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Abstract— One of the useful approaches to exploit redundancy
in a sensor network is to keep active only a small subset of
sensors that are sufficient to cover the region required to be
monitored. The set of active sensors should also form a connected
communication graph, so that they can autonomously respond
to application queries and/or tasks. Such a set of active sensors
is known as a connected sensor cover, and the problem of
selecting a minimum connected sensor cover has been well studied
when the transmission radius and sensing radius of each sensor
is fixed. In this article, we address the problem of selecting
a minimum energy-cost connected sensor cover, when each
sensor node can vary its sensing and transmission radius; larger
sensing or transmission radius entails higher energy cost. For the
above problem, we design various centralized and distributed
algorithms, and compare their performance through extensive
experiments. One of the designed centralized algorithms (called
CGA) is shown to perform within an O(log n) factor of the
optimal solution, where n is the size of the network. We have also
designed a localized algorithm based on Voronoi diagrams which
is empirically shown to perform very close to CGA, and due to its
communication-efficiency results in significantly prolonging the
network lifetime.

I. Introduction

Wireless sensor networks are often deployed for passive
gathering of sensor data in a geographical region. The “grand
challenge” of sensor network design for data gathering ac-
tivities is to maintain the fidelity of the gathered data while
minimizing energy usage in the network. Energy is spent due
to message transmissions by the radio interface, or due to the
sensing activities by the signal processing electronics. Energy
can be saved if these activities are used only to the extent
absolutely needed, and no more.

Two important properties of a sensor network play critical
roles in the design approach. They are coverage and connec-
tivity. Loosely speaking, coverage describes how well sensors
in the network can monitor a geographical region in question.
This can include multiple parameters, such as whether every
point in the region can be monitored by at least one sensor
within a given confidence. The confidence typically depends
on the physical distance of the point from the monitoring
sensor, as distance weakens the signal and thus worsens the
signal-to-noise ratio introducing measurement errors. In a
simplified model, this confidence can be specified in terms of
a sensing range [1]. Connectivity, on the other hand, simply
describes the connectivity properties of the underlying network
topology. It is often desirable that the network is connected.
If the network is partitioned, the entire sensor network data
cannot be gathered to a central decision-making node.
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It is expected that in most deployment scenarios, it will be
cost-effective to deploy the sensors randomly in a redundant
fashion ([2], [3]). The sensor hardware is cheap, relative to the
logistics or opportunity cost of deployment. Thus, it is useful
to deploy the sensors redundantly, and employ sophisticated
protocol support so that only a “minimally sufficient subset” of
the sensors is actually active at a time – thus conserving energy
and prolonging the sensor network lifetime. Also, in many
scenarios the logistics for designed placement of sensor nodes
at specific geographical locations will be very complex. Thus,
in these scenarios, random deployment is the only feasible
method. This means that the “minimally sufficient subset”
cannot be pre-determined. The sensor nodes must be able to
compute this on-line, by executing appropriate algorithms.

In this paper, our goal is to investigate such algorithms
for energy efficient connectivity and coverage. We investigate
the situation where both sensing and transmission range can
be varied in the sensors. This uncovers an interesting design
problem, where a minimally sufficient subset of sensors must
be selected along with the assignment of sensing and transmis-
sion ranges for individual sensors, such that both coverage and
connectivity are guaranteed with a minimum total energy cost.
The assumption here is that the energy cost for an individual
sensor increases with higher sensing range or transmission
range. This is because with a larger sensing range, more energy
is needed for appropriate filtering and signal processing meth-
ods to improve the signal-to-noise ratio in order to achieve the
desired confidence level. Similarly, with a larger transmission
range, transmission power is to be increased to reach larger
distances. It is expected that with sophisticated sensors that
can control their sensing and transmission ranges, the overall
energy budget of the network can be reduced relative to the
case where sensors have fixed sensing and transmission ranges.
Note that a similar problem has been investigated in literature
by varying transmission ranges of sensor nodes for minimum
energy topology construction in wireless ad hoc networks ([4],
[5], [6], [7]); however, this line of work does not involve any
notion of sensing range.

The rest of the paper is organized as follows. In the next
section, we review the related work on energy efficient connec-
tivity and coverage problem. Then, in section III, we describe
our sensor network model and give the formal definition of
the variable radii connectivity and coverage problem. We
start with presenting a fully localized algorithm based on
Voronoi diagram and relative neighbor graph in Section IV.
In Section V, we present centralized and distributed greedy
algorithms, and in Section VI, we present another centralized



Steiner tree based algorithm. Section VII presents simulation
results.

II. Related Work

Connectivity is a fundamental issue in wireless ad hoc
environment, and many schemes have been addressed to
conserve energy while maintaining connectivity in the network
topology. One of the most related problem in the above context
is the minimum connected dominating set problem [8]. The
work in wireless network research community ([9], [10], [11],
[12], [13], [14], [15]) has primarily focussed on developing
energy-efficient distributed algorithms to construct a near-
optimal connected dominating set. All the above works assume
fixed transmission range for each sensor node. The works
in [4], [5], [6], [7] a ddress the related NP-complete problem
of constructing a minimum energy broadcast tree in a network,
where every node can adjust its transmission power/range.
None of the above described works involve any notion of
sensing range or coverage.

Recently, there has been a lot of research done to address
the coverage problem in sensor networks. In particular, the
authors in [16] design a centralized heuristic to select mutually
exclusive sensor covers that independently cover the network
region. In [1], the authors investigate linear programming
techniques to optimally place a set of sensors on a sensor
field (three dimensional grid) for a complete coverage of the
field. Meguerdichian et al. ([17], [18]) consider a slightly
different definition of coverage and address the problem of
finding maximal paths of lowest and highest observabilities in
a sensor network.

Recently, researchers have also considered connectivity and
coverage in an integrated platform. In particular, the authors
in [19] consider an unreliable sensor network, and derive
necessary and sufficient conditions for the coverage of the
region and connectivity of the network with high probability.
The PEAS protocol [2] considers a probing technique that
maintains only a necessary set of sensors in working mode
to ensure coverage and connectivity with high probability
under certain assumptions. Wang et al. [3] present a local-
ized heuristic in which they use the SPAN [20] protocol
to maintain connectivity, and a seperate CCP protocol to
maintain coverage. In our prior work [21], we designed a
greedy approximation algorithm that delivers a connected
sensor cover within a O(lg n) factor of the optimal solution.
While prior works on connected sensor coverage have only
considered a nodes with fixed radii, in this article, we consider
the network model where each sensor has the ability to control
its transmission and sensing power/radii.

III. Problem Formulation

In this section, we motivate and formulate the variable radii
connected sensor cover problem addressed in this paper. We
start with describing the sensor network model used in this
paper.

A sensor network consists of a large number of sensors
distributed randomly in a geographical region. Each sensor I

has a unique ID, and is associated with a maximum sensing
radius S∗ and a maximum transmission radius T ∗. We assume
that the maximum radii associated are same for all the sensors
in the network.1 Each sensor I also chooses (or, is assigned) a
sensing radius S(I) (< S∗) and a transmission radius T (I) (<
T ∗), such that it is capable of sensing up to a distance of S(I)
and can communicate directly with sensors that are within
a distance of T (I) units. The assigned sensing region θ(I)
associated with a sensor I is a disk of radius S(I) centered at
the location of sensor I . Throughout this article, we use d(x, y)
is used to denote the euclidean distance between points x and
y.

The variable radii connected sensor cover (VRCSC) prob-
lem in the above described sensor model can be informally
stated as follows. Given a sensor network and a query region,
select a subset of sensors with specified sensing and trans-
mission radii, such that (a) each point in the query region
can be sensed by at least one of the selected sensors, and
(b) the selected sensors form a connected communication
graph using their assigned transmission radii (considering only
bidirectional link). Our goal is to minimize the total energy
cost of the selected sensors, i.e., the sum of the sensing and
communication energy costs of all the selected sensor nodes.
Essentially, for a given query region in a sensor network, we
wish to select a subset of sensors to be powered ON and
assign them sensing and transmission radii, such that the given
query region is covered and the selected set of sensors form a
connected communication graph. The query region can also be
thought of as a surveillance region that needs to be monitored
by the sensor network.

Motivation for Variable Radii. Energy is a critical resource
in sensor networks. One of the key characteristics in wireless
communication is that the energy consumption increases with
the transmission distance. Thus, it is often assumed that a
wireless device can change its transmission range to save
energy [5] [7] [4]. In conventional sensor design, the energy
spent in sensing has an inverse relationship with the amount
of signal energy received by the sensor. This is because, if the
signal energy is weak, the signal to noise ratio needs to be
suitably improved for reliable detection via appropriate signal
processing methods.2 Note also that the signal energy decays
with distance of the sensor from the signal source according
to an inverse power law. Thus, it is fair to model the energy
spent in sensing as an increasing function of a power of the
sensing radius. The same model is also used in [22].

We now formally define the variable radii connected sensor
cover (VRCSC) problem. We start with a few definitions.

Definition 1: (Energy Cost) Consider a sensor I with an
assigned sensing radius of S(I) and a transmission radius of
T (I). We model the energy cost of I as E(I) = f(S(I)) +

1This assumption is needed only for the Voronoi based approach presented
in Section IV.

2The actual relationship between the energy spent in sensing and signal
energy incident on the sensor cannot be easily generalized, as it is dependent
on the sensor technology and electronic circuitry for detection, but it is not
important for our purposes.



g(T (I)) + C, where f(x) and g(x) are monotonically non-
decreasing functions in x, and C is a constant that represents
the idle-state energy cost.

Definition 2: ((Full) Communication Graph) Given a set of
sensors M in a sensor network, the communication graph of
M is a graph with M as the set of vertices and an edge
between any two sensors if they can directly communicate
with each other using their assigned transmission radii. The
full-communication graph of a set I of sensors is the com-
munication graph of I when each node in I is assigned the
maximum transmission radius T ∗.

Definition 3: (Communication Distance) A path of
nodes/sensors between Ii and Ij in the communication graph
is called a communication path between the sensors Ii and
Ij . The communication distance between two sensors Ii and
Ij is the weight of the minimum node-weighted path between
Ii and Ij in the communication graph, where the weight at
an intermediate sensor node I is the transmission energy cost
g(T (I)) of the sensor node.

Definition 4: (Variable Radii Connected Sensor Cover)
Consider a sensor network. Let S∗ and T ∗ be the maximum
sensing and transmission radius respectively. Given a query re-
gion RQ in the network, a set of sensors M = {I1, I2, . . . , Im}
in the sensor network, where each sensor Ij is assigned
a sensing radius S(Ij) (< S∗) and a transmission radius
T (Ij) (< T ∗), is said to be a variable radii connected sensor
cover for the query region RQ if the following two conditions
hold:

1) RQ ⊆ θ(I1) ∪ θ(I2) ∪ . . . θ(Im), where θ(Ij) is the
sensing region of Ij , i.e., a circular region of radius
S(Ij) centered around the sensor Ij , and

2) the communication graph of M is connected.
A set of sensors that satisfies only the first condition is called
a variable radii sensor cover.
The variable radii connected sensor coverage problem of com-
puting a minimum energy-cost variable radii connected sensor
cover is NP-hard as the less general problem of connected
sensor cover with fixed radii is known to be NP-hard [21].

IV. Voronoi Based Algorithm

In this section, we design a distributed algorithm for the
variable radii connected sensor cover problem based on the
computational geometric concepts of Voronoi diagram and
Relative-Neighbor Graph (RNG). The developed algorithm is
a localized algorithm in the sense that each sensor makes
decisions based only upon local neighborhood information.
In this section, each sensor node is assumed to be either
active (powered on) or inactive. Below, we recall definitions
of Voronoi Diagrams and Relative-Neighbor Graphs.

Definition 5: (Voronoi Diagram/Cell/Neighbor) Given n
nodes in a plane, the voronoi diagram is defined as the
partitioning of the plane into n convex polygons such that
each polygon contains exactly one of the n nodes and every
point in a given polygon is closer to its central node than to
any other node [23]. The voronoi cell of a node is the convex
polygon in the voronoi diagram that contains the node. Two

nodes whose voronoi cells share a common edge are called
voronoi neighbors.

Definition 6: (Relative Neighbor Graph (RNG)) Given n
nodes in a 2D plane, the relative neighbor graph is the graph
where an edge exists between any two nodes u, v, iff there is
no node w such that d(u,w) < d(u, v) and d(v, w) < d(u, v).
It is well-known that the relative neighbor graph contains the
minimum spanning tree of the euclidean graph over the given
n nodes [6].

Definition 7: (l-hop Active Neighborhood) The l-hop active
neighborhood of an active node I , denoted as N(I, l), is
defined as the set of active nodes that are at most at a distance
of l hops from I in the unweighted full-communication graph
of the entire sensor network.

In our proposed localized algorithm, each sensor node I
builds its voronoi cell based upon locations of nodes in
N(I, l). A low l can result in construction of inaccurate
voronoi cells, since each sensor node has only limited (l-hop)
information. However, a low value of l does not affect the
correctness of our proposed algorithm. The constant l is chosen
carefully – larger l results in better performance, but higher
communication cost. For ease of presentation, we will assume
that l is a constant in the rest of the discussion.

Definition 8: (Local Voronoi Cell/Neighbor) A local
voronoi cell LV (I) of a node I is a set of points p such
that p is in the given query region and d(p, I) ≤ d(p, J) for
all J ∈ N(I, l). Note that local voronoi cells of a set of nodes
in a 2D plane may not be disjoint. For a node I , the size of its
local voronoi cell LV (I) is the maximum distance of a point
in LV (I) from I .

A node J is a local voronoi neighbor of I if J is a voronoi
neighbor of I in the voronoi diagram over the set of nodes
N(I, l). Note that the local voronoi neighbor relationship is
not symmetric, i.e., I may not be a local voronoi neighbor of
J even if J is a local voronoi neighbor of I . We use LN(I)
to denote the set of local voronoi neighbors of I .

The following method of assignment of radii to a set of
active sensor nodes in a sensor network forms the core of our
voronoi based algorithm.

V-R Assignment of Radii. Consider a set of active sensors
A in a sensor network. Let the set of sensor nodes whose
maximum sensing region intersects with the given query
region be M . The V-R assignment of sensing and transmission
radii is defined as follows. Each sensor node I in M is
assigned a sensing radius equal to the size of its local voronoi
cell or the maximum sensing radius, whichever is smaller.
Each sensor node I in M is assigned a transmission radius
equal to the maximum distance over all its neighboring nodes
in the RNG graph of M . All active nodes that are not in M are
assigned zero sensing and transmission radius. The following
theorem shows that the V-R assignment ensures coverage and
connectivity of the query region.

Theorem 1: Given a set of active sensors A and a query
region in a sensor networ, such that the query region is covered
by the union of the maximum sensing regions of nodes in A,



the V-R assignment of radii ensures coverage of the query
region.

Let the set of active sensor nodes whose maximum sensing
region intersects with the query region be M . If the full-
communication graph of M is connected, then the V-R as-
signment of transmission radii ensures connectivity of M .

Proof: It is easy to see that (V (I) ∩ RQ) ⊆ LV (I),
where V (I) is the voronoi cell of I and RQ is the query
region. Consider a point p in the query region, and let Ip be
the active sensor node that is closest to p. Now, p ∈ V (Ip)
and hence, p ∈ LV (Ip). Since p is covered by the maximum
sensing region of at least one active sensor node, it is covered
by the maximum sensing region of Ip, and hence, the assigned
sensing region of Ip covers p.

As RNG is a superset of the minimum spanning tree, the
V-R assignment ensures connectivity of M .

Voronoi Based Algorithm Description. The V-R assignment
of sensing and transmission radii is key in the design of
our voronoi based algorithm. Informally, the voronoi based
algorithm works as follows. We start with all sensors in the
network as active nodes, and use the V-R assignment method
to assign their sensing and transmission radius. At each stage,
certain sensor nodes become inactive, and the assignment of
sensing and transmission radii is redone for the remaining
active nodes. A sensor node is chosen to become inactive
only if the remaining active sensors are capable of covering the
query region and maintain connectivity of their communication
graph. We use an appropriately defined concept of “benefit”
to choose the best sensor nodes to become inactive. The
algorithm terminates when no more sensors can be made
inactive. In the end, the set of active sensor nodes form
the desired VRCSC solution. Formally, our proposed Voronoi
Based Algorithm consists of the following steps.

1) Initially, each sensor node in the sensor network is
active, and gathers locations of all the nodes in the l-hop
active neighborhood.

2) Each active sensor node computes its local voronoi cell,
and the neighbors in the RNG over active nodes. It uses
the V-R assignment method to assign itself a sensing
and a transmission radius.

3) Each node I computes its sleeping benefit (formally
defined later), which is the decrease in the total energy
cost of the “local” active sensors if I is inactivated.

4) A sensor node I is considered removable, if it satisfies
the following two conditions.

• For every pair of communication neighbors of I ,
there exists a communication path P in the full-
communication graph of N(I, l), such that all the
intermediate nodes in P have a higher node-ID than
that of I . This condition ensures connectivity of
active nodes, if I is made inactive [15].

• The region (LV (I)∩ θ(I)) is covered by the union
of the maximum sensing regions of the local voronoi
neighbors of I . We show in Theorem 2 that the
above condition ensures coverage of the query re-

t

p

I
J

LV(I)

Fig. 1. Proof of Theorem 2

gion, if I is made inactive.

5) If I is removable and has the most sleeping benefit
among all its local voronoi neighbors, then I becomes
inactive.

6) Go to Step 2.

The above described algorithm can be easily implemented
in a distributed setting, where the communication model is
reliable. To ensure correctness in an unreliable communication
model, we need to add certain tedious steps as discussed later.
This completes the description of the algorithm.

Below, we show that the above described algorithm main-
tains coverage of the query region, if the query region was
initially covered by the active sensors. We use θ∗(I) to
represent the maximum sensing region (corresponding to the
maximum sensing radius S∗) of I . Also, recall that LN(I) is
the set of local voronoi neighbors of I . We start with a lemma.

Lemma 1: Let I be an active sensor, and θ(I) be the sensing
radius assigned by the V-R assignment method (step (2) of the
Voronoi Based algorithm). If LV (I)∩θ(I) ⊆ ⋃

j∈LN(I) θ∗(j),
then θ∗(I) ⊆ ⋃

j∈LN(I) θ∗(j).

Proof: Consider an arbitrary point p in θ∗(I). We show
that p ∈ ⋃

j∈LN(I) θ∗(j). Let us consider two cases depending
on whether LV (I) contains p.

First, consider the case when p ∈ LV (I). In V-R assignment
of radii, either LV (I) ⊆ θ(I) or θ(I) = θ∗(I). Thus, we have
p ∈ θ(I). Hence, p ∈ ⋃

j∈LN(I) θ∗(j).
Now, consider the case when p /∈ LV (I). As shown in

Figure 1, there exists a point t /∈ LV (I) on the line segment
pI . Also, there is a sensor J ∈ LN(I), such that d(J, t) <
d(I, t). Now,

d(J, p) < d(t, p) + d(t, J)
< d(t, p) + d(t, I)
= d(p, I)
< S∗

Thus, p ∈ θ∗(J), and p ∈ ⋃
j∈LN(I) θ∗(j).

Theorem 2: Given a set of active sensors A and a query
region in a sensor network, such that the query region is
covered by the union of the maximum sensing regions of
nodes in A, the Voronoi Based algorithm ensures coverage
of the query region.



Proof: We know by Theorem 1 that the initial V-R
assignment ensures coverage of the query region. Below, we
show that for any point p in the query region, there is an active
sensor node K at any stage of the algorithm that cannot be
inactivated.

Let C(p) denote the set of active sensors that can cover
a point p using their maximum sensing regions. Consider a
point p in the query region such that C(p) �= ∅. Let K be
the sensor node with minimum sleeping benefit in C(p). We
show that the sensor node K will not be inactivated by the
Voronoi Based algorithm. Let us assume the contrary that the
sensor node K is inactivated, which means that (LV (K) ∩
θ(K)) ⊆ ⋃

j∈LN(K) θ∗(j) and K’s sleeping benefit is more
than that of any sensor in LN(K). From Lemma 1, we know
that there exists a sensor J ∈ LN(K) such that p ∈ θ∗(J).
Thus, J ∈ C(p) and J’s sleeping benefit is less than that of
K, which yields a contradiction.

Calculating Sleeping Benefit. The sleeping benefit B(I) of
an active node I is defined as the decrease in total energy cost
of the set of active sensors in the networks due to inactivation
of the node I . More precisely,

B(I) = E(I) −
∑

J∈N(I)

(Enew(J) − E(J)),

where E(X) is the current energy cost of a node X , N(I) is
the set of local neighbors (local voronoi neighbors union 1-
hop communication neighbors) of I , and Enew(X) is the new
energy cost of a node X after inactivation of I . Each node I
is aware of the current assignment of sensing and transmission
radii (and hence, the energy cost) of all its local neighbors.
Thus, to compute its sleeping benefit, a node I only needs
to compute the increase in sensing and transmission radii of
nodes in its local neighborhood.

Based on the V-R assignment, only the local voronoi neigh-
bors of I need to increase their assigned sensing radius when
I is inactivated. The local voronoi neighbors increase their
sensing radii to cover the local voronoi cell LV (I) of I , and
the increase in sensing radius of a local voronoi neighbor can
be computed using the polygon clipping method [24]. Note
that only the nodes in N(I, 1) may increase their transmission
radius due to inactivation of I , and the increase in transmission
energy cost of the nodes in N(I, 1) can be easily computed by
first constructing the induced subgraphs of RNG over N(I, 1),
with and without I .

Unreliable Communication Model. The above described
algorithm needs to be augmented with certain handshake
messages to ensure correctness in a communication model
where message delays cannot be bounded. Below, we discuss
the issues that arise in an unreliable communication model,
and propose solutions to handle them.

The first problem in an unreliable communication model
occurs if a node I doesn’t have the updated benefit (which is
sent in a message) of J , one of its local voronoi neighbors. In
such a case, the second condition of removability could result
in a cyclic condition in a distributed setting, and two mutually

local voronoi neighbors I and J may both delete themselves
and thus, possibly render the query region uncovered. To pre-
vent such a scenario from happening we require the following.
A sensor I that wishes to inactivate itself, sends an inquiry to
each of its local voronoi neighbors; the node I enters sleeping
mode only after it has received positive confirmation from all
of its local voronoi neighbors. Inquiries are resent on failures,
and a sensor node that sends a positive confirmation doesn’t
enter a sleeping state. We omit further minor details.

The second problem arises because a sensor node I may
not be able to accurately compute its N(I, l), the active l-
hop neighborhood, because of message losses. In particular,
a node may not know which neighboring nodes are active or
inactive. We solve this problem by requiring each active sensor
to send a periodic hello message to its l-hop neighbors.
By default, a node I assumes that each node J in the l-hop
neighborhood is inactive, unless it receives a hello message
from J . This results in an underestimation of N(I, l) due
to possible message losses. Underestimation of N(I, l) only
results in overestimation of LV (I), and hence, does not affect
the claims in Theorem 1 and Theorem 2, and the correctness
of the algorithm. The inaccuracy of neighborhood information
doesn’t cause any problems in maintenance of connectivity
of the active nodes, as long as each node initially start with
accurate information of one-hop communication neighbors and
the active neighborhood nodes are eventually discovered.

V. Greedy Algorithm

In this section, we present a greedy algorithm for the
variable radii connected sensor coverage problem. We present
a centralized as well a distributed version of the algorithm.
In contrast with the Voronoi-based approach, the centralized
version of the greedy algorithm provably delivers a VRCSC
whose total energy cost is at most O(r log n) times the optimal
energy cost. Here, r is the link radius of the sensor network
(defined later) and n is the total number of sensors in the
entire network. The distributed version of the greedy algorithm
empirically performs close to the centralized version, but
incurs higher communication cost compared to the Voronoi
approach due to the size of the messages. Moreover, for the
greedy algorithm, we need to make an assumption that each
sensor has only a finite number of choices for the sensing
radii. In particular, we assume that each sensor I chooses from
k sensing radii S1, S2, . . . , Sk = S∗. The greedy algorithm
presented here is a generalization of the greedy approximation
algorithm presented in [21] for the fixed radii version of the
problem. We start with describing the centralized version of
the greedy algorithm.

Basic Idea. Informally, the proposed greedy algorithm works
as follows. The algorithm maintains a set of selected sensors
M along with their assigned transmission and sensing radii,
and increases the covered region while keeping connectivity
of M . At each stage, we either add to M a “path” of sensors
or increase the sensing radius of a sensor in M , whichever
gives the maximum “benefit.” The algorithm terminates when
the given query region is completely covered by the assigned



sensing regions of the sensors in M . A more formal and
complete description of the algorithm is given below. We first
start with a few more definitions.

Definition 9: (Candidate Sensor; Candidate Path) Let M be
the set of sensors already selected by the algorithm. A sensor
c is called a candidate sensor if c /∈ M and there is a sensor m
in M such that d(c,m) < S∗+S(m). In other words, a sensor
c is a candidate sensor if c /∈ M and its maximum sensing
region (corresponding to the sensing radius S∗) intersects with
the assigned sensing region (θ(m)) of some sensor m in M .

A candidate path is a sequence/path of sensors
<p0, p1, . . . , pl> such that p0 is a candidate sensor,
pl ∈ M , pi /∈ M for i < l, and the sequence of sensors forms
a communication path in the full-communication graph of
the entire sensor network. Also, to ensure that the sequence
of sensors P forms a communication path with minimum
transmission energy cost, we make the following assignment
of radii.

T (p0) = d(p0, p1)
T (pi) = Max(d(pi, pi−1), d(pi, pi+1) ∀ 0 < i < l

T (pl) = Max(d(pl, pl−1), T (pl))
S(pi) = 0 for 0 < i < l

In addition, the sensing radius of the candidate sensor p0 is
chosen to maximize the benefit of the candidate path (defined
later). The sensing radius of pl, which is in M , is kept
unchanged.

Definition 10: (Subelement; Valid Subelement) Recall that
each sensor has a choice of k possible sensing regions (cor-
responding to the k different sensing radii). A subelement is
a set of points. Two points belong to same subelement if and
only if they are covered by the same set of possible sensing
regions. If a subelement intersects with the given query region,
then it is called a valid subelement.

Definition 11: (Benefit of a Candidate Path) Benefit of a
candidate path P with respect to M , an already selected set of
sensors, is defined as the number of valid subelements newly
(not covered by M ) covered by P divided by the increase in
energy cost of M due to addition of P . More formally, the
benefit of a candidate path P with respect to a set of selected
sensors M is:

V (M ∪ P ) − V (M)
E(M ∪ P ) − E(M)

,

where V (I) is the number of valid subelements covered by a
set of sensors I, and E(I) is the total energy cost of I.

Definition 12: (Optimal Incremental Benefit) Let M be the
set of sensors already selected by the greedy algorithm, and
m be a sensor node in M with an assigned sensing radius
of S(m). The incremental benefit of increasing m’s sensing
radius from S(m) to S′(m) is defined as the number of
valid subelements newly (not covered by M ) covered by
the increased sensing region θ′(m) divided by the increase
in energy cost of m. The sensing radius S′(m) of m that
results in the maximum incremental benefit is called the

optimal incremental radius of m with respect to M , and
the corresponding incremental benefit is called the optimal
incremental benefit of m.

Centralized Greedy Algorithm. We now give a formal and
complete description of the Centralized Greedy Algorithm.
Initially, M consists of an arbitrary sensor I whose minimum
sensing region (S1) intersects with the given query region.
The sensor I’s sensing radius is set to the minimum and its
transmission radius is set to zero. At each subsequent stage,
the algorithm finds the candidate path P̂ (after finding all the
candidate sensors) that has the maximum benefit with respect
to M . Also, for each sensor m in M , the algorithm computes
its optimal incremental benefit (as defined above), and picks
the sensor m̂ that has the highest optimal incremental benefit.
If the optimal incremental benefit of m̂ is higher than the
benefit of selected P̂ , then m̂’s sensing radius is increased to
its optimal incremental radius, otherwise the candidate path
P̂ is added to M . That completes one stage of the algorithm.
The above process is repeated until the given query region is
completely covered by M .

Algorithm 1: Centralized Greedy Algorithm
Input: A sensor network and a query region RQ.
Output: A set of connected sensor cover M . Each with

assigned sensing and transmission radius.

BEGIN
Let M denote the set of sensors selected.
Let I be a node whose minimum sensing region

intersects RQ.
S(I) = Minimum sensing radius S1;
T (I) = 0;
M := I;
while (RQ is not covered by M )

Let SP be the set of candidate paths, and P̂ ∈ SP
be the candidate path with maximum benefit;

Let m̂ ∈ M be the sensor node with most optimal
incremental benefit;

BP = Benefit of P̂ ;
Bm = Optimal incremental benefit of m̂;
if ( BP > Bm )

M = M ∪ P̂
else

Set S(m̂) to m̂’s optimum incremental radius.
end if;

end while;
RETURN M ;

END 	
The above described Algorithm 1 can be implemented in

O(n3) time, where n is the size of the network. The following
theorem proves the near-optimality of the solution delivered
by the algorithm. We omit the proof, as it is similar to the
proof of the centralized approximation algorithm in [21].

Definition 13: (Link Radius) The link radius is defined
as the maximum communication distance between any two
sensors whose maximum sensing regions intersect.



Theorem 3: Algorithm 1 returns a connected sensor cover
whose energy cost is at most O(r(1+ log d))|OPT |, where r
is the link radius of the sensor network, d is the maximum
number of subelements in any sensing region, and |OPT |
is the energy cost of an optimum solution. Since, d =
O((nk)2) ([21]), the solution delivered by Algorithm 1 is
within O(r log(nk)) factor of the optimal solution. Recall that
k is the total number of sensing radius choices available to a
sensor node.

A. Distributed Greedy Algorithm (DGA)

In this section, we briefly describe the distributed version
of the Algorithm 1 proposed in the previous section. The dis-
tributed algorithm presented here is similar to the distributed
approximation algorithm proposed in [21] for constructing a
connected sensor cover. The Distributed Greedy Algorithm
(DGA) works in stages, and at each stage, a candidate
path is added to the already selected sensor set M , or the
sensing range of a sensor in M is increased, until the whole
query region is covered by M . Throughout the algorithm, the
following variables are maintained:

• M , the set of sensors that have already been selected.
• SP , the set of candidate paths.
• P̂ , the most recently added candidate path.
• Ĉ, the candidate sensor associated with P̂ .
Each stage of the the distributed algorithm consists of four

phases as described below:
• Candidate Path Search (CPS). In this phase, the most

recently added candidate sensor Ĉ broadcasts a CPS
message within a range of 2r communication distance.
In this broadcast phase, each sensor broadcast the CPS
message with the maximum transmission range.

• Candidate Path Response(CPR). Any sensor that receives
the CPS message checks whether it is a new candidate
sensor (by checking whether its maximum sensing region
intersects with any sensor in P̂ ). If so, it sends a CPR
message (along with the associated candidate path formed
by the routing path took by the CPS message) to Ĉ, the
originator of the CPS message.

• Selection of Best Candidate Path/Sensor. After gathering
all CPR message, the sensor Ĉ calculates the benefit of
each of the candidate paths and picks the candidate path
P̂new (and the corresponding candidate sensor Ĉnew)
that has the highest benefit. Moreover, it computes the
optimal incremental benefit of each sensor in M , and
picks the sensor m̂ ∈ M that has the maximum optimal
incremental benefit. If the benefit of P̂new is greater
than the optimal incremental benefit of m̂, then the
sensor Ĉ unicasts all the required parameters to Ĉnew

after adding P̂new to M , and the P̂new and Ĉnew now
become the new (and current) P̂ and Ĉ respectively.
If the optimal incremental benefit of m̂ is greater than
the benefit of P̂new, then the sensor Ĉ unicasts all the
required parameters to m̂, which becomes the new (and
current) P̂ and Ĉ. Also, m̂’s sensing radius is increased
to attain the optimal incremental benefit.

• Repeat. The new Ĉ broadcasts the CPS messages again
and initiates a new stage. This continues, until a leading
sensor Ĉ decides that the sensing region RM successfully
covers the whole query region RQ.

We make similar optimization as in [21] to reduce the
communication cost incurred by the distributed algorithm. In
Section VII, we show that the solution returned by the above
described Distributed Greedy Algorithm is very close to that
returned by the Centralized Greedy Algorithm (Algorithm 1).

VI. Steiner Tree Based Algorithm

In this section, we present an alternate centralized algorithm
to construct a variable radii connected sensor cover. We refer
to this algorithm as the Steiner Tree Based algorithm, and it
consists of two phases:

1) In the first phase, we construct a variable radii sensor
cover (not necessarily connected).

2) In the second phase, we construct a Steiner tree to
connect the sensor cover constructed in the first phase.

Each of the above phases can be solved near-optimally, i.e.,
within a factor of the optimal solution, as shown below.

Constructing a Variable Radii Sensor Cover (VRSC). The
problem of constructing a variable radii sensor cover is similar
to that of the well-known set cover problem, wherein the
greedy algorithm delivers a near-optimal set cover. For the
variable radii sensor cover problem, the greedy algorithm
maintains a set of sensors M , and increments the set M by
either increasing the sensing radius of a sensor already in M
or by adding a new sensor along with an assigned sensing
radius into M . In particular, during each stage of the greedy
algorithm, we compute the optimal incremental benefit of each
sensor in the network with respect to M (assuming that the
sensors not in M have an assigned sensing radius of zero), and
pick the sensor (for increasing the sensing radius or addition to
M ) that gives the the maximum optimal incremental benefit
at that stage. This continues till the whole query region is
covered. In this phase, the transmission radius assigned to the
sensors is zero. Let M1 be the variable radius sensor cover
constructed by the above greedy algorithm. The following
theorem follows easily from the approximation result of the
greedy algorithm for weighted set cover problem.

Theorem 4: The above described greedy algorithm used
to construct a variable radii sensor cover delivers a solution
whose energy cost is within O(log(nk)) factor of the optimal
energy cost, where n is the total number of sensors in the
network and k is the total number of sensing radii each sensor
can choose from.

Constructing a Steiner Tree. In the second phase, we con-
struct a Steiner tree to connect the VRSC M1 constructed in
the first phase. We treat the problem as constructing an optimal
Steiner tree problem over an edge-weighted sensor network
graph G, where an edge exists between sensors x and y if
d(x, y) < T ∗, where d(x, y) is the distance between x and



y, and the weight assigned to the edge is g(d(x, y))3. We use
the well known 2-approximation Steiner tree algorithm [25]
to connect M1 in the edge-weighted sensor network graph G.
Let the Steiner tree thus constructed be τ . Each sensor node
in τ is assigned a transmission radius equal to the maximum
distance from all its neighbors in τ . We omit the proof of the
following theorem, which follows from a similar result in [7]
for minimum energy broadcast trees.

Theorem 5: The total transmission energy cost of the
Steiner tree τ constructed by the above described second phase
is at most 24 times the minimum transmission energy cost
required to connect the set of sensors M1, the VRSC returned
by the first phase.

VII. Performance Evaluation

We built a specific simulator for the distributed algorithms,
and carried out extensive experiments to evaluate the perfor-
mance of the proposed algorithms. The simulator randomly
places sensors within a given region. The simulator does not
model any link layer protocol or wireless channel characteris-
tics. Thus, all messages in the simulator are transmitted in an
error-free manner. While such a simulator models an idealized
communication subsystem, it is sufficient for our purpose of
comparing the performance of our proposed algorithms.

Cost Model. The sensing energy cost function depends on
the specific sensor type and environment, but is usually of the
form S(I)x, where S(I) is the assigned sensing radius and
x is a constant [22]. Similarly, the transmission energy cost
function is of the form T (I)y , where T (I) is the assigned
transmission radius and y is a constant between 2 to 4 [7]. For
our experiments, we chose x = y = 4. We assume that total
energy cost incurred (sensing and transmission) in keeping a
sensor node active for a unit time is:

E(I) = αS(I)4 + (1 − α)T (I)4 + C,

where α is a parameter that signifies relative weight of
sensing and transmission energies. In our experiments, we use
three different values of α viz. 0.1, 0.5, and 0.9 to simulate
different sensor types. Essentially, when α is 0.1, the energy
consumption due to sensing is relatively much less than the
energy consumption due to transmission. We measure the
performance of our algorithms for all these three energy cost
models.

Network and Battery Parameter Values. We run our ex-
periments with the following choice of parameter values.
The maximum sensing radius S∗ as well as the maximum
transmission radius T ∗ for each sensor node is chosen to
be 10. Each sensor can choose from 5 different sensing and
transmission radius: 2, 4, 6, 8, or 10. We randomly distribute
a certain number of sensor nodes in a query region of size
50 × 50. The total size n of sensor network is between
100 to 600, representing scarce to significantly dense sensor
network density. In our experiments, we set each sensor node’s

3Recall that, g(t) is the transmission energy cost component of a sensor
node with assigned transmission radius t.

battery power as 12,000,000 units, and the constant C in the
energy cost function is set at 2,000 units. If the sensing and
transmission radii of a sensor node are set to the maximum
(10), the total energy cost incurred in keeping the node active
for a unit time is 12,000 units. In a naive approach wherein
all sensor nodes are kept active with maximum sensing and
transmission radii, the sensor network will last for 1,000
time slots, for any value of α. During the construction phase
(execution of an algorithm to construct a VRCSC), the energy
cost incurred in transmitting a message is proportional to the
size of the message. We assume that an active sensor can
transmit 100 bytes of data in unit time; thus, the energy cost
incurred in transmitting a message of size � bytes during the
construction phase is (1 − α)104�/100.

Algorithms and Experiments. We compare the performance
of the following algorithms in our experiments.

• Voronoi Based Algorithm (Voronoi) – The localized
distributed algorithm described in section IV.

• Steiner Tree Based Algorithm (STBA) – the centralized
algorithm described in Section VI.

• Centralized Greedy Algorithm (CGA) – the greedy ap-
proximation algorithm described in Algorithm 1.

• Distributed Greedy Algorithm (DGA) – the distributed
version of Algorithm 1 described in Section V-A.

• Centralized Greedy Algorithm for Fixed Radii
(CGA FIXED) – the centralized greedy algorithm
proposed in [21] for the fixed radius connected sensor
cover. We choose the fixed sensing/transmission radius
to be 10 (the maximum). The distributed version of the
algorithm is denoted as DGA FIXED.

We have conducted two sets of experiments. The first set of
experiments is to compare the performance of the various algo-
rithms in terms of the total energy cost of the connected sensor
cover delivered by the algorithm. The experiment results are
presented in Figure 2. In the second set of experiments, we
compare the performance of the various distributed algorithms
(DGA, DGA FIXED, Voronoi) in terms of their effectiveness
in in prolonging the sensor network lifetime.

As shown in Figure 2, we can see that among all algorithms,
the Centralized Greedy Algorithm (CGA) delivers the solution
with least total energy cost. The energy cost of the solution
delivered by CGA is almost half of the total energy cost
of the solution delivered by CGA FIXED, the best known
approximation algorithm for the fixed radius connected sensor
coverage problem. Also, we see that DGA performs very close
to CGA. In general, the Voronoi algorithm also performs quite
close to the CGA and DGA algorithm, except for the case
when α = 0.1, i.e., when transmission energy cost has a much
higher weightage than the sensing energy cost – implying that
the RNG approach of assignment transmission radius can be
potentially improved further. It seems rather surprising that
Steiner Tree Based Algorithm (STBA) performs quite bad
for the cases when α is 0.1 or 0.5. The low performance of
STBA is probably due to independent treatment of coverage
and connectivity aspects, which leads to high transmission
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Fig. 2. Total energy cost of the solution returned by various algorithms.
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Fig. 3. Sensor network lifetime for various distributed algorithms.

energy cost, since in the first phase, sensor nodes are selected
for coverage without taking into consideration the cost of
connecting them.

Figure 3 shows that our approaches also result in signif-
icantly prolonging the lifetime of the sensor network. Due
to the small size of messages in the Voronoi based approach
compared to DGA, the Voronoi approach has a much lower
transmission energy overhead during the construction phase.
Hence, the Voronoi approach performs significantly better
than the other distributed algorithms (DGA and DGA FIXED)
in terms of prolonging the network lifetime, except for the
case when α = 0.9. When α is 0.9, the transmission cost
has very minimal weightage, and the performance of the
algorithms is primarily determined by the sizes of the VRCSC
returned. For dense networks, DGA performs slightly worse
than DGA FIXED due to much higher construction cost. Since
DGA FIXED uses maximum sensing radius, the number of
stages of DGA FIXED is much less than DGA, and at the
end of each stage of these algorithms, a fairly large message
containing the entire state information (proportional to the size
of the network) is transmitted.

VIII. Conclusions

Given that the sensor networks are typically redundant,
we presented an approach to conserve energy by exploiting
redundancy in the network. In particular, we addressed the
problem of constructing a connected sensor cover in a sen-
sor network model wherein each sensor can control/adjust
its sensing and transmission power/range. For the above
problem we proposed various centralized approximation and
communication-efficient distributed algorithms. Through ex-
tensive experiments, we demonstrated the usefulness of our
approaches in prolonging the network lifetime. In particular,
our proposed Voronoi based localized algorithm performs very
well.
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