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Abstract

The performance of two-phase collaborative communicationprotocols is studied for wireless

networks. All the communication nodes in the cluster are assumed to share the same channel and transmit

or receive collaboratively in a quasi-static Rayleigh flat-fading environment. In addition to small-scale

fading, the effect of large-scale path loss is also considered. Based on a decode-and-forward approach, we

consider various variable-rate two-phase protocols that can achieve full diversity order and analyze the

effect of node geometryon their performance in terms of the outage probability of mutual information.

For the single relay node case, it is shown that if the collaborator node is close to the source node, a

protocol based on space-time coding (STC) can achieve good diversity gain. Otherwise, a protocol based

on receiver diversity performs better. These protocols arealso compared with one based on fixed-rate

repetition coding and their performance trade-offs with node geometry are studied. The second part deals

with multiple relays. It is known that withN relays an asymptotic diversity order ofN +1 is achievable

with STC-based protocols in the two-phase framework. However, in the framework of collaborative STC,

those relay nodes which fail to decode remain silent (this event is referred to as anode erasure). We

show that this node erasure has the potential to considerably reduce the diversity order and point out the

importance of designing the STC to be robust against such node erasure.

Index Terms

Collaborative (cooperative) communication, relay channel, space-time coding, spatial diversity,

wireless networks.

The material of this paper was in part presented at IEEE Fall Vehicular Technology Conference, Los
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I. INTRODUCTION

In many wireless networks, the power consumption of communication nodes is a critical issue. In

addition, typical wireless channels suffer from signal fading which, for a given average transmit power,

significantly reduces communication capacity and range. Ifthe channel is slow and flat fading, channel

coding does not help [1, 2] and spatial diversity may be the only effective option that can either reduce

the average transmit power or increase communication range. Results on space-time coding (STC) [3,

4] have shown that the use of antenna arrays at the transmitter and receiver can significantly reduce

transmit energy. However, for many applications with low-cost devices such as wireless sensor networks,

deployment of multiple antennas at each node is too costly toimplement due to severe constraints on

both the size and power consumption of analog devices.

The recently proposed collaborative (or cooperative) diversity approaches [5–14] demonstrate the

potential to achieve diversity or enhance the capacity of wireless systems without deploying multiple

antennas at the transmitter. Using nearby collaborators asvirtual antennas, significant diversity gains can

be achieved. These schemes basically require that the relaynodes share the information data of the source

node, and this data sharing process is generally achieved atthe cost of additional orthogonal channels (in

frequency or in time). In a companion paper [15], we have shown that for a given fixed rate and under

suitable node geometry conditions, there are collaborative coding schemes that can nearly achieve the

same diversity as if all the relay node antennas were connected to the source node, without any additional

orthogonal channels or bandwidth. The construction of suchcodes, however, appears to be challenging.

Among many approaches in the literature, Laneman [5, 6] analyzes several low-complexity relaying

protocols that can achieve full diversity, under realisticassumptions such as half-duplex constraint and

no channel state information (CSI) at the transmitting nodes. It has been shown that in the low-spectral-

efficiency regime, the SNR loss relative to ideal transmit diversity system with the same information

rate is 1.5 dB[5]. Multiple-relay cases are also consideredin [6] and bandwidth-efficient STC-based

collaborative protocols are proposed.

Collaborative diversity protocols are largely classified into amplify-and-forwardand decode-and-

forward schemes [5]. In the following, we will restrict our attention to decode-and-forward schemes

since these may provide some salient advantages. First, there is no error propagation if the relay transmits

information only when it decodes correctly. Otherwise, therelay remains silent and thus an unnecessary

energy transmission can be saved1. Second, the information rate per symbol does not need to be the same

for each phase. In other words, the relative duration of eachphase can be changed according to node

geometry.

1Even though perfect detection of the codeword is not feasible in practice, one can design a cyclic redundancy-check (CRC)

or error detectable low-density parity-check (LDPC) code such that for a given system outage probability, the effect oferror

propagation is negligible. Many existing communication networks have this structure.
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Fig. 1. Two-phase communication. (a) baseline system. (b) two-phase protocol.

It is the latter property that we shall focus on in this work. Suppose that we wish to transmit data with

information rateR∗ bits per second andT is the frame period, also in seconds. Then the total information

transmitted during this period isR∗T bits (per frame). The baseline frame design that achieves this is

shown in Fig. 1 (a). Alternatively, we may split the time interval into two phases of durationT1 and

T2 whereT = T1 + T2 and each phase is operated with information rateR1 and R2, respectively, as

depicted in Fig. 1 (b). We assume that for both phases, the same information (but with different coding

rate) is transmitted. IfR1 and R2 are chosen such thatR1T1 = R2T2 = R∗T, then in principle there

is no loss of total transmission rate compared to the baseline system. Let the fraction of the relative

time period for each phase be denoted byδ1 , T1/T = T1/(T1 + T2), andδ2 , T2/T = 1 − δ1. Then,

the information rate during each phase isR1 = R∗/δ1 andR2 = R∗/δ2. Therefore, during each phase,

information should be transmitted employing larger constellation sizes than the baseline system2.

For ideal AWGN and interleaved fading channels under an average signal-to-noise power ratio (SNR)

constraint over the entire communication process, two-phase protocols do not necessarily achieve a gain

and may even result in performance loss compared to the baseline system. However, for quasi-static or

block Rayleigh fading channels, it is not the constellationsize but diversity that is the dominant factor

for the outage behavior. Thus, if additional diversity can be achieved by two-phase methods, the resulting

outage probability of the mutual information may more than offset any loss due to constellation size and

yield a reduction in required SNR. (This is somewhat analogous to coded modulation which increases the

signal constellation size in order to achieve coding gain. In our case, however, we shall achieve diversity

gain.)

In practical collaborative wireless communication networks, node geometry is an important factor.

Intuitively, if the collaborative relay node is close to thesource node, it may be efficient for the relay

2The fractionδ1 andδ2, or equivalently, the coding rateR1 andR2 are determined based on the node location, not on each

realization of fading channel coefficient as done in [15, 16].
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to act as a transmit antenna. In this case, STC based protocols such as [6] may be efficient. On the

other hand, if the relay is close to the destination, it should operate as a receive antenna. To capture

this geometrical effect, we model the wireless network channel as an aggregate of large-scale path-loss

and small-scale fading [17]. The large-scale path-loss is the decay of signal power due to the transmitter

receiver separation, and is a function of the distance between the two terminals. On the other hand, the

small-scale fading is a consequence of multipath which may vary randomly according to any physical

change of surroundings. The overall system model is detailed in Section II.

In this paper, motivated by the rate-flexible nature of decode-and-forward protocols and the importance

of node geometry, we extend the work of Laneman [5, 6] to a variable-rate framework with particular em-

phasis onpath-loss gain effectof relay nodes, achieved due to the relay’s proximity to source/destination

nodes. Several low-complexity protocols are considered, including a simple multi-hopping protocol, the

bandwidth-efficient STC-based protocol of [6], as well as its receiver diversity counterpart (Section III).

Their performances with a single relay node are theoretically analyzed in terms ofachievable diversity

gain for a given information ratebased on outage probability of mutual information. For thispurpose,

convenient simple analytical tools are developed in Section IV.

The main objective of the paper is, for a given relative location of the relay node, to determine a suitable

protocol and minimize the total required power of the transmitting nodes. To that end, optimal power

control factors and relative phase durations for the relay node are derived for each protocol considered.

Associated with these protocols, closed-form expressionsfor diversity gain are derived in Section V, where

it is shown that by suitably choosing the protocol and controlling the transmission rate, as a function

of node geometry, the achievable diversity gain can be significantly improved. Also, it will be shown

that under severe path-loss, even a simple multi-hop protocol benefits relative to direct transmission. For

example, a significant gain is attained if the relay is located midway between the two communicating

nodes.

In the analysis of STC-based collaborative protocols, we presume two types of STC which we denote

as perfect and imperfect STC. A perfect STC refers to an STC with partial decodability, i.e., the (full)

information can be retrieved from a subset of the transmitting nodes, whereas an imperfect STC refers to

a system in which the receiving nodes fail to decode if any oneof the transmitting nodes that constitute

the STC fails to transmit. This partial erasure of an STC antenna branch may happen if the relay nodes

fail to decode correctly. (This event will be referred to as anode erasure.) In Section VI, we show that

the diversity order of an imperfect STC withN collaborative relays is at most 2, whereas that of a perfect

STC can achieve diversity order ofN + 1 as in [6].

Throughout this paper, our main focus is on the achievable diversity gain for a given information rate.

The diversity-multiplexing trade-off [18] of the relay channels is also of practical importance, but this is

beyond the scope of this paper. Some results in this direction are explored in [5, 6, 16]. As related work,

the effect of node geometry is also considered in [12, 19, 20], but in a fixed-rate framework. Also, we do
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Fig. 2. Two-phase communication.

not address specific design issue of coding as many existing channel/STC techniques in the literature are

applicable to our framework without major modification. Note that some practical design of collaborative

codes (with implicit variable-rate coding) is proposed in [21] and its outage behavior is evaluated in [13].

The use of incremental redundancy such as [22] may be of further potential in this framework. Finally,

we note that variable-rate coding formultiple-access channelshas been recently studied in [23].

II. SYSTEM AND CHANNEL MODEL

Fig. 2 illustrates the basic model which is considered throughout the paper. It is assumed that the three

nodes source(S), relay(R), and destination(D) are located in the two dimensional plane as in Fig. 2 where

θ is the angle of the lineS − R − D anddA,B denotes the Euclidean distance between nodesA andB.

We suppose thatS wishes to transmit the message toD and thatR has agreed to collaborate withS a

priori .

For simplicity, we assume that all the channel links are composed of large-scale path loss and

statistically independent small-scale quasi-static frequency non-selective Rayleigh fading. Consequently,

the complex channel coefficientsHS,D, HS,R, and HR,D in Fig. 2 are uncorrelated and circularly

symmetric complex Gaussian random variables with zero meanand unit variance. They are assumed

to be known perfectly to the receiver sides and unknown at thetransmitter sides. Perfect timing and

frequency synchronization are also assumed, even though accurate acquisition of synchronization among

distributed nodes may be challenging in practice.

The path loss between two nodes, sayA andB, is modeled by

PL(A,B) = K/dα
A,B , (1)

whereK is a constant that depends on the environment andα is the path-loss exponent. For free-space

path loss, we haveα = 2 andK = GtGrλ
2/(4π)2, whereGt andGr are antenna gains at transmitter

and receiver, respectively, andλ is the wavelength [17]. Although the path-loss exponent andthe constant

factor K may vary for each channel link, throughout the paper it is assumed thatα andK are identical

for all channel links.
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For isotropic antennas, the received energy at the relay canbe related to the received energy at the

destination according to

ES,R =
PL(S,R)

PL(S,D)
ES,D =

(
dS,D

dS,R

)α

ES,D , GSES,D, (2)

where EA,B denotes the average received energy between theA → B channel link, andGS is the

geometrical gain achieved by the proximity advantage of therelay node over the destination node.

Likewise, the gain at the destination node in communicatingwith the relay over the source is given

by

GD ,
ER,D

ES,D
=

(
dS,D

dR,D

)α

. (3)

This gain implies that if the average power of the relay is controlled in such a way that the relay transmits

its signal with the same average power as the source, then thedestination node receives the relay’s signal

with a gain ofGD compared to that of theS → D channel link. By the triangle equality, we have
(

dS,R

dS,D

)2

+

(
dR,D

dS,D

)2

− 2

(
dS,R

dS,D

)(
dR,D

dS,D

)

cos θ = 1. (4)

Let ζ denote the ratio ofdR,D to dS,R, i.e.,

ζ ,
dR,D

dS,R
. (5)

Then the gainGS can be expressed as a function ofα, ζ, andθ:

GS =
(
1 + ζ2 − 2ζ cos θ

)α

2 . (6)

Without loss of generality, we assume0 ≤ θ ≤ π. It is easy to observe that for a givenζ > 0, GS is

a monotonically increasing function with respect toα and θ. Note that ifπ/2 ≤ θ ≤ π, then the relay

node lies within the circle with diameterS → D, andθ = π corresponds to the case where the relay lies

on the line betweenS → D.

III. T WO-PHASE PROTOCOL

There are several variations that can be considered for two-phase protocols. We consider the four

specific protocols summarized in Table I. Performance analysis of these protocols in a fixed-rate

framework can be found in [5, 6, 24]. For all protocols, it will be assumed that all component codes

are designed to have error detection capability, i.e., if the relay fails to decode the information correctly,

it knows this and remains silent in the next phase. This may lead to power savings at the transmit side

and the resulting effect is incorporated into the calculation of the SNR. In the case that a relay node is

unable to collaborate during the second phase, we denote this event as anode erasurewhich corresponds

to an antenna erasure in a traditional STC scenario.
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TABLE I

TWO-PHASE PROTOCOLS(•: TRANSMITTING, ◦: RECEIVING, -: SWITCHED OFF)

TD STD RD MH

I II

S • •

R ◦ •

D ◦ ◦

I II

S • •

R ◦ •

D - ◦

I II

S • -

R ◦ •

D ◦ ◦

I II

S • -

R ◦ •

D - ◦

A. Descriptions

1) Transmit Diversity (TD) Protocol:In the first protocol, during phase-I,S broadcasts its information

at rateR1 and the relay nodeR attempts to decode this information. NodeD also receives and then

attempts to decode the information during this phase. IfD is able to decode the message correctly, the

subsequent phase will be ignored.

During phase-II, bothS andR (re)encode the information using an STC with rateR2 similar to [6]. If

the decoding at nodeD after phase-I failed, nodeD reattempts to decode after phase-II. This approach

is referred to as the Transmit Diversity (TD) protocol.

2) Simplified Transmit Diversity (STD) Protocol:This is a simplified alternative to the TD protocol.

In this case, the destination nodeD is switched off during phase-I and thus ignores the signal from S.

The phase-I communication link serves only the relayR. The second phase is identical to that of the TD

protocol. The STD protocol may result in a simple receiver structure but in some cases, a performance

loss is expected compared to the TD protocol.

3) Receiver Diversity (RD) Protocol:The third scenario we consider is similar to receiver selection

diversity. In this case, during phase-I,S broadcasts information and the relay and destination decode

in the same way as the TD protocol. During phase-II, the relayre-encodes the data and transmits the

data at rateR2 without STC. (The source remains silent in phase-II.) This approach is referred to as the

Receiver Diversity (RD) protocol.

Further strategies such as decoding based on a combination of phase-I and phase-II data can be

considered, analogous to maximum ratio combining for receiver diversity [5, 6, 13, 24]. Only in such an

approach can optimal performance be achieved. In our variable-rate framework of decode-and-forward,

such techniques may require special coding structures and thus impose additional complexity at the

receiver side. For comparison purpose, however, the performance of this approach is also studied in

Section V-H.

4) Multi-Hopping (MH) Protocol:The effectiveness of multi-hopping (MH) protocols has beenwidely

studied3. For comparison a simple multi-hopping protocol will also be considered as a special case of

the RD protocol where the destination node only switches on during phase-II. This approach does not

3For example, optimal MH distances from system energy consumption efficiency perspective are discussed in [25].
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offer any diversity gain, and thus generally results in performance loss rather than gain. However, as will

be shown later, if the signal decay due to path loss is severe (α > 3), the MH protocoldoesoffer an

SNR gain compared to direct transmission, when the relay is between the two communicating nodes.

B. Optimization Issues

An interesting question one may ask regarding two-phase protocols is how we should choose the

fraction δ1. This depends on the geometrical location of the relay and the specific protocol. Intuitively, if

the relay is located close to the source node, the path-loss of the channel linkS → R is relatively small

compared to that of theS → D link. Therefore, the relay receives the data with high average SNR and

thus decodes the message successfully with high probability. In this case, even smallδ1 (and thus high

R1) may be sufficient for successful decoding at the relay. In phase-II, one may use the TD or STD

protocols to efficiently achieve full diversity without bandwidth expansion.

On the other hand, if the relay is located close to the destination node, the situation may be reversed.

In this case, the relay and destination receive the signal with equal average power. Since the relative

path loss of the linkR → D is small, the relay can transmit the received data with little power (if it

is decoded correctly), and this may add additional diversity to the destination. The overall system is

thus similar to an ideal receiver diversity system and the RDprotocol may be efficient, provided that

the relay appropriately controls its transmission power.4 Therefore, for practical design of relay systems,

it is important to consider the geometrical properties of the relay location, together with the choice of

appropriate protocols, relative phase durations, and power control.

IV. A NALYTICAL TOOLS FOROUTAGE PROBABILITIES

In this section, we develop our performance criterion and analytical tools for the design and evaluation

of the above protocols. Our design criterion is based on the mutual information for a given realization

of the fading coefficientsH = {HS,D,HS,R,HR,D}. Specifically, we assume that communication is

successful if the mutual information (with Gaussian code book) of the channel conditioned onH is

greater than the information rate [27]. Otherwise, an outage event follows. The probability of an outage

event defined in this way, which is commonly referred to asoutage probability, not only has an analytically

convenient form but also serves as a reasonable performanceindicator for practical systems; with moderate

frame length and a well-designed STC [4], the frame-error rate may fall within a few dB of the Multiple-

Input Single-Output (MISO) channel outage probability [28, 29]. Also, the outage probability can be seen

as a Complementary Cumulative Distribution Function (CCDF) of the non-ergodic capacity, which is a

random variable ofH [28].

4An alternative approach in this case may be a compress-and-forward scheme, e.g., [26], which may result in potentially

better performance. Comparisons with this scheme are beyond the scope of this paper.
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A. Asymptotic Diversity Order

Our main goal is to achieve a large diversity gain with minimum transmitted energy. We first define

the asymptotic diversity order in the high SNR regime [18].

Definition 1 (Asymptotic Diversity Order):Let Pout(SNR) denote an outage probability as a function

of the channel SNR. The asymptotic diversity order is definedas [18]

d
∗ (Pout(SNR)) , − lim

SNR→∞
ln (Pout(SNR))

ln (SNR)
.

As an alternate form, in this paper we consider outage probabilities as a function of the inverse

SNR, X , 1
SNR, and letfout(X) = Pout(SNR)|SNR=1/X . It will also be mathematically convenient to

analytically extendfout(X) in a neighborhood ofX = 0. To that end, we introduce the notion ofanalytical

extendibility atX = 0 for a CCDF.

Definition 2 (Analytically Extendible CCDF):A CCDF f(X) is calledanalytically extendible atX =

0 if all the following conditions are satisfied.

1) On X ≥ 0, 0 ≤ f(X) ≤ 1 and on this interval,f(X) is a non-decreasing function withf(0) = 0.

2) f(X) is analytic atX = 0. Thus, in some open interval(−ǫ, ǫ), ǫ > 0, f(X) can be expressed as

a power series centered atX = 0,

f(X) =

∞∑

n=0

anXn, an =
1

n!
f (n)(0), (7)

wheref (n)(X) denotes thenth derivative off(X). Sincef(0) = 0, it follows thata0 = 0. When

f(X) 6= 0, we refer to the minimum value ofn wherean 6= 0 as theorder of f(X).

Sincef(X) is non-decreasing onX ≥ 0, it is easy to see thatam > 0 for a given minimum orderm.

In the rest of this paper, we do not explicitly mention ‘atX = 0’ and simply refer to such functions

as analytically extendible CCDFs. With the above definition, we have the following lemma.

Lemma 1 (Diversity Order):If a CCDF f(X) is analytically extendible with orderm, then the

asymptotic diversity order ism.

Proof: For m > 0, we haveam > 0 and

f(X) = Xm

(

am +
∞∑

n=1

an+mXn

)

.

Thus, we obtain

d
∗ (f(X)) = m + lim

X→0

ln (am +
∑∞

n=1 am+nXn)

ln X
. (8)

Since the second term of (8) can be easily shown to be zero, we obtain d∗ (f(X)) = m.

Also, the following corollary may be immediately obtained from the logarithmic property of the

diversity definition.

Corollary 1: Let gi(X), i = 1, 2, . . . , and hj(X), j = 1, 2, . . . , be analytically extendible CCDFs.

If f(X) =
∏

i gi(X)
∏

j (1 − hj(X)), then d∗ (f(X)) =
∑

i d∗ (gi(X)). Furthermore, iff(X) =
∑

i gi(X), thend∗ (f(X)) = mini {d∗ (gi(X))}.
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B. Diversity Offset Gain

We note that for an analytically extendible CCDFfout(X) of orderm,

lim
X→0

fout(X)

Xn
=







am for n = m

0 for n < m.

(9)

Therefore, as SNR→ ∞ (X → 0), the asymptotic outage probability is given by

fout(X) ∼ amXm or Pout(SNR) ∼ amSNR−m = (cmSNR)−m, (10)

wherecm , a
− 1

m
m . Thus,

ln Pout(SNR) ∼ ln(am) − m ln SNR. (11)

As addressed in [30], the asymptotic diversity orderm determines the slope in a plot of the log-outage

probability versus SNR in decibels, whereasam (or cm) determines the intercept. Therefore, our design

criterion is to choose the offset termam as small as possible, thereby maximizing the gaincm. Note that

in [30], the termcm is referred to as a coding gain, but since this gain is a resultof spatial diversity

rather than code structure, we refer to this relative gain asdiversity offset gain(or simply, offset gain)

in the following.

C. Ideal MISO Case

We begin by considering an ideal MISO system withm transmit antennas and let SNR denote the

total received SNR. From the literature of MIMO communications systems [28, 29] the following theorem

holds.

Theorem 1 (MISO Channel Diversity Order and Offset):Consider a MISO channel withm transmit

antennas and suppose that we transmit the data with an information rateR∗. Under the assumption that

the transmitter does not know the channel coefficients and all the m channel coefficients are circularly

symmetric Gaussian random variables with zero mean and unitvariance, the achievable diversity order

is m, and the offset term, denoted byãm, is given by

ãm =
1

m!
(mA0)

m, (12)

whereA0 = 2R∗ − 1.

Proof: Let them channel coefficients be denoted byh ,

[

H0 H1 . . . Hm−1

]T
, where the

Hi are independent and identically distributed (i.i.d.) circularly symmetric complex Gaussian random

variables with zero mean and unit variance by assumption. For a givenm×m diagonal power allocation

matrix with non-negative entries, denoted byP, that satisfies trace(P) ≤ 1, the mutual information

conditioned onh is defined as [29]

C(SNR,P,h) , log2

(
1 + SNRh

H
Ph
)
. (13)
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ChoosingP = 1
mI, whereI is anm × m identity matrix, we obtain

C(SNR,P,h) = log2

(

1 +
SNR
m

Z

)

, (14)

whereZ is a random variable which follows a central chi-square distribution with 2m degrees of freedom,

each of variance1/2. The outage probability is given by

Pout = Pr [C < R∗] = Pr

[
SNR
m

Z < A0

]

= Pr [Z < mA0X] , (15)

whereA0 , 2R∗ − 1 andX , 1
SNR. We thus have the outage probability as a function ofX:

fout(X) = P (m,mA0X)
△
=

γ (m,mA0X)

Γ(m)
, (16)

whereΓ(m) is the (complete) Gamma function andγ(m,x) is the lower incomplete Gamma function

γ(m,x)
△
=

∫ x

0
e−ttm−1dt. (17)

Clearly, the integrand in (17) is analytic int and hence, so isγ(m,x) in x. Therefore,fout(X) is an

analytically extendible CCDF and sinceP (m,x) = e−x
∑∞

k=m xk/k!, one can show that

∂nP (m,κx)

∂xn

∣
∣
∣
∣
x=0

=







0 n < m

κn n = m.

(18)

Hence, the asymptotic diversity order ism from Lemma 1, and we thus obtain (12).

The coefficient̃am in (12) may serve as a reference offset for an ideal MISO system. In the following,

we define a diversity offset gain with respect to an equivalent ideal MISO (or SISO) performance as

follows.

Definition 3: For a system with diversity order ofm and offsetam, the diversity offset gain with

respect to an equivalent ideal MISO (or SISO) performance isdefined as

Λ(m) , cm/c̃m = (ãm/am)
1

m = mA0 (m! am)−
1

m . (19)

Thus, the diversity offset gainΛ(m) serves as a measure of the relative performance of a scheme with

respect to an ideal MISO system as given by the asymptotic SNRgap for a small outage probability. If

Λ(m) < 1, there is a relative loss in asymptotic SNR required to achieve the same outage probability as

a MISO system.

V. PERFORMANCEANALYSIS WITH SINGLE RELAY

In the following, we analyze the outage probability and achievable diversity offset gain of the protocols

outlined in Section III, assuming an independent Rayleigh fading plus path loss channel model. We assume

that the Gaussian noise power is identical forall the channel linksconsidered. Extensions to the cases

with variable noise power may be tedious but straightforward.
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A. Transmit SNR

For further analysis, an appropriate measure of SNR should be defined. In this paper, we shall evaluate

the system in terms of the totaltransmittedpower (for a given noise power). Consequently, the SNR is

defined as a ratio of totaltransmittedsignal power, which is the sum of the source and relay transmit

power, to the Gaussian noise variance, which is assumed to beconstant. We will refer to this ratio

as transmit SNRand denote it by SNRt, throughout the paper. Since, in the absence of relay nodes,

the received SNR is given by SNR= PL(S,D)SNRt, by taking the path loss between the source and

destination nodes PL(S,D) to be unity, the transmit and received SNRs become identical. As opposed to

the more conventional notion of received SNR, transmit SNR is a more appropriate measure of wireless

network performance in terms of total power consumption.

1) RD and MH Protocols:Let SNRS
1 denote thereceivedSNR dedicated for the communication link

of phase-I, and let SNRR2 denote that of phase-II, conditioned that the relay is transmitting.

The transmit SNR can be expressed as

SNRt = δ1
SNRS

1

PL(S,D)
+ δ2β

SNRR
2

PL(R,D)
=

1

PL(S,D)

{

δ1SNRS
1 + δ2

β

GD
SNRR

2

}

, (20)

where β is an average energy consumption factor that accounts for the probability that the relay is

transmitting and thusβ ≤ 1.

Now, we suppose that the relay transmits its signal with average power∆R times that of the source.

Then we may write SNRR2/PL(R,D) = ∆R SNRS
1/PL(S,D), or, SNRR

2 = GD∆R SNRS
1. Thus, setting

PL(S,D) = 1, (20) reduces to

SNRt = (δ1 + δ2β∆R) SNRS
1 , lRDSNRS

1, lRD = δ1 + δ2β∆R. (21)

2) TD and STD Protocols:In this case, we assume that the source node employs the same average

power through phases I and II for simplicity. The extension of our results to variable power cases is

straightforward. Let SNRS2 denote the received SNR of phase-II due to the channel linkS → D. Then

we have SNRS2 = SNRS
1 by assumption. The corresponding transmit SNR by the nodes through phases

I and II with PL(S,D) = 1 is given by

SNRt = (1 + δ2β∆R) SNRS
1 , lTDSNRS

1, lTD = 1 + δ2β∆R. (22)

B. Error Events

In order to derive the outage probability and associated diversity offset gain of various protocols, we

first define the following events:E1 = Event [ Decoding at destination after phase-I fails ],ER = Event [

Decoding at relay after phase-I fails ], andE2 = Event [ Decoding at destination after phase-II fails ]. If

the destination receives during two phases, we have the outage probabilityPout = Pr[E1∩E2]. Otherwise,

Pout = Pr[E2]. Also, in the following,Ā denotes the complement of the eventA.
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C. Multi-Hopping (MH) Protocol

We begin with the analysis of the MH protocol. In this protocol, since the destination listens only

during phase-II, the outage probability is given by

Pout = Pr[E2] = 1 − Pr[ĒR] Pr[Ē2|ĒR]. (23)

Let C(SNR,H) denote the mutual information of the channel conditioned onchannel coefficientH and

received SNR, defined asC(SNR,H) , log2

(

1 + SNR|H|2
)

. With this notation, we have

Pr[ER] = Pr
[
C(GSSNRS

1,HS,R) ≤ R1

]
= Pr

[

|HS,R|2 ≤ 2R1 − 1

GSSNRS
1

]

= 1 − e
− A1

GSSNRS
1 (24)

whereA1 , 2R1 − 1, andPr[ĒR] = e
− A1

GSSNRS
1 . The conditional probabilityPr[Ē2|ĒR] is calculated as

Pr[Ē2|ĒR] = Pr
[
C(SNRR

2 ,HR,D) > R2

]
= e

− A2

GD∆RSNRS
1 , (25)

whereA2 , 2R2 − 1. Consequently, we have

Pout = Pr[E2] = 1 − e
−

“

A1

GS
+

A2

∆RGD

”

1

SNRS
1 . (26)

Let X , 1
SNRt

, and from (21) we obtain 1
SNRS

1

= lRDX. Since the relay transmits only if the relay

successfully decodes,β in (20) is given by

β = Pr[ĒR] = 1 − Pr[ER] = e
− A1

GSSNRS
1 = e

− A1

GS
lRDX

, β(X) (27)

which is also a function ofX. From (21), we may then relatelRD andX by

lRD(X) = δ1 + δ2∆Re
− A1

GS
lRD(X)X

. (28)

The outage probability can then be expressed as an analytically extendible CCDF ofX:

fout(X) = 1 − e
−

“

A1

GS
+

A2

∆RGD

”

lRD(X)X
. (29)

With careful manipulation of the analytic functionfout(X), we obtaina0 = 0 and

a1 =
A1

GS

(

1 +
r

∆R

)

(δ1 + δ2∆R) , r ,
A2

A1

GS

GD
=

A2

A1
ζα =

2R∗/(1−δ1) − 1

2R∗/δ1 − 1
ζα. (30)

Hence, the asymptotic diversity order ism = 1.

In order to improve the achievable diversity offset gain, wewish to minimizea1 in (30) by judiciously

choosing∆R andδ1. The optimization can be performed in a two step manner: first, find ∆R for a given

δ1, and then numerically optimizeδ1.

By fixing 0 < δ1 < 1 (and thus0 < δ2 < 1), the parameter∆R that minimizesa1 can be found by

standard calculus as∆opt =
√

rδ1/δ2, which is a function ofζ, δ1, R∗, and α from r in (30) . The

overall offset gain can be given from (19) by

ΛMH(1) =

(√

δ1

GS

A1

A0
+

√

δ2

GD

A2

A0

)−2

. (31)
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Using ζ notation of (5), we can write

ΛMH(1) =
A0

(
1 + ζ2 − 2ζ cos θ

)α

2

(√
δ1A1 + ζ

α

2

√
δ2A2

)2 (32)

whereδ1 should be numerically chosen, for givenR∗, ζ, andα, according to

δ1 = arg min
0<δ1<1

√

δ1

(
2R∗/δ1 − 1

)
+ ζ

α

2

√

(1 − δ1)
(
2R∗/(1−δ1) − 1

)
. (33)

1) Geometric Effect of the Relay:If the relay is located close to the source, i.e.,ζ ∼ 0, the optimal

value ofδ1 approaches 1, which should be equivalent to direct transmission from source to destination,

and we have

lim
ζ→0

ΛMH(1) =
A0

A1
= 1. (34)

Likewise, if the relay is located close to the destination, i.e.,ζ ∼ ∞, the optimal value ofδ1 approaches

0, and we have

lim
ζ→∞

ΛMH(1) =
A0

A2
= 1, (35)

which is identical to (34). Thus, for these asymptotic cases, the path-loss exponentα does not appear

in the gain expression and essentially no gain is achieved bythis protocol. However, this is not the case

if the relay is located between the two nodes. For example, ifthe relay is located midway on the line

between the source and destination, i.e.,ζ = 1, then since a functiong(δ1) ,
√

δ1A1 =
√

δ1

(
2R∗/δ1 − 1

)

is a convex∪ function with respect toδ1, the above gain is maximized atδ1 = δ2 = 1/2 and thus we

have

ΛMH(1)|ζ=1 =

(
2R∗ − 1

)
(2 − 2 cos θ)

α

2

2 (22R∗ − 1)
=

(2 − 2 cos θ)
α

2

2 (2R∗ + 1)
. (36)

Now, in this case, we observe that the offset gain is a function of path-loss exponentα, and this gain,

measured in dB, increases linearly withα providedθ > π
3 . We shall refer to this type of gain achieved

by increasing the path-loss exponent as aMH gain in the following.

2) Numerical Results:Fig. 3(a) and (b) show the optimalδ1 and corresponding achievable offset gain

ΛMH(1), respectively, with respect to the relay positionζ = dR,D/dS,R and different values of the path-

loss exponentα. The information rate isR∗ = 2, and the relay is located atθ = π, i.e., on the line

between the source and destination nodes. From Fig. 3 (b), itis observed that if the path-loss exponent

is less than 4, the MH protocol always results in loss compared to a traditional SISO system and thus no

benefit is obtained. However, ifα is at least 4, the MH protocol can offer some gain. (In fact, from (36),

ΛMH(1) > 1 if α > 1+log2 5.) Therefore, in our scenario, a positive MH gain is possibleif the path-loss

exponent is sufficiently large and the relay is appropriately located5.We also observe that the maximum

5It is interesting to point out that the observation of sub-optimality of multi-hopping agrees with that of [31] in terms of

system energy-efficiency perspective, though the underlying performance criterion is considerably different.
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Fig. 3. Optimal values for the MH protocol as a function of a relay node positionζ and different value ofα. Parameters:

R∗ = 2, θ = π. (a) Relative durationδ1. (b) Diversity offset gainΛMH(1).

gain is achieved if the relay is located in the midway betweenthe source and destination nodes with

δ1 = 1/2 and thus routing data with the same information rate on each leg. This agrees with intuition

and common observation in the literature on the MH protocol (see e.g., [25]).

D. Receiver Diversity (RD) Protocol

In the RD protocol, the destination listens during both phases. The outage probability of the RD

protocol can then be expressed as

Pout = Pr[E1 ∩ E2] = Pr[E1] Pr[E2|E1] = Pr[E1] Pr[E2]. (37)

For phase-I, we have

Pr[E1] = Pr
[
C(SNRS

1,HS,D) ≤ R1

]
= Pr

[

|HS,D|2 ≤ 2R1 − 1

SNRS
1

]

= 1 − e
− A1

SNRS
1 . (38)

Also, from the result of the MH protocol, we havePr[E2] in (26). Thus, the outage probability is given

by

fout(X) =
(

1 − e−A1lRD(X)X
)(

1 − e
−

“

A1

GS
+

A2

∆RGD

”

lRD(X)X
)

. (39)

Similar to the MH case, one can show thata0 = 0, a1 = 0, and

a2 =
A2

1

GS

(

1 +
r

∆R

)

(δ1 + δ2∆R)2 , (40)

wherer is given in (30). The asymptotic diversity order is thusm = 2. The value of∆R that minimizes

a2 can be found as

∆opt =
r

4

(√

1 +
8

r

δ1

δ2
− 1

)

(41)
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and the overall offset gain is given by

ΛRD(2) =

√

2GS

1 + r
∆opt

· A0

A1
· 1

δ1 + δ2∆opt
. (42)

We now consider the following three specific cases of node geometry.

1) Relay Close to Destination:As the relay is moved near the destination, i.e.,ζ → 0, we have

GS → 1, r,∆opt → 0. However, sincelimr→0 r/∆opt = 0, we have

lim
ζ→0

ΛRD(2) =
√

2 · 2R∗ − 1

2R∗/δ1 − 1

1

δ1
≤

√
2 (43)

where the upper bound is achieved by settingδ1 → 1. Therefore, the asymptotic offset gain achieved

by this protocol, with respect to the transmit diversity bound, is 1.5 dB. Alternatively, since the receiver

diversity outperforms the transmit diversity (without CSIat the transmitter) by 3 dB for the same transmit

power constraint [3], the RD protocol is asymptotically 1.5dB inferior to the two-branch receiver diversity.

It is interesting to note that this is analogous to the resultin [5], where the loss of collaborative diversity

with respect to the ideal two-branch transmit diversity is shown to be 1.5 dB. Since the geometrical gain

of the relayGS is unity, no MH gain is achieved in this case.

2) Relay Close to Source:If ζ is large, we have∆opt ∼ δ1/δ2 and

ΛRD(2) ∼ A0√
2δ1 δ2 A1 A2

√

GD. (44)

SinceGD → 1 as the relay is moved near the destination, the maximum offset gain is achieved when

δ1 = δ2 = 1/2, and the corresponding gain is given by

lim
r→∞

ΛRD(2) =

√
2

2R∗ + 1
. (45)

Therefore, if the rateR∗ is small, the loss relative to the MISO bound is small even if the relay is much

closer to source. Again, no MH gain can be achieved in this case.

3) Relay Located Midway Between the Two Nodes:In this case, letζ ∼ 1, and we have

ΛRD(2)|ζ=1 =

√
2

1 + η
· A0

δ1 A1 + δ2

η A2

(2 − 2 cos θ)
α

4 , η =
4

√

1 + 8 δ1A1

δ2A2

− 1
. (46)

Therefore, in this case, the offset gain (in dB) increases linearly with α as a consequence of the MH

gain, regardless of the choice ofδ1 andδ2.

E. Transmit Diversity (TD) Protocol

Using the notation in the previous subsections, the outage probability can be expressed as

Pout = Pr[E1 ∩ E2] = Pr[ER] Pr[E1 ∩ E2|ER] + Pr[ĒR] Pr[E1 ∩ E2|ĒR]. (47)

The mutual information of phase-II is expressed using (13) as

C(SNRS+R
2 ,P,h) = log2

(
1 + SNRS+R

2 h
H
Ph
)
, (48)
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whereh = [HS,D,HR,D]T , SNRS+R
2 is the total received power (from the source and the relay) during

phase-II provided the relay is transmitting, andP is a diagonal matrix with trace(P) ≤ 1. The total

received power with a relay power control factor∆R is given by

SNRS+R
2 = SNRS

2 + SNRR
2 = (1 + ∆RGD)SNRS

1. (49)

Since the transmitter does not know the channel coefficient,the matrixP is given by

P = diag

[
SNRS

2

SNRS+R
2

,
SNRR

2

SNRS+R
2

]

= diag

[
1

1 + ∆RGD
,

∆RGD

1 + ∆RGD

]

. (50)

Consequently, (48) is rewritten as

C(SNRS+R
2 ,P,h) = log2

(
1 + SNRS

1

(
|HS,D|2 + ∆RGD|HR,D|2

))
. (51)

The termPr[E1 ∩ E2|ĒR] in (47) is given by

Pr[E1 ∩ E2|ĒR] = Pr[C(SNRS
1,HS,D) ≤ R1 ∩ C(SNRS+R

2 ,P,h) ≤ R2]

= Pr

[

|HS,D|2 ≤ A1

SNRS
1

∩ |HS,D|2 + ∆RGD|HR,D|2 ≤ A2

SNRS
1

]

. (52)

Let x , |HS,D|2 andy , ∆RGD|HR,D|2. Then,

Pr[E1 ∩ E2|ĒR] =

∫ min

„

A1

SNRS
1

,
A2

SNRS
1

«

0

∫ A2

SNRS
1

−x

0
e−x 1

∆RGD
e
− y

∆RGD dy dx

= 1 − e
−Amin

SNRS
1 − ∆RGD

∆RGD − 1
e
− A2

∆RGDSNRS
1

[

1 − e
−∆RGD−1

∆RGD

Amin

SNRS
1

]

, (53)

whereAmin , min (A1, A2). The termPr[E1 ∩ E2|ER] in (47) is given by

Pr[E1 ∩ E2|ER] = Pr[C(SNRS
1,HS,D) ≤ R1 ∩ C(SNRS

2,HS,D) ≤ R2] = 1 − e
−Amin

SNRS
1 . (54)

The final expression forfout(X) can be easily found by substituting (53), (54), and (24) with1
SNRS

1

=

lTD(X)X into (47). We then obtaina0 = 0, a1 = 0, and

a2 =
A1Amin

GS

(

1 +
r

∆R

(

1 − 1

2

Amin

A2

))

(1 + δ2∆R)2 . (55)

An asymptotic diversity order ofm = 2 is guaranteed, and the optimum value of∆R can be found as

∆opt =
r

4

(

1 − 1

2

Amin

A2

)






√
√
√
√1 +

8

r

1

δ2

(

1 − 1
2

Amin

A2

) − 1




 . (56)

The overall offset gain can be obtained from (19) as

ΛTD(2) =

√
√
√
√

2GS

1 + r
∆opt

(

1 − 1
2

Amin

A2

) · A0√
A1Amin

· 1

1 + δ2∆opt
. (57)

We now consider the following three specific cases of node geometry.
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1) Relay Close to Destination:As the relay approaches destination, we have

lim
ζ→0

ΛTD(2) =
√

2
A0√

A1Amin
. (58)

By choosingδ1 > δ2, we haveAmin = A1 and thus

lim
ζ→0

ΛTD(2) =
√

2
A0

A1
≤

√
2 (59)

where the upper bound is achieved by settingδ1 → 1. Thus, the asymptotic offset gain in this case is

identical to that of the RD protocol and no MH gain is achieved.

2) Relay Close to the Source:If ζ is large, we have

lim
r→∞

ΛTD(2) =
A0

√

(2A2 − Amin)Aminδ2

. (60)

By choosingδ2 > δ1, we haveAmin = A2 and thus

lim
r→∞

ΛTD(2) =
A0√
δ2A2

=
2R∗ − 1√

δ2

(
2R∗/δ2 − 1

) ≤ 1 (61)

where the upper bound is achieved by settingδ2 → 1. Therefore, the TD protocol can approach the

performance of the ideal transmit diversity bound as the relay approaches the source. However, no MH

gain can be achieved in this case.

3) Relay Located in the Middle of the Two Nodes:In this case, letζ ∼ 1, and if we setδ2 > δ1, then

we haveAmin = A2 and

ΛTD(2)|ζ=1,δ2>δ1
=

√
2

1 + η1

√

A1

A2

A0

A1 + δ2

2η1

A2

(2 − 2 cos θ)
α

4 , η1 =
4

√

1 + 16 A1

δ2A2

− 1
.

Alternatively, if we assumeδ1 > δ2, then we have

ΛTD(2)|ζ=1,δ1>δ2
=

√
2

1 + η2

A0

A1 + δ2

2η2

(2A2 − A1)
(2 − 2 cos θ)

α

4 , η2 =
4

√

1 + 16 A1

δ2(2A2−A1)
− 1

.

Therefore, in this case, the offset gain, measured in dB, is proportional toα and the slope does not

depend on the choice ofδ1 andδ2.

Note that the above two equations become identical ifδ1 = δ2 = 1/2. However, numerical calculation

in the following shows that atζ = 1, the parameterδ2 that maximizes the above gain is not equal to 1/2.

Therefore, there is a discontinuity in the optimal value ofδ1 aroundζ = 1 (see Section V-G).

F. Simplified Transmit Diversity (STD) Protocol

In this case, we have

Pout = Pr[E2] = Pr[ER] Pr[E2|ER] + Pr[ĒR] Pr[E2|ĒR]

= Pr[ER] Pr[C(SNRS
2,HS,D) ≤ R2] + Pr[ĒR] Pr[C(SNRS+R

2 ,P,h) ≤ R2] (62)
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which can be calculated as

fout(X) =
(

1−e
− A1

GS
lTD(X)X

)(

1−e−A2lTD(X)X
)

+ e
− A1

GS
lTD(X)X

(

1 − ∆RGDe
− A2

∆RGD
lTD(X)X − e−A2lTD(X)X

∆RGD − 1

)

.

We thus obtaina0 = 0, a1 = 0 and

a2 =
A1A2

GS

(

1 +
1

2

r

∆R

)

(1 + δ2∆R)2 . (63)

Note that (63) is identical to (55) whenAmin = A2. Therefore, whenA2 ≤ A1, i.e., δ1 ≤ 1
2 , the

performance of the TD and STD protocols will be identical. The asymptotic diversity order ism = 2,

and the optimum value of∆R and the corresponding offset gain are given by

∆opt =
r

8

(√

1 +
16

δ2r
− 1

)

, ΛSTD(2) =

√

2GS

1 + r
2∆opt

· A0√
A1Amin

· 1

1 + δ2∆opt
, (64)

which are again identical to (56) and (57), respectively, when δ1 ≤ 1/2. Therefore, if the relay is closer

to the source than the destination, there is no loss by ignoring the phase-I signal (unless these two signals

are combined upon making a decision, as will be discussed in Section V-H). The offset gain achieved

by the STD and TD protocols are identical. On the other hand, if the relay is close to destination, the

performance of STD becomes inferior to that of the TD protocol. As an asymptote, we have

lim
ζ→0

ΛSTD(2) =







√
2 A0√

A1A2

for δ1 ≥ 1
2

√
2A0

A1

for δ1 ≤ 1
2

The above gain is maximized atδ1 = 1/2 and we have

lim
ζ→0

ΛSTD(2) ≤
√

2
2R∗ − 1

22R∗ − 1
=

√
2

2R∗ + 1
.

It is interesting to note that this asymptotic offset gain isidentical to that of RD protocol (i.e., (45))

where the relay is close to the source.

G. Numerical Comparison of the Three Protocols

In the following, we numerically evaluate the performance of the three protocols of diversity order 2,

in terms of achievable offset gains. The information rate isset to beR∗ = 2.

1) Achievable Offset Gains for the RD, TD, and STD Protocols:Fig. 4(a) shows the optimalδ1 with

respect to the relay positionζ for the three protocols of diversity order 2, with the path-loss exponent

α = 2 and the relay location atθ = π. Changingα does not significantly affect the curves. As observed,

the optimal fractionδ1 for the RD protocol ranges from 0.5 near the source node and increases as the

relay approaches the destination. Contrastingly, the optimal value ofδ1 for the STD protocol ranges from

0.5 near the destination node and decreases as the relay approaches the source node.

Fig. 4 (b) shows the corresponding optimal offset gainΛ(2) with α = 2 and4. It can be seen that the

offset gain of the TD protocol is identical to that of the STD protocol whenζ ≥ 0 dB, and approximates
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Fig. 4. Optimal values for the three protocols as a function of a relay node positionζ. Parameters:R∗ = 2, α = 2, θ = π.

(a) Relative durationδ1. (b) Diversity offset gainΛ(2). Note that the gains of the TD and STD protocols are identicaland thus

their curves overlap whenδ1 < 1/2.

that of the RD protocol whenζ < 0 dB. It is also observed that as the relay approaches the destination,

the offset gain of the RD and TD protocols can approach the predicted 1.5 dB bound. On the other

hand, if the relay approaches the source, the offset gain of the TD and STD protocols can approach the

predicted 0 dB bound.

Consequently, in terms of minimizing complexity without sacrificing performance, the suggested

strategy is that if the relay is close to the source (ζ > 0 dB), it should employ the STD protocol

and otherwise use the RD protocol. Although the TD protocol may result in stable performance results

for both cases (which may be suitable if the exact node geometry is unknown), if the protocols are

switched appropriately, it outperforms neither.

2) Effect of Node Angle:So far, we have evaluated the performance withθ = π, which may be

optimal in the sense of the achievable diversity offset gainfor a givenζ. Changingθ for a givenζ may

be expected to result in a performance loss. The SNR loss withd∗ = m, relative to the case withθ = π,

can be expressed from (6) as

10 log10

Λ(m)

Λ(m)|θ=π

= 10 log10

(
GS

GS |θ=π

) 1

m

=
α

2m
× 10 log10

1 + ζ2 − 2ζ cos θ

1 + ζ
,

α

2m
L(θ).

The relative lossL(θ) [dB] defined above is plotted in Fig. 5 for several instances of the geometric ratio

ζ. As observed, asζ deviates from 1, the loss becomes small. Therefore, in many cases of interest, the

performance is not sensitive to the value ofθ compared to that ofζ.

H. Comparison with Two-Phase Combining Approach

In the previous analysis, we have not exploited the fact thatthe information transmitted during phase-I

and phase-II are the same, and thus combining the signals of the two phases may potentially improve

performance.
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Fig. 5. Relative lossL(θ) in achievable offset gain with respect to the case with relaynode positionθ = π.

Therefore, in the following, we first derive an upper bound for the achievable diversity offset gain

for such a case based on the sum of mutual information method similar to [6, 15] for the RD protocol.

(Similar analysis for the TD protocol may be possible, but this is not considered here for simplicity.) It

should be noted that in contrast to the previous protocols which can make use of existing channel coding

or STC and thus are attractive from a practical viewpoint, designing codes that allow combining received

codewords with different codes in an optimal manner (as thismethod suggests) may be challenging.

Another approach that can combine the two signals and that ismuch easier to implement is the use of

repetition coding [6]. In this case, the same encoding with the same information rate should be transmitted

from the relay in phase-II. In our scenario, this is possiblewhen δ1 = δ2 = 1/2. We also analyze the

repetition coding in terms of diversity offset gain and thenderive a bound for the variable-rate case using

parallel channel coding argument.

Note that if the decision is made after combining the two phases, the decision after phase-II will be

better than that at phase-I. Hence the event that phase-I fails is a subset of the event that phase-II fails.

Hence, the outage probability is expressed as

Pout = Pr[E2] = Pr[E2|ĒR] Pr[ĒR] + Pr[E1] Pr[ER]

wherePr[ĒR],Pr[ER], andPr[E1] are identical to those of the MH protocol.

1) Parallel Channel Coding:Assuming that independent channel codes are employed for the phase-I

and phase-II, the probability of the event that the destination fails to decode conditioned that the relay

successfully decodes is given by

Pr[E2|ĒR] = Pr
[

δ1 log2

(

1 + SNRS
1 |HS,D|2

)

+ δ2 log2

(

1 + SNRR
2 |HR,D|2

)

< R∗
]

. (65)
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By Jensen’s inequality, we obtain

Pr[E2|ĒR] ≥ Pr
[

log2

(

1 + δ1SNRS
1 |HS,D|2 + δ2SNRR

2 |HR,D|2
)

< R∗
]

(66)

= 1 − δ1e
− A0

δ1SNRS
1 − δ2GD∆Re

− A0

δ2GD∆RSNRS
1

δ1 − δ2GD∆R
, Plow. (67)

Note that this bound becomes tight asδ1 → 1 or δ1 → 0. The outage probability is lower bounded as

Pout ≥ Plow Pr[ĒR] + Pr[E2|ER] Pr[ER] = Plow Pr[ĒR] + Pr[E1] Pr[ER].

We then have for this lower bound:a1 = 0, and

a2 =
A2

1

GS

(

1 +
q

∆R

)

(δ1 + δ2∆R)2 , q ,
1

2δ1δ2

A2
0

A2
1

GS

GD
. (68)

Therefore, the optimum value of∆R is given by (41) withr replaced byq of (68). The corresponding

offset gain is given by (42) withr replaced byq. Note that since this gain is that of the lower bound of

the outage probability, it serves as an upper bound in terms of the diversity offset gain.

Again, if ζ → 0, then we haveGS → 1 and the upper bound of the gain is expressed as

lim
ζ→0

Λ(2)UB =
A0

A1

√
2

1

δ1
=

2R∗ − 1

2R∗/δ1 − 1

√
2

1

δ1
≤

√
2 (69)

which is the same asymptotic bound of the RD protocol. On the other hand, ifζ → ∞, we obtain

∆opt = δ1/δ2 and

lim
ζ→∞

Λ(2)UB = 1 (70)

regardless of the value ofδ1. The reason that this upper bound does not depend on the valueof δ1

is as follows. As the relay is located close to the source, therelay is likely to decode correctly with

high probability, and the channel links between the source and relay to the destination also becomes

equally reliable. Therefore, if we choose∆R = ∆opt = δ1/δ2, the receivedenergy for each phase

becomes identical, regardless of the choice ofδ1 and this equal-energy assignment should maximize the

mutual information for a given total received energy. Hence, this asymptotic performance should be also

equivalent to that of2 × 1 MISO system.

Some Remarks:It is interesting to note that for the case withζ → 0, the upper bound is 1.5 dB inferior

to that of the receiver diversity bound as in (69), whereas the case withζ → ∞ can achieve that of the

transmitter diversity bound as in (70). This is because for the latter case, due to the broadcasting nature

of the channel, the communication link betweenS → R is free in terms of energy and bringingδ1 → 0

cancels the loss of bandwidth efficiency required for the phase-I communication. Therefore, a virtual

transmit diversity system can be achieved without loss of efficiency. On the other hand, for the former

case, additional energy is required for the communication link between the relay and the destination,

whereas this is not required in the receiver diversity system. This accounts for the 1.5 dB loss in terms

of SNR that holds regardless of the information rate.
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Fig. 6. Diversity offset gain of the repetition codes and parallel channel coding, as a function of a relay node positionζ.

Parameters:R∗ = 2, α = 2, θ = π. (a) α = 2. (b) α = 4.

2) Repetition Coding:In this case, we setδ1 = δ2 = 1/2, and the received SNR is the sum of the

two phases. Thus from [6]

Pr[E2|ĒR] = Pr
[

log2

(

1 + SNRS
1 |HS,D|2 + SNRR

2 |HR,D|2
)

< 2R∗
]

= 1− e
− 2

2R∗

−1

SNRS
1 −GD∆Re

− 2
2R∗

−1

GD∆RSNRS
1

1 − GD∆R
.

Consequently, we havea1 = 0 and

a2 =
(
22R∗ − 1

)2
(

1

GS
+

1

2∆RGD

)
1

4
(1 + ∆R)2 . (71)

The optimal factor∆R and corresponding diversity offset gain is given by

∆opt =
1

8
ζα
(√

1 + 16ζ−α − 1
)

, ΛREP =
2
√

2GS

2R∗ + 1

1

(1 + ∆opt)
√

1 + 1
2∆opt

ζα
.

Note that as the relay node is moved closer to the source and destination, we have, respectively,

lim
ζ→∞

ΛREP =
2

2R∗ + 1
, lim

ζ→0
ΛREP =

2
√

2

2R∗ + 1
.

Therefore, unlike the parallel channel coding upper bound,in repetition coding the diversity offset gain

decreases rapidly as the information rate increases. This observation agrees with that in [6].

3) Numerical Results:Fig. 6(a) and (b) show the diversity offset gain of the repetition codes as well

as upper bound of the parallel channel coding for path-loss exponentsα = 2 and4, respectively. Along

with these, those of the STD and RD protocols are also shown for comparison. As we can observe, if

the relay is close to the source or destination, the STD and RDprotocols can approach the upper bound

of parallel channel coding. On the other hand, if the relay islocated midway between the source and the

destination, the repetition coding is better. Therefore, selecting between the STD/RD/repetition protocols,

depending on the relay’s location, is an inexpensive yet powerful approach in practical design.
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VI. M ULTIPLE RELAYS AND THE EFFECT OFIMPERFECTSTCS ON DIVERSITY PERFORMANCE

One can extend the above ideas to the multiple relay node case. Suppose that we haveN relays. For the

RD protocol, each relay must forward its data using dedicated channels, andN additional channels may

be required. On the other hand, for the TD and STD protocols, as discussed in [6], a single additional

channel suffices. For this reason, the TD and STD protocols are attractive especially whenN is large.

In this section, we focus on the performance of the TD and STD protocols. In the previous analysis

of these protocols, it was assumed that even if only a subset of the transmitting nodes during phase-II

actually transmit, the destination can decode correctly provided the mutual information given this fact is

above the required rate. This implicitly assumes that the destination always knows which relay nodes are

transmitting and which are not, or equivalently, which antennas are undergoing an erasure on a frame by

frame basis. (In our scenario, a node erasure is a probabilistic event that depends on the channel link(s)

of phase-I. However, this model is also applicable to a sudden change of node status, such as a battery

failure, node failure or a change in shadowing state.) Therefore, in a practical STC system, unless the

STC is appropriately designed, the destination node may fail to correctly identify a node erasure and

thus cause a decoding error6. The effect of the node erasure may become salient, especially when the

number of relay nodes increases. Therefore, we consider theachievable diversity order of these protocols

when the STC is perfect and imperfect. Note that conventional coherent STCs such as [3, 4] require the

knowledge of CSI at the receiver and thus are not necessarilyperfect. On the other hand, it is easy to

see that non-coherent versions of STCs that do not require any CSI, such as [32], are perfect by nature.

A. System Model and Outage Probability

Fig. 7 summarizes the system model with two relays and the associated notation. The case of three or

more relays is analogous. Following the single relay case inthe previous sections, we assume thatHS,Ri

and HRi,D, which denote the complex channel coefficients of each channel link, are uncorrelated and

circularly symmetric complex Gaussian random variables with zero mean and unit variance. LetGS,i and

GD,i denote the corresponding geometrical gains achieved by theith nodeRi, wherei = 1, 2, . . . ,N .

Also, let ER,i denote the event that the nodeRi fails to decode after phase-I. For brevity we use notation

asF
(1)
i = ER,i andF

(0)
i = ĒR,i (whereFi stands for the failure ofith relay).

6In practice, if channel estimation is performed on a frame byframe basis, a node erasure can be easily detected at the

destination. If the relay ceases transmitting a signal for any reason then the destination will simply assume that the corresponding

channel link suffers severe fading. Conventional STCs can thus be used without modification. However, since channel fading is

slow by assumption and this generally precludes the use of short interval channel estimation, per frame channel estimation is

expensive. Furthermore, the additional overhead becomes substantial as the number of relay nodes increases.
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Fig. 7. Two-phase communication with multiple relays.

In the case of the TD protocol, the outage probability is expressed as

Pout =
∑

(x1,x2,...,xN )∈{0,1}N

(
N∏

i=1

Pr
[

F
(xi)
i

]
)

Pr
[

E1 ∩ E2|F(x1)
1 ,F

(x2)
2 , . . . ,F

(xN )
N

]

︸ ︷︷ ︸

,Bx1x2···xN

. (72)

The above summation is the sum of2N terms of the product ofN + 1 probability events. Consider the

specific term in which exactlyn out of N relay nodes have correctly decoded the message and suppose

that their indices arei = 1, 2, . . . , n. Then this term can be expressed as

B(0)n(1)N−n
=

n∏

i=1

e
− A1

GS,i
lTD(X)X

N∏

i=n+1

(

1 − e
− A1

GS,i
lTD(X)X

)

Pr
[

E1 ∩ E2|F(0)
1 , . . . ,F(0)

n ,F
(1)
n+1, . . . ,F

(1)
N

]

,

where lTD = 1 + δ2
∑N

i=1 βi∆R,i, βi = Pr[F
(0)
i ], and∆R,i is the power control factor of theith relay

node. Note thatlTD(X) is analytic aboutX = 0 with lTD(0) = 1+ δ2
∑N

i=1 ∆R,i. The outage probability

for the STD protocol can be expressed in a similar form.

B. Diversity Order for Multiple Relays with Perfect and Imperfect Constituent STC

We first assume that there areN collaborating relays and the STC used in the TD or STD protocol is

perfect. In this case, we have the following lemma [6].

Lemma 2 (Asymptotic Diversity Order with Multiple Relay Nodes): For the N relay node TD and

STD protocols with perfect constituent STCs, the asymptotic diversity order isd∗ = N + 1.

The proof is omitted as it can be inferred from [6]. Now, as a worst case scenario, we assume that

an outage event occurs even if a single relay fails to decode.In other words, unless all the relay nodes

correctly decode the message, the phase-II link fails. Specifically, we assume that

Pr
[

E2| . . . ,F(1)
i , . . .

]

= 1 for any i. (73)
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In the following discussion, the STC having this property will be referred to as animperfect STC. The

outage performance based on this assumption may serve as an upper bound for the TD and STD protocols.

In this case we have the following theorem:

Theorem 2:For theN relay node TD and STD protocols with imperfect constituent STCs, i.e., (73)

holds, the asymptotic diversity orders are 2 and 1, respectively.

Proof: Considering the outage probability expression in (72), it is easy to see that the worst-case

terms are those withn = N − 1. Then, we have for the TD protocol

B(0)N−1(1)1 =

N−1∏

i=1

e
− A1

GS,iSNRS
1

(

1 − e
− A1

GS,N SNRS
1

)

Pr
[

E1 ∩ E2|F(0)
1 , . . . ,F

(0)
N−1,F

(1)
N

]

=

N−1∏

i=1

e
− A1

GS,iSNRS
1

(

1 − e
− A1

GS,N SNRS
1

)(

1 − e
− A1

SNRS
1

)

, (74)

where the last equality is fromPr
[

E1 ∩ E2|F(0)
1 , . . . ,F

(0)
N−1,F

(1)
N

]

= Pr
[

E2|E1,F
(0)
1 , . . . ,F

(0)
N−1,F

(1)
N

]

=

1. Therefore, by Corollary 1 we obtaind∗ (Pout) = d∗
(
B(0)N−1(1)1

)
= 2.

For the STD protocol, we have

B(0)N−1(1)1 =
N−1∏

i=1

e
− A1

GS,iSNRS
1

(

1 − e
− A1

GS,N SNRS
1

)

, (75)

and thusd∗ (Pout) = d∗
(
B(0)N−1(1)1

)
= 1.

Therefore, in the high SNR regime, the asymptotic diversityorders of the TD and STD protocols with

imperfect STC ared∗ = 2 and d∗ = 1, respectively. This suggests that in the high SNR regime, itis

important that collaborative STCs for distributed nodes bedesigned such that the information can be

decoded with only a partial subset of the code (i.e., robustness against transmit antenna erasures in the

traditional multiple-antenna STC scenario). Practical design issues in this direction are addressed in [33].

C. Outage Probabilities and Diversity Offset Gains for Single Relay Node Case

In the case of a single relay with imperfect STC, it is straightforward to obtain the outage probabilities

and their associated diversity offset gain expression based on the approach outlined in Section V.

1) TD Protocol: From Theorem 2, it follows that the diversity order is 2. The corresponding outage

probability is given by

Pout = Pr[ER] Pr[E1] + Pr[ĒR] Pr[E1 ∩ E2|ĒR]. (76)

The closed-form expression can be found by using (38), (24),and (53). It follows thata0, a1 = 0 and

a2 =
A2

1

GS

(

1 +
r

∆R

(

1 − 1

2

Amin

A2

)
Amin

A1

)

(1 + δ2∆R)2 . (77)
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It is observed thata2 is similar to (55). In fact, ifδ1 > 1/2 and thusAmin = A1, the offset gain of the

TD protocol with imperfect STC, denoted byΛIM-TD (2), is equivalent toΛTD(2). On the other hand, if

Amin = A2, the gap becomes (assuming the same∆opt is applied)

ΛTD(2)/ΛIM-TD (2) =

√

A1

(

1 +
A2

A1

r

2∆opt

)

/A2

(

1 +
r

2∆opt

)

, (78)

which is significantly large ifA1 ≫ A2 (and thusδ1 ≪ 1
2 ).

2) STD Protocol: In this case, we have

Pout = 1 − Pr[ĒR ∩ Ē2] = 1 − Pr
[
C(GSSNRS

1,HS,R) > R1

]
Pr
[
C(SNRS+R

2 ,P,h) > R2

]
, (79)

fout(X) = 1 − e
− A1

GS
lTD(X)X

[

∆RGD e
− A2

∆RGD
lTD(X)X − e−A2lTD(X)X

∆RGD − 1

]

. (80)

Consequently, we obtaina0 = 0,

a1 =
A1

GS
(1 + δ2∆R) and a2 =

A1A2

2GS

(
r

∆R
− A1

A2

1

GS

)

(1 + δ2∆R)2 . (81)

Therefore, the asymptotic diversity order is 1, which agrees with Theorem 2. However, it should be noted

that the offset gain with respect to the SISO system is given by

ΛIM-STD(1) =
A0GS

A1 (1 + δ2∆R)
(82)

and this indicates that ifGS is large, one may still achieve significant gain over the baseline system. In

particular, for the SNR region where SNRt ≪ ΛIM-STD(1) (X ≫ 1/ΛIM-STD(1)), the outage probability

has alocal slope of order 2 since the terma1X in fout(X) is dominated bya2X
2. The following section

elucidates this effect numerically.

3) Numerical Results:We numerically compare the performance of the two protocolswith imperfect

and perfect STC in terms of outage probability. Fig. 8 (a) and(b) show the outage probabilities of these

protocols with relay node locationsζ = 20 and -20dB, respectively. The performance of the RD protocols

is also shown as a reference. In these results, it is assumed that the relay performs the optimal power

control algorithm.

From Fig. 8 (a), it is observed that the two protocols with imperfect STC are almost identical in the

low SNR region with alocal slope of (diversity) order 2, but for high SNR, the bound for the STD

protocol shows a slope of order 1, whereas that of the TD protocol maintains a slope of diversity order

2. The gap between the two bounds becomes noticeable in Fig. 8(b), where the outage probability of

the TD protocol with an imperfect STC is identical to that of the ideal TD, whereas the STD protocol

with an imperfect STC is much worse than the ideal SISO bound.Therefore, if the STC is designed

imperfectly, then the use of the TD protocol can offer stableperformance and is thus preferable.
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Fig. 8. Outage probability of the TD and STD protocols with perfect or imperfect STC. The result of the RD protocol and

associated MISO/SIMO bounds are also shown. Parameters:R∗ = 2, α = 2, θ = π. (a) ζ = 20 dB. (b) ζ = −20 dB.

VII. C ONCLUSION

We have analyzed the performance of various variable-rate two-phase collaborative diversity protocols

for wireless networks. These protocols can be implemented in a straightforward manner using standard

variable-rate channel coding and STC. Theoretical analysis of the outage probability has shown that

these protocols, if properly designed based on the node geometry, can achieve full diversity order and

considerable offset gains. Our conclusion is that if the relay is close to the source and destination, the

STD and RD protocols, respectively, achieve good performance. If the relay is midway between the

source and the destination, fixed-rate repetition coding with signal combining at the destination [6] is a

good candidate considering its simplicity of implementation.

It is also shown that for a system withN relays, a diversity order ofN + 1 is achievable for the TD

based protocol using STC as in [6]. However, if the STC fails to be decoded whenever node erasure

occurs, their diversity order is considerably reduced and for the STD protocol with an imperfect STC, no

diversity offset gain can be achieved. Therefore, the design of STCs that are robust against node erasures

is an important area of future research.

Finally, even though perfect synchronizations are assumedthroughout the paper, accurate timing and

frequency acquisitions among distributed nodes are difficult to achieve in practice. Further research in

this direction is of critical importance for implementation of these protocols.
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