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Abstract— The distributed source coding problem is considered
when the sensors, or encoders, are under Byzantine attack; that
is, an unknown number of sensors have been reprogrammed by a
malicious intruder to undermine the reconstruction at the fusion
center. Three different forms of the problem are considered. The
first is a variable-rate setup, in which the decoder adaptively
chooses the rates at which the sensors transmit. An explicit
characterization of the variable-rate minimum achievable sum
rate is stated, given by the maximum entropy over the set of
distributions indistinguishable from the true source distribution
by the decoder. In addition, two forms of the fixed-rate problem
are considered, one with deterministic coding and one with
randomized coding. The achievable rate regions are given for
both these problems, with a larger region achievable using
randomized coding, though both are suboptimal compared to
variable-rate coding.

Index Terms—Distributed Source Coding. Byzantine Attack.
Sensor Fusion. Network Security.

I. I NTRODUCTION

Wireless sensor networks are vulnerable to various forms of
attack. A malicious intruder could capture a sensor or a group
of sensors and reprogram them, unbeknownst to the other
sensors or the fusion center. The intruder could reprogram the
sensors to work cooperatively to obstruct or defeat the goalof
the network, launching a so-called Byzantine attack.

We refer to sensors that have been reprogrammed astraitors,
and the rest, which will behave according to the specified
procedure, ashonest. Suppose there arem sensors and at most
t traitors. Each time step, sensori is informed of the value of
the random variableXi. These random variables constitute
a discrete memoryless multiple source with probability dis-
tribution p(x1 · · ·xm). Each sensor encodes its observation
independently and transmits the codewords to a common
decoder (the fusion center), which attempts to reconstructthe
source values with small probability of error based on those
transmissions. If there are no traitors, Slepian-Wolf coding [1]
can be used to achieve a sum rate as low as

H(X1 · · ·Xm). (1)

However, standard Slepian-Wolf coding has no mechanism
for handling any deviations from the agreed-upon encoding
functions by the sensors. Even a random fault by a single
sensor could have devastating consequences for the accuracy
of the source estimates produced at the decoder, to say nothing
of a Byzantine attack on multiple sensors.

Consider a two sensor example. If sensor 1 transmits at rate
H(X1) and sensor 2 transmits at rateH(X2|X1), their source
sequences would normally be reconstructable using Slepian-
Wolf. Since sensor 2 transmits at a rate belowH(X2), the
decoder must use the codeword from sensor 1 to decodeX2.
Thus, if sensor 1 is a traitor, it can manipulate the decoder’s
estimate ofX2 to cause an error. Generalizing this, it will turn
out that for most source distributions, the sum rate given in
(1) cannot be achieved if there is even a single traitor. We will
present coding schemes that can handle Byzantine attacks, and
give explicit characterizations of the achievable rates.

A. Related Work

The notion of Byzantine attack has its root in the Byzantine
generals problem [2], [3] in which a clique of traitorous
generals conspire to prevent loyal generals from forming
consensus. It was shown in [2] that consensus is possible if
and only if less then a third of the generals are traitors.

Countering Byzantine attacks in communication networks
has also been studied in the past by many authors. See the
earlier work of Perlman [4] and also more recent review
[5], [6]. An information theoretic network coding approachto
Byzantine attack is presented in [7]. The problem of optimal
Byzantine attack of sensor fusion for distributed detection is
considered in [8]. Sensor fusion with Byzantine sensors was
studied in [9]. In that paper, the sensors, having already agreed
upon a message, communicate it to the fusion center over a
discrete memoryless channel. Quite similar results were shown
in [10], in which a malicious intruder takes control of a set
of links in the network. The authors show that two nodes
can communicate at a nonzero rate as long as less than half
of the links between them are Byzantine. This is different
from the current paper in that the transmitter chooses its
messages, instead of relaying information received from an
outside source, but some of the same approaches from [10] are
used in the current paper, particularly the use of randomization
to fool traitors that have already transmitted.

B. Fixed-Rate Versus Variable-Rate Coding

In standard multiterminal source coding, each sensor is
associated with a rate and an encoding function that transmits
information at that rate. We will show that this fixed-rate setup
is suboptimal for this problem, in the sense that we can achieve
lower sum rates using a variable-rate scheme. By variable-rate



we mean that the number of bits transmitted per source value
by a particular sensor will not be fixed. Instead, each sensor
has a number of different encoding functions, each with its
own rate. The coding session is then made up of a number of
transactions. In each transaction, the decoder decides which
sensor will transmit information, and which encoding function
it should use. Thus we require that the decoder have a reverse
channel to transmit information back to the sensors, but it need
only send the chosen encoding function index, which will be
one of a fixed and small number. In other words, the reverse
channel could have arbitrarily small capacity.

C. Honest Sensor Error Requirement

Classical Slepian-Wolf coding requires that the decoder
produce perfect estimates of every source value. However,
this is no longer possible under Byzantine attack. A traitor
could choose to send gibberish to the decoder, in which
case the decoder could never correctly decode the associated
source values. However, a traitor could also act exactly like
an honest sensor, in which case the decoder would never
be able to identify it as a traitor. Thus, the decoder will
not necessarily be able to produce an accurate estimate for
every sensor, but neither will it be able to tell which of
its estimates are inaccurate. As a compromise, the decoder
will produce an estimate for every source value, but we only
require that the estimates corresponding to the honest sensors
are correct, even though the decoder may not know which
those are. This requirement is reminiscent of that of [2], in
which the lieutenants need only perform the order given by
the commander if the commander is not a traitor, even though
the lieutenants might not know whether he is.

D. Main Results

The main results of this paper give explicit characterizations
of the achievable rates for three different setups. The first,
discussed in the most depth, is the variable-rate case, for which
we give the minimum achievable sum rate. By definition,
variable-rate coding involves varying the rates at which differ-
ent sensors transmit. The choice of these rates will be based
on “run time” events such as the source values and the actions
of the traitors. Thus, there is no notion of anm-dimensional
achievable rate region, since all we can say is that, no matter
what happens, the total number of transmitted bits will not
exceed a certain value. The second two setups are fixed-rate,
divided into deterministic coding and randomized coding, for
which we do givem-dimensional achievable rate regions. We
show that randomized coding yields a larger achievable rate
region than deterministic coding, but we believe that in most
cases randomized fixed-rate coding requires an unrealistic
assumption. In addition, even randomized fixed-rate coding
cannot achieve the same sum rates as variable-rate coding.

For variable-rate coding, the minimum achievable sum rate
is given by

sup
q∈Q

Hq(X1 · · ·Xm) (2)

whereHq is the entropy with respect to the distributionq and
Q is a set of distributions which depends ont, the number
of allowed traitors. The explicit definition ofQ is given later,
but intuitively Q is the set of distributions such that if we
simulated any distributionq ∈ Q and handed the resulting
source sequences to the decoder as if they had come from the
sensors, then it would not be able to correctly identify a single
traitor. For example, the source distributionp is always inQ,
because if the decoder receives source sequences that appear
to come from the true distribution, it will not be able to know
which sensors are the traitors. In fact, ift = 0, Q is made up
of only the source distributionp, so (2) becomes (1). In other
words, this result matches the classical Slepian-Wolf result.

On the other hand, ift = m−1, then the decoder knows only
that the one honest sensor will report source values distributed
according to its single variable marginal distribution, soa
traitor will not be detected if it also reports source values
distributed according to its marginal distribution. Henceq ∈ Q

if q(xi) = p(xi) for all i. It is easy to see that (2) becomes

H(X1) + · · · + H(Xm). (3)

In effect, the decoder must use an independent source code
for each sensor.

The fixed-rate achievable regions are based on the Slepian-
Wolf achievable region. For randomized coding, the achievable
region is such that for every subset ofm− t sensors, the rates
associated with those sensors fall into the Slepian-Wolf rate
region on the correspondingm − t random variables. Note
that for t = 0, this is identical to the Slepian-Wolf region. For
t = m − 1, this region is such that for alli, Ri ≥ H(Xi),
which corresponds to the sum rate in (3). The deterministic
region is similar, except that every subset ofm − 2t rates is
required to fall into the corresponding Slepian-Wolf region.

E. Randomization

Randomization plays a key role in defeating Byzantine
attacks. As we have discussed, allowing randomized encoding
in the fixed-rate situation expands the achievable region. In ad-
dition, the variable-rate coding scheme that we propose relies
heavily on randomization to achieve small probability of error.
In both fixed and variable-rate coding, randomization is used
as follows. Every time a sensor transmits, it randomly chooses
from a group of essentially identical encoding functions. The
index of the chosen function is transmitted to the decoder
along with its output. Without this randomization, a traitor
that transmits before an honest sensori would know exactly
the messages that sensori will send. In particular, it would be
able to find fake sequences for sensori that would produce
those same messages. If the traitor tailors the messages it
sends to the decoder to match one of those fake sequences,
when sensori then transmits, it would appear to corroborate
this fake sequence, causing an error. By randomizing the
choice of encoding function, the set of sequences producing
the same message is not fixed, so a traitor can no longer
know with certainty that a particular fake source sequence
will result in the same messages by sensori as the true



one. This is not unlike Wyner’s wiretap channel [11], in
which information is kept from the wiretapper by introducing
additional randomness.

In both variable-rate and randomized fixed-rate coding,
we assume that the traitors know nothing about randomness
produced at an honest sensor. Of course, after the randomness
has been transmitted, the traitors should have access to that
information, which is what we assume in the variable-rate
case. However, for the fixed-rate setup, there is no notion
of a transmission order, so it would be meaningless to say
that the traitors only know about the randomness “after” it
has been transmitted. The only choice is to assume that the
traitors never find out anything about the randomness. This
might be a realistic assumption if the traitors are not able to
monitor transmissions to the decoder, but we believe that in
most cases it is not. Hence deterministic fixed-rate coding is
more realistic.

The rest of the paper is organized as follows. In Section II,
we formally give the variable-rate model and present the
main result of the paper, which we prove in Section III. In
Section IV, we give the rate regions for the fixed-rate setups
and illustrate that fixed-rate coding is suboptimal. Finally, in
Section V, we offer some future avenues for research.

II. VARIABLE -RATE MODEL AND RESULT

A. Notation

Let Xi be the random variable revealed to sensori, Xi the
alphabet of that variable, andxi the corresponding realization.
A sequence of random variables revealed to sensori over n

timeslots is denotedXn
i , and a realization of itxn

i ∈ Xn
i .

Let M , {1, . . . , m}. For a sets ⊂ M, let Xs be the set of
random variables{Xi}i∈s, and definexs andXs similarly. By
sc we meanM\s. Let T n

ǫ (Xs)[q] be the strongly typical set
with respect to the distributionq, or the source distributionp
if unspecified. Similarly,Hq(Xs) is the entropy with respect
to the distributionq, or p if unspecified. All variations onǫ,
such asǫ′, ǫ′′, ǫ̇, are assumed to go to 0 asǫ goes to 0 and may
appear without definition. It is meant that either the definition
is discernible from context or the existence will be shown.

B. Communication Protocol

The transmission protocol is composed ofL transactions.
In each transaction, the decoder selects a sensor to receive
information from and selects which ofK encoding functions
it should use. The sensor then responds by executing that
encoding function and transmitting its output back to the
decoder. For each sensori ∈ M and encoding function
j ∈ {1, . . . , K}, there is an associated rateRi,j . On the lth
transaction, letil and jl be the sensor and encoding function
chosen by the decoder, and lethl be the number of timesil
has transmitted prior to thelth transaction. Note thatil, jl, hl

are random variables, since they are chosen by the decoder
based on messages it has received, which depend on the source
values. Thejth encoding function for theith sensor is given
by

fi,j : X
n
i × Z × {1, . . . , K}hl → {1, . . . , 2nRi,j}

whereZ represents randomness generated at the sensor. Let
Il ∈ {1, . . . , 2nRi,j} be the message received by the encoder
in the lth transaction. Ifil is an honest sensor, thenIl =
fil,jl

(Xn
il
, ρil

, Jl), where ρil
∈ Z is the randomness from

sensoril and Jl ∈ {1, . . . , K}hl is the history of encoding
functions used by sensoril so far. If il is a traitor, however, it
may chooseIl based on all sourcesXn

1 , . . . , Xn
m, all previous

transmissionsI1, . . . , Il−1 and polling historyi1, . . . , il−1 and
j1, . . . , jl−1. In particular, it does not have access to the
randomnessρi for any honest sensori.

After the decoder receivesIl, if l < L it usesI1, . . . , Il to
choose the next sensoril+1 and its encoding function index
jl+1. After the Lth transaction, it decodes according to the
decoding function

g :
L

∏

l=1

{1, . . . , 2nRil,jl} → X
n
1 × · · · × X

n
m.

C. Variable-Rate Problem Statement and Main Result

Let H ⊂ M be the set of honest sensors. Define the proba-
bility of error Pe , Pr(Xn

H
6= X̂n

H
) where(X̂n

1 , . . . , X̂n
m) =

g(I1, . . . , IL). This will in general depend on the actions of the
traitors. Note again that the only source estimates that matter
are those corresponding to the honest sensors.

We define a sum rateR to beǫ-achievableif for everyδ > 0
and sufficiently largen there exists a code such that, for any
choice of actions by the traitors,Pe ≤ ǫ and

L
∑

l=1

Ril,jl
≤ R + δ. (4)

Note thatRil,jl
depend on the sensor transmissions, so they

are random variables. By (4) we mean that for any messages
sent by the sensors, we never exceed a sum rate ofR + δ. A
sum rateR is achievableif it is ǫ-achievable for everyǫ > 0.
Let R∗ be the minimum achievable sum rate. Certainly then
all R > R∗ are also achievable.

Some definitions will allow us to state our main result. Let

V , {s ⊂ M : |s| = m − t}.

This is the collection of all possible sets of honest sensors.
For anyV ⊂ V, define

Q(V ) , {q(x1 · · ·xm) : ∀s ∈ V, q(xs) = p(xs)}. (5)

Let U(V ) ,
⋃

s∈V s. Finally, define

Q ,
⋃

V ⊂V:U(V )=M

Q(V ).

That is, Q is the set of distributionsq such that for eachi,
there is a marginal distribution ofq of m−t variables including
Xi that matches the corresponding marginal distribution ofp.
Thus, thosem − t sensors behave as if they were the set of
honest sensors, since their sources are distributed correctly.
Since everyi falls into such a set, every sensor looks like it
could be honest.



Theorem 1:The minimum achievable sum rate is

R∗ = sup
q∈Q

Hq(X1 · · ·Xm). (6)

It can be shown that fort = 1 and arbitrarym, (6) becomes

R∗ = H(X1 · · ·Xm) + max
i,i′∈M

I(Xi; Xi′ |X{i,i′}c). (7)

Relative to the Slepian-Wolf result, we see that we always pay
a conditional mutual information penalty for a single traitor.
Similar expressions can be found fort = 2, t = m − 2, and
t = m−1 (the last given by (3)). However, analytic expressions
do not in general exist for3 ≤ t ≤ m − 3.

III. PROOF OF THEVARIABLE -RATE THEOREM

A. Converse

We first show the converse. Letq̃ be the distributionq that
maximizes the entropy in (6). For somes with |s| = m −
t, we can writeq̃ = p(xs)q̃(xsc |xs). Thus if thesc sensors
are the traitors, they can simulate the conditional distribution
q̃(xsc |xs), the outcome of which, when combined with the
true values ofXs, will produce a set ofX1 · · ·Xm distributed
according toq̃. Sinceq̃ ∈ Q, if the traitors act honestly with
these fabricated source values, the decoder will not be able
to correctly identify a single traitor, so it has no choice but
to perfectly decode every value. To do this, it must receive at
leastnHq̃(XM) bits, which meansR∗ ≥ Hq̃(XM).

B. Achievability Preliminaries

Now we prove achievability. To do so, we will need the
following definitions. For someV ⊂ V, let

Sn
ǫ (XM)[V ] , {xn

M ∈ X
n
M : ∀s ∈ V, xn

s ∈ T n
ǫ (Xs)}

whereT n
ǫ is the strongly typical set. Fors, s′ ⊂ M andxn

s′ ∈
Xn

s′ , we define the conditional version

Sn
ǫ (Xs|x

n
s′ )[V ] , {xn

s ∈ X
n
s : ∃xn

(s∪s′)c ∈ X
n
(s∪s′)c :

(xn
s xn

s′xn
(s∪s′)c) ∈ Sn

ǫ (XM)[V ]}.

The following lemma shows thatSn
ǫ is contained in a union

of typical sets.
Lemma 1:Fix s, s′ ⊂ M andxn

s′ ∈ Xn
s′ . Then

Sn
ǫ (Xs|x

n
s′ )[V ] ⊂

⋃

q∈Q(V )

T n
ǫ′ (Xs|x

n
s′ )[q].

C. Coding Scheme Procedure

We propose a multiround coding scheme. Each round is
made up ofm phases. In theith phase, transactions are made
entirely with sensori. In addition, all transactions in the first
round are based on the firstk source values, transactions in
the second round on the secondk source values, and so on.
Each transaction in theith phase will be associated with a
target set chosen by the decoder of the form

TR(x̂k
s ) ,

⋃

q:Hq(Xi|Xs)≤R

T k
ǫ′(Xi|x̂

k
s)[q] (8)

with s ⊂ M to be defined, andǫ′ is as defined in Lemma 1. It
takes aboutkR bits to encode any sequence in this set, so we

can think ofTR(x̂k
s ) as the set of all the sequences that can be

decoded if a sensor has only sentkR bits so far in the current
phase. The strategy will be to slowly increaseR, expanding
TR(x̂k

s) until it contains the relevant source sequence.
The decoder will attempt to determine whether the source

sequence is contained inTR(x̂k
s ), and if so to decode it. Sensor

i will randomly choose from a number of encoding functions
f1, . . . , fC . Each of these encoding functions will be created
by means of a random binning procedure and the codebooks
revealed to both the sensor and decoder. Sensori will transmit
up tok(R+ǫ̇) bits containing the index of the randomly chosen
encoding function and its output. If there is exactly one source
sequence in the target set that matches every value received
so far from sensori in this round, call itx̂k

i . If there is more
than one such sequence, we declare an error. If there is no
such sequence, we conclude that the source sequence is not
contained in the target set, increaseR by ǫ, and do another
transaction. Note that whenR ≥ log |Xi|, every sequence will
be in TR(x̂k

s), so we will definitely decode the sequence or
declare an error.

The collectionV ⊂ V will always contain only those sets
that could be the set of honest sensors. We begin by setting
V = V, and pare it down after each round based on new
information. Definesi , {1, . . . , i} ∩ U(V ). Phasei of any
round is made up of the following steps.

1) If i 6∈ U(V ), ignorei and go to the next phase.
2) Otherwise, letR = ǫ.

3) Receive up tok(R + ǫ̇) bits from sensori, with target
set TR(x̂si−1). If possible, decode the sequence tox̂k

i

and go to the next phase. If not, increaseR by ǫ and
repeat.

4) After phasem, let V ′ ∈ V be the largest subset ofV
such that̂xU(V ) ∈ Sn

ǫ (XU(V ))[V
′]. UseV ′ asV in the

next round. If there is no suchV ′, declare an error.

D. Code Rate

It can be shown that the probability of error can made
arbitrarily small if C, the number of encoding functions from
which each sensor chooses randomly during each transaction,
is sufficiently large. We can then makek large enough that
transmitting the index of the chosen encoding function takes
negligible rate compared to transmitting its output. Thus in
each phase we need only transmitR + ǫ̇ bits per symbol. Let
qx̂ be the type ofx̂k

U(V ). The total number of bits sent per
symbol for the entire round is therefore at most

m
∑

i=1

inf
q:x̂k

i
∈T n

ǫ′
(Xi|x̂k

si−1
)[q]

Hq(Xi|Xsi−1) + ǫ + ǫ̇

≤ inf
q:x̂k

U(V )
∈T n

ǫ′
(XU(V ))[q]

m
∑

i=1

Hq(Xi|Xsi
) + m(ǫ + ǫ̇) (9)

≤ Hqx̂

(

XU(V )

)

+ m(ǫ + ǫ̇) (10)

≤ sup
q∈Q(V ′)

Hq

(

XU(V )

)

+ ǫ̈ (11)

≤ sup
q∈Q

Hq(XM) + log |XU(V )\U(V ′)| + ǫ̈ (12)



where (9) holds because the set of distributionsq such
that x̂k

si
∈ T n

ǫ′ (Xsi
)[q] contains the set of distributionsq

such thatx̂k
U(V ) ∈ T n

ǫ′ (XU(V ))[q], and (10) holds because
x̂U(V ) is typical with respect to its own type. Because
x̂U(V ) ∈ Sn

ǫ (XU(V ))[V
′], by Lemma 1, for someq ∈ Q(V ′),

x̂U(V ) ∈ T n
ǫ′ (XU(V ))[q]. For this q, for all xU(V ) ∈ XU(V ),

∣

∣qx̂(xU(V )) − q(xU(V ))
∣

∣ ≤ ǫ′

|XU(V )|
. Since the distributions are

arbitrarily close, the entropies with respect to these distribu-
tions will be arbitrarily close, so (11) holds.

If U(V ′) = U(V ), then the second term in (12) is 0,
so we can bound (12) bysupq∈Q Hq(XM) + ǫ̈. However, if
U(V )\U(V ′) 6= ∅, we cannot. Even so, since at least one
sensor is eliminated wheneverU(V )\U(V ′) 6= ∅, this can
only happen for at mostt rounds, after which we will have
eliminated every traitor. Thus with enough rounds, we can
always bound the sum rate bysupq∈Q Hq(XM) + ǫ̈.

IV. F IXED-RATE RESULTS

Consider anm-tuple of rates(R1, . . . , Rm), encoding func-
tions fi : Xn

i → {1, . . . , 2nRi} for i ∈ M, and decoding
function

g :

m
∏

i=1

{1, . . . , 2nRi} → X
n
1 × · · · × X

n
m.

Let Ii ∈ {1, . . . , 2nRi} be the message transmitted by sensor
i. If sensor i is honest,Ii = fi(X

n
i ). If it is a traitor,

it may chooseIi arbitrarily, based on all the sourcesXn
M

.
Define the probability of errorPe , Pr

(

Xn
H

6= X̂n
H

)

where
(X̂n

1 , . . . , X̂n
m) = g(I1, . . . , IL).

We say anm-tuple(R1, . . . , Rm) is deterministic-fixed-rate
achievableif for any ǫ > 0 and sufficiently largen, there
exist coding functionsfi and g such that, for any choice of
actions by the traitors,Pe ≤ ǫ. Let Rdfr ⊂ R

m be the set of
deterministic-fixed-rate achievablem-tuples.

Define anm-tuple to berandomized-fixed-rate achievable
in the same way as above, except we allow the encoding
functionsfi to be randomized. LetRrfr ⊂ R

m be the set of
randomized-fixed-rate achievable rate vectors.

For anys ⊂ M, let SW(Xs) be the Slepian-Wolf rate region
for the random variablesXs. For any integerk ≤ m, define

Rk , {(R1 · · ·Rm) : ∀s ⊂ M, |s| = k : (Ri)i∈s ∈ SW(Xs)}.

The following theorem gives the rate regions explicitly.
Theorem 2:The fixed-rate achievable regions are given by

Rdfr = Rmax{1,m−2t} and Rrfr = Rm−t.

We omit the proof of this, but we briefly illustrate that
circumstances exist for which fixed-rate coding is suboptimal
compared to variable-rate coding. Supposem = 3 and t = 1.
Recall from (7) that the variable-rate minimum achievable sum
rate is given by

R∗ = H(X1X2X3) + max{I(X1; X2|X3),

I(X1; X3|X2), I(X2; X3|X1)}. (13)

Suppose thatI(X1; X2|X3) achieves this maximum. If the rate
triple (R1, R2, R3) is randomized fixed-rate achievable, then

(R1, R2, R3) ∈ R2, which meansRi + Rj ≥ H(XiXj) for
all i, j ∈ {1, 2, 3}. Thus

R1 + R2 + R3 ≥
1

2

[

H(X1X2) + H(X1X3) + H(X2X3)
]

= H(X1X2X3) +
1

2

[

I(X1; X2|X3) + I(X1X2; X3)
]

. (14)

If I(X1X2; X3) > I(X1; X2|X3), (14) is larger than (13).
Hence, for some source distributions, a larger sum rate is
required for fixed-rate coding than variable-rate coding.

V. FUTURE WORK

Much more work could be done in the area of Byzantine
network source coding. In this paper, we assumed that the
traitors have access to all the source values, an assumption
that was vital in our converse proofs. This is a significant
assumption that may not be all that realistic. It would be
worthwhile, though perhaps more difficult, to characterizethe
achievable rate region without this assumption, assuming that
the traitors have access only to their own source values, or
possibly degraded versions of those of the honest sensors.

Finally, we could consider Byzantine attacks on other sorts
of multi-terminal source coding problems, such as the rate
distortion problem [12], [13] or the CEO problem [14].
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