2.20% 260.01 13.96 0.00% 260.01 19.95 0.00%
C104C10 239.13 3.39 0% 239.13 4.98 0.00% 239.13 3.71 0.00% 239.13 1.53 0.00% 239.13 17.08 0.00% 239.13 9.12 0.00% 239.13 9.42 0.00%
C202C10 214.96 4.12 0% 214.96 7.2 0.00% 214.96 3.57 0.00% 214.96 8.73 0.00% 214.96 10.72 0.00% 214.96 6.03 0.00% 214.96 4.54 0.00%
C205C10 224.78 4.45 0% 227.08 0.79 1.00% 227.08 0.73 1.00% 224.78 0.36 0.00% 227.08 2.66 1.00% 227.08 1.73 1.00% 227.08 1.08 1.00%
R102C10 220.97 19.01 0% 220.97 0.74 0.00% 220.97 0.72 0.00% 220.97 2.44 0.00% 220.97 11.1 0.00% 220.97 2 0.00% 220.97 1.56 0.00%
R103C10 160.41 10.35 0% 160.41 3.87 0.00% 160.41 2.55 0.00% 160.41 11.17 0.00% 160.41 18.15 0.00% 160.41 16.38 0.00% 160.41 9.27 0.00%
R201C10 183.11 2.36 0% 197.54 1.9 7.90% 183.11 2.3 0.00% 183.11 4.73 0.00% 197.54 8.98 7.90% 183.11 15.55 0.00% 183.11 13.63 0.00%
R203C10 214.9 5.43 0% 214.9 2.3 0.00% 214.9 2.98 0.00% 214.9 2.88 0.00% 214.9 12.03 0.00% 214.9 6.27 0.00% 214.9 3.59 0.00%
RC102C10 346.7 4.03 0% 346.7 1.65 0.00% 346.7 5.57 0.00% 346.7 4.5 0.00% 354.31 6.55 2.20% 346.7 8.15 0.00% 346.7 7.12 0.00%
RC108C10 317.96 6 0% 317.96 13.13 0.00% 317.96 6.63 0.00% 317.96 3.3 0.00% 345.53 10.82 8.70% 317.96 20.73 0.00% 317.96 5 0.00%
RC201C10 246.99 5.26 0% 246.99 27.07 0.00% 246.99 26.49 0.00% 246.99 9.78 0.00% 247.26 16.97 0.10% 247.26 8.67 0.10% 247.26 11.8 0.10%
RC205C10 306.82 4.14 0% 306.82 0.79 0.00% 306.82 1.3 0.00% 306.82 0.92 0.00% 306.82 3.56 0.00% 306.82 1.94 0.00% 306.82 2.08 0.00%
C103C15 255.68 30.81 0% 255.68 49.81 0.00% 255.68 21.63 0.00% 255.68 34.23 0.00% 255.68 126.46 0.00% 255.68 20.29 0.00% 255.68 46.59 0.00%
C106C15 223.84 142.65 0% 223.84 172.21 0.00% 223.84 6.36 0.00% 223.84 88.61 0.00% 223.84 61.63 0.00% 223.84 16.1 0.00% 223.84 19.6 0.00%
C202C15 314.62 373.2 0% 326.57 205.19 3.80% 314.62 52.62 0.00% 314.62 129.31 0.00% 314.62 95.09 0.00% 314.62 48.33 0.00% 326.57 243.03 3.80%
C208C15 262.5 244.4 0% 262.5 7.55 0.00% 262.5 4.79 0.00% 262.5 2.84 0.00% 262.5 27.33 0.00% 262.5 6.05 0.00% 262.5 5.34 0.00%
R102C15 258.59 681.12 0% 258.59 110.03 0.00% 259.79 144.02 0.50% 258.59 23.27 0.00% 259.79 106.54 0.50% 258.59 49.21 0.00% 258.59 30.68 0.00%
R105C15 231.96 119.88 0% 231.96 40.64 0.00% 231.96 19.04 0.00% 231.96 11.73 0.00% 233.92 284.61 0.80% 231.96 29.16 0.00% 231.96 28.65 0.00%
R202C15 275.04 64.31 0% 275.04 42.01 0.00% 275.04 44.88 0.00% 275.04 13.64 0.00% 275.04 108.5 0.00% 275.04 36.39 0.00% 275.04 34.26 0.00%
R209C15 239.7 49.6 0% 239.7 10.76 0.00% 239.7 26.31 0.00% 239.7 9.22 0.00% 239.7 76.07 0.00% 239.7 239.62 0.00% 239.7 46.26 0.00%
RC103C15 291.07 52.73 0% 291.07 22.78 0.00% 291.07 22.25 0.00% 291.07 9.73 0.00% 291.07 62.43 0.00% 291.07 35.31 0.00% 291.07 34.67 0.00%
RC108C15 330.01 1197.23 0% 330.01 6.22 0.00% 330.01 5.76 0.00% 330.01 7.27 0.00% 330.01 61.84 0.00% 330.01 9.97 0.00% 330.01 26.47 0.00%
RC202C15 295.6 87 0% 319.32 85.21 8.00% 295.6 201.46 0.00% 295.6 94.69 0.00% 315.22 60.75 6.60% 295.6 50.44 0.00% 315.22 49.43 6.60%
RC204C15 255.68 30 0% 255.68 51.88 0.00% 255.68 16.12 0.00% 255.68 29.24 0.00% 255.68 118.24 0.00% 255.68 14.64 0.00% 255.68 40.24 0.00%

Avg. 87.94 24.45 0.60% 17.43 0.10% 14.25 0.00% 37.18 0.90% 18.74 0.10% 19.52 0.40%

* Optimal solution found by the C&W savings heuristic as the initial solution. Notes: f denotes distance traveled; t denotes CPU time in seconds; ∆ f denotes the gap to the distance
traveled found by CPLEX. Optimality is guaranteed for CPLEX results.
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Table 6. Comparison of CPLEX vs. VNS variant results on small-sized instances.

Random VNS Nested VNS
CPLEX V7 Seq V8 Pipe V9 Cyclic V10 Seq V11 Pipe V12 Cyclic

Instance f t ∆f f t ∆f f t ∆f f t ∆f f t ∆f f t ∆f f t ∆f

C101C5 208.90 1.35 0% 208.90 0.02 0.0% 208.90 0.02 0.0% 208.90 0.03 0.0% 208.90 0.16 0.0% 208.90 0.17 0.0% 208.90 0.16 0.0%
C103C5 154.50 1.20 0% 154.50 0.11 0.0% 154.50 0.17 0.0% 154.50 0.13 0.0% 154.50 0.33 0.0% 154.50 0.34 0.0% 154.50 0.28 0.0%
C206C5 201.55 1.92 0% 201.55 0.06 0.0% 201.55 0.08 0.0% 201.55 0.06 0.0% 201.55 0.02 0.0% 201.55 0.02 0.0% 201.55 0.02 0.0%
C208C5 158.48 1.34 0% 158.48 0.08 0.0% 158.48 0.06 0.0% 158.48 0.08 0.0% 158.48 0.05 0.0% 158.48 0.06 0.0% 158.48 0.09 0.0%

R104C5 * 136.69 1.75 0% 136.69 0.00 - 136.69 0.00 - 136.69 0.00 - 136.69 0.00 - 136.69 0.00 - 136.69 0.00 -
R105C5 * 139.48 1.23 0% 139.48 0.00 - 139.48 0.00 - 139.48 0.00 - 139.48 0.00 - 139.48 0.00 - 139.48 0.00 -
R202C5 128.78 1.29 0% 128.78 0.39 0.0% 128.78 0.38 0.0% 128.78 0.36 0.0% 128.78 0.39 0.0% 128.78 0.42 0.0% 128.78 0.38 0.0%
R203C5 179.06 1.37 0% 179.06 0.05 0.0% 179.06 0.03 0.0% 179.06 0.05 0.0% 179.06 2.39 0.0% 179.06 2.52 0.0% 179.06 1.80 0.0%

RC105C5 208.43 1.89 0% 208.43 0.16 0.0% 208.43 0.14 0.0% 208.43 0.14 0.0% 208.43 0.56 0.0% 208.43 0.52 0.0% 208.43 0.48 0.0%
RC108C5 211.53 1.36 0% 211.53 0.19 0.0% 211.53 0.19 0.0% 211.53 0.16 0.0% 211.53 0.63 0.0% 211.53 0.47 0.0% 211.53 0.44 0.0%
RC204C5 176.39 2.54 0% 179.16 0.59 1.6% 179.16 0.53 1.6% 179.16 0.55 1.6% 185.16 0.28 5.0% 185.16 0.27 5.0% 179.16 2.41 1.6%
RC208C5 167.98 2.29 0% 167.98 0.08 0.0% 167.98 0.06 0.0% 167.98 0.05 0.0% 167.98 0.05 0.0% 167.98 0.06 0.0% 167.98 0.23 0.0%
C101C10 260.01 4.85 0% 260.01 8.84 0.0% 260.01 3.51 0.0% 260.01 5.16 0.0% 260.01 11.94 0.0% 260.01 13.68 0.0% 260.01 29.00 0.0%
C104C10 239.13 3.39 0% 239.13 3.44 0.0% 239.13 2.95 0.0% 239.13 7.50 0.0% 239.13 19.18 0.0% 239.13 22.24 0.0% 239.13 20.90 0.0%
C202C10 214.96 4.12 0% 214.96 4.61 0.0% 214.96 4.61 0.0% 214.96 3.05 0.0% 231.07 8.79 7.5% 231.07 8.31 7.5% 214.96 7.32 0.0%
C205C10 224.78 4.45 0% 227.08 0.52 1.0% 224.78 3.52 0.0% 224.78 17.95 0.0% 227.08 1.76 1.0% 227.08 1.92 1.0% 227.08 1.32 1.0%
R102C10 220.97 19.01 0% 220.97 4.43 0.0% 220.97 3.54 0.0% 220.97 2.26 0.0% 220.97 7.22 0.0% 220.97 6.03 0.0% 220.97 4.36 0.0%
R103C10 160.41 10.35 0% 164.58 2.36 2.6% 160.41 23.15 0.0% 160.41 11.88 0.0% 164.58 7.59 2.6% 164.58 8.11 2.6% 160.41 15.17 0.0%
R201C10 183.11 2.36 0% 183.11 11.16 0.0% 183.11 11.25 0.0% 183.11 18.57 0.0% 197.54 2.92 7.9% 197.54 3.46 7.9% 183.42 26.99 0.2%
R203C10 214.90 5.43 0% 214.90 2.14 0.0% 214.90 2.34 0.0% 214.90 1.86 0.0% 214.90 2.58 0.0% 214.90 2.86 0.0% 214.90 2.32 0.0%
RC102C10 346.70 4.03 0% 346.70 6.80 0.0% 346.70 5.93 0.0% 346.70 5.64 0.0% 354.31 2.22 2.2% 354.31 1.83 2.2% 346.70 18.64 0.0%
RC108C10 317.96 6.00 0% 329.93 9.41 3.8% 317.96 8.42 0.0% 317.96 14.75 0.0% 317.96 23.79 0.0% 317.96 25.74 0.0% 317.96 26.44 0.0%
RC201C10 246.99 5.26 0% 247.26 12.70 0.1% 247.26 12.00 0.1% 247.26 11.98 0.1% 260.77 9.32 5.6% 260.77 11.06 5.6% 247.26 21.19 0.1%
RC205C10 306.82 4.14 0% 306.82 1.45 0.0% 306.82 1.62 0.0% 306.82 1.22 0.0% 306.82 7.94 0.0% 306.82 9.06 0.0% 306.82 2.18 0.0%
C103C15 255.68 30.81 0% 255.68 30.16 0.0% 255.68 30.82 0.0% 255.68 23.25 0.0% 255.68 206.50 0.0% 255.68 206.38 0.0% 255.68 57.03 0.0%
C106C15 223.84 142.65 0% 223.84 35.76 0.0% 223.84 95.40 0.0% 223.84 93.70 0.0% 227.78 30.76 1.8% 227.78 30.12 1.8% 223.84 222.96 0.0%
C202C15 314.62 373.20 0% 314.62 40.32 0.0% 314.62 68.19 0.0% 314.62 63.72 0.0% 334.21 203.73 6.2% 334.21 205.38 6.2% 314.62 252.76 0.0%
C208C15 262.50 244.40 0% 262.50 5.99 0.0% 262.50 6.16 0.0% 262.50 5.83 0.0% 262.50 17.38 0.0% 262.50 4.96 0.0% 262.50 5.89 0.0%
R102C15 258.59 681.12 0% 259.79 48.23 0.5% 259.79 22.92 0.5% 259.79 36.62 0.5% 259.79 158.44 0.5% 259.79 157.34 0.5% 259.79 54.84 0.5%
R105C15 231.96 119.88 0% 231.96 46.06 0.0% 231.96 18.04 0.0% 231.96 10.78 0.0% 234.46 102.50 1.1% 234.46 101.79 1.1% 231.96 32.26 0.0%
R202C15 275.04 64.31 0% 275.04 220.29 0.0% 275.04 155.40 0.0% 275.04 109.75 0.0% 276.42 221.23 0.5% 276.42 221.08 0.5% 275.04 59.99 0.0%
R209C15 239.70 49.60 0% 239.70 21.16 0.0% 239.70 32.72 0.0% 239.70 30.10 0.0% 247.27 38.90 3.2% 247.27 38.02 3.2% 239.70 90.17 0.0%
RC103C15 291.07 52.73 0% 291.07 156.43 0.0% 295.95 40.17 1.7% 291.07 27.88 0.0% 305.49 46.14 5.0% 305.49 45.55 5.0% 291.07 115.49 0.0%
RC108C15 330.01 1197.23 0% 330.01 12.54 0.0% 330.01 32.08 0.0% 330.01 34.12 0.0% 332.40 104.08 0.7% 332.40 104.68 0.7% 330.01 48.19 0.0%
RC202C15 295.60 87.00 0% 315.22 61.14 6.6% 319.32 50.38 8.0% 319.32 13.65 8.0% 315.22 198.38 6.6% 315.22 198.12 6.6% 295.60 250.79 0.0%
RC204C15 255.68 30.00 0% 255.68 24.44 0.0% 255.68 24.53 0.0% 255.68 17.52 0.0% 255.68 192.45 0.0% 255.68 190.64 0.0% 255.68 43.87 0.0%

Avg. 87.94 21.45 0.5% 18.37 0.3% 15.84 0.3% 45.29 1.7% 45.09 1.7% 39.34 0.1%

* Optimal solution found by the C&W savings heuristic as the initial solution. Notes: f denotes distance traveled; t denotes CPU time in seconds; ∆ f denotes the gap to the distance
traveled found by CPLEX. Optimality is guaranteed for CPLEX results.
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Table 7. Comparison VNS variants results on selected large-sized instances.

Reduced VNS Basic VNS General VNS Random VNS Nested VNS
V1 Seq V2 Pipe V3 Cyclic V4 Seq V5 Pipe V6 Cyclic V7 Seq V8 Pipe V9 Cyclic V10 Seq V11 Pipe V12 Cyclic BFS

Instance f ∆f f ∆f f ∆f f ∆f f ∆f f ∆f f ∆f f ∆f f ∆f f ∆f f ∆f f ∆f f

C101_21 730.88 2.6% 734.05 3.0% 734.89 3.1% 752.18 5.6% 738.50 3.6% 718.96 0.9% 714.52 0.3% 712.52 0.0% 759.07 6.5% 849.28 19.2% 849.28 19.2% 724.39 1.7% 712.52
C201_21 574.00 1.9% 589.58 4.7% 567.14 0.7% 600.12 6.6% 591.40 5.0% 563.09 0.0% 585.73 4.0% 582.67 3.5% 565.36 0.4% 680.57 20.9% 680.57 20.9% 597.98 6.2% 563.09
R101_21 842.73 2.3% 868.07 5.4% 823.51 0.0% 878.06 6.6% 861.24 4.6% 843.74 2.5% 847.03 2.9% 847.03 2.9% 848.29 3.0% 943.66 14.6% 943.66 14.6% 899.26 9.2% 823.51
R201_21 704.53 2.0% 694.34 0.5% 690.73 0.0% 752.46 8.9% 723.70 4.8% 713.90 3.4% 714.97 3.5% 732.99 6.1% 697.23 0.9% 725.46 5.0% 725.46 5.0% 717.22 3.8% 690.73

RC101_21 894.95 3.5% 875.07 1.2% 887.66 2.6% 903.66 4.5% 896.42 3.7% 885.96 2.4% 864.85 0.0% 906.84 4.9% 902.26 4.3% 1052.76 21.7% 1052.76 21.7% 976.32 12.9% 864.85
RC201_21 705.77 3.4% 722.44 5.8% 682.65 0.0% 786.99 15.3% 702.12 2.9% 698.37 2.3% 709.56 3.9% 709.56 3.9% 710.73 4.1% 816.95 19.7% 816.95 19.7% 743.82 9.0% 682.65

Avg. 2.6% 3.4% 1.1% 7.9% 4.1% 1.9% 2.4% 3.5% 3.2% 16.8% 16.8% 7.1%

Notes: f denotes distance traveled; ∆ f denotes the gap to the best-found solution within all VNS variants.
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Comparison of the results in terms of the gaps of each variant for C, R, and RC
instances is shown in Figure 4a–c. According to the results, the most efficient solution
approach is V6 for C, V3 for R, and V3 for RC. Comparison of the average gaps of the
twelve solution approaches in selected large instances is shown in Figure 5. Considering
all selected large instances, the solution approaches with the smallest gaps are V3 and V6.
For this reason, the large instances were solved using V3 and V6.
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Comparison of the results obtained with VNS variants V3 and V6 for all large instances
is shown in Table 8. The computation time was limited to 2400 s for all tests. For the
obtained solutions, column f indicates the best solution found in six runs, and column
∆ f denotes the distance from the best solution found with VNS variants V3 and V6. The
bottom row contains the average values of the gaps for each variant. As can be seen in
Table 8, the smallest average of the gaps belongs to RVNS with cyclic neighborhood change
step (V3).

Table 8. Comparison of VNS variants V3 and V6 results on large-sized instances.

Reduced VNS General VNS
Best Found SolutionV3 Cyclic V6 Cyclic

Instance f t ∆f f t ∆f f

C101_21 734.89 2185 2.2% 718.96 2402.7 0.0% 718.96
C201_21 567.14 2067 0.7% 563.09 2244.5 0.0% 563.09
C204_21 585.63 2405 1.0% 579.59 2356.9 0.0% 579.59
C206_21 569.20 2288 0.0% 597.46 2155.3 5.0% 569.20
C207_21 567.76 2513 0.0% 599.72 1793.2 5.6% 567.76
R101_21 823.51 2305 0.0% 843.74 2395.3 2.5% 823.51
R104_21 880.77 1222 0.0% 888.24 2334.8 0.8% 880.77
R106_21 864.58 1812 0.0% 886.88 2290.6 2.6% 864.58
R107_21 856.46 2347 0.0% 864.49 2363.4 0.9% 856.46
R108_21 842.01 2291 0.0% 857.77 2188.1 1.9% 842.01
R109_21 865.47 2272 1.3% 854.32 1848.1 0.0% 854.32
R110_21 880.77 1235 2.7% 857.25 1834.6 0.0% 857.25
R111_21 879.50 1596 2.0% 862.00 2333.7 0.0% 862.00
R112_21 876.19 1637 2.6% 854.32 1924.6 0.0% 854.32
R201_21 690.73 2133 0.0% 713.90 1687.4 3.4% 690.73
R202_21 690.38 2247 0.0% 711.74 1791.3 3.1% 690.38
R203_21 708.41 1964 0.0% 713.90 2239.7 0.8% 708.41
R204_21 698.59 1477 0.0% 708.64 2282.2 1.4% 698.59
R205_21 690.35 2425 0.0% 704.02 2378.9 2.0% 690.35
R206_21 694.54 2099 0.2% 692.95 2205.3 0.0% 692.95
R207_21 701.66 1020 0.0% 701.42 2265.3 0.0% 701.42
R208_21 687.23 2283 0.0% 714.12 2210.4 3.9% 687.23
R209_21 696.17 2141 0.5% 692.95 2178.9 0.0% 692.95
R210_21 708.41 1991 0.0% 713.90 2166.8 0.8% 708.41
R211_21 701.66 1031 0.2% 700.53 2208.0 0.0% 700.53

RC101_21 887.66 2404 0.2% 885.96 1812.1 0.0% 885.96
RC201_21 682.65 1767 0.0% 698.37 1658.4 2.3% 682.65
RC202_21 703.03 2187 0.0% 710.30 2100.2 1.0% 703.03
RC203_21 685.09 2305 0.0% 698.37 2358.5 1.9% 685.09
RC204_21 723.14 2341 0.0% 731.65 2168.8 1.2% 723.14
RC205_21 715.51 1828 0.0% 721.60 2437.4 0.9% 715.51
RC206_21 691.17 2402 0.0% 735.66 1682.5 6.4% 691.17
RC207_21 685.09 2309 0.0% 707.51 2024.8 3.3% 685.09
RC208_21 721.41 2100 0.0% 743.13 2438.8 3.0% 721.41

Avg. 0.4% 1.6%

Notes: f denotes the distance traveled; t denotes CPU time in seconds; ∆ f denotes the gap to the best-found
solution within all VNS variants.

Real-world problems have generally unknown search spaces with many difficulties.
In optimization, such difficulties significantly reduce the performance of optimization
algorithms that were implemented well on benchmark functions or simple case studies.
In this study, the electric vehicle routing problem with simultaneous pickup and delivery
(EVRP-SPD), encountered in real life applications, especially in city logistics, is solved
theoretically. The problem can also be extended to logistics problems in the industry.
The EVRP-SPD cannot be easily solved due to its np-hard nature. Therefore, several
VNS variants and neighborhood structures were extensively tested, and the results were
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compared in detail. We observed that reduced VNS with cyclic neighborhood change step
(V3) gives better results than other VNS variants. The reduced VNS, which uses only the
shake step and the cyclic neighborhood change step procedure without the use of the local
search step has a better exploration capability than other variants. The proposed solution
approach can be used, especially in real-life applications of the EVRP-SPD.

6. Conclusions

VNS is a metaheuristic solution approach generating good results for a wide variety
of problems with efficient computation time. On the other hand, it requires effort to design
problem-specific neighborhood structures that explore the solution space quickly while
avoiding local optima.

In this paper, an integer programming model formulation based on three index nodes
is proposed for the EVRP-SPD. It is assumed that goods need to be transported from a
central depot to different customers and vice versa using EVs that visit charging stations
along the route in case of an empty battery. An important innovation of our model is that
we assume that each customer has a delivery need and a pickup need at the same time.
To solve small and large instances, a modified C&W saving algorithm considering SPD
was developed to construct an initial solution. Then, a total of 12 solution approaches,
consisting of 5 VNS variants with 3 neighborhood modification steps, were presented to
improve the initial solution and to find the best solution in a reasonable time. Moreover, the
neighborhood structures of VNS were determined by experiments for each type of instance
set. Computational experiments with different instance sets showed the importance of
neighborhood structures, solution methodology, and the neighborhood change step to find
high-quality solutions in an efficient time by moving between neighbors in the search space.

The solution approaches presented can be used by companies to reduce operating
costs and emissions in transportation. Future research could focus on studying mixed
fleets of EVs and how to use them efficiently given their limited range and battery capacity.
The problem we studied could also be extended by considering partial and nonlinear
charging strategies and multi-echelon distribution systems that would better fit the context
of sustainable urban logistics.
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39. Mladenović, N.; Hansen, P. Variable neighborhood search. Comput. Oper. Res. 1997, 24, 1097–1100. [CrossRef]
40. Bräysy, O. A Reactive Variable Neighborhood Search for the Vehicle-Routing Problem with Time Windows. INFORMS J. Comput.

2003, 15, 347–368. [CrossRef]
41. Hemmelmayr, V.C.; Doerner, K.F.; Hartl, R.F. A variable neighborhood search heuristic for periodic routing problems. Eur. J. Oper.

Res. 2009, 195, 791–802. [CrossRef]
42. Polat, O.; Kalayci, C.B.; Kulak, O.; Günther, H.-O. A perturbation based variable neighborhood search heuristic for solving

the Vehicle Routing Problem with Simultaneous Pickup and Delivery with Time Limit. Eur. J. Oper. Res. 2015, 242, 369–382.
[CrossRef]

43. Schneider, M.; Stenger, A.; Hof, J. An adaptive VNS algorithm for vehicle routing problems with intermediate stops. OR Spectr.
2015, 37, 353–387. [CrossRef]

44. Zhu, X.N.; Yan, R.; Huang, Z.C.; Wei, W.C.; Yang, J.Q.; Kudratova, S. Logistic Optimization for Multi Depots Loading Capacitated
Electric Vehicle Routing Problem From Low Carbon Perspective. IEEE Access 2020, 8, 31934–31947. [CrossRef]

45. Paul, A.; Kumar, R.S.; Rout, C.; Goswami, A. A bi-objective two-echelon pollution routing problem with simultaneous pickup
and delivery under multiple time windows constraint. OPSEARCH 2021, 58, 962–993. [CrossRef]

46. Clarke, G.; Wright, J.W. Scheduling of vehicles from a central depot to a number of delivery points. Oper. Res. 1964, 12, 568–581.
[CrossRef]

47. Li, L.; Li, T.; Wang, K.; Gao, S.; Chen, Z.; Wang, L. Heterogeneous fleet electric vehicle routing optimization for logistic distribution
with time windows and simultaneous pick-up and delivery service. In Proceedings of the 16th International Conference on
Service Systems and Service Management (ICSSSM), Shenzhen, China, 13–15 July 2019.

48. Salhi, S.; Imran, A.; Wassan, N.A. The multi-depot vehicle routing problem with heterogeneous vehicle fleet: Formulation and a
variable neighborhood search implementation. Comput. Oper. Res. 2014, 52, 315–325. [CrossRef]

49. Wang, L.; Gao, S.; Wang, K.; Li, T.; Li, L.; Chen, Z.Y. Time-Dependent Electric Vehicle Routing Problem with Time Windows and
Path Flexibility. J. Adv. Transp. 2020, 2020, 19. [CrossRef]

50. Hansen, P.; Mladenovic, N.; Todosijevic, R.; Hanafi, S. Variable neighborhood search: Basics and variants. Euro J. Comput. Optim.
2017, 5, 423–454. [CrossRef]

51. Hansen, P.; Mladenovic, N. Variable neighborhood search: Principles and applications. Eur. J. Oper. Res. 2001, 130, 449–467.
[CrossRef]

52. Hansen, P.; Mladenović, N. Developments of Variable Neighborhood Search. In Essays and Surveys in Metaheuristics; Springer:
Berlin/Heidelberg, Germany, 2002; pp. 415–439.
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