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Abstract

In quantile linear regression with ultra-high dimensional data, we propose an algorithm for 

screening all candidate variables and subsequently selecting relevant predictors. Specifically, we 

first employ quantile partial correlation for screening, and then we apply the extended Bayesian 

information criterion (EBIC) for best subset selection. Our proposed method can successfully 

select predictors when the variables are highly correlated, and it can also identify variables that 

make a contribution to the conditional quantiles but are marginally uncorrelated or weakly 

correlated with the response. Theoretical results show that the proposed algorithm can yield the 

sure screening set. By controlling the false selection rate, model selection consistency can be 

achieved theoretically. In practice, we proposed using EBIC for best subset selection so that the 

resulting model is screening consistent. Simulation studies demonstrate that the proposed 

algorithm performs well, and an empirical example is presented.
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1 Introduction

Advances in modern technology have enabled people to collect massive data with a large 

number of variables, many of which may be irrelevant to the response variable. Examples 

can be found in gene expression microarray data, single nucleotide polymorphism (SNP) 

data, imaging data, high-frequency financial data, and others. Hence, extracting useful 

variables for the prediction of the response in the high-dimensional data has become a focal 

research area in the past two decades. Apparently, the traditional variable selection methods 

such as best subset selection and backward elimination become computationally infeasible 
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when the number of predictors is large. As a result, a variety of penalization methods have 

been developed. These methods include, but are not limited to, Lasso and Adaptive Lasso 

(Tibshirani, 1996; Zou, 2006; Huang et al., 2008a), bridge regression (Huang et al., 2008b), 

SCAD (Fan and Li, 2001), elastic net (Zou and Hastie, 2005), and MCP (Zhang, 2010).

When the dimension is much larger than the sample size, penalized estimation can perform 

poorly or even become infeasible (Fan and Lv, 2010). Then the variable screening method 

becomes a natural way to consider in this context, which assumes that the relevant features 

lie in a low dimensional manifold. Thus, the ultrahigh-dimensional problem can be greatly 

simplified into a low-dimensional one. Recently, Fan and Lv (2008) introduced the marginal 

screening method (the sure independent screening, SIS) to select relevant variables based on 

the marginal correlation of each variable and the response. Its good numerical performance 

and novel theoretical properties have made SIS popular in ultrahigh dimensional analysis. 

As a result, SIS and its extensions have been applied to many important settings including 

generalized linear model (Fan and Song, 2010), multi-index semi-parametric models (Zhu et 

al., 2011), nonparametric regression (Fan et al., 2011; Liu et al., 2014), quantile regression 

(He et al., 2013; Wu and Yin, 2015) and so forth.

The marginal screening method employs the marginal correlation to measure the strength of 

association between predictors and the response. Hence, it can miss some relevant variables 

that are associated with the response conditionally but not marginally. Furthermore, the 

marginal correlation can be misleading when there exist non-negligible correlations among 

the predictors. As a result, an irrelevant variable can be selected prior to relevant variables. 

Moreover the issue of collinearity can yield spurious phenomena in the high-dimensional 

data as demonstrated by Fan and Lv (2008).

To handle the problem of high correlations between predictors, several methods have been 

developed in the literature. Bühlmann et al. (2009) proposed the PC-Simple algorithm, 

which uses partial correlation as a criterion to measure the association of each predictor with 

the response. Wang (2009) applied the forward selection method in the ultrahigh-

dimensional setting and developed a forward regression (FR) algorithm to select the most 

relevant variable in each step sequentially by removing the confounding effects of the 

selected variables from the previous steps. It can be shown that Wang’s algorithm is also 

based on the partial correlation measure. Moreover, Cho and Fryzlewicz (2012) proposed a 

‘tilted’ correlation to measure the contribution of each predictor to the response. Based on 

simulation studies, they found that their proposed tilted correlation screening (TCS2) 

algorithm performs well. The above studies demonstrate that the partial correlation plays an 

important role in the screening process.

In the area of quantile linear regression with low dimensional data, theoretical properties and 

practical applications have been well developed; see Koenker (2005). For high dimensional 

data, however, it is far from complete. Recently, Wang et al. (2012) and Lee et al. (2014), 

respectively, extended the penalized approach and Bayesian selection method from the 

classical mean regression model to quantile regression model. Their generalizations motivate 

us to propose a screening method for high-dimensional quantile regression model. 

Specifically, we adopt Li et al. (2015)’s quantile partial correlation (QPCOR) as a criterion 
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to measure the association of each predictor with the response at each quantile, and then 

introduce a new screening procedure by using the sample QPCOR. Our goal is to identify a 

sparse set of ultra-high dimensional variables X = (X1, …, Xp)T that are relevant for 

modeling the conditional quantile of the response Y.

To employ QPCOR, we transform each predictor Xj by projecting it onto a set of variables, 

denoted by j, which is either the union of its related variables and the previously selected 

variables or only the previously selected variables. We then introduce an adaptive approach 

to choose the subset of related variables by adopting a sequential testing method based on 

the partial correlations of related variables. It is worth noting that the size of j cannot be 

too large since it would distort the association between Xj and Y. To this end, we suggest a 

hard threshold for determining which variables are related to Xj, and then obtain the upper 

bound of the maximal cardinality of the subsets j. In addition, we derive a uniform bound 

of the difference between the sample QPCOR and the population QPCOR, and subsequently 

establish the sure screening property of the proposed procedure as needed in screening 

methods (Fan and Lv, 2008; Fan et al., 2011; He et al., 2013). Moreover, we generalize 

Wang’s (2009) FR algorithm and Cho and Fryzlewicz’s (2012) TCS2 algorithm to the 

quantile regression model. After the screening procedure, we apply the extended Bayesian 

information criterion (EBIC) (Chen and Chen, 2008; Wang and Leng, 2009; Lee et al., 2014) 

for best subset selection. Consequently, our proposed approach not only selects relevant 

variables when the variables are highly correlated, but also identifies the variables that are 

marginally uncorrelated or weakly correlated with the response.

The paper is organized as follows. Section 2 introduces quantile partial correlation. Section 3 

provides the theoretical properties of the quantile screening procedure including the sure 

screening property. Section 4 presents three algorithms, which consist of our proposed 

algorithm and the quantile version of the forward regression and tilted correlation screening 

algorithms. We also introduce the extended BIC criterion for best subset selection. Section 5 

conducts simulation studies, while Section 6 illustrates the usefulness of the proposed 

method through the analysis of gene expression data. A discussion is given in Section 7. All 

technical proofs are relegated to the Appendix and Supplemental Materials, and additional 

simulation results are presented in the Supplemental Materials.

2 Quantile partial correlation (QPCOR)

Before we present the quantile partial correlation (QPCOR), we review the quantile 

correlation (QCOR) and its connection to regression coefficients in the linear quantile 

regression model.

Quantile correlation

For mean regression models with ultra-high dimensional covariates, Fan and Lv (2008) 

proposed the SIS procedure to select variables according to the magnitudes of their marginal 

Pearson correlations associated with the response. Analogously, in the quantile regression 

context, we introduce Li et al’s (2015) quantile correlation of Y and Xj:
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(1)

for 1 ≤ j ≤ p, where Qτ(Y) is the τth unconditional quantile of Y such that P(Y < Qτ(Y)) = τ 
and ψτ(w) = τ − I(w < 0). As a result, −1 ≤qcorτ{Y, Xj} ≤ 1. As shown by Li et al. (2015), 

there is a nice relationship between the quantile correlation (1) and the slope of the τ-th 

quantile linear regression line with Y and Xj being the response and predictor, respectively. 

Consider the following minimizers:

(2)

where ρτ(w) = wτ − wI(w < 0) is the quantile loss function (see Koenker, 2005). Then 

, where ϱ(bjτ) is a continuous and increasing function, and ϱ(bjτ) = 0 if 

and only if bjτ = 0. Accordingly, we can adopt the SIS procedure of Fan and Lv (2008) to 

rank the significance of predictors on the quantile of Y via the marginal quantile correlation 

qcorτ{Y, Xj}. However, this marginal approach ignores possible effects from other variables 

and may yield misleading results when the predictors are correlated. To illustrate this 

phenomenon, we first introduce the quantile multiple regression model and its associated 

estimators given below.

Let Y and X = (X1, …, Xp)T be the response and predictors, respectively. Consider a linear 

quantile model:

(3)

where the error term satisfies P(ε < 0|X) =τ. Then, the τth conditional quantile of Y given X 

is . Without loss of generality, we assume that E(Xj) = 

0 and var(Xj) = 1 for all j = 1, …, p. Furthermore, denote fε(u|x) and fY(y|x) as the 

conditional density of ε and Y given X = x, respectively.

Assuming that the conditional density fY (y|x) exists, we can follow the same procedure as 

given in Theorem 2 of Angrist et al. (2006) and obtain the coefficient  that is the 

minimizer of the weighted least squares:

where , and  for 

j = 1, ⋯, p. As a result,
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where

The term djτ can be viewed as the “bias” of the quantile estimator. It can be considerably 

large when the components E(wτ̃(X)XjXk) are non-negligible. Thus, QCOR may lead to 

inaccurate screening results. This motivates us to propose a screening procedure, based on 

the quantile partial correlation, to reduce the confounding effects from other predictors that 

are highly related to Xj.

Quantile partial correlation

To reduce the confounding effects, consider X−j = (1, {Xk, k ≠ j}T)T. Then, let 

 and  so that 

. Adopting Li et al.’s (2015) approach, we define the quantile 

partial correlation (QPCOR) as follows:

(4)

where . Based on the result after equation (2.2) on page 247 of Li et 

al. (2015), we have that , where  is a continuous and 

increasing function of , and  if and only if , where

(5)

In the general situation, the coefficients  and  in models (5) and (3) are not equal to 

each other. However, Lemma A.1 in the Appendix shows that  if and only if . 

Hence,  if and only if . Therefore, we use the QPCOR to select relevant 

variables in our screening procedure.

In general, the estimates of  and  cannot be obtained when the dimension of X−j is high. 

To this end, we remove the confounding effects from Xj that are induced by a subset of {k : 

Ma et al. Page 5

J Am Stat Assoc. Author manuscript; available in PMC 2018 March 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



k ≠ j}, and we denote the resulting set by j and name it the conditional set. Then, we 

propose a screening method via the sequential procedure. In each sequential step, let j 

contain either the union of the previously selected variables and the variables related to Xj or 

only the previously selected variables, which will be discussed in Section 4. For any 

arbitrary subset  ⊂ {1, …, p}, we denote X  the subvector of X associated with . 

Accordingly, X j = (X0, {Xk, k ∈ j}
T)T with X0 = 1. For the sake of screening, we modify 

QPCOR given in (4) as

(6)

where 

, and | | denotes the cardinality of a set .

In practice, QCOR and QPCOR are unknown, and we employ the sample estimates of 

QCOR and QPCOR to study the screening process. These sample estimates are defined as 

follows. Let  be a data set of n random samples from the distribution 

of (Y, XT)T, where Xi = (Xi1, …, Xip)T. In this paper, we focus on the scenario in which p ≫ 
n and we sometimes denote p by pn since it can be a function of n. In addition, let Xi,  be 

the subvector of Xi for any subset . The sample estimate of QCOR in (1) is defined as

(7)

where Q̂τ(Y) = inf{y : Fn(y) ≥ τ} is the sample τth quantile of Y1, …, Yn. Additionally, 

 is the empirical distribution function, , and 

. The sample estimate of QPCOR in (6) is given as

(8)

where 

, and . We next study the asymptotic property of the sample 

estimate of QPCOR and the screening property of the selected variables via this estimate.
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3 Theoretical properties

To use the sample estimate of QPCOR, , given in (8) as a criterion to 

identify important variables sequentially, we need to establish the uniform convergence of 

the sample QPCOR to its population counterpart qpcorτ{Y, Xj |X j}. Let rn = max1≤j≤p | j| 

be the maximal cardinality of the subsets j (j = 1, ⋯, p) given in the screening procedure, 

and allow rn to increase with the sample size n. Note that j represents every possible 

conditional set. In addition, let λmax(A) and λmin(A) be the largest and smallest eigenvalues 

of the symmetric matrix A, respectively, and let ‖a‖ denote the L2 norm for any vector a = 

(a1, …, ap)T. Then, we make the following assumptions to facilitate the technical proofs, 

while these assumptions may not be the weakest ones.

(C1) The conditional density fY|X=x (y) of y given X = x satisfies the Lipschitz 

condition of order 1 and fY|X=x (y) > 0 for any y in a neighborhood of 

, for 1 ≤ j ≤ p.

(C2) The predictors satisfy: (i) supi,j |Xij | ≤ M1, 

, and 

 for some positive finite constants M1, M2, M3 

and M4;

(ii) For 1 ≤ j ≤ p, there exist positive finite constants m and M such that

Condition (C1) is a standard condition in the literature on quantile regression. Condition (i) 

in (C2) assumes that the absolute values of the predictors are bounded, which is commonly 

assumed in high-dimensional analysis, see Wang et al. (2012) and Lee et al. (2014). This 

assumption can be relaxed to the moment condition given in Li et al. (2012) and Zhu et al. 

(2011) that there exists a positive constant t0 such that max1≤j≤p E{exp(tXj)} < ∞ for 0 < t ≤ 

t0. In this case, our theoretical results still hold with some modification to the proofs. To 

mitigate notational complexity and facilitate mathematical derivations, we assume that 

covariates are bounded. We also assume that, for each subset j used as a conditional set for 

Xj, the L2 norm of the correlation vector is bounded. Condition (ii) in (C2) is the sparse 

Riesz condition (Chen and Chen, 2008; Lee et al., 2014), which is used for dealing with a 

large number of regressors. We next demonstrate the uniform convergence of 

 to its population counterpart, qpcorτ{Y, Xj|X j}.

Theorem 1

Under Conditions (C1) and (C2), for any C1 > 0, there exist some positive constants C2, C3, 

 and  such that, for 0 < κ < 1/2 and rn = Cnω for some 0 ≤ ω < min((1 − 2κ), 2κ) and a 

positive constant C, we have
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(9)

when n is sufficiently large.

Remark 1

To handle ultra-high dimensional data, Theorem 1 indicates that we need to have 

. Accordingly, pn grows with the sample size n at an 

exponential rate.

To study the screening property via the quantile partial correlation , we consider 

, which is the set of indices associated with the nonzero 

coefficients in the true sparse model (3) with nonsparsity size sn = |ℳ*|. Furthermore, we 

assume that the population QPCORs with nonzero coefficients in ℳ* satisfy the following 

condition:

(C3)  for some 0 < κ < 1/2 and C0 > 0.

In our proposed algorithm, we select variables sequentially by finding the variable with the 

maximal sample QPCOR and then adding it to the selected active set in each step. Let the 

resulting active set via the screening procedure be ℳ̂νn such that the sample QPCORs of the 

selected variables in ℳ̂νn are greater than a threshold. That is,

where νn is a threshold value. The theorem below presents the sure screening property.

Theorem 2

Under the conditions in Theorem 1 and Condition (C3), taking C2, C3, , and κ as 

given in Theorem 1 and letting  with C4 ≤ C0/2, we have that

when n is sufficiently large.

It is worth noting that Theorem 2 indicates that the probability bound for the sure screening 

property depends on the number of nonzero coefficients sn, but not on the number of 

covariates pn. It also depends on rn.

In addition to ensuring that relevant variables are selected, controlling the false selection rate 

is also critical. Ideally, we could assume that 
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and then employ Theorem 1, to find that, with probability tending to one, 

 for any constant C1 > 0. Accordingly, by the 

choice of νn given in Theorem 2, we obtain model selection consistency,

However, this ideal assumption may not be met in general. Hence, we consider a more 

practical assumption,  for some ς > 0. Under this 

assumption, for any c > 0, the cardinality of  is no 

greater than  and 0 ≤ ω < min((1−2κ), 2κ). Furthermore, on the 

set

we have

(10)

for some constant 0 < C* < ∞. As a result, we obtain the following property which is used 

to control the size of the selected model.

Proposition 1

Under the conditions in Theorem 1 and Condition (C3), taking C2, C3, , and κ as 

given in Theorem 1, letting  with C4 ≤ C0/2, and assuming 

 for some ς > 0, we have that

for some constant 0 < C* < ∞, when n is sufficiently large.

Remark 2

Proposition 1 indicates that the proposed screening procedure via the quantile partial 

correlation can reduce the ultra-high dimensionality of the original model to the selected 

model size with a polynomial order of n. This proposition and Theorem 2 imply that if we 

choose the first d variables sequentially based on the sample QPCOR with d = [n�+ς+κ−ω/2/ 

log(n)] for some � > 0, then all relevant variables will be selected with high probability. 
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Note that [b] stands for the integer part of b. By assuming ς < 1 + ω/2 − κ and letting � = 1 

+ ω/2 − κ − ς, we also have d = [n/ log(n)], which is used in our numerical analysis and is 

commonly accepted in screening procedures (Fan and Lv, 2008; He et al., 2013).

4 QPCOR and selection

Applying quantile partial correlation, we first introduce the three screening algorithms. 

Based on the set of candidate models obtained via the screening procedure, we subsequently 

use the Bayesian information criterion to select the best model.

4.1 Screening algorithms

In this subsection, we employ QPCOR to propose a quantile screening procedure (QPCS) 

for selecting variables. For the sake of comparison, we also generalize Cho and Fryzlewicz’s 

(2012) TCS2 algorithm and Wang’s (2009) FR algorithm from classical mean regression 

model to quantile regression model. We name them QTCS and QFR, respectively. In 

developing QPCS, we need to remove the confounding effect from the target variable that is 

induced by its correlated variables in each step. To this end, we consider a sequential test to 

identify a confounding subset for each Xj (j = 1, ⋯, p). Let ρjk be the sample correlation 

coefficient of Xj and Xk. Then, define

and name it the confounding set. A careful choice of mj is important in the high-dimensional 

setting. For example, if mj is too large, then any vector in Rn may be well approximated by 

some Xk with k ∈ j. We next consider a sequential testing procedure based on the partial 

correlations along the path  to select mj. This allows us to find the smallest 

subset so that all covariates not in this subset will have a zero partial correlation with Xj. Let 

 = (X1, …, Xn)T be the design matrix and denote , 

where  is any submatrix of . For mj ≥ 1, define the partial correlation as 

, where . As for mj 

= 0,  is an empty set and . Furthermore, let

which is the Fisher’s Z-transformation considered in Kalisch and Bühlmann (2007) for 

identifying nodes connected to the variable Xj conditional on a set of other nodes in a 

Gaussian graph. Then, sequentially select the smallest size, , that satisfies 

, where z1−α/2 is the 

threshold of z values with a pre-specified significance level α and 

. The resulting  can help us to determine the size of the 

selected confounding set, denoted by mĵ. It is worth noting that based on our theoretical 

condition given in Theorem 1, we have rn = o(n1/2). Thus, m̂j ≤ rn = o(n1/2). We then let mĵ 
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be bounded by c{n/ log(n)}1/2 for some constant c > 0. Afterwards, let  if 

; m̂j = c{n/ log(n)}1/2, otherwise. In practice, the constant c should not 

be too large so that the resulting size mĵ is under control. In our numerical analysis, we 

choose c = 1. Denote the selected confounding set as . The above procedure 

allows us to find the confounding subset of the j-th variable, and we will use it in the 

screening algorithm given below.

Algorithm 1 (QPCS)—Start with an empty active set (0) = ∅.

Step 1. In the kth step, for given (k−1), we update . Then, employ the 

maximal sample QPCOR to find the variable index j* that satisfies 

. Update (k) = (k−1) ∪ {j*}.

Step 2. Repeat step 1 until the cardinality of active set | (d*)| reaches a prespecified d*.

Step 3. Starting from the k = (d* + 1)th step, we set . In the kth step, find 

. Update (k) = (k−1) ∪ {j*}.

Step 4. Repeat step 3 until the cardinality of active set | (d)| reaches a prespecified value d < 

n.

In the above algorithm, the conditioning set j contains the selected variables up to step d* 

and a subset of variables with non-negligible correlations identified by the sequential testing 

procedure.

In linear regression modeling, Cho and Fryzlewicz’s (2012) proposed the TCS2 algorithm 

and then demonstrated that it usually performs well in comparison with LASSO, SCAD, 

MCP, FR, and iterative SIS (ISIS, see Fan and Lv, 2008). This inspires us to extend their 

TCS2 to quantile regression, and we name it QTCS.

Algorithm 2 (QTCS)—Start with an empty active set (0) = ∅.

Step 1. In the kth step, for given (k−1), let j = (k−1). Then, find the variable index that 

has the maximal sample QPCOR such that . If 

, let j* = j′ and go to step 3.

Step 2. If , then screen the sample QPCOR for all Xj in which 

. Let , and find 

.

Step 3. Update (k) = (k−1) ∪ {j*}.

Step 4. Repeat steps 1–3 until the cardinality of active set, | (d*)|, reaches a prespecified d* 

= [C*{n/ log(n)}1/2] for some constant C* > 0.
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Step 5. Starting from the k = (d* + 1)th step, repeat steps 1–3 by letting j = (d*) and 

 in steps 1 and 2, respectively. Repeat the procedure until the cardinality of 

active set, | (d)|, reaches a prespecified value d < n.

Based on extensive simulation studies in linear model settings, Wang (2009) indicated that 

FR is a promising method for variable screening by comparing with LASSO, SCAD, SIS, 

and ISIS. This motivates us to generalize his forward selection screening algorithm to 

quantile regression, and name it QFR.

Algorithm 3 (QFR)—Start with an empty active set (0) = ∅.

Step 1. In the kth step, for given (k−1), let j = (k−1) for k ≤ d* and j = (d*) for k > 

d*. Then, find the variable index that has the maximal sample QPCOR such that 

. Update (k) = (k−1) ∪ {j*}.

Step 2. Repeat step 2 until the cardinality of active set, | (k)|, reaches a prespecified value d 

< n.

For the sake of comparison, Table 1 summarizes the three algorithms. Without the 

thresholding step, by replacing the sample QPCOR with the titled correlation defined in Cho 

and Fryzlewicz (2012) and the residual sum of squares given in Wang (2009), respectively, 

the QTCS and QFR become TCS2 and FR. To utilize the above three algorithms, we need to 

specify d* and d. It is worth noting that the thresholding size d* needs to satisfy d* ≤ rn = 

o(n1/2) (see Algorithm 1). Hence, we consider d* = [C*{n/ log(n)}1/2] for some C* > 0. In 

addition, choosing a value of C* needs to assure that d* does not exceed d due to the 

requirement of the screening algorithms. With Remark 3, we have set d = [n/ log(n)]. To 

meet the requirement d* < d with n = 200 and n = 120 used in our simulation and empirical 

examples, respectively, we choose C* = 2, which yields good performance in our numerical 

studies. However, this does not exclude other possible choices that also satisfy this 

requirement.

Since , we have  for some 

constant 0 < C̃ < ∞ and j = 1, ⋯, p. This provides an upper bound for the conditional set of 

each variable, which is not very large. Otherwise, any vector in Rn can be well-approximated 

by the variables in this set. A similar consideration can be found in Cho and Fryzlewicz 

(2012) when they discussed their “conditioning set” j. Note that j is our confounding set 

, which is different from the conditional set j. In their Assumption 3 of page 598, they 

consider a bound for the size of the conditioning set j such that | j| ≤ Cnξ with ξ ∈ [0, 2(γ 
− δ)) for δ ∈ [0, 1/2) and γ ∈ (δ, 1/2). Thus, | j| = o(n1−2δ) for δ ∈ [0, 1/2). It is of interest 

to note that, based on the condition given in Theorem 1, our conditional set | j| ≤ rn = 

o(n1−2κ) for 0 < κ < 1/2.

Remark 3—From Table 1 and the above discussion, we find that both QPCS and QTCS 

can prevent more overfitting than QFR. This is because they consider the confounding effect 

of explanatory variables, while QFR does not take it into account. Although | j| in QPCS 

Ma et al. Page 12

J Am Stat Assoc. Author manuscript; available in PMC 2018 March 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and | j| (i.e., ) in QTCS have the same order, the confounding set  in QPCS is 

always included in the conditional set j in every screening step, while j in QTCS may not 

be always included in j. Accordingly, QPCS is likely to reduce more overfitting than 

QTCS.

Based on the quantile partial correlation, we have introduced three screening algorithms. 

Although the quantile correlation is not the focus of our paper, one can employ it to propose 

the sure independent screening procedure for quantile regression. Specifically, we adopt the 

SIS method of Fan and Lv (2008) by replacing their Pearson correlation with the quantile 

correlation QCOR. The resulting selected model is

He et al. (2013) also applied the SIS method for model selection in nonparametric quantile 

regression. In classical mean regression, Fan and Lv (2008) also introduced ISIS for 

selecting variables. As aforementioned, Wang (2009) and Cho and Fryzlewicz (2012) have 

demonstrated that their FR and TCS2 algorithms perform well in comparison with ISIS, 

respectively. Thus, we will focus our numerical comparison of the newly proposed 

procedure with the corresponding procedures proposed in Wang (2009) and Cho and 

Fryzlewicz (2012).

4.2 Best subset selection

In the previous subsection, the proposed QPCS algorithm generates a solution path  = 

{ (k), 1 ≤ k ≤ d}, which includes the d selected models (1) ⊂ (2) ⊂ ⋯ ⊂ (d). To find 

the best model among them, we consider an extended Bayesian information criterion (EBIC) 

for best subset selection. This criterion has been used for classical mean regression model in 

high dimensional data analysis (e.g., see Chen and Chen, 2008 and Wang, 2009). As for our 

quantile regression model, we follow the approach of Lee et al. (2014) and adopt the 

criterion:

(11)

where Cn is a positive constant that diverges along with the sample size n, and

Let k ̂ = arg min1≤k≤dEBIC( (k)), and denote the resulting best model ℳ̂EBIC = (k̂). We 

make the following condition, which corresponds to Condition (A2)(ii) in Lee et al. (2014) 

and is needed for establishing the consistency of EBIC.

(C4) There exist positive finite constants m′ and M′ such that
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uniformly for any subset  ⊂ {1, …, p} satisfying | | ≤ C*nς+κ−ω/2.

We next establish the screening consistency of the best model selected by EBIC.

Theorem 3—Under the conditions given in Proposition 1 and Condition (C4), and 

assuming that ς < 1/2 + ω/2 − κ, , Cn log(n)n(ς+κ−ω/2)−1 = o(1), and E|ε| < ∞, we 

have P(ℳ* ⊂ ℳ̂
EBIC) → 1 as n → ∞.

When Cn = 1, EBIC reduces to the classical BIC (Schwarz (1978)). Recently, Wang and 

Leng (2009) and Lee et al. (2014) used Cn = log(log(d)) and Cn = log(d), respectively, in 

their simulation studies when the number of predictors diverged along with the sample size. 

We use both approaches in our numerical studies. In addition, EBIC can be applied not only 

to QPCS, but also to QTCS and QFR for best subset selection. It is worth noting that our 

proposed QPCS algorithm yields a family of nested candidate models, (1) ⊂ (2) ⊂ ⋯ ⊂ 
(d). Thus, we propose using the model selection criterion EBIC to select the best model. 

On the other hand, the screening procedure of SIS only produces a single final model, 

followed by the SCAD or other penalized methods for variable selections.

In addition to classical model selection, another popular variable selection approach is 

penalization. In other words, by using the selected model (d) with d < n from the screening 

procedure, we can obtain the estimated parameters by minimizing

with respect to parameters β (d) = (β1, (d), ⋯, β (d), (d))
T, where pλ(·) is a penalty 

function with a regularization parameter λ. In our numerical studies, we consider the 

LASSO penalty for demonstration, but other penalties such as SCAD and MCP can also be 

applied. It is worth noting that the penalization method only employs the largest selected 

model (d), while EBIC uses the entire solution path obtained from the screening 

procedure.

5 Simulation studies

In this section, we conduct simulation studies to compare the finite sample performance of 

the four screening procedures QPCS, QTCS, QFR, and SIS. We further illustrate the 

extended BIC approach for best subset selection by using Cn = log(log(d)) and Cn = log(d), 

respectively, and denote the corresponding methods by EBIC1 and EBIC2. We also compare 

the EBIC method with the LASSO penalization method after the screening, where the tuning 

parameter for LASSO is selected by the BIC method. Moreover, we compare our method 

with the l1 penalization of Belloni and Chernozhukov (2011) and the ISIS-SCAD method of 

Fan and Lv (2008) in the last example. The tuning parameter for the l1 penalization method 

is selected by the approach described in Section 2.3 of Belloni and Chernozhukov (2011), 

Ma et al. Page 14

J Am Stat Assoc. Author manuscript; available in PMC 2018 March 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and the tuning parameter for the ISIS-SCAD method is selected by the extended BIC as 

given in the R package ‘SIS’.

To demonstrate the performance of the QPCS, QTCS, QFR, and SIS screening procedures, 

we present two examples. We consider three quantiles τ = 0.2, 0.5, and 0.8, and all 

simulation results are based on 200 realizations with n = 200 and p = 1, 000. Moreover, 

seven measurements are used to assess the screening and selection performance: the rank of 

selected variables, see Liu et al. (2014), the number of true positive and false positive 

selections, see Liu et al. (2014), and the number of correct-fitting, over-fitting, and under-

fitting selections, see Wang et al. (2007). We next describe these measures in detail.

1. Rj: the average rank of Xj;

2. M: the average minimum size of the selected model that contains all the relevant 

(i.e., true) predictors;

3. TP: the average number of true positives (i.e., the average number of relevant 

predictors being correctly selected);

4. FP: the average number of false positives (i.e., the average number of irrelevant 

predictors being incorrectly selected);

5. C: the proportion in which exactly relevant predictors are selected;

6. O: the proportion in which all relevant predictors and some irrelevant predictors 

are selected;

7. I: the proportion in which some relevant predictors not are selected.

Note that the average or proportion used in the above measures is calculated from 200 

realizations.

Example 1

We generate the response from Model D considered by Cho and Fryzlewicz (2012) and 

originally taken from Fan and Lv (2008):

where the predictors X are simulated from N(0, Σ), where Σ ={σij} is a p × p covariance 

matrix satisfying σii = 1 and σij = ρ, j ≠ i, except that . Thus, X4 is marginally 

uncorrelated with Y at the population level. To take quantiles into account in regression 

coefficients, we let β = 2.5(1 + |τ − 0.5|) rather than β = 2.5 given in Cho and Fryzlewicz 

(2012). The random error ε is generated according to the standard normal distribution and 

the Laplace distribution. We also let ρ = 0.5 and ρ = 0.95 represent a moderate correlation 

and a high correlation, respectively. For the sake of saving space, we report the results for ρ 
= 0.5 in Tables S1–S3 of the Supplemental Materials.

Table 2 reports Rj (j = 1, …, 4) and M for p = 1, 000 and ρ = 0.95. When the predictors are 

highly correlated (ρ = 0.95), SIS cannot successfully identify all four relevant predictors. In 

Table S1 of the Supplemental Materials, we find that even under moderate correlation (ρ = 
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0.5), the SIS approach fails to identify the fourth predictor, which is marginally uncorrelated 

with Y (see the large values of R4 in Table S1).

The aim of the QFR method is to remove the effect from the predictors identified in the 

previous steps. It performs reasonably well for the moderate correlation (see small values of 

Rj and M in Table S1). When ρ = 0.95, however, QFR is not capable of identifying the 

fourth predictor. This finding is not surprising since FR is not designed to remove high 

collinearity (i.e., confounding) effect. As for the QPCS and QTCS screening procedures, 

Table 2 indicates that both are able to control the effect of collinearity and identify relevant 

variables. However, QPCS is uniformly superior to QTCS in all measures. This is because 

QPCS can prevent more overfitting than QTCS by removing the confounding effect in every 

sequential step.

After examining screening performance, we next evaluate best subset selection. Since SIS 

does not show strong performance, we only consider variable selection via other three 

screening procedures. Table 3 reports TP and FP calculated under three selection methods, 

EBIC1, EBIC2 and LASSO, for p = 1, 000 and ρ = 0.95. Furthermore, Table 4 

correspondingly presents the percentages of correct-fitting (C), over-fitting (O), and 

incorrect-fitting (I) for p = 1, 000 and ρ = 0.95.

We observe that the TP values for the LASSO method are much smaller than 4, which is the 

number of true predictors in the model. In addition, the FP values are not large since LASSO 

tends to select a small number of variables among highly correlated covariates. Moreover, 

the proportion of incorrect fitting is most often 1 for the LASSO method. Hence, LASSO is 

not an effective method for variable selection in this context. On the contrary, EBIC1 tends 

to exhibit overfitting, as evidenced by FPs twice as large as true number of predictors. In 

addition, the proportion of overfitting is often very large as shown in Table 4, except for 

QFR. This is because QFR tends to fit incorrectly under this scenario, which is consistent 

with the findings in Table 3. In comparison with EBIC1, EBIC2 yields much better FP with 

slightly weaker TP. In addition, EBIC2 is uniformly superior to LASSO in both TP and FP 

measures. Consequently, EBIC2 is a favorable choice. Moreover, Tables 3 and 4 indicate that 

QPCS-EBIC2 outperforms its competitors in best subset selection. Finally, it is not 

surprising that the performance of all screening and selection procedures deteriorates when ρ 
becomes large, or ε has a heavy-tailed distribution. To save space, we report the additional 

simulation results for p = 2, 000 in the Supplementary Materials (see Tables S4–S6.) These 

simulations yield the same conclusion as that of p = 1, 000.

Example 2

We generate the response from the model:

where β, ρ, and X are defined as in Example 1 except that σ5j = σi5 = 0 such that X5 is 

uncorrelated with Xj (j ≠ 5). In addition, X5 has a small contribution to Y. This model is also 
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considered by Cho and Fryzlewicz (2012) and Fan and Lv (2008). To save space, we report 

the results for ρ = 0.5 in Tables S7–S9 of the Supplemental Materials.

Tables 5 and S7 report Rj (j = 1, …, 4) and M for ρ = 0.95 and 0.5, respectively. From Table 

S7 in the Supplementary Materials, we observe that SIS gives large values for R4, R5 and M 

for ρ = 0.5. Hence, SIS is not able to identify variables X4 and X5 in this case. When ρ = 

0.95, SIS is able to identify X5 due to its lack of correlation with other variables, whereas it 

fails to identify variables X1 to X4 since they are highly correlated with others. As a result, 

QFR, QPCS and QTCS outperform SIS. For these three procedures, we obtain the same 

conclusion as in Example 1. Both QPCS and QTCS are superior to QFR, and QPCS 

performs the best. Tables 6 and 7 summarize the results of subset selection, by presenting 

TP, FP, and the proportions of correct-fitting (C), over-fitting (O) and incorrect-fitting (I) 

calculated via EBIC1, EBIC2 and LASSO. Both tables show that QPCS-EBIC2 performs 

the best. The same findings emerge from Tables S8 and S9 of the Supplementary Materials 

when ρ = 0.5.

Example 3

In the first two examples, we have demonstrated the performance of the proposed variable 

screening procedure. In this example, we compare our recommended method QPCS-EBIC2 

with other two methods, the l1 penalization and ISIS-SCAD. We use the “SIS” R package to 

implement ISIS-SCAD, in which it first implements the Iterative Sure Independence 

Screening, and then fits the final regression model by using the SCAD penalty. In short, we 

denote these three methods as QPCS, l1, and ISIS, respectively. We simulate data from the 

same data generating process given in Example 1 with p = 1, 000. Since ISIS is designed for 

mean regression models, we only consider τ = 0.5 for fair comparison.

Table 8 reports TP and FP, and Table 9 presents the percentages of correct-fitting (C), over-

fitting (O), and incorrect-fitting (I). For the l1 penalization method, we observed that both of 

the true positive and false positive values are very small when ρ = 0.95, since it only selects 

one or zero variable from highly correlated covariates. For ρ = 0.5 and 0.05, however, it has 

very large false positives. It is also worth noting that l1 has very large portions of incorrect 

fitting even at the moderate correlation of ρ = 0.5. This is because it often has missed the 

fourth variable, X4, which is highly correlated with the other three variables. As a result, l1 

can be seriously affected by the correlation and its performance deteriorates as the 

correlation becomes larger. As for ISIS, its performance at ρ = 0.95 is worse than that at ρ = 

0.5 and 0.05. In addition, it has larger false positive values and its correct-fitting rates close 

to zero when ρ = 0.95. In contrast to l1 and ISIS, Tables 8 and 9 indicate that QPCS has the 

best performance in all cases. Specifically, its correct-fitting percentages are more than 80% 

even at ρ = 0.95, the numbers of true positives are close to 4, and the numbers of false 

positives are small. It is of interest that QPCS performs slightly better for the Laplace error 

distribution than for the Normal error distribution when ρ = 0.05 and 0.5. This finding may 

be related to the fact that at τ = 0.5 the parameter estimate from quantile regression is the 

MLE under the Laplace distribution.

Upon an anonymous referee’s suggestion, we further compare QPCS with the SCAD 

penalization (Wang et al., 2012) and l1 when the error is the t-distribution with three degrees 
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of freedom. The tuning parameter for the SCAD method is selected by PBIC as given in the 

R package ‘rqPen’. The results demonstrate that QPCS outperforms l1 and SCAD. To save 

space, we report the simulation results in Case 1 of Example S3 in the Supplemental 

Materials. Inspired by an anonymous referee’s comment, we have conducted a simulation 

experiment using a block diagonal covariance matrix. The detailed descriptions of 

simulation settings and the results are given in Case 2 of Example S3 in the Supplemental 

Materials. The numerical results also demonstrate the superiority of QPCS in comparing 

with l1 and ISIS.

Remark 4

In our simulation studies, we assume that the covariance matrix of covariates is 

exchangeable (i.e., compound symmetry), except for Case 2 of Example 3. Hence, for a 

given correlation coefficient ρ and the subset Sj, the largest and the smallest eigenvalues of 

the exchangeable covariance matrix ΣSj are (1 − ρ) + ρ|Sj| and 1 − ρ, respectively. In our 

proposed algorithm, we require that |Sj | = o(n1/2). As a result, the maximal eigenvalue of ΣSj 
does not satisfy the boundedness condition given in (C2)(ii), when |Sj| is allowed to diverge 

with the sample size n. Although Condition (C2)(ii) is not satisfied in this scenario, our 

proposed method shows good performance due to the fact that |Sj| is often small (much 

smaller than n) in practice. It is worth noting that this can be an interesting future research 

subject to relax Condition (C2)(ii) so that the proposed method is applicable for a wide 

variety of covariance structures.

6 Application

In this section, we apply the proposed methods to gene expression data that was used by 

Scheetz et al. (2006) for investigating gene regulation in the mammalian eye and identifying 

genetic variations relevant to human eye disease. The dataset contains gene expression 

values of 31,042 probe sets on 120 rats. The expression levels of genes are analyzed on a log 

scale with base 2. The response variable is the expression of gene TRIM32 (probe 1389163 

at), which is associated with human hereditary diseases of the retina. The purpose of this 

study is to analyze how the response variable depends on the expression of other genes. 

Before applying the screening method, we adopt the preprocessing procedure of Scheetz et 

al. (2006) to first remove each probe for which the maximum expression among the 120 rats 

is less than the 25th percentile of the entire sample of expression values, and then remove 

any probe for which the range of the expression among 120 rats is less than 2. As a result, 

there are 18,958 probes left in our analysis. Following the approach of Wang et al. (2012) 

and Lee et al. (2014), we subsequently select 3,000 genes with the largest variance in 

expression value, and then select the top 300 gene expression values in a ranking of their 

(absolute value) correlation with the response variable. For further illustration, we also 

consider the top 400, 500, and 800 gene expression values. Afterwards, we apply our 

proposed method to identify relevant genes for the response variable at quantiles τ = 0.3, 

0.5, and 0.7 as in Wang et al. (2012). Note that Lee et al. (2014) considered τ = 0.25, 0.5, 

and 0.75.
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To assess the finite sample performance, we consider 50 random partitions. For each 

partition, we randomly divide the data into a training dataset with 80 observations and a 

testing dataset with 40 observations. From the training dataset, we conduct screening and 

subset selection, and then fit the quantile regression model with the selected predictors. 

Subsequently, we employ the resulting quantile regression estimators and the testing data to 

compute the prediction error . A smaller value of the prediction error 

indicates better performance. In simulation studies, we find that SIS does not perform 

satisfactory, and EBIC1 and LASSO are inferior to EBIC2. As a result, we only employ 

three proposed screening procedures QPCS, QTCS, and QFR to screen predictors and one 

selection criterion EBIC2 for best subset selection. The resulting three methods are denoted 

QPCS-EBIC2, QTCS-EBIC2, and QFR-EBIC2, respectively.

For p = 300, Wang et al. (2012)’s methods revealed that the averaged number of relevant 

predictors ranges from 9.08 to 21.66 and the averaged prediction errors are between 1.30 

and 1.82 across the three quantiles. Recently, Lee et al. (2014) found that their method not 

only obtains relevant predictor sizes of 2.24, 2.16, and 1.16 when τ = 0.25, τ = 0.5, and τ = 

0.75, respectively, but also yields comparable prediction errors of 1.42, 1.64, and 1.30 

accordingly. By applying our proposed methods, Table 10 shows that the size selected via 

QPCS-EBIC2, QTCS-EBIC2, and QFR-EBIC2 ranges from 1.68 to 2.50 across the three 

quantiles. In addition, the resulting PEs are between 0.502 to 1.016, and they are smaller 

than those values obtained via the approaches of Wang et al. (2012) and Lee et al. (2014). 

Among our three proposed methods, QPCS-EBIC2 is superior to QTCS-EBIC2 and QFR-

EBIC2 in terms of average prediction error measure, although its sizes are slightly larger 

than those of QTCS-EBIC2 when τ = 0.5 and 0.7. As p increases to 400, 500, and 800, 

however, QPCS-EBIC2 has the smallest values in both size and PE across all three quantiles. 

This finding is consistent with simulation results. In sum, the proposed quantile partial 

correlation screening algorithm can be considered for quantile regression selection with high 

dimensional data.

7 Discussion

In sparse ultra-high dimensional quantile regression, we introduce three algorithms, QPCS, 

QTCS, and QFR, that use quantile correlation and quantile partial correlation to screen 

explanatory variables. We then employ an extended BIC for model selection. Simulation 

results demonstrate that the QPCS algorithm supports our theoretical findings. In addition, 

we find that QPCS performs well in the following settings: (1) highly correlated covariates, 

(2) ultra-high dimension, (3) covariates being either marginally uncorrelated or weakly 

correlated with the response, and (4) heavy-tailed errors. Moreover, our simulation results 

show that it is superior to LASSO, SCAD, SIS, and ISIS-SCAD.

To broaden the usefulness of QPCS, we discuss some extensions for future research in 

variable screening. There are three possible avenues. The first one is to extend quantile 

correlation and quantile partial correlation to various quantile regression models such as 

single-index quantile regression. We have conducted simulation studies by changing the 
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conditional quantile function in Example 1 to its exponential form. The results, not 

presented here, show that QPCS still performs well under this setting.

The second avenue is considering an alternative correlation measure used in the QPCS 

algorithm. In simple linear regression, it is known that the square of the coefficient of 

correlation is the same as the coefficient of determination. In multiple linear regression, 

Kutner et al. (2005) indicated that the square of the partial correlation is the same as the 

coefficient of partial determination. In addition, Nagelkerke (1991) proposed a general 

definition of the coefficient of determination via the log-likelihood function of the response 

variable. Accordingly, as long as the likelihood function (or its related version, such as 

partial likelihood or quasi-likelihood) is available for any specific regression model and the 

maximum likelihood estimators of the regression parameters are also attainable, one can 

replace the quantile correlation and quantile partial correlation used in the QPCS algorithm 

by their corresponding coefficient of determination and coefficient of partial determination. 

This approach can be used for various regression models, e.g., generalized linear models, 

extreme value regression models, and parametric survival models.

Instead of the determination measure, the third avenue for future research considers the 

residual sum of squares. This is particularly useful for regression models that have no log-

likelihood function. In linear regression, it can be easily shown that maximizing correlation 

is the same as minimizing the residual sum of squares. Analogously, maximizing partial 

correlation is the same as minimizing the partial residual sum of squares. It is known that the 

residual sum of squares is the objective function of regression estimators based on the L2-

norm distance. As a result, the partial residual sum of squares is the difference between the 

two nested objective functions, which is namely the partial objective function. In general, the 

objective function can be a distance metric such as the Lp-norm distance or another robust 

function. This motivates us to replace the quantile correlation and quantile partial correlation 

used in the QPCS algorithm by the objective function and partial objective function, 

respectively. This approach can be used for many regression models such as generalized 

additive models, semiparametric models, and robust regression models. In sum, the above 

three avenues can shed light on areas of future research that warrant thorough investigation 

and study.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

Before proving the three theorems and one proposition, we present the following five 

lemmas. Lemma A.1 shows the relationship between  and  for j = 1, ⋯, p. Lemmas A.

2 and A.3 are used in the proofs of Lemmas A.4 and A.5, while Lemmas A.4 and A.5 are 

needed in the proof of Theorem 1. The proofs of these five lemmas are given in the 

Supplemental Materials. For the sake of convenience, we denote limn→∞an/bn = c with c > 

0 and limn→∞an/bn = 1 by an ≍ bn and an ~ bn, respectively, for any positive series an and 

bn. In addition, for any matrix , denote |A| = max1≤i≤s,1≤j≤t |Aij |. Moreover, 

in the following lemmas, we assume that 0 < κ < 1/2, and rn = Cnω for some 0 ≤ ω < min((1 

− 2κ), 2κ) and a positive constant C, as stated in Theorem 1.

Lemma A.1

Assume that  is the unique minimizer of E[ρτ(Y − β0τ − β1τX1 − ⋯ − 

βpτ Xp)], and, for given 1 ≤ j ≤ p,  and  are unique minimizers of 

 and E[ρτ (Y* − β0τ − Xjβjτ)], respectively, where . 

Then we have  if and only if .

Lemma A.2

Under Condition (C2) and the assumption n−1δn = O(1), for every 1 ≤ j ≤pn and c1 > 0, there 

exist some positive constants c2 and c3 such that

when n is sufficiently large.

Lemma A.3

Under Conditions (C1) and (C2), for every 1 ≤ j ≤ pn and for any given constant c4 > 0, there 

exists some positive constant c5 such that

when n is sufficiently large.

Lemma A.4

Under Conditions (C1) and (C2), for every 1 ≤ j ≤ pn and for any given constant c6 > 0, there 

exist some positive constants c7 and c8 such that
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when n is sufficiently large.

Lemma A.5

Under Condition (C2) and the assumption of rn in Theorem 1, for every 1 ≤ j ≤ pn and for 

any c9 > 0, there exist some positive constants c10 and c11 such that

(A.1)

when n is sufficiently large. Note that  and  have been defined after equations (6) and 

(8), respectively. Moreover, for a ∈ (0, 1),

(A.2)

when n is sufficiently large.

Proof of Theorem 1

Denote  and 

. Then

(A.3)

After algebraic simplification, we have that, for any a ∈ (0, 1), 

 implies ,where a* = (1 − a)−1 − 1. Hence, by 

(A.2) in Lemma A.5 and , we obtain

(A.4)

This, in conjunction with Lemma A.4, implies that for any c6 > 0,
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(A.5)

for some positive constants .

It is worth noting that |ϕj| ≤ M1. Then, employing (A.1) in Lemma A.5 and (A.4), we have 

that for any c9 > 0,

(A.6)

By (A.3), (A.5), and (A.6), we have that, for any C1 > 0, there exist some positive constants 

C2 and C3 such that

(A.7)

for some positive constants  and . The last inequality follows from 

and  with  and . This completes the proof.

Proof of Theorem 2

On the event

we apply Condition (C3) and obtain . Hence, by the 

choice of  with C4 ≤ C0/2, we have ℳ* ⊂ ℳ̂νn on the event An. This, together 

with (A.7) and the union bound of probability, yields that

which completes the proof.
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Proof of Proposition 1

Employing equation (10) by letting 2c = C4, we have that, on the event Ωn, |ℳ̂νn| ≤ 

C*nς+κ−ω/2, where 0 < C* < ∞. This, in conjunction with Theorem 1, leads to

Accordingly, Proposition 1 follows.

Proof of Theorem 3

Define kmin = min1≤k≤d{k : ℳ* ⊂ (k)}. By the assumption that ς + κ − ω/2 < 1/2 and the 

result in Proposition 1, kmin is well defined and satisfies kmin ≤ C′nς+ κ−ω/2 = o(n1/2) for 

some constant 0 < C′ < ∞. For any 1 ≤ k < kmin, (k) are underfitted models such that ℳ* 

⊄ (k) and (k) are nested. By (A.18) in the supplementary materials of Lee et al. (2014), 

with probability approaching 1, we can choose a sequence of constants {Ln} such that Ln → 
∞, Ln/Cn → 0, and

for some constant 0 < C″ < ∞, where  and 

. Under the assumption that E|ε| < ∞, we obtain that 

 and c′ ≤ Eρτ (ε) ≤ c″ for some constants 0 < c′, c″ < ∞. In 

addition, by assuming that (nς+κ−ω/2n−1 log n)Cn = o(1), we have n−1 Lnnς+κ−ω/2 log(n) = 

o(1). The above results imply that, with probability approaching 1,

(A.8)

Moreover, by employing the same techniques as those used in the proof of (A.20) from the 

supplementary materials of Lee et al. (2014), we have, with probability approaching 1,

(A.9)

for any 1 ≤ k < kmin, for some constant 0 < c‴ < ∞. Then, we have, with probability 

approaching 1, as n → ∞,
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where the first inequality follows from the fact that log(1 + x) ≥ min{x/2, log 2} for any x > 

0, (A.9) and kmin ≤ C′ς+κ−ω/2, and the second inequality follows from (A.8) and the 

assumption that (nς+κ−ω/2n−1 log n)Cn = o(1). The above result implies that P(k̂ ≥ kmin) → 
1, as n → ∞, which completes the proof.
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Table 1

Comparison of the QPCS, QTCS and QFR algorithms.

QPCS QTCS QFR

Initialization A(0) = ∅ A(0) = ∅ A(0) = ∅

Action one variable is selected one variable is selected one variable is selected

Conditional set Sj for k ≤ d*

A(k−1) or 

current set A(k−1)

Conditional set Sj for k > d*

A(d*) or A(d*)

A(d*)

J Am Stat Assoc. Author manuscript; available in PMC 2018 March 30.
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